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A Fast Built-in Redundancy Analysis for
Memories With Optimal Repair Rate
Using a Line-Based Search Tree

Woosik Jeong, Ilkwon Kang, Kyowon Jin, and Sungho Kang, Member, IEEE

Abstract—With the growth of memory capacity and density, test
cost and yield improvement are becoming more important. In the
case of embedded memories for systems-on-a-chip (SOC), built-in
redundancy analysis (BIRA) is widely used as a solution to solve
quality and yield issues by replacing faulty cells with extra good
cells. However, previous BIRA approaches focused mainly on em-
bedded memories rather than commodity memories. Many BIRA
approaches require extra hardware overhead to achieve the op-
timal repair rate, which means that 100% of solution detection is
guaranteed for intrinsically repairable dies, or they suffer a loss of
repair rate to minimize the hardware overhead. In order to achieve
both low area overhead and optimal repair rate, a novel BIRA
approach is proposed and it builds a line-based searching tree.
The proposed BIRA minimizes the storage capacity requirements
to store faulty address information by dropping all unnecessary
faulty addresses for inherently repairable die. The proposed BIRA
analyzes redundancies quickly and efficiently with optimal repair
rate by using a selected fail count comparison algorithm. Experi-
mental results show that the proposed BIRA achieves optimal re-
pair rate, fast analysis speed, and nearly optimal repair solutions
with a relatively small area overhead.

Index Terms—Built-in self-repair (BISR), built-in self-test
(BIST), redundancy analysis (RA), yield improvement.

1. INTRODUCTION

S THE capacity and density of semiconductor memories

have rapidly increased as a consequence of the technolog-
ical progress of semiconductor manufacturing, the probability
of memory faults has concomitantly increased, resulting in yield
drop and quality degradation. Therefore, maintaining accept-
able yield and quality has become the most critical challenges in
semiconductor memory manufacturing. To achieve reasonable
yield and quality, faulty cells are repaired with redundant cells;
this is the most popular method for repairing embedded sys-
tems-on-a-chip (SOC) memories as well as commodity memo-
ries. Most commodity semiconductor memories are tested with
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external automatic test equipment (ATE) and their repair solu-
tions are gathered from ATE. Faulty cells on a memory block
are then repaired using repair solutions. However, most SOCs
adopt a built-in self-test (BIST) and built-in redundancy anal-
ysis (BIRA) to test and repair their embedded memories instead
of using external ATE because this method is more cost-effec-
tive. However, to test recent high density and high-speed com-
modity memories such as dynamic RAM (DRAM), a high-end
ATE platform is required that offers fast operating speeds and
high parallel testing functions. BIST and BISR schemes for
commodity memories can further decrease costs by providing
these functions in the chip itself instead of requiring expen-
sive high-performance ATE. Previous researches on BIRA tech-
niques have revealed that it still has some problems that need to
be addressed to enhance its cost effectiveness.

Before we discuss BIRA, we define the repair rate because
it is the most important and frequently used term in this paper.
Repair rate represents the ability of an RA algorithm to find a
correct repair solution and was introduced in [1]. Definitions of
the repair rate and the normalized repair rate are as follows:

# of repaired chips
# of total tested chips
# of repaired chips

repair rate =

normalized repair rate = .
P # of repairable chips

The number of total tested chips includes the number of un-
repairable chips; the repair rate is influenced by the number of
unrepairable chips. There are many factors that may produce
unrepairable chips in semiconductor manufacturing including
process variations, design originated faults, and human error.
Variations resulting from these factors distort the accuracy of an
RA algorithm that uses the repair rate. However, the normalized
repair rate is independent of these variations. Therefore, the nor-
malized repair rate is more appropriate for indicating the ability
of an RA algorithm to obtain correct repair solutions. Optimal
Repair rate was introduced in [1] and it is used when the nor-
malized repair rate is 100%.

The three main features of BIRA are area overhead, repair
rate, and analysis speed. Reduced area overhead obviously de-
creases the overall cost of chip production. The loss of repair
rate leads to an unwanted yield drop that is not negligible for
the mass production of commodity memories. So, repair rate of
a BIRA should be optimal, if it is possible, to achieve an ac-
ceptable yield. High-density memory requires much longer RA
times than low-density memory because of its larger analyzing
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spaces. Faster RA speed has many advantages for BIRA because
the test cost is directly proportional to the test time.

Recently, many BIRA approaches for various spare architec-
tures have been introduced, but these are based on 2-D spare
architecture [2]-[5]. Redundancy architectures of commodity
DRAMs are more complex than those of embedded memo-
ries for SOCs. Most of the commodity memories including
embedded memories adopt 2-D spare architecture using row
and column redundancies [6]-[10]. However, the optimal
redundancy allocation problem becomes NP-complete [2],
[11]. From the middle of 1980s, various RA algorithms for
2-D redundancy have been developed [1], [6]-[8], [11]-[16].
Among these algorithms, repair-most (RM) algorithm [12],
CRESTA [13], LRM [1], and ESP [1] are the most well-known
RA algorithms for BIRA. RM is a greedy algorithm, and though
its repair rate is high, it is not optimal. However, this simple al-
gorithm has inspired the creation of other algorithms. CRESTA
mainly focuses on optimal repair rate and fast analyzing speed.
To detect 100% repairable chips, it simultaneously analyzes
entire cases of possible solutions with several parallel sub-
analyzers. It takes no additional RA time after finishing fault
collection during test sequence running. However, the number
of parallel subanalyzers of CRESTA is exactly the same as the
entire number of cases of all possible combinations of available
redundancies. Its area overhead increases with an increasing
number of redundancies. LRM and ESP mainly focus on mini-
mizing the area overhead of storage requirements with simple
RA algorithms. To reduce area overhead, two algorithms are
designed to reduce or eliminate the ability of the failure bitmap
to store faulty information. However, the repair rates of both
algorithms are not optimal because of their excessive omission
of faulty information. There has been much research that has
attempted to solve the spare allocation problem for reconfig-
urable memory arrays based on the branch-and-bound (B&B)
algorithm [6], [7], [15]-[18]. The B&B algorithm is a simple,
fault-driven approach. Among these methods, IntelligentSolve
and IntelligentSolveFirst [6] achieve both low area overhead
and optimal repair rate. However, both algorithms take a lot of
time to complete the RA in cases of complex fault distributions.
Although IntelligentSolveFirst is faster than IntelligentSolve,
its RA speed is still not fast enough for commercial production
purposes. In addition, IntelligentSolveFirst does not guarantee
an optimal solution.

Another important feature of BIRA is achievement of the op-
timal repair solution. The optimal repair solution is the min-
imum set of spares for a repairable memory block. It takes extra
cost to repair overassigned repair solutions during the phys-
ical laser-fusing process. In some cases of postpackaging repair
[19], the unallocated redundancies during the wafer level repair
process can be reused to repair additional package level faulty
cells. Obtaining an optimal solution for a memory block in the
wafer level test can increase the probability of successfully ob-
taining postpackage level repair in this application. Therefore,
obtaining the optimal repair solution is another important fea-
ture of BIRA.

