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ABSTRACT
This paper is concerned with a compositional approach for con-

structing finiteMarkov decision processes of interconnected discrete-

time stochastic control systems. The proposed approach leverages

the interconnection topology and a notion of so-called stochastic
storage functions describing joint dissipativity-type properties of

subsystems and their abstractions. In the first part of the paper, we

derive dissipativity-type compositional conditions for quantifying

the error between the interconnection of stochastic control sub-

systems and that of their abstractions. In the second part of the

paper, we propose an approach to construct finite Markov deci-

sion processes together with their corresponding stochastic storage

functions for classes of discrete-time control systems satisfying

some incremental passivablity property. Under this property, one

can construct finite Markov decision processes by a suitable dis-

cretization of the input and state sets. Moreover, we show that for

linear stochastic control systems, the aforementioned property can

be readily checked by some matrix inequality. We apply our pro-

posed results to the temperature regulation in a circular building

by constructing compositionally a finite Markov decision process

of a network containing 200 rooms in which the compositionality

condition does not require any constraint on the number or gains of

the subsystems. We employ the constructed finite Markov decision

process as a substitute to synthesize policies regulating the temper-

ature in each room for a bounded time horizon. We also illustrate

the effectiveness of our results on an example of fully connected

network.
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1 INTRODUCTION
Large-scale interconnected systems have received significant atten-

tions in the last few years due to their presence in real life systems

including power networks, air traffic control, and so on. Each com-

plex real-world system can be regarded as an interconnected system

composed of several subsystems. Since these large-scale networks

of systems are inherently difficult to analyze and control, one can

develop compositional schemes to employ the abstractions of the

given subsystems as a replacement in the controller design process.

Those abstractions allow us to design controllers for them, and then

refine the controllers to the ones for the concrete subsystems, while

provide us with the quantified errors for the overall interconnected

system in this controller synthesis detour.

Construction of finite abstractionswas introduced in recent years

as a method to reduce the complexity of controller synthesis prob-

lems in particular for enforcing complex logical properties. Finite

abstractions are abstract descriptions of the continuous-space con-

trol systems in which each discrete state corresponds to a collection

of continuous states of the original system. Since the abstractions

are finite, algorithmic approaches from computer science are appli-

cable to synthesize controllers enforcing complex logic properties

including those expressed as linear temporal logic formulae.

In the past few years, there have been several results on the

construction of (in)finite abstractions for stochastic systems. Ex-

isting results for continuous-time systems include infinite approxi-

mation techniques for jump-diffusion systems [1], finite bisimilar

abstractions for incrementally stable stochastic switched systems

[2] and randomly switched stochastic systems [3], and finite bisim-

ilar abstractions for incrementally stable stochastic control systems

without discrete dynamics [4]. Compositional modelling and anal-

ysis for the safety verification of stochastic hybrid systems are

investigated in [5] in which random behaviour occurs only over

the discrete components – this limits their applicability to systems

with continuous probabilistic evolutions.

Recently, compositional construction of infinite abstractions is

discussed in [6] using small-gain type conditions and of finite bisim-

ilar abstractions in [7] based on a new notion of disturbance bisim-

ilarity relation.

For discrete-time stochastic models with continuous state spaces,

finite approximations are initially proposed in [8] for formal veri-

fication and synthesis of this class of systems. The algorithms are

improved in terms of scalability in [9, 10]. Those techniques have

been implemented in the tool FAUST2 [11]. Extension of the tech-

niques to infinite horizon properties is proposed in [12] and formal

abstraction-based policy synthesis is discussed in [13]. Recently,

compositional construction of finite abstractions is discussed in

[14] using dynamic Bayesian networks, and infinite abstractions

(reduced order models) in [15] and [16] using small-gain type con-

ditions and dissipativity-type properties of subsystems and their

abstractions, respectively, all for discrete-time stochastic control

systems. Our proposed approach extends the abstraction techniques

in [14] from verification to synthesis, by proposing a different quan-

tification of the abstraction error, and leveraging the dissipativity

properties of subsystems and structure of interconnection topology

to show the compositonal results for the finite Markov decision

processes. Although the results in [15] deal only with infinite ab-

stractions (reduced order models), our proposed approach considers

finite Markov decision processes as abstractions which are the main

tools for automated synthesis of controllers for complex logical

properties. To the best of our knowledge, this is the first time a

closed form dynamical representation of the abstract finite Markov

decision processes is used to facilitate the use of dissipativity prop-

erties of subsystems in the error quantification.

In particular, we provide a compositional approach for the con-

struction of finite Markov decision processes of interconnected

discrete-time stochastic control systems. The proposed composi-

tional technique leverages the interconnection structure and joint

dissipativity-type properties of subsystems and their abstractions

characterized via a notion of so-called stochastic storage functions.
The provided compositionality conditions can enjoy the structure

of interconnection topology and be potentially satisfied indepen-

dently of the number or gains of the subsystems (cf. case study



section). The stochastic storage functions of subsystems are utilized

to quantify the error in probability between the interconnection of

concrete stochastic subsystems and that of their finite Markov de-

cision processes. As a consequence, one can leverage the proposed

results here to solve particularly safety/reachability problems over

the finite interconnected systems and then carry the results over

the concrete interconnected ones.

We also propose an approach to construct finite Markov deci-

sion processes together with their corresponding stochastic storage

functions for classes of stochastic control subsystems satisfying

some incremental passivability property. Under this property, one

can construct a finite Markov decision process by a suitable dis-

cretization of the input and state sets. Moreover, we show that for

linear stochastic control systems, the mentioned property can be

readily verified by some matrix inequality. Finally, we illustrate the

effectiveness of the results using the temperature regulation in a

circular building by constructing compositionally a finite Markov

decision process of a network containing 200 rooms in which the

compositionality condition does not require any constraint on the

number or gains of the subsystems. We leverage the constructed

finite Markov decision process as a substitute to synthesize poli-

cies regulating the temperature in each room for a bounded time

horizon. We benchmark our results against the compositional ab-

straction technique of [14] which is based on construction of finite

dynamic Bayesian networks.