To overcome the disadvantages of previous research, we pro-
pose a novel BIRA approach that focuses on optimal repair rate
and fast analysis speed. The first idea of the proposed BIRA
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Fig. 1. Example of a memory block using 2-D spare architecture.

approach is to reduce search space by building a search tree
based on line faults rather than cell faults. To build a line fault-
based search tree, fault classification in must-repair faults, single
faults, and sparse line faults must be preceded by RA. To support
this strategy, a new fault-restoring content addressable memory
(CAM) structure is proposed. This helps the proposed BIRA to
distinguish between sparse line faults and single faults quickly,
and it also reduces the storage requirements to store faulty in-
formation by discarding any overlapping row or column faulty
addresses. The second idea of the proposed BIRA is to drop
branches of the search tree that cannot be a correct repair solu-
tion by simple comparing the sum of line fail counts of a branch.
By applying this strategy, a new RA algorithm named selected
fail count comparison (SFCC) is proposed.

In this paper, we summarize the background concerning RA
and fault collection in Section II. We also introduce several fac-
tors to achieve optimal repair rate in Section III. A new fault-
storing hardware structure is proposed with a simple example
in Section I'V. A proposed RA algorithm, SFCC, is described,
and a simple example is given to help understand its analysis al-
gorithm in detail in Section V. Experimental results of the area
overhead, repair rate, and RA speed are shown and compared to
previous studies in Section VI. Finally, conclusions are given in
the last section.

II. BACKGROUND

A. Classification of Faults in a Memory Block

As we mentioned in Section I, most state-of-the-art memo-
ries, including commodity memories, adopt 2-D spare architec-
ture. Most 2-D spare architectures for wafer-level repair consist
of spare row lines and spare column lines and obey a line re-
placement policy. A line replacement policy dictates that any
fault in a memory block has to be replaced with a spare line,
even for a single fault. If a faulty cell is replaced with a spare
row line in a memory block using 2-D spare architecture with a
line replacement policy, all other cells sharing the row address
with the faulty cell are also replaced with the same spare row
line used for the faulty cell.

An example of an 8§ x 8 memory block that has some faults
and spare lines is described in Fig. 1. The memory block has
two spare rows and four spare columns. All faults in the memory
block have to be repaired to produce a good chip. Faults shown
in Fig. 1(a) can be repaired with a spare column but not with

Authorized licensed use limited to: Yonsei University. Downloaded on December 8, 2009 at 22:16 from IEEE Xplore. Restrictions apply.



JEONG et al.: FAST BUILT-IN REDUNDANCY ANALY SIS FOR MEMORIES WITH OPTIMAL REPAIR RATE

Single sparse fault
k=1

Sparse fault

k < Rs(Cs) ()
2 Sparse faulty line
3 (a) 1<k < Rs(Cs)

(d)

Must-repair faulty line
k> Rs(CS)

(b)

Fig. 2. Classification of faults.

spare rows because the memory block has only two spare rows.
However, faults such as those shown in Fig. 1(b) can be repaired
with either a spare row or two spare columns. In most of the pre-
vious studies, faults were classified only into two types: must-re-
pair faulty lines and others [1], [2], [6]. However, we classify
faults into three types: single (sparse) faults, sparse faulty lines,
and must-repair faulty lines. Fig. 2 shows the classification of
faults.

Rs (Cg) in Fig. 2 represents the number of spare rows
(columns). Let the number of faulty cells in a faulty line be k.
According to the value of k, faults can be divided into three
types defined as follows.

1) Single (sparse) fault: A fault that does not share a row and

column address with other faults (i.e., £k = 1), as shown in
Fig. 1(c).

2) Sparse faulty line: A faulty row or column line where 1 <
k < Cg for a faulty row and 1 < k < Rg for a faulty
column, as shown in Fig. 1(b).

3) Must-repair faulty lines: A faulty row or column line where
k > Cg for a faulty row and k > Rg for a faulty column,
as shown in Fig. 1(a).

Single fault and must-repair faulty lines were introduced in
previous studies [1], [6], [7], [14], [16]. Sparse faulty line faults
were handled like other faults, but identification of a sparse
faulty line is very important for the proposed BIRA. Classifying
faults into three types helps to minimize storage requirements
and enhance the RA speed of the proposed BIRA. These three
types of faults are frequently used in the rest of this paper.

B. Classification of RA

For memory that uses BIST and BIRA (BISR), BIST ap-
plies test algorithms on memory cells and detects fault informa-
tion. BIRA collects and restores fault information from BIST,
and then analyzes the information. For commodity memories
without BIST and BIRA, external ATE provides all of these
functions. Fault collection and RA are two important functions
for RA. RA can be classified into three types by method of
fault collection and RA. Fig. 3 shows the three types of RA
approaches.

The first type of RA is static RA. This type of RA requires a
sufficient failure bitmap size to restore whole failures during test
sequence running. After finishing the test sequence, all failure
addresses are already saved in the failure bitmap, so any kind
of RA algorithm can be applied. However, the main disadvan-
tages of using this type of RA are the high area cost required to
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Fig. 3. Three types of RA approaches.

prepare the large failure bitmap and the additional search time
required depending on the size of the failure bitmap. Although
most commodity memories tested with external ATE use static
RA, it cannot be adopted for BIRA because of the high area
overhead of the failure bitmap.

The second type of RA is dynamic RA. It does not require a
full failure bitmap because it analyzes every incoming failure
address whenever faults are detected. When all test sequences
are finished, the RA is also finished. Many BIRAs such as
CRESTA and ESP adopt dynamic RA approaches. This type
of RA has been developed to achieve low area overhead by not
using a full failure bitmap. However, CRESTA has to multiply
area overhead with an increasing number of redundancies, and
ESP suffers a loss of repair rate.

The last type of RA is hybrid RA. This type of RA collects
failure addresses and executes RA simultaneously for part of
the failure addresses as must-repair faulty lines during test se-
quence running. After finishing the test sequence, the rest of the
failure addresses that are not assigned to any spares yet are ana-
lyzed. Hybrid RA attempts to compensate for the disadvantages
of static RA and dynamic RA. LRM and IntelligentSolveFirst
use a hybrid RA. The repair rate of LRM is not optimal, but
IntelligentSolveFirst achieves the optimal repair rate with a rel-
atively low area overhead. The proposed BIRA also adopts a
hybrid RA.

III. ACHIEVING OPTIMAL REPAIR RATE

A. Basic Observations for Spare Assignments

As mentioned in Section I, achieving optimal repair rate is

a very important feature of BIRA. To achieve optimal repair
rate for a memory block using 2-D spare architecture with a
line replacement policy, three basic observations can be made
for spare assignment during the RA. Some of these observations
were also introduced in many previous studies [1], [6], [7], [12],
[14]. The three observations are as follow.

Observation I: A single sparse fault can be replaced with

either a spare row or spare column.

Observation 2: A sparse faulty row (column) line can be

replaced with a spare row (column). However, it can also

be replaced with several spare columns (rows) according

to the number of available spares.

Observation 3: A must-repair faulty row (column) must be

replaced with a spare row (column).
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According to Observation 1, both a spare row and a spare
column can be a correct repair solution for a single fault. Ac-
cording to Observation 3, a correct repair solution for a must-re-
pair faulty line is determined (fixed). However, a correct repair
solution for a sparse faulty line is not determined. A correct re-
pair solution for a sparse faulty line depends on its situation.
Therefore, finding correct repair solutions for sparse faulty lines
is the key to achieving optimal repair rate.