2 DISCRETE-TIME STOCHASTIC CONTROL
SYSTEMS

2.1 Notation
The following notation is used throughout the paper. We denote the

set of nonnegative integers by N := {0, 1, 2, . . .} and the set of posi-
tive integers by N≥1 := {1, 2, 3, . . .}. The symbols R, R>0, and R≥0

denote the set of real, positive and nonnegative real numbers, re-

spectively. For any setX we denote by 2
X
the power set ofX that is

the set of all subsets of X . Given N vectors xi ∈ R
ni
, ni ∈ N≥1, and

i ∈ {1, . . . ,N }, we use x = [x1; . . . ;xN ] to denote the correspond-

ing vector of dimension

∑
i ni . Given a vector x ∈ Rn , ∥x ∥ denotes

the Euclidean norm of x . Symbols In and 1n denote, respectively,

the identity matrix in Rn×n and the column vector in Rn×1
with all

its elements equal to one. We denote by diag(a1, . . . ,aN ) a diagonal

matrix in RN×N
with diagonal matrix entries a1, . . . ,aN starting

from the upper left corner. Given functions fi : Xi → Yi , for any i ∈

{1, . . . ,N }, their Cartesian product

∏N
i=1

fi :

∏N
i=1

Xi →
∏N

i=1
Yi

is defined as (
∏N

i=1
fi )(x1, . . . ,xN ) = [f1(x1); . . . ; fN (xN )]. For any

set A we denote by AN the Cartesian product of a countable num-

ber of copies of A, i.e., AN =
∏∞

k=0
A. Given a measurable func-

tion f : N → Rn , the (essential) supremum of f is denoted by

∥ f ∥∞ := (ess)sup{∥ f (k)∥,k ≥ 0}. A function γ : R+
0

→ R+
0
, is

said to be a class K function if it is continuous, strictly increasing,

and γ (0) = 0. A class K function γ (·) is said to be a class K∞ if

limr→∞ γ (r ) = ∞.

2.2 Discrete-Time Stochastic Control Systems
We consider stochastic control systems in discrete time (dt-SCS)

defined over a general state space and characterized by the tuple

Σ= (X ,U ,W , ς , f ,Y1,Y2,h1,h2), (1)

where X is a Borel space as the state space of the system. We de-

note by (X ,B(X )) the measurable space with B(X ) being the Borel

sigma-algebra on the state space. Sets U andW are Borel spaces

as the external and internal input spaces of the system. Notation

ς denotes a sequence of independent and identically distributed

(i.i.d.) random variables on a set Vς

ς := {ς(k) : Ω → Vς , k ∈ N}.

The map f : X × U ×W × Vς → X is a measurable function

characterizing the state evolution of the system. Finally, sets Y1 and

Y2 are Borel spaces as the external and internal output spaces of

the system, respectively. Maps h1 : X → Y1 and h2 : X → Y2 are

measurable functions that map a state x ∈ X to its external and

internal outputs y1 = h1(x) and y2 = h2(x), respectively.
For given initial state x(0) ∈ X and input sequences ν (·) : N→ U

andw(·) : N→W , evolution of the state of dt-SCS Σ can be written

as

Σ :

{
x(k + 1) = f (x(k),ν (k),w(k), ς(k))
y1(k) = h1(x(k))
y2(k) = h2(x(k)),

k ∈ N. (2)

Given the dt-SCS in (1), we are interested in Markov policies to
control the system.

Definition 2.1. A Markov policy for the dt-SCS Σ in (1) is a se-

quence ρ = (ρ0, ρ1, ρ2, . . .) of universally measurable stochastic

kernels ρn [17], each defined on the input space U given X ×W
and such that for all (xn ,wn ) ∈ X ×W , ρn (U (xn ,wn )|(xn ,wn )) = 1.

The class of all such Markov policies is denoted by ΠM .

We associate respectively toU andW the setsU andW to be

collections of sequences {ν (k) : Ω → U , k ∈ N} and {w(k) : Ω →

W , k ∈ N}, in which ν (k) andw(k) are independent of ς(t) for any
k, t ∈ N and t ≥ k . For any initial state a ∈ X , ν (·) ∈ U, andw(·) ∈

W, the random sequences xaνw : Ω×N→ X , y1

aνw : Ω×N→ Y1

and y2

aνw : Ω × N → Y2 that satisfy (2) are called respectively

the solution process and external and internal output trajectory of Σ
under external input ν , internal inputw and initial state a.

In this sequel we assume that the state spaceX of Σ is a subset of

Rn . System Σ is called finite ifX ,U ,W are finite sets and infinite oth-

erwise. In this paper we are interested in studying interconnected

discrete-time stochastic control systems without internal inputs

and outputs that result from the interconnection of dt-SCS having

both internal and external inputs and outputs. In this case, the in-

terconnected dt-SCS without internal input and output in indicated

by the simplified tuple (X ,U , ς , f ,Y ,h) with f : X ×U ×Vς → X .

2.3 General Markov Decision Processes
A dt-SCS Σ in (1) can be equivalently represented as a general

Markov decision process (gMDP) [18]

Σ= (X ,W ,U ,Tx,Y1,Y2,h1,h2) ,

where the map Tx : B(X ) × X ×U ×W → [0, 1], is a conditional
stochastic kernel that assigns to any x ∈ X , w ∈ W and ν ∈ U a

probability measureTx(·|x ,ν ,w) on the measurable space (X ,B(X ))

so that for any set A ∈ B(X ),

P(x(k + 1) ∈ A | x(k),ν (k),w(k)) =

∫
A
Tx(dx̄ |x(k),ν (k),w(k)).

For given inputs ν (·),w(·), the stochastic kernel Tx captures the
evolution of the state of Σ and can be uniquely determined by the

pair (ς , f ) from (1).

The alternative representation as gMDP is utilized in [14] to

approximate a dt-SCS Σ with a finite Σ̂. Algorithm 1 adapted from

[14] with some modifications presents this approximation. The

algorithm first constructs a finite partition of state set X and input

setsU ,W . Then representative points x̄i ∈ Xi , ν̄i ∈ Ui and w̄i ∈ Wi
are selected as abstract states and inputs. Transition probabilities in

the finite gMDP Σ̂ are also computed according to (3). The output
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maps
ˆh1, ˆh2 are the same as h1,h2 with their domain restricted to

finite state set X̂ (cf. Step 7) and the output sets Ŷ1, Ŷ2 are just image

of X̂ under h1,h2, respectively (cf. Step 6).