B. Optimal Repair Rate for Various Types of BIRA

As outlines in the previous section, analyzing sparse faulty
lines is very important for achieving optimal repair rate. In the
case of a static RA, all failure information is already restored in
the full failure bitmap and there are no more additional faults.
Thereafter, RA is executed, so sparse faulty lines can be dis-
tinguished and optimal repair rate is possible to be achieved.
For a BIRA adopts dynamic type RA, however, it is impossible
to distinguish sparse faulty lines from others (i.e., single faults
and must-repair faulty lines). This type of BIRA executes RA
during test sequence running, so the fault type may or may not
be changed depending on the following fault during the rest of
the test sequence. If there is a single fault at the point of running
a test sequence, it can grow into either a sparse faulty line or a
must-repair faulty line depending on the following faults. Simi-
larly, a sparse faulty line at the point of running a test sequence
can grow into a must-repair faulty line. However, a must-repair
faulty row (column) line at the point of running the test sequence
cannot be changed with a must-repair faulty column (row) line.
It is impossible to predict whether a newly incoming fault at the
point of running the test sequence will be a single sparse fault, a
sparse faulty line, or a must-repair faulty line, until the end of all
test sequences. The only exception is when the incoming fault
is already included in one of the must-repair faulty lines. There-
fore, to obtain optimal repair rate for a memory block with 2-D
spare architecture, assignment of either a row or a column spare
line for a single sparse fault or a sparse faulty line should not
be made until the entire test sequence has been finished. Only a
must-repair faulty row (column) line can be assigned to a row
(column) spare at any time. It is obvious that if any faults are
assigned to a must-repair faulty row (column) line during test
sequence running, there is no need to restore all pairs of row
and column addresses; only the common row (column) address
should be restored. However, if there is any newly incoming
fault that is not yet identified as a must-repair faulty line during
test sequence running, all of its row and column addresses have
to be saved to achieve a successful repair solution.

We now define three properties of failure address conserva-
tion to achieve optimal repair rate for BIRA using 2-D spare
architecture with a line replacement policy.

Property I: There is no need to save all pairs of addresses
but only a common row (column) address for must-repair
faulty row (column) lines.

Property 1 is obvious for BIRA obeying a line replacement
policy. According to the line replacement policy, if a row
address is repaired by a spare row, any fault with the same
row address as the repaired row address is also replaced by the
line replacement policy and its column address is unimportant.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 12, DECEMBER 2009

Therefore, keeping only a single side address for the must-re-
pair faulty line does not harm the repair rate of BIRA.
Property 2: All pairs of row and column addresses for
sparse faults have to be saved to achieve a proper repair
solution during test sequence running.
Property 3: Sparse faults must not be assigned to any spare
during test sequence running.

RA is known to be NP-complete. To obtain a correct repair
solution, CRESTA has parallel sub-analyzers, as many as the
number of solution cases. However, most of the BIRAs have
just a single RA analyzer, so RA reanalyzing is unavoidable
until a correct repair solution is obtained. The repair solution
for a must-repair faulty line is already determined. RA reana-
lyzing is needed only for sparse faults (single sparse faults and
sparse faulty lines). RA reanalyzing of sparse faults is impos-
sible without all pairs of addresses of sparse faults. If any sparse
fault is determined to be a spare row or column, RA reana-
lyzing of the sparse fault is impossible. Therefore, Property 2
and Property 3 must be observed to achieve optimal repair rate
for a BIRA with a single RA analyzer.

LRM and ESP adopt hybrid RA and dynamic RA, respec-
tively. Both algorithms show good performance with low area
overhead and a relatively high repair rate. However, their repair
rates are not optimal. For LRM, the main concept is reduction of
the size of the local bitmap to save area overhead. However, this
reduction is not sufficient to save all fault information, and the
algorithm makes a hasty spare assignment because of its lack of
storage. Consequently, LRM violates Property 2 and Property 3
resulting in a loss of repair rate. To achieve an optimal repair rate
using LRM, the size of the local bitmap should be taken as suffi-
cientasm = ((Rs+1)Cs+Rs)andn = ((Cs+1)Rs+Cs),
where m and n are the sizes of the memory block and Rs (Cs)
is the number of spare rows (columns) [1]. For ESP, the main
concept is to restore only orthogonal faulty addresses [1]. How-
ever, reducing storage requirements by dropping half of the ad-
dresses for nonorthogonal addresses leads ESP to violate Prop-
erty 2 and it causes a loss of repair rate. Unfortunately, there
is no way to achieve an optimal repair rate using ESP. Besides
ESP, CRESTA also adopts a dynamic RA but the RA is not re-
quired to obey these properties because CRESTA has several
parallel subanalyzers. Except for CRESTA, almost every BIRA
has just a single redundancy analyzer to avoid the additional area
overhead of using parallel analyzers.

Even if a BIRA observes both Property 2 and Property 3
in fault collection, it does not always guarantee optimal repair
rate. For example, if the RM algorithm is adopted to analyze
a memory block using 2-D spare architecture while fully ob-
serving both Property 2 and Property 3 in fault collection, its
repair rate is high but not optimal. Therefore, to achieve the op-
timal repair rate, Property 2 and Property 3 are strictly observed
and a good RA algorithm must be used for a BIRA using 2-D
spare architecture with a single redundancy analyzer. LRM has
to adopt a good RA algorithm to achieve the optimal repair rate
even though its size of bitmap is large enough since its RA al-
gorithm is based on RM algorithm.

Besides LRM, ESP, and RM algorithms, IntelligentSolve-
First observes all three properties relatively well and it shows
good performance with respect to area overhead, repair rate,
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Fig. 4. Overview of memory BIST and BIRA.

and analyzing speed. The proposed BIRA also obeys all three
properties to achieve optimal repair rate. In addition, the pro-
posed BIRA improves area overhead and analyzing speed com-
pared to state-of-the-art BIRA techniques such as Intelligent-
SolveFirst.

IV. PROPOSED BIRA APPROACH

A. Overview of the Proposed BIRA

We propose a new hybrid-type BIRA approach. Fig. 4 shows
an overview of memory BIST and BIRA. Even if logic circuits
on the BIST and a BIRA are implemented in semiconductor
memory, it is impossible to test the memory without the help
of external ATE. However, it is possible to test a memory at
a low cost using a simple functional ATE instead a multifunc-
tional expensive ATE. The proposed BIRA has two functional
components: 1) fault collection block during test sequence run-
ning and 2) RA block after finishing all test sequences. During
test sequence running, must-repair faulty lines are assigned to
the proper spare lines, and sparse faults are restored into in-
ternal CAMs that support fast address comparison between in-
coming faults and previous restored faults [20]. We assume that
all CAM cells have passed the manufacturing test beforehand.
After finishing the test sequence, SFCC analyzes sparse faults
and finds a correct repair solution. In order to reduce storage
requirements to restore failure information and enhance identi-
fication of sparse line faults and single faults, we propose a new
fault storing structure. Also, we propose a novel RA algorithm
to achieve optimal repair rate along with a fast analysis speed.
A detailed description of our proposed BIRA approach follows.

B. Fault Collection

The proposed fault collection structure is based on ESP [1]
and IntelligentSolveFirst [6]. Both ESP and IntelligentSolve-
First have very small area overhead of fault collection. How-
ever, ESP cannot achieve an optimal repair rate and Intelligent-
SolveFirst is not appropriate for building a line-based searching
tree. To build a line-based searching tree quickly and minimize
the area overhead of fault collection, a new fault-storing CAM
structure is proposed, as shown in Fig. 5.
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Fig. 5. Fault-storing CAM structure of the proposed BIRA.

Fig. 5(a) shows an M x N memory block using 2-D spare ar-
chitecture with Rg spare rows and C'g spare columns. Fig. 5(b)
shows fault-storing CAM structure of the proposed BIRA for a
memory block such as Fig. 5(a). Fault-storing CAMs, consist of
must-repair address CAMs, parent address CAMs, and child ad-
dress CAMs, as seen in Fig. 5(b). The maximum number of both
must-repair address CAMs and parent address CAMs is the same
as the sum of the total spares (i.e., Rs + Cg). The maximum
number of child address CAMsis Rs(Cs — 1) + Cs(Rs — 1).
The sum of the number of parent address CAMs and the number
of child address CAMs is 2 * Rg x Cg; the size of CAMs to
restore sparse faults has already been introduced in [1] and [6].

The concept of spare pivot was introduced in [1]. The spare
pivot is the first faulty address that can be a new line fault ac-
cording to the following faulty addresses. When a spare pivot
occurs, it does not share its row and column address with other
spare pivot addresses. The proposed BIRA stores spare pivot
faults into parent address CAMs. In this case, spare pivot ad-
dresses in parent address CAMs have unique row and column
address only among themselves. The row (column) repeat fail
count of the parent address CAM stores the number of its child
address that shares a row (column) address with the parent ad-
dress. If a new incoming fault occurs and shares its row (column)
address with one of its parent addresses, the row (column) repeat
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fail count of its parent address is increased and the column (row)
address of the incoming fault is stored in a child address CAM
with the pointer of its parent CAM. If the number of row repeat
fail counts of a parent address is equal to C’, i.e., the number of
faults on the row line is greater than CS because the initial value
of repeat fail count is 0, the row address becomes a must-repair
faulty row line. By Property 1, the row address is stored in a
must-repair address CAM, and enable flags of the parent ad-
dress CAM and child address CAMs, which share the row ad-
dress, are initialized. Similarly, with a column line with more
than Rg faults in it, the column address is stored in a must-re-
pair address CAM.

The proposed BIRA observes the following guidelines for
fault collection, as shown in Fig. 6. If a fault is detected by BIST,
BIRA receives the faulty information in Fig. 6(a). Early termina-
tion conditions to speed up the BIRA analysis speed were already
introduced in [1] and [6]. Before storing the incoming faulty
address, BIRA checks whether the current status meets two early
termination conditions to avoid unnecessary work in Fig. 6(b).
These two conditions are as follows. R, (C,) of Condition 1 is
the number of available spare rows (columns). These are simply
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Fig. 7. Example of the fault collection process of the proposed BIRA.

calculated by subtracting the number of must-repair faulty row
(column) lines and faulty spare row (column) lines from the
total spare row (column) lines. Valid CAMs of Condition 2
mean valid parent address CAMs and valid child address CAMs

Condition1: R, >0o0rC, >0
Condition 2 : # of valid CAMs < (R, *x Cs + Cy * Rs).

Condition 1 means that there is at least one available spare line
to replace a fault, otherwise the case is unrepairable. The max-
imum faults for R, available spare rows is R, * Cg because a
maximum number of faults in a sparse faulty row is C's. Simi-
larly, the maximum faults for C, available spare rowsis C, * Rg
because a maximum number of faults in a sparse faulty rowis Rg.
Therefore, Condition 2 must be met for a memory block that is
still repairable when it has just R, and C, available. If a case vi-
olates at least one of these two conditions, the memory block is
unrepairable, and the BIRA terminates all subsequent sequences
for the memory block. Otherwise, the incoming fault is com-
pared with previously stored must-repair address CAMs. BIRA
skips later processes when the row (column) address of the in-
coming fault is the same as any must-repair faulty row (column)
addresses, as seen in Fig. 6(c). Then, BIRA compares the in-
coming faulty address with the parent address CAMs. If both the
row and the column address of the incoming fault do not match
with any parent addresses, as shown in Fig. 6(d), the incoming
fault is stored in a parent address CAM, as shown in Fig. 6(e).
In Fig. 6(f), BIRA skips later processes and returns to the state of
Fig. 6(a) when the address of the incoming fault is identical to that
of any previously stored sparse faults. Otherwise, BIRA checks
whether the incoming faulty row or column address becomes a
must-repair faulty line in Fig. 6(g). If the row (column) address of
incoming fault cannot be a must-repair address, the row (column)
address is stored into a child address CAM in Fig. 6(h). Oth-
erwise, the faulty address is stored into a must-repair address
CAM in Fig. 6(i). This is the end of fault collection flow for the
current fault and BIRA waits the next incoming fault.

Fig. 7 shows an example of how the proposed BIRA collects
faulty information for the same memory block shown in Fig. 1.
The first column of Fig. 7(a) represents the detection order of
the incoming failure addresses. The second column of Fig. 7(a)
represents a pair of row (R) and column (C) addresses of an
incoming fault. At the beginning of the test sequence, all must-
repair address CAMs, parent address CAMs, and child address
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CAMs are initialized, as shown in Fig. 7(b). In this example, the
number of must-repair address CAMs is 6: two row must-repair
address CAMs and four column must-repair address CAMs. A
must-repair address CAM consists of four bits: one bit for the
enable flag and three bits for addresses to express all addresses
from O to 7. The number of parent address CAMs is 6 and the
number of child address CAMs is 10. A parent address CAM
consists of ten bits: one bit for the enable flag, three bits for the
row CAM, three bits for the column CAM, and the last three
bits for the row/column repeat fail count. A child address CAM
consists of eight bits: one bit for the enable flag, three bits for
the parent CAM pointer, one bit for the child address descriptor,
and three bits for the child address CAM.

Now, the first fault is detected and the fault is compared with
all must-repair address CAMs; however, there is nothing to be
compared to in the must-repair address CAMs yet. Then, the
first fault is compared with parent address CAMs and it is stored
into parent address CAMs. The first four faults have been re-
stored into parent address CAMs, as shown in Fig. 7(c). Be-
cause the first four faults did not coincide with any must-repair
address CAMs, all of them are spare pivot addresses. When the
fifth fault [i.e., cell (4,1)] is detected, the column address of the
fault is the same as that of the third parent address CAM [i.e.,
cell (6,1)], so the column repeat fail count is increased to 1 and
the fault is stored in the first child address CAM as in Fig. 7(d).
For the first child address CAM, the enable flag is set to one. The
parent CAM pointer of the first child CAM is set to 2 because the
pointer of the parent address CAM starts at zero. The address de-
scriptor is set to O (i.e., row address) and the child address is set
to 4 because the child address to store is the row address of the
cell (4,1). When the sixth fault is detected, column 1 becomes a
must-repair faulty column address. Column 1 is stored into the
first must-repair faulty column CAM and its related CAMs are
cleared (i.e., the third parent address CAM and the first child
address CAM), as shown in Fig. 7(e). The seventh fault is spare
pivot and it is stored in the parent address CAM, as shown in
Fig. 7(f). The eighth fault is stored in a child address CAM, as
shown in Fig. 7(f). The ninth fault and the tenth fault are also
stored in a parent address CAM and a child address CAM, re-
spectively, as shown in Fig. 11(g). For the tenth fault, although
it is spare pivot, its row address is shared with the first child ad-
dress, its row repeat fail count is set to 1. Now all test sequences
are finished. Fig. 7(g) shows the final status of fault collection
CAMs of the proposed BIRA.