Algorithm 1 Abstraction of dt-SCS Σ by a finite gMDP Σ̂

Require: input dt-SCS Σ= (X ,W ,U ,Tx,Y1,Y2,h1,h2)

1: Select finite partitions of sets X ,U ,W as X = ∪
nx
i=1

Xi , U =
∪
nν
i=1

Ui ,W = ∪
nw
i=1

Wi
2: For each Xi ,Ui , and Wi , select single representative points

xi ∈ Xi , νi ∈ Ui ,wi ∈ Wi
3: Define X̂ := {xi , i = 1, ...,nx } as the finite state set of gMDP Σ̂
with external and internal input sets Û := {νi , i = 1, ...,nν }
Ŵ := {wi , i = 1, ...,nw }

4: Define the map Ξ : X → 2
X

that assigns to any x ∈ X , the
corresponding partition set it belongs to, i.e., Ξ(x) = Xi if
x ∈ Xi for some i = 1, 2, . . . ,nx

5: Compute the discrete transition probability matrix T̂x for Σ̂ as:

T̂x(x
′ |x ,ν ,w) = Tx(Ξ(x

′)|x ,ν ,w), (3)

for all x ,x ′ ∈ X̂ ,ν ∈ Û ,w ∈ Ŵ
6: Define output spaces Ŷ1 := h1(X̂ ), Ŷ2 := h2(X̂ )

7: Define output maps
ˆh1 := h1 |X̂ and

ˆh2 := h2 |X̂
Ensure: output finite gMDP Σ̂ = (X̂ , Û ,Ŵ , T̂x, Ŷ1, Ŷ2, ˆh1, ˆh2)

In the following theorem we give a dynamical representation of

the finite gMDP, which is more suitable for the study of this paper.

The proof of this theorem is provided in the Appendix.

Theorem 2.2. Given a dt-SCS Σ = (X ,U ,W , ς , f ,Y1,Y2,h1,h2),
the finite gMDP Σ̂ constructed in Algorithm 1 can be represented as

Σ̂ = (X̂ , Û ,Ŵ , ς , ˆf , Ŷ1, Ŷ2, ˆh1, ˆh2), (4)

where ˆf : X̂ × Û × Ŵ ×Vς → X̂ is defined as

ˆf (x̂ , ν̂ , ŵ, ς) = Πx (f (x̂ , ν̂ , ŵ, ς)),

and Πx : X → X̂ is the map that assigns to any x ∈ X , the repre-
sentative point x̂ ∈ X̂ of the corresponding partition set containing x .
The initial state of Σ̂ is also selected according to x̂0 := Πx (x0) with
x0 being the initial state of Σ.

Dynamical representation provided by Theorem 2.2 uses the

map Πx : X → X̂ that assigns to any x ∈ X , the representative
point x̂ ∈ X̂ of the corresponding partition set containing x . This
map satisfies the inequality

∥Πx (x) − x ∥ ≤ δ , ∀x ∈ X , (5)

where δ := sup{∥x − x ′∥, x ,x ′ ∈ Xi , i = 1, 2, . . . ,nx } is the dis-
cretization parameter. We use this inequality in Section 5 for com-

positional construction of finite gMDPs.

Algorithm 1 is used in [14] for compositional verification of in-

terconnected dt-SCS. In order to provide formal guarantee on the

compositional approximation, [14] uses distance in probability as

a metric. In other words, for a given specification φ and accuracy

level ϵ , the discretization parameters for each subsystem can be

selected a priori such that after composition

|P(Σ ⊨ φ) − P(Σ̂ ⊨ φ)| ≤ ϵ, (6)

where ϵ depends on the horizon of formula φ, Lipschitz constants
of the stochastic kernels of subsystems, discretization parameters,

and structure of the interconnection (cf. [14, Theorem 9]).

In the next sections, we provide an approach for compositional
synthesis of interconnected dt-SCS. We first define the notions of

stochastic storage and simulation functions for quantifying the

error between two dt-SCS and two interconnected dt-SCS without

internal signals, respectively. Then we establish an explicit dynam-

ical representation of finite Σ̂ constructed in [14] and show how

it can be used to compare interconnections of dt-SCS and those

of their finite abstract counterparts based on these new notions.

Finally, in the example section, we synthesize policies for abstract

dt-SCS locally and refine them back to the original dt-SCS while

providing guarantees on the quality of the synthesized policies

with respect to satisfaction of local specifications. This guarantee

is compared against the approach of [14] with the metric in (6) in

the example section.

3 STOCHASTIC STORAGE AND SIMULATION
FUNCTIONS

In this section, we first introduce a notion of so-called stochastic

storage functions for dt-SCS with both internal and external in-

puts, which is adapted from the notion of storage functions from

dissipativity theory. We then define a notion of so-called stochastic

simulation functions for systems with only external inputs and out-

puts. We use these definitions to quantify closeness of two dt-SCS.

Definition 3.1. Consider dt-SCS Σ = (X ,U ,W , ς , f ,Y1,Y2,h1,h2)

and Σ̂ = (X̂ , Û ,Ŵ , ς , ˆf , Ŷ1, Ŷ2, ˆh1, ˆh2) where Ŷ1 ⊆ Y1. A function

V : X × X̂ → R≥0 is called a stochastic storage function (SStF) from

Σ̂ to Σ if there exist α ∈ K∞, κ ∈ K , ρext ∈ K∞ ∪ {0}, constantψ ∈

R≥0, matrices G, Ĝ,H of appropriate dimensions, and symmetric

matrix X̄ with conformal block partitions X̄ i j
, i, j ∈ {1, 2}, such

that for any x ∈ X and x̂ ∈ X̂ one has

α(∥h1(x) − ˆh1(x̂)∥) ≤ V (x , x̂), (7)

and ∀ν̂ ∈ Û ∃ν ∈ U such that ∀ŵ ∈ Ŵ ∀w ∈W one obtains

E
[
V (f (x ,ν ,w, ς), ˆf (x̂ , ν̂ , ŵ, ς))

��x , x̂ ,ν , ν̂ ,w, ŵ]
−V (x , x̂)

≤ − κ(V (x , x̂))+ρext(∥ν̂ ∥)+ψ

+

[
Gw − Ĝŵ

h2(x) − H ˆh2(x̂)

]T [
X̄ 11 X̄ 12

X̄ 21 X̄ 22

]
︸         ︷︷         ︸

X̄ :=

[
Gw − Ĝŵ

h2(x) − H ˆh2(x̂)

]
. (8)

If there exists a SStF V from Σ̂ to Σ, this is denoted by Σ̂ ⪯S

Σ and the control system Σ̂ is called an abstraction of concrete

(original) system Σ. Note that Σ̂ may be finite or infinite depending

on cardinalities of sets X̂ , Û ,Ŵ .

Remark 1. The last term in inequality (8) is interpreted in dissi-
pativity theory as the energy supply rate of the system [19]. Here we
choose this function to be quadratic which results in tractable compo-
sitional conditions later in the form of linear matrix (in)equalities.