By following the proposed fault collection process, the pro-
posed BIRA reduces storage requirements for storing faulty in-
formation without loss of any essential faulty information. In
addition, faulty line identification and counting repeat fails for
each faulty line are automatically done. Now, a detailed descrip-
tion of our RA algorithm follows.

C. Redundancy Analysis

The spare allocation problem is an NP-complete problem that
means that there is no heuristic algorithm to solve this problem
with a single analysis. Some fault-driven approaches such as
B&B and IntelligentSolveFirst search for a solution by applying
an exhaustive search algorithm, but they account for the worst-
case exponential time complexity. RA reanalyzing is inevitable
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to achieve optimal repair rate for a BIRA with a single RA an-
alyzer. Although a heuristic algorithm cannot guarantee an op-
timal repair rate, it can reduce analysis complexity. Generally,
a fault-driven approach searches for a solution bit by bit, and
the time complexity of a binary search relies on the depth of
its searching tree. However, the proposed BIRA searches for a
solution line by line. Because it makes the depth of the search
tree much shallower, its time complexity is greatly reduced. To
build an efficient line-based search tree, proper preprocessing
is needed that requires a small amount of extra time and hard-
ware overhead. Three conditions are proposed to speed up the
RA speed of a line-based search tree. We now describe the RA
algorithm of the proposed BIRA approach in detail.

After finishing fault collection, must-repair faulty lines have
already been assigned to the proper spare lines and only sparse
faults (i.e., single sparse faults and sparse faulty lines) are stored
in fault-storing CAMs. Now, sparse faults need to be analyzed
to obtain the final repair solution for a memory block. The main
idea of the RA algorithm of the proposed BIRA is derived from
the first and the second observations mentioned previously in
Section III.

Sparse faults consist of two kinds of faults: single faults and
sparse faulty lines. Single faults can be assigned any available
spares, so the repair decision for single faults can be postponed
until the repair decisions for sparse faulty lines have been deter-
mined. Therefore, finding a correct repair solution for a memory
block actually depends on analyzing sparse faulty lines rather
than single faults. In order to analyze sparse faulty lines effec-
tively, we propose anew RA algorithm named SFCC. The SFCC
algorithm is based on RM algorithm. The repair rate of RM is
not optimal but SFCC improves the repair rate up to 100% with a
fast analysis speed by building a search tree based on line faults
and using a simple fail count comparison algorithm for analysis.
Fig. 8 shows the proposed RA algorithm described with c-lan-
guage style pseudocode.

SFCC consists of three main function modules: get faulty line
from CAM, descending faulty line sort, and fail count compar-
ison. SFCC focuses on fast RA analysis with an optimal repair
rate. To build a line-based search tree, sparse faulty lines and
single faults must be identified and SFCC algorithm searches
all sparse faulty lines in the get faulty line from CAM function
in the SFCC_RA module in Fig. 8. This function searches for
all sparse faulty lines in the parent address CAMs and returns
faulty line addresses. According to the row and the column re-
peat fail count of parent CAMs, SFCC identifies faulty lines and
single faults with fail counts. SC, RBC, and C BC (number of
single faults, number of row faulty lines, and number of column
faulty lines, respectively) are also counted in this function. Then,
SFCC checks a condition to improve RA speed is given as

Condition 3 : ((SC + RBC + CBC) < (Ca + R.))
(RBC < R,) (CBC < C).

Condition 3 is the simplicity check condition for a memory
block. If a memory block satisfies this condition, it means that
it is simple analysis case. A faulty line as well as single fault
can be repaired by a spare line, so a memory block, which satis-
fies Condition 3, can also be repaired because the sum of faulty
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Rs, Cs: total number of spares

BUFuax : total number of sparse faulty line buffers

R., C,: number of available spares

BUF : K" sparse faulty line buffer address

EBUF, : K" enable flag of each sparse faulty line buffer

TYPE, : K" row or column type flag of each sparse faulty line buffer
BUFC : sparse faulty line count

SC : single sparse fault count

RBC (CBC) : sparse faulty row (column) line buffer count

sp_cnt : selected sparse faulty line count

SFCC_RA () {
result =1;
while (1) {
(SC, RBC, CBC) = get_faulty_line_from_CAM ();
if (Condition 3 ) { faulty_line_assign (); break; }
if (R==0) || (RBC==0)) && ((C,==0) || (CBC==0))) break;
descending_faulty_line_sort(); result =0;
for all sp_cnt, 1< sp_cnt < (R,+C,- SC){
fail_count_comparison (sp_cnt);
if (result ==1) break;
}
if (result ==0) break;

< (a)

if (result==1) { single_bit_assign (); }
if (remain_sparse_CAM > 0) repair_fail (“Unrepairable”);
else repair_success (“Repairable”);

}
get_faulty_line_from_CAM () {
for all parent address CAMSs {
if (parent_enable ==0) continue;
if (column_repeat_fail_count > 0) {
update_faulty_line_buffer (column address);BUFC++; }
if (row_repeat_fail_count > 0) {
update_faulty_line_buffer (row address); BUFC++; }
}
}
descending_faulty_line_sort () {
descending_sort_of_buffer ();
forallk, 0 < k < BUFC {
BUF = sparse_faulty_address;
if (BUF, == row_address) TYPE, =0;
else if (BUF == column_address) TYPE, =1; }
get_intersection_for_each_line ();

}
fail_count_comparison (sp_cnt) {
Critical_fail_count = TFC - (R,+C,) + sp_cnt;
for all k, max. SFC 2 k 2 min. SFC {
select_faulty_lines (k); get_SFC (k);
if (SFC (k) < Critical_fail_count) continue;
else if (SFCR (k) 2 Critical_fail_count) {
faulty_line_assign (k);
result =1; break;}

}
Fig. 8. Proposed RA algorithm—SFCC.

lines and single faults is equal to or less than the sum of avail-
able spares. In this case, SFCC executes the faulty line assign
function for sparse faulty lines and single bit assign function for
single faults while skipping the rest of the time-consuming sub-
sequent functions such as descending faulty line sort and fail
count comparison in Fig. 8. We show later that this is very pow-
erful strategy to reduce the RA time based on experiments in
Section V.

If a memory block does not satisfy Condition 3, SFCC ar-
ranges sparse faulty lines in decreasing order by the number of
fail counts on each faulty line in the descending faulty line sort
function in Fig. 8. Fig. 9 shows a sparse faulty line buffer struc-
ture of SFCC for a memory block such as Fig. 5(a). The suffi-
cient number of sparse faulty line buffers is 2x(C's+Rg), where
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Fig. 9. Sparse faulty line buffer structure.