Remark 2. The second condition in Definition 3.1 implies implicitly
the existence of a function ν = νν̂ (x , x̂ , ν̂ ) for the satisfaction of (8).
This function is called the interface function and can be used to refine
a synthesized policy ν̂ for Σ̂ to a policy ν for Σ.

Now, we modify the above notion for the interconnected dt-SCS

without internal inputs and outputs.

Definition 3.2. Consider two dt-SCS Σ = (X ,U , ς , f ,Y ,h) and

Σ̂ = (X̂ , Û , ς , ˆf , Ŷ , ˆh) without internal inputs and outputs, where

3



Ŷ ⊆ Y . A functionV : X ×X̂ → R≥0 is called a stochastic simulation
function (SSF) from Σ̂ to Σ if

• there exists α ∈ K∞ such that for all x ∈ X and x̂ ∈ X̂ ,

α(∥h(x) − ˆh(x̂)∥) ≤ V (x , x̂), (9)

• for all x ∈ X , x̂ ∈ X̂ , ν̂ ∈ Û , there exists ν ∈ U such that

E
[
V (f (x ,ν , ς), ˆf (x̂ , ν̂ , ς))

��x , x̂ ,ν , ν̂ ] −V (x , x̂) (10)

≤ −κ(V (x , x̂))+ρext(∥ν̂ ∥)+ψ ,

for some κ ∈ K , ρext ∈ K∞ ∪ {0}, andψ ∈ R≥0.

If there exists a SSF V from Σ̂ to Σ, this is denoted by Σ̂ ⪯ Σ and

Σ̂ is called an abstraction of Σ.
Next theorem is borrowed from [15, Theorem 3.3], and shows

how SSF can be used to compare output trajectories of two dt-SCS

without internal inputs in a probabilistic setting.

Theorem 3.3. Let Σ = (X ,U , ς , f ,Y ,h) and Σ̂ = (X̂ , Û , ς , ˆf , Ŷ , ˆh)
be two dt-SCS without internal inputs and outputs, where Ŷ ⊆ Y .
SupposeV is an SSF from Σ̂ to Σ, and there exists a constant 0 < κ̂ < 1

such that the function κ ∈ K in (10) satisfies κ(r ) ≥ κ̂r ∀r ∈ R≥0.
For any external input trajectory ν̂ (·) ∈ ˆU that preserves Markov
property for the closed-loop Σ̂, and for any random variables a and â
as the initial states of the two dt-SCS, there exists an input trajectory
ν (·) ∈ U of Σ through the interface function associated with V such
that the following inequality holds

P

{
sup

0≤k≤Td
∥yaν (k) − ŷâν̂ (k)∥ ≥ ε | [a; â]

}
(11)

≤


1 − (1 −

V (a, â)
α (ε ) )(1 −

ψ̂
α (ε ) )

Td if α (ε) ≥
ψ̂
κ̂ ,

(
V (a, â)
α (ε ) )(1 − κ̂)Td + (

ψ̂
κ̂α (ε ) )(1 − (1 − κ̂)Td ) if α (ε) <

ψ̂
κ̂ ,

where the constant ψ̂ ≥ 0 satisfies ψ̂ ≥ ρext(∥ν̂ ∥∞) +ψ .

Remark 3. Note thatψ = 0 if concrete and abstract systems are
both continuous-space but possibly with different dimensions and
share the same multiplicative noise (cf. Eqn. (2) in [15]). If ρext(·) is
also equal to zero, function V becomes a nonnegative supermartin-
gle and, hence, one can readily extend the result of Theorem 3.3 to
infinite-time horizon and quantify the distance between two systems
by applying the results in [15, Corollary 3.4].

4 COMPOSITIONAL ABSTRACTIONS FOR
INTERCONNECTED SYSTEMS

In this section, we analyze networks of stochastic control subsys-

tems and show how to construct their abstractions together with

the corresponding simulation functions by using abstractions and

stochastic storage functions of the subsystems.

4.1 Interconnected Stochastic Control Systems
We first provide a formal definition of interconnection of discrete-

time stochastic control subsystems.

Definition 4.1. Consider N ∈ N≥1 stochastic control subsys-

tems Σi = (Xi ,Ui ,Wi , ςi , fi ,Y1i ,Y2i ,h1i ,h2i ), i ∈ {1, . . . ,N }, and

a matrix M defining the coupling between these subsystems. We

require the conditionM
∏N

i=1
Y2i ⊆

∏N
i=1

Wi to have a well-posed

interconnection. The interconnection of Σi , ∀i ∈ {1, . . . ,N }, is the

dt-SCS Σ = (X ,U , ς , f ,Y ,h), denoted by I(Σ1, . . . , ΣN ), such that

X :=
∏N

i=1
Xi , U :=

∏N
i=1

Ui , f :=
∏N

i=1
fi , Y :=

∏N
i=1

Y1i , and

h =
∏N

i=1
h1i , with the internal inputs constrained according to

[w1; . . . ;wN ] = M[h21(x1); . . . ;h2N (xN )].

In the above definition we allow the interconnection matrixM to

have real entries. This is a generalization of composition performed

in [7] where the interconnection matrix takes only binary entries.

4.2 Compositional Abstractions
We assume that we are given N stochastic control subsystems

Σi = (Xi ,Ui ,Wi , ςi , fi ,Y1i ,Y2i ,h1i ,h2i ) together with their cor-

responding abstractions Σ̂i = (X̂i , Ûi ,Ŵi , ςi , ˆfi , Ŷ1i , Ŷ2i , ˆh1i , ˆh2i )

with SStF Vi from Σ̂i to Σi . Indicate by αi , κi , ρiext, Hi , Gi , Ĝi ,
X̄i , X̄

11

i , X̄ 12

i , X̄ 21

i , and X̄ 22

i , the corresponding functions, matri-

ces, and the conformal block partitions appearing in Definition

3.1. In the next theorem, as one of the main results of the paper,

we provide sufficient conditions for having an SSF from the inter-

connection of abstractions Σ̂ = I(Σ̂1, . . . , Σ̂N ) to that of concrete

ones Σ = I(Σ1, . . . , ΣN ). This theorem enables us to quantify in

probability the error between the interconnection of stochastic con-

trol subsystems and that of their abstractions in a compositional

manner by leveraging Theorem 3.3.

Theorem 4.2. Consider the interconnected stochastic control sys-
tem Σ = I(Σ1, . . . , ΣN ) induced by N ∈ N≥1 stochastic control sub-
systems Σi and the coupling matrixM . Suppose that each stochastic
control subsystem Σi admits an abstraction Σ̂i with the corresponding
SStF Vi . Then the weighted sum

V (x , x̂) :=

N∑
i=1

µiVi (xi , x̂i ) (12)

is a stochastic simulation function from the interconnected control sys-
tem Σ̂=I(Σ̂1, . . . , Σ̂N), with couplingmatrix M̂ , to Σ=I(Σ1, . . . , ΣN)
if µi > 0, i ∈ {1, . . . ,N }, and M̂ satisfy matrix (in)equality and in-
clusion [

GM
Iq̃

]T
X̄cmp

[
GM
Iq̃

]
⪯ 0, (13)

GMH = ĜM̂, (14)

M̂
N∏
i=1

Ŷ2i ⊆

N∏
i=1

Ŵi , (15)

where
G := diag(G1, . . . ,GN ), Ĝ := diag(Ĝ1, . . . , ĜN ),

H := diag(H1, . . . ,HN ),

X̄cmp:=



µ1X̄
11

1
µ1X̄

12

1

. . .
. . .

µN X̄ 11

N µN X̄ 12

N
µ1X̄

21

1
µ1X̄

22

1

. . .
. . .

µN X̄ 21

N µN X̄ 22

N


, (16)

and q̃ =
∑N
i=1

q2i with q2i being the internal output dimensions of
subsystems Σi .

Proof of Theorem 4.2 is provided in the Appendix. Figure 1

illustrates schematically the result of Theorem 4.2.
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Remark 4. Note that condition (13) with G = I is exactly similar
to the linear matrix inequality (LMI) appeared in [19] as composi-
tional stability condition based on dissipativity theory. As discussed
in [19], the LMI holds independently of the number of subsystems in
many physical applications with specific interconnection structures
including communication networks, flexible joint robots, and power
generators.

Remark 5. For the compositional construction of finite gMDPs pro-
vided in the next section, condition (14) is satisfied by simply selecting
M̂ = M . Notice that we have presented condition (14) in its general
form without requiring the same dimensionality for the abstract and
original systems. Existing results in the literature [16] leverage this
condition in the context of model order reduction. Condition (15) is
not also restrictive for the results provided in the next section since Ŵi
and Ŷ2i are internal input and output sets of the abstract subsystems
Σ̂i , which are finite. Thus one can readily choose internal input sets
Ŵi such that

∏n
i=1

Ŵi := M̂
∏n

i=1
Ŷ2i which implicitly implies a con-

dition on the granularity of discretization for setsWi and Y2i . In other
words, condition (15) is required for just having a well-posed inter-
connection and is automatically fulfilled by the proposed construction
of finite MDP later in Section 5.

Figure 1: Compositionality results provided that conditions
(13), (14), and (15) are satisfied.

5 CONSTRUCTION OF FINITE MARKOV
DECISION PROCESSES

In the previous sections, Σ and Σ̂were considered as general discrete-

time stochastic control systems without discussing the cardinality

of their state spaces. In this section, we consider Σ as an infinite

dt-SCS and Σ̂ as its finite abstraction constructed as in Section 2.3.

We impose conditions on the infinite dt-SCS Σ enabling us to find

SStF from its finite abstraction Σ̂ to Σ. The required conditions are

first presented in a general setting for nonlinear stochastic con-

trol systems in Section 5.1 and then represented via some matrix

inequality for linear stochastic control systems in Section 5.2.

5.1 Discrete-Time Nonlinear Stochastic
Control Systems

The stochastic storage function from finite MDP Σ̂ of Section 2.3 to

Σ is established under the assumption that the original discrete-time

stochastic control system Σ is so-called incrementally passivable as

in Assumption 1.

Assumption 1. A dt-SCS Σ = (X ,U ,W , ς , f ,Y1,Y2,h1,h2) is
called incrementally passivable if there exist functions L : X → U
and V : X × X → R≥0 such that ∀x ,x ′ ∈ X , ∀ν ∈ U , ∀w,w ′ ∈W,
the inequalities:

α(∥h1(x) − h1(x
′)∥) ≤ V (x ,x ′), (17)

and

E
[
V (f (x ,L(x) + ν ,w, ς), f (x ′,L(x ′) + ν ,w ′, ς))

��x ,x ′,ν ,w,w ′
]

−V (x ,x ′) ≤ − κ̂(V (x ,x ′)) + (18)

[
w −w ′

h2(x) − h2(x
′)

]T X̄ :=︷         ︸︸         ︷[
X̄ 11 X̄ 12

X̄ 21 X̄ 22

] [
w −w ′

h2(x) − h2(x
′)

]
,

hold for some α ∈ K∞, κ̂ ∈ K , and matrix X̄ of appropriate dimen-
sion.

Remark 6. Note that Assumption 1 implies that V is a SStF from
system Σ equipped with the state feedback controller L to itself. This
type of property is closely related to the notion of so-called incremental
stabilizability [20, 21].

In Section 5.2, we show that inequalities (17)-(18) for a candidate

quadratic function V and linear stochastic control systems boil

down to some matrix inequality.

Under Assumption 1, the next theorem shows a relation between

Σ and Σ̂, constructed as in Algorithm 1, via establishing a stochastic

storage function between them.

Theorem 5.1. Let Σ be an incrementally passivable dt-SCS via a
functionV as in Assumption 1 and Σ̂ be a finite MDP as in Algorithm
1. Assume that there exists a function γ ∈ K∞ such that V satisfies

V (x ,x ′) −V (x ,x ′′) ≤ γ (∥x ′ − x ′′∥), ∀x ,x ′,x ′′ ∈ X . (19)

Then V is a stochastic storage function from Σ̂ to Σ.

The proof of Theorem 5.1 is provided in the Appendix.

Remark 7. As shown in [4] and by employing the mean value
theorem, assumption (19) is always satisfied for any differentiable
function V restricted to a compact subset of X × X .

Now we provide similar results as in Subsection 5.1 but tailored

to linear stochastic control systems.

5.2 Discrete-Time Linear Stochastic Control
Systems

In this subsection, we focus on the class of discrete-time linear

stochastic control systems Σ and quadratic stochastic storage func-
tions V . First, we formally define the class of discrete-time linear

stochastic control systems. Afterwards, we construct their finite

Markov decision processes Σ̂ as in Theorem 2.2, and then provide

conditions under which a candidate V is an SStF from Σ̂ to Σ.
The class of linear stochastic control systems is given by

Σ :

{
x(k + 1)=Ax(k)+Bν (k)+Dw(k)+N̄ς(k),
y1(k) = C1x(k),
y2(k) = C2x(k),

(20)

where the noise ς(k) is a sequence of independent random vectors

with multivariate standard normal distributions. We use the tuple

Σ = (A,B,C1,C2,D, N̄ ),
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to refer to the class of discrete-time linear stochastic control systems

of the form (20). Consider the following quadratic function

V (x , x̂) = (x − x̂)T M̃(x − x̂), (21)

where M̃ is a positive-definite matrix of appropriate dimension. In

order to show that V in (21) is an SStF from Σ̂ to Σ, we require the
following key assumption on Σ.