(Cs+ Rg) is even, otherwise 2% (Cs+Rg—1)+1. The memory
block of Fig. 5(a) has C, available spare columns and R,, avail-
able spare rows after finishing fault collection. Then, intersec-
tion flags for each faulty line are set in the get intersection for
each line function in Fig. 8. To generate intersection flags for the
sparse faulty line buffers, sparse faults except for single faults,
which were already identified by get fault line from CAM, are
checked one by one to find out which faulty line buffers share
address with each sparse fault. If a sparse fault shares its row
address with the ith faulty line buffer and its column address
with the jth faulty line buffer, where 0 < (both ¢ and j) <
the maximum number of sparse faulty line buffers, the sparse
fault is an intersection fault between two faulty lines. In this
case, the jth intersection flag of the sth faulty line buffer is set
to 1 and the 7th intersection flag of the jth faulty line buffer
is also set to 1. The jth intersection flag of the ith faulty line
buffer means that the ith faulty line buffer intersects with the
7th faulty line buffer.

Now, all sparse faulty lines are arranged into buffers in de-
creasing order of their fail counts. Then, SFCC executes the fail
count comparison function. This function selects sparse faulty
line combinations from one sparse faulty line to (C, + R, —
S¢) number of sparse faulty lines, where SC is the number of
single faults counted already from get faulty line from CAM, and
checks whether each combination can achieve a proper repair
solution. In order for quick execution with easy confirmation
of the repair possibility of each combination of sparse faulty
lines, two judgment conditions are defined as follows, where
total failure count (TFC) is the sum of sparse faults in the parent
and child address CAMs. SFC is the simple sum of fail counts
of sparse faulty lines for a combination. Selected failure count
real (SFCR) is the number of faults that are covered by a com-
bination of sparse faulty lines. It is calculated by subtracting
the number of intersection faults of a combination from SFC.
SFC is always greater than or equal to SFCR. sp_cnt is the
number of selected sparse faulty lines of a combination

Condition 4 : SFC > (TFC — ((Cy + R,) — sp-cnt))
Condition 5 : SFCR > (TFC — ((Cy + Ra) — sp-cnt)).

Both Condition 4 and Condition 5 are compared in the fail
count comparison function of Fig. 8. Condition 4 is prejudg-
ment condition to abort analysis of a combination and goes on
to the next combination when a combination does not meet it.
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Fig. 10. Example of SFCC analysis process. (d) Selection of C4R1 (unre-
pairable). (e) Selection of R1RS5 (repairable).

Condition 5 is final judgment condition of RA and a combina-
tion that satisfies the condition is the correct repair solution. If
a combination of sparse faulty lines does not satisfy Condition
4, SFCC aborts analysis, otherwise SFCC checks whether the
combination satisfies Condition 5 or not.

It is obvious that a spare line can replace at least one fault.
If there are a number of available spare lines, at least the same
number of faults can be repaired by them. Consider a combi-
nation that selects as many sparse faulty lines as sp_cnt of the
total (C, + R,) number of available spare lines to check its re-
pair possibility. The number of unselected available spare lines
is ((Cq + R,) — sp-cnt). If the combination of selected sparse
faulty lines can replace as many as (TFC — ((C, + Rs) —
sp-cnt) faults, then the rest of the unrepaired faults can be re-
paired by unselected available spare lines. If this is the case, the
combination of selected sparse faulty lines could be one of the
correct repair solutions. Actually, Condition 5 must be met to
obtain a correct repair solution rather than Condition 4. How-
ever, SFCC checks Condition 4 before Condition 5, because
SFC is much faster to calculate than SFCR. If all combina-
tions of a memory block do not meet both Condition 4 and Con-
dition 5, the memory block is judged unrepairable memory, oth-
erwise it is judged repairable memory.

Fig. 10 shows an example of the RA process using SFCC for
sparse faults of the previous memory block in Fig. 7. As shown
in Fig. 7(g), the memory block has one column must-repair ad-
dress, five parent addresses, and two child addresses. Fig. 10(a)
shows sparse faulty line buffers for the memory block after fault
collection is finished. The maximum number of sparse faulty
line buffers of Fig. 10(a) is 12 because the memory block has
four spare column lines and two spare row lines (i.e., 2 x (2 4+
4) = 12). The first child address shares the column address
with the first parent address (i.e., cell (4,1) for the child ad-
dress and cell (5,4) for the parent address). Similarly, the second
child address shares the row address with the first parent ad-
dress (i.e., cell (5,6) for the child address and cell (5,4) for the
parent address). Therefore, there are two sparse faulty lines in
the memory block (i.e., row 5 and column 4). The first child
address coincides with the row address of the fifth parent ad-
dress (i.e., cell (1,4) for the child address and cell (1,2) for the
parent address) and there is another sparse faulty line (i.e., row
1). Parent addresses that have no child address or no identical
address with child addresses, they are single faults. As a result,
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there are three sparse faulty lines in the memory block (i.e., row
1,row 5, and column 4) and three single faults [i.e. cell (3,0), cell
(0,3), and cell (5,6)]. Information about all sparse faulty lines is
stored into sparse faulty line buffers in decreasing order of fail
counts. In this example, all three sparse faults have the same fail
counts, so the information is stored in increasing address order
with column preference.

Intersection flags for sparse faulty lines are set by searching
parent addresses that are not single faults and child addresses.
In this case, the first and the fifth parent addresses and the first
and the second child addresses are not single faults. For the first
parent address [i.e., (5,4)], it shares both row 5 and column 4. It
is the intersection fault for the first and the third faulty lines so
the third bit of the first intersection flag and the first bit of the
third intersection flag are set to 1. Similarly, for the first child
address [i.e., (1,4)], the second bit of the first intersection flag
and the first bit of the second intersection flag are also set to 1.

Fig. 10(a) indicates that column 4 has two fail counts on it.
The number of available spare columns is 3 (i.e., C, = 3) and
the number of available spare rows is 2 (i.e., R, = 2) because
the memory block has one must-repair faulty column line. The
total sparse fail counts of the memory block is 7 (i.e., TFC =
7). All preprocessing for RA of SFCC is now done. SFCC then
builds a line-based search tree and starts RA.

The memory block has three single sparse faults, and three
spare lines must be reserved to replace them. Thus, only two
spare lines are available to repair three sparse faulty line of
Fig. 10(a). Fig. 10(b) and (c) shows the process of SFCC
algorithm. Fig. 10(b) shows three possible combinations for
sp-cnt = 1. SFC(R) of all combinations for sp_cnt = 1
should be greater than or equal to 3 to meet both Condition 4
and Condition 5. The first combination is C4 (i.e., column 4).
SFC of column 4 is only 2, and this combination cannot meet
Condition 4. Every first combination for all sp_cnt (i.e., C4 for
sp_cnt = 1 and C4R1 for sp_cnt = 2) has the biggest SF'C
value because contents of faulty line buffers are arranged in
decreasing fail count order. Hence, SFCC skips to execute fail
count comparison for the rest of the selections for sp_cnt = 1
[i.e., R1 and RS of Fig. 10(b)]. Fig. 10(c) shows three possible
combinations for sp_cnt = 2, and SFC(R) should be greater
than or equal to 4 to meet both Condition 4 and Condition 5.
The first combination for sp_cnt = 2 is C4R1 (i.e., column 4
and row 1) and its SF'C value is 4, this combination satisfies
Condition 4. However, SFCR of C4R1 is 3 because C4R1
combination has one intersection fault. As a result, this combi-
nation cannot meet Condition 5. SFCC continues to execute fail
count comparison for other combinations for sp_cnt = 2 until
there is no satisfying combinations for Condition 4. The second
combination (i.e., C4R5) also meets Condition 4 but cannot
meet Condition 5. Finally, the third combination is R1RS (i.e.,
row 1 and row 5) and this combination meets both Condition 4
and Condition 5. R1RS5 is the correct repair solution for three
sparse faults of the memory block. Fig. 10(d) shows that the
combination of C4R1 cannot repair all three sparse faulty lines.
Fig. 10(e) shows the memory block after replacing three sparse
faulty lines by SRO for row 1 and SR1 for row 5. Now, there
is no more sparse faulty line in the memory block and SFCC
aborts fail count comparison. Only three single faults remain
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Fig. 11.