Assumption 2. Let Σ = (A,B,C1,C2,D, N̄ ). Assume that for some
constant 0 < κ̂ < 1 and π > 0 there exist matrices M̃ ≻ 0,K , X̄ 11, X̄ 12,
X̄ 21, and X̄ 22 of appropriate dimensions such that matrix inequality
(22) holds. [

(1+π )(A+BK)T M̃(A+BK) (A+BK)T M̃D
DT M̃(A+BK) (1+π )DT M̃D

]
⪯

[
κ̂M̃+CT

2
X̄ 22C2 CT

2
X̄ 21

X̄ 12C2 X̄ 11

]
(22)

Now, we provide another main result of this section showing

that under some conditions V in (21) is an SStF from Σ̂ to Σ. The
proof of this theorem is provided in the Appendix.

Theorem 5.2. Let Σ = (A,B,C1,C2,D, N̄ ) and Σ̂ be a finiteMarkov
decision process with discretization parameter δ , and Ŷ1 ⊆ Y1. Sup-
pose Assumption 2 holds, C1 = Ĉ1, and C2 = Ĉ2, then function V

defined in (21) is an SStF from Σ̂ to Σ.

Remark 8. Note that for any linear stochastic control system Σ =
(A,B,C1,C2,D, N̄ ), stabilizability of the pair (A,B) is sufficient to
satisfy Assumption 2.

6 CASE STUDY
To demonstrate the effectiveness of our approach, we first apply

our results to the temperature regulation in a circular building

by constructing compositionally a finite abstraction of a network

containing 200 rooms. Then, to show its applicability to strongly

connected networks, the results are illustrated on a network with a

fully-connected interconnection graph.

6.1 Room Temperature Control
In this subsection, we apply our results to the temperature regula-

tion of n ≥ 3 rooms each equipped with a heater and connected on

a circle. The model of this case study is adapted from [22] by includ-

ing stochasticity in the model as additive noise. The evolution of

temperatureT can be described by the interconnected discrete-time

stochastic control system

Σ :

{
T (k + 1)=ĀT (k) + γThν (k) + βTE +ς(k),
y(k) = T (k),

whereA is a matrix with diagonal elements āii = (1−2η−β−γνi (k)),
i ∈ {1, . . . ,n}, off-diagonal elements āi,i+1 = āi+1,i = ā1,n =
ān,1 = η, i ∈ {1, . . . ,n − 1}, and all other elements are identically

zero. Parameters η, β , and γ are conduction factors respectively

between the rooms i ± 1 and the room i , between the external

environment and the room i , and between the heater and the room

i . Moreover, T (k) = [T1(k); . . . ;Tn (k)], ν (k) = [ν1(k); . . . ;νn (k)],
ς(k) = [ς1(k); . . . ; ςn (k)], TE = [Te1; . . . ;Ten ], where Ti (k) and
νi (k) are taking values in [19, 21] and [0, 0.6], respectively, for all i ∈
{1, . . . ,n}. The parameter Tei = −1

◦C are the outside temperature

∀i ∈ {1, . . . ,n}, and Th = 50
◦C is the heater temperature. Now, by

introducing Σi described as

Σi :

{
Ti (k + 1)= (1−2η−β−γνi (k))Ti (k)+γThνi (k)+ηwi (k)+βTei+ςi (k),
y1i (k) = Ti (k),
y2i (k) = Ti (k),

one can readily verify that Σ = I(Σ1, . . . , ΣN ) where the coupling

matrix M is such that mi,i+1 = mi+1,i = m1,n = mn,1 = 1, i ∈

{1, . . . ,n − 1}, and all other elements are identically zero. One

can also verify that, ∀i ∈ {1, . . . ,n}, condition (22) is satisfied

with M̃i = 1, Ki = 0, X̄ 11

i = η2(1 + πi ), X̄
22

i = −3.38η(1 + πi ),

X̄ 12

i = X̄ 21

i = ηλi , where λi = 1 − 2η − β − γνi (k), and selecting

some appropriate values for η, β,γ , κ̂i , πi ,∀i ∈ {1, . . . ,n}. Hence,

function Vi (Ti , T̂i ) = (Ti − T̂i )
2
is an SStF from Σ̂i to Σi satisfying

condition (7) withαi (s) = s
2
and condition (8) withκi (s) := (1−κ̂i )s ,

ρiext(s) = 0, ∀s ∈ R≥0,ψi = (1 + 2/πi )δ
2

i , Gi = Ĝi = Hi = 1, and

X̄i =

[
η2(1 + πi ) ηλi

ηλi −3.38η(1 + πi )

]
, (23)

where the input νi is given via the interface function in (26) as

νi = ν̂i . Now, we look at Σ̂ = I(Σ̂1, . . . , Σ̂N )with a coupling matrix

M̂ satisfying condition (14) as M̂ = M . Choosing µ1 = · · · = µN = 1

and using X̄i in (23), matrix X̄cmp in (16) reduces to

X̄cmp =

[
η2(1 + π )In ηλIn

ηλIn −3.38η(1 + π )In

]
,

where λ = λ1 = · · · = λN , π = π1 = · · · = πN , and condition (13)

reduces to[
M
In

]T
X̄cmp

[
M
In

]
=η2(1+π )MTM+ηλM+ηλMT − 3.38η(1 + π )In ⪯ 0,

without requiring any restrictions on the number or gains of the

subsystems. In order to satisfy the above inequality, we usedM =
MT

, and 4η2(1+ π )+ 4ηλ − 3.38η(1+ π ) ⪯ 0 employing Gershgorin

circle theorem [23] which can be satisfied for the appropriate values

of η,π and λ. By choosing finite internal input sets Ŵi of Σ̂ such

that

∏n
i=1

Ŵi = M̂
∏n

i=1
X̂i , condition (15) is also satisfied. Now,

one can verify that V (T , T̂ ) =
∑n
i=1

(Ti − T̂i )
2
is an SSF from Σ̂ to Σ

satisfying conditions (9) and (10) with α(s) = s2
, κ(s) := (1 − κ̂)s ,

ρext(s) = 0, ∀s ∈ R≥0, andψ = n(1 + 2/π )δ2
.