Searching tree based on cell fault and on line fault.

in the memory block [i.e., cell (3,0), cell (0,3), and cell (2,5)],
and they can be repaired by three available spare columns (i.e.,
SC1, SC2, and SC3). In this example, a correct repair solution
for the memory block is column 1 (for must-repair faulty line),
row 1, row 5 (for sparse faulty lines), column 0, column 3, and
column 5 (for single sparse faults). This is the end of the RA
using SFCC for the memory block and the proposed BIRA
sends a repair success signal (RA result = 1 of Fig. 4) to the
BIST or external ATE.

Fig. 11(a) shows a search tree based on a cell fault that is used
in IntelligentSolveFirst. Fig. 11(b) and (c) shows a search tree
based on line faults for the example in Fig. 10 when sp_cnt = 1
and sp_cnt = 2, respectively. Fig. 11(b) has only three branches
and two of them are skipped analysis because they do not meet
Condition 4. Fig. 11(c) also has three branches while Fig. 11(a)
has ten branches. In this case, 40% of the search space is reduced
by building a search tree based on line faults and the depth of
the search tree is very shallow compared with cell fault-based
search tree. Consequently, building a search tree based on line
faults reduces both the number of branches to search and the
depth. For these reasons, SFCC is able to analyze faster than
IntelligentSolveFirst.

V. SIMULATION RESULTS

Area overhead, repair rate, and analysis time are the most
important features of a BIRA when measuring its performance.
Now, the experimental results considering these three main
features of BIRA will be presented and discussed. In order to
estimate the performance of BIRA, we developed a simulation
tool in c-language named RepairSim. The overall diagram of
RepairSim is shown in Fig. 12. Three kinds of input data are
required to execute RepairSim: general information, memory
block information, and algorithm information. According to
the input information, RepairSim generates faulty addresses at
random. Then, these faulty addresses are randomly reordered by
their insertion order to save random fault generation time. After
finishing RA by RepairSim, several output data are generated:
storage requirements data, repair rate, solution efficiency, CPU
time, clock cycles, and fault statistics. First, in order to com-
pare area overhead, the storage requirements are estimated by
RepairSim. Generally, most BIRAs include storage to restore
failure information. Most commodity DRAM has more than 100
memory array blocks in a chip. Each block requires an indepen-
dent fault collection module but a single analyzer can cope with
all blocks. For the proposed BIRA, the area overhead of a single
SFCC analyzeris below 2% of the total area overhead of BIRA for
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Fig. 12. Overview of RA simulator—RepairSim.

amemory assuming that the number of memory blocks = 100,
M =1024, N = 1024, Rg = 5, and Cs = 5.

Therefore, the area of storage requirements is not exactly the
same as the area of the whole BIRA but the area of storage
cells dominates the BIRA. An M x N memory block using
2-D spare architecture, as shown in Fig. 5(a), has Rg spare
rows and Cg spare columns. The equations to calculate storage
requirements for each BIRA are shown below. Arrwv, Arsp,
Acresta, AinTELLIGENT, and Aproposep from (1) to (6)
represent the number of bits required for each algorithm. Equa-
tions for LRM and ESP were introduced in [1]. Reducing the
size of the local bitmap by customizing the m and n values of
(1) is the main strategy taken by LRM to reduce area overhead.
However, the insufficient size of the local bitmap of LRM causes
loss of repair rate. To achieve optimal repair rate with LRM, the
size of the local bitmap is assumed to be m = (Rs(Cs + 1) +
Rs)andn = (Cs(Rs+1)+Cs)in (1) and a good RA analyzer
must be added. All estimated area overhead equations consist of
two kinds of variables: the number of spares (i.e., C's and Rg)
and the size of the memory block (i.e., M and V). We compare
the required storage cells with the number of spares and the size
of the memory block

Airm =m X n + [(10g2 M + 1)+(10g2(n + 1))]
X m + [(logy N + 1) + (logy(m + 1))]
X 1 4 Agpare_register (D
where m = ((Rs + 1)Cs + Rs)

n= ((CS + I)RS + CS)
Agpsp = (RS + Cs)(IOgZM + 14+ 10g2N + 1)

+ Aspare_register (2)
ACRESTA = Aspare_register
X (Rs + Cs)!/(Rs! x Cs!) 3

AnreLLigeNT = 2RsCs(logy M +logy N + 1)
+ 2RsCs(log, Rs + log, Cs)
+ Aspare_register (4)
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Fig. 13. Area estimation with different column spares (M = 1024, N =
1024, and Rs = 5).

Aproposep = (Rs + Cs) x (logy M +logy N + 1)
+ (Rs + Cs) x (logy Rs + log, Cs)
+(Rs x (Cs — 1)+ Cs x (Rs — 1))
x (logy (max(M, N))
+logy(Rs +Cs) +1)

+ Aspare_register (5)
Aspare_register = [(10g2 M + 1) X RS
+(logy N +1) x Cg]. (6)

According to the area estimation results generated by Re-
pairSim, ESP has the smallest storage cells compared to the
other algorithms but ESP cannot achieve an optimal repair rate.
Besides ESP, IntelligentSolveFirst and the proposed BIRA have
relatively smaller storage cells than both CRESTA and LRM
for all cases of Rg > 2 and Cg < 2, but the proposed BIRA
requires much smaller storage cells than IntelligentSolveFirst.
Note that (4) and (5) have the (log, Rs + log, Cs) term for the
repeat fail counter. In (4), for IntelligentSolveFirst, the repeat
fail count is required for all not must-repair faults. Any faults
of IntelligentSolveFirst that are not must-repair faults can be a
must-repair fault according to the following faults. When a new
fault is detected, a BIRA has to know the number of detected
faults that share their row or column address with the fault to de-
cide whether the fault is a new must-repair fault or not. However,
the must-repair decision is impossible in a cycle without repeat
fail counters. In the proposed BIRA, the repeat fail counter is
required only for parent address CAMs [see (5)].

The proposed BIRA requires on average 33% smaller storage
cells than IntelligentSolveFirst when M = 1024, N = 1024,
Rs =1 —10,and Cg = 1 — 10. Furthermore, increasing both
the number of spares and the memory block size makes the gap
between SFCC and IntelligentSolveFirst wider in Figs. 13 and
14. Therefore, the proposed BIRA has the smallest area over-
head of fault collection of all BIRAs evaluated that achieve op-
timal repair rates.