To demonstrate the effectiveness of proposed approach, we fix

n = 15. By taking the state set discretization parameter δi = 0.005,

κ̂i = 0.99,πi = 0.05,∀i ∈ {1, . . . ,n},η = 0.1, β = 0.022,γ = 0.05,

one can readily verify that conditions (13) and (22) are satisfied.

Accordingly, by using the stochastic simulation function V as in

inequality (11) and taking the initial states of the interconnected

systems Σ and Σ̂ as 20115, we guarantee that the distance between

outputs of Σ and of Σ̂ will not exceed ε = 0.63 during the time

horizon Td = 10 with probability at least 90%, i.e.

P(∥yaν (k) − ŷâν̂ (k)∥ ≤ 0.63, ∀k ∈ [0, 10]) ≥ 0.9 .

Note that for the construction of finite gMDP, we have selected the

center of partition sets as representative points. This choice has

further tightened the above inequality.

Let us now synthesize a controller for Σ via the abstraction Σ̂
such that the controller maintains the temperature of any room in

the safe set [19,21]. The idea here is to first design a local control

for abstraction Σ̂i , and then refine it to system Σi using interface
function. Consequently, controller for the interconnected system Σ
would be a vector such that each of its components is the controller

for the interconnected system Σi . We employ here software tool
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Figure 2: Closed-loop trajectories of a representative room
with different noise realizations in a network of 15 rooms.
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Figure 3: Policy ν for a representative room in a network of
15 rooms.

FAUST2 [11] to synthesize a controller for Σ by taking the external

input discretization parameter as 0.04, and standard deviation of

the noise σi = 0.28, ∀i ∈ {1, . . . ,n}. Closed-loop state trajectories

of the representative room with different noise realizations are

illustrated in Figure 2. Policy ν and the associated safety probability
for a representative room in the network are respectively plotted

in Figures 3-4 as a function of initial temperature of the room.

Policy ν is locally sub-optimal for each subsystem and is obtained by

assuming that other subsystems do not violate safety specification.

The synthesized policy ν is smoothly decreasing from the maximum

input 0.6 to theminimum 0 as temperature increases. Themaximum

safety probability is around the center of the interval [19, 21], and

its minimums are at the two boundaries. Note that the oscillations

appeared in Figures 3-4 are due to the state and input discretization.

We now compare the guarantees provided by our approach and by

[14]. Note that our result is based on finite gMDP while [14] uses

Dynamic Bayesian Network (DBN) to capture the dependencies

between subsystems. The comparison is shown in Figures 5-6 in

logarithmic scale. In Figure 5 we have fixed ε = 0.2 (cf. (11)) and

plotted the error as a function of discretization parameter δ and

standard deviation of the noise σ . Our error of (11) is independent
of σ while the error of [14] converges to infinity when σ goes to

zero. Thus our new approach outperforms [14] for smaller standard

deviation of noise. In Figure 6 we have fixed σ = 0.28 and plotted

the error as a function of discretization parameter δ and ε . The
error in [14] is independent of ε while our error increases when ε
goes to zero. Thus there is a trade-off between ε and δ to get better

bounds in comparison with [14].

In order to show scalability of our approach, we increase the

number of rooms to n = 200. If we take the state set discretization

parameter δi = 0.005, κ̂i = 0.99,πi = 0.98,∀i ∈ {1, . . . ,n},η =
0.1, β = 0.4,γ = 0.5, conditions (13) and (22) are readily met. More-

over, if the initial states of the interconnected systems Σ and Σ̂ are

19 19.5 20 20.5 21

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Figure 4: Closed-loop safety probability of a representative
room with time horizon Td = 10 in a network of 15 rooms.
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Figure 5: Comparison of error bound provided by the ap-
proach of this paper based on finite gMDP with that of [14]
based on finite DBN. Plots are in logarithmic scale for a fixed
ε = 0.2 (cf. (11)).
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Figure 6: Comparison of error bound provided by the ap-
proach of this paper based on finite gMDP with that of [14]
based on finite DBN. Plots are in logarithmic scale for a fixed
noise standard deviation σ = 0.28.

started from 201200, one can readily verify that the norm of error

between outputs of Σ and of Σ̂ will not exceed 0.63 with probability

at least 90% computed by the stochastic simulation function V as

in inequality (11) for Td = 10. Similarly, we synthesize a controller

for Σ via the abstraction Σ̂ by taking the external input discretiza-

tion parameter as 0.04, and σi = 0.21, ∀i ∈ {1, . . . ,n}. Closed-loop
state trajectories of the representative room with different noise

realizations are illustrated in Figure 7.
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Figure 7: Closed-loop trajectories of a representative room
with different noise realizations in a network of 200 rooms.

6.2 Fully Interconnected Network
In order to show applicability of our approach to strongly connected

networks, we consider interconnected linear dt-SCS

Σ :

{
x(k + 1) = Ḡx(k) + ν (k) + ς(k),
y(k) = x(k),

with matrix Ḡ= (In−τL) ∈ R
n×n

where L is the Laplacian matrix of

an undirected graph, and 0 < τ < 1/∆ with ∆ being the maximum

degree of the graph [24]. We expand state x(k) = [x1(k); . . . ;xn (k)],
input ν (k) = [ν1(k); . . . ;νn (k)], and noise ς(k) = [ς1(k); . . . ; ςn (k)].
Now, by defining Σi as

Σi :

{
xi (k + 1) = xi (k) + νi (k) +wi (k) + ςi (k),
y1i (k) = xi (k),
y2i (k) = xi (k),

one can verify that Σ = I(Σ1, . . . , ΣN ) where the coupling matrix

M is given by M = −τL. One can also verify that, ∀i ∈ {1, . . . ,n},
condition (22) is satisfied with M̃i = 1, Ki = −0.2, X̄ 11 = (1 + πi ),
X̄ 22 = 0, X̄ 12 = X̄ 21 = λi , where λi = 1 + Ki , and κ̂i = 0.99,

πi = 0.55,∀i ∈ {1, . . . ,n}. Hence, function Vi (xi , x̂i ) = (xi − x̂i )
2

is an SStF from Σ̂i to Σi satisfying condition (7) with αi (s) = s2

and condition (8) with κi (s) := (1 − κ̂i )s , ρiext(s) = 0, ∀s ∈ R≥0,

ψi = (1 + 2/πi )δ
2

i , and Gi = Ĝi = Hi = 1. Now, we look at

Σ̂ = I(Σ̂1, . . . , Σ̂N ) with a coupling matrix M̂ satisfying condition

(14) by M̂ = M . Choosing µ1 = · · · = µN = 1, matrix X̄cmp in (16)

reduces to

X̄cmp =

[
(1 + π )In λIn
λIn 0

]
,

where λ = λ1 = · · · = λN , π = π1 = · · · = πN , and condition (13)

reduces to[
−τL
In

]T
X̄cmp

[
−τL
In

]
= (1+π)τ 2LTL−λτL−λτLT=τL((1+π)τL−2λIn)⪯ 0,

which is always satisfied without requiring any restrictions on the

number or gains of the subsystems. In order to show the above

inequality, we used τL = τLT ⪰ 0 which are always true for

Laplacian matrices of undirected graphs. By choosing finite internal

input sets Ŵi of Σ̂ such that

∏n
i=1

Ŵi = M̂
∏n

i=1
X̂i , condition (15)

is also satisfied. Now, one can verify thatV (x , x̂) =
∑n
i=1

(xi −x̂i )
2
is

an SSF from Σ̂ to Σ satisfying conditions (9) and (10) with α(s) = s2
,

κ(s) := (1 − κ̂)s , ρext(s) = 0, ∀s ∈ R≥0, andψ = n(1 + 2/π )δ2
.

To illustrate the results, we assume L is the Laplacian matrix

of a complete graph and τ = 0.1. We fix n = 150, and the state

discretization parameter δi = 0.005,∀i ∈ {1, . . . ,n}. By using the

stochastic simulation functionV and inequality (11), and taking the

initial states of the interconnected systems Σ and Σ̂ as 201150, we

guarantee that the distance between outputs of Σ and of Σ̂ will not

exceed ε = 0.63 during the time horizon Td = 10 with probability

at least 90%.

7 ACKNOWLEDGEMENT
This work was supported in part by the German Research Founda-

tion (DFG) through the grant ZA 873/1-1.

REFERENCES
[1] A. A. Julius and G. J. Pappas, “Approximations of stochastic hybrid systems,” IEEE

Transactions on Automatic Control, vol. 54, no. 6, pp. 1193–1203, 2009.
[2] M. Zamani, A. Abate, and A. Girard, “Symbolic models for stochastic switched

systems: A discretization and a discretization-free approach,” Automatica, vol. 55,
pp. 183–196, 2015.

[3] M. Zamani and A. Abate, “Approximately bisimilar symbolic models for randomly

switched stochastic systems,” Systems & Control Letters, vol. 69, pp. 38–46, 2014.
[4] M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and J. Lygeros, “Sym-

bolic control of stochastic systems via approximately bisimilar finite abstractions,”

IEEE Transactions on Automatic Control, vol. 59, no. 12, pp. 3135–3150, 2014.
[5] E. M. Hahn, A. Hartmanns, H. Hermanns, and J.-P. Katoen, “A compositional

modelling and analysis framework for stochastic hybrid systems,” Formal Methods
in System Design, vol. 43, no. 2, pp. 191–232, 2013.

[6] M. Zamani, M. Rungger, and P.Mohajerin Esfahani, “Approximations of stochastic

hybrid systems: A compositional approach,” IEEE Transactions on Automatic
Control, vol. 62, no. 6, pp. 2838–2853, 2017.

[7] K. Mallik, S. Soudjani, A.-K. Schmuck, and R. Majumdar, “Compositional construc-

tion of finite state abstractions for stochastic control systems,” arXiv: 1709.09546,
Sep. 2017.

[8] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic reachability and

safety for controlled discrete time stochastic hybrid systems,” Automatica, vol. 44,
no. 11, pp. 2724–2734, 2008.

[9] S. Soudjani and A. Abate, “Adaptive and sequential gridding procedures for the

abstraction and verification of stochastic processes,” SIAM Journal on Applied
Dynamical Systems, vol. 12, no. 2, pp. 921–956, 2013.

[10] S. Esmaeil Zadeh Soudjani, “Formal abstractions for automated verification and

synthesis of stochastic systems,” Ph.D. dissertation, Technische Universiteit Delft,

The Netherlands, 2014.

[11] S. Soudjani, C. Gevaerts, and A. Abate, “FAUST2: Formal abstractions of

uncountable-state stochastic processes,” in TACAS’15, ser. Lecture Notes in Com-

puter Science, 2015, vol. 9035, pp. 272–286.

[12] I. Tkachev and A. Abate, “On infinite-horizon probabilistic properties and stochas-

tic bisimulation functions,” in Proceedings of the 50th IEEE Conference on Decision
and Control and European Control Conference (CDC-ECC), 2011, pp. 526–531.

[13] I. Tkachev, A. Mereacre, J. Katoen, and A. Abate, “Quantitative automata-based

controller synthesis for non-autonomous stochastic hybrid systems,” in Proceed-
ings of the 16th ACM International Conference on Hybrid Systems: Computation
and Control, 2013, pp. 293–302.

[14] S. Soudjani, A. Abate, and R. Majumdar, “Dynamic Bayesian networks as for-

mal abstractions of structured stochastic processes,” in Proceedings of the 26th
International Conference on Concurrency Theory, 2015, pp. 1–14.

[15] A. Lavaei, S. Soudjani, R. Majumdar, and M. Zamani, “Compositional abstractions

of interconnected discrete-time stochastic control systems,” in Proceedings of the
56th IEEE Conference on Decision and Control, 2017, pp. 3551–3556.

[16] A. Lavaei, S. Soudjani, and M. Zamani, “Compositional construction of infinite

abstractions for networks of stochastic control systems,” arXiv: 1801.10505, Jan.
2018.

[17] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete-Time
Case. Athena Scientific, 1996.

[18] S. Haesaert, S. Soudjani, and A. Abate, “verification of general Markov deci-

sion processes by approximate similarity relations and policy refinement,” SIAM
Journal on Control and Optimization, vol. 55, no. 4, pp. 2333–2367, 2017.

[19] M. Arcak, C. Meissen, and A. Packard, Networks of dissipative systems, ser.
SpringerBriefs in Electrical and Computer Engineering. Springer, 2016.

[20] D. Angeli, “A Lyapunov approach to incremental stability properties,” IEEE Trans-
actions on Automatic Control, vol. 47, no. 3, pp. 410–421, 2002.

[21] Q. C. Pham, N. Tabareau, and J. J. Slotine, “A contraction theory approach to

stochastic incremental stability,” IEEE Transactions on Automatic Control, vol. 