The next feature of BIRA that will be discussed is the repair
rate. The postrepair yield of a memory depends entirely on the
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ability of the BIRA to find a correct repair solution. Achieve-
ment of an optimal repair rate is very important especially in
mass production of commodity DRAMs. CRESTA and Intel-
ligentSolveFirst can achieve 100% normalized repair rates [1],
[6]. The normalized repair rate of the proposed BIRA is simu-
lated with IntelligentSolveFirst, CRESTA, RM, and ESP. The
RA of LRM is based on RM and the maximum repair rate of
LRM is equal to that of RM when the size of bitmap for LRM is
determined as (1). Fig. 15 shows the simulated results of normal-
ized repair rate by RepairSim. Although the number of spares
and memory block sizes varied, the trend of the simulated re-
sults is nearly identical. Therefore, the rest of the simulations
were executed for a 1024 x 1024 memory block with five spare
rows and five spare columns. For each x-axis value (i.e., random
fault) from 1 to 18 of Fig. 15, RepairSim randomly generates
5000 different sets of faulty addresses and the fault insertion
order of each set of faulty addresses is randomly mixed up ten
times. Therefore, a total of 50 000 different sets of faults are sim-
ulated for each x-axis label. According to the result in Fig. 15,
IntelligentSolveFirst, the proposed BIRA, and CRESTA can all
achieve optimal repair rates (i.e., 100% normalized repair rate).
The repair rate of RM is almost 100% for simple cases in which
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Fig. 17. Comparison of clock cycles and probability to be analyzed (M =
1024, N = 1024, Rs = 5,and C's = 5).

the number of faults is smaller than or equal to the sum of spare
rows and columns (i.e., random faults < 10) but decreases for
complex cases (i.e., random faults > 10). The repair rate of
ESP decreases severely for both simple and complex cases.

RepairSim also gives the statistical fault distribution report.
Fig. 16 shows the distribution of the fault types of the random
faults for only the repairable cases. According to the statistical
report in Fig. 16, a random fault set generated by RepairSim
consists of 69.32% of single faults, 15.54% of faulty rows, and
15.14% of faulty columns.

The third feature of BIRA is RA speed. To estimate analysis
speed, RepairSim is used to model and estimate the RA execu-
tion clock cycles of the BIRA hardware. Fig. 17 shows the com-
parison of clock cycles between IntelligentSolveFirst, SFCC,
and RM based on synthesis results by RepairSim. All cases
where there are one to ten random faults are 100% repairable
in Fig. 17 (see the right side of the Y-axis) because there always
exist repair solutions for simple cases when the number of the
total faults is less than or equal to the sum of available spare rows
and spare columns [i.e., TFC < (Rgs + Cs)]. But for complex
cases [i.e., random faults > 10 (Rs = 5, C's = 5)], the anal-
ysis speed depends on the analysis ability of BIRA. From the
result of Fig. 17 (see on the left side of the Y-axis), SFCC ana-
lyzes slightly slower than IntelligentSolveFirst for simple cases
but faster for complex cases. The average clock cycles in the RA
of all analyzed cases with 1-18 random faults (593 540 cases of
the total 900 000 cases) by RepairSim for IntelligentSolveFirst,
SFCC, and RM are 196 cycles, 35 cycles, and 17 cycles, respec-
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Fig. 18. Simulated case statistics (M = 1024, N = 1024, Rs = 5, and
CS = 5)

tively. The average analysis speed of SFCC is 5.6 times faster
than that of IntelligentSolveFirst for all cases requiring analysis.
Fig. 18 shows simulated case statistics by RepairSim. Early fail
of Fig. 18 shows early terminated cases that violate Condition
1 or Condition 2 during fault collection; these cases are not re-
quired to be analyzed. Condition 3 of Fig. 18 shows simulated
cases that meet Condition 3. The normal flow of Fig. 18 shows
that some cases do not meet Condition 3 and require compli-
cated analysis. According to the results of Fig. 18, SFCC does
not need to execute time-consuming analysis for 98.54% of all
cases that require analysis. Therefore, Condition 3 greatly re-
duces the analysis time of the proposed BIRA. A faster analysis
time can reduce the time overhead of a BIRA.

For a 256-Mb DRAM (4 bank x 4 Mb x 16 I/Os),
the test time for executing a 6N March test is
2264924160 ns (4 Meg cells x 6 March elements x
9 instructions for a read /write operation) assuming that the
DRAM has 256 blocks and M = 1024, N = 1024, Rs = 5,
and Cs = 5 at the rate of 100 MHz and all banks can be tested
in parallel. The average clock cycles required for a block of
IntelligentSolveFirst, SFCC, and RM are 681.1, 250.4, and
61.54, respectively. In this case, the average test time overhead
of RA of these three BIRAs are 1743616 ns (0.077%), 641 024
ns (0.028%), and 157 542 ns (0.007%), respectively, assuming
the worst faulty conditions is 18 faults for all blocks. Time
overheads of RA for these three algorithms are all negligible.
However, the overhead of analysis time can be increased with
growing the number of blocks and the number of spares but
can be decreased by increasing the memory space.

In addition to these three main features of a BIRA, rate of
overused spares (ROS) is also another important feature of
BIRA. An ROS of 0% means a BIRA can find an optimal repair
solution. Fig. 19 shows a comparison of ROS values for the
different BIRAs. ROS is defined as follows. The number of
optimal spares in the solution can be obtained by picking up a
minimum number of spares in the repair solutions of CRESTA

# of spares in solution

ROS = -1
# of optimal spares in solution
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The lower the ROS of a BIRA, the higher the probability of
success in postpackaging repair. A nonzero ROS for a BIRA
indicates that the BIRA takes an unnecessary time to repair
overused spares during the physical laser-fusing process. Com-
pared with CRESTA, IntelligentSolveFirst wastes extra spares
by 2.42% average (maximum 5.6%) for the whole simulated re-
gions. However, SFCC achieves nearly optimal repair solutions
with an ROS of only 0.12% and this is acceptable for commodity
memories as well as embedded memories for SOCs.

Fig. 20 shows a comparison of overall performances of BIRA
such as RA execution time, storage requirements (area over-
head), and ROS for IntelligentSolveFirst, SFCC, CRESTA, and
ideal BIRA. The repair rates of these algorithms are all optimal;
thus, the repair rate is not plotted in this figure. For ideal BIRA, it
is assumed that the area overhead (storage requirements), CPU
time, and ROS are all zero and its repair rate is also optimal.
According to Fig. 20, CRESTA has too much area overhead
and IntelligentSolveFirst does not have a fast-enough RA execu-
tion time for a memory with a large number of spares. However,
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SFCC has reasonable storage requirements and a fast RA execu-
tion time as well as an extremely small ROS values. Therefore,
the proposed BIRA performs better than IntelligentSolveFirst
and CRESTA.

VI. CONCLUSION

A novel BIRA approach, which builds a line-based search tree
with CAM structures and analysis algorithm to support it, is pro-
posed in this paper. Previous BIRA approaches have been pur-
sued to achieve minimal hardware overhead and/or optimal re-
pair rate. The proposed BIRA approach greatly reduces the area
overhead with an average 33% smaller storage requirement than
IntelligentSolveFirst with a guaranteed optimal repair rate. The
average RA speed of the proposed BIRA (SFCC) is on average
5.6 times faster than that of IntelligentSolveFirst. The proposed
BIRA approach is a viable solution for commodity memories as
well as embedded memories for SOC that require optimal repair
rates because it has superior area overhead, repair rate, and anal-
ysis speed compared to other state-of-the-art BIRA approaches.
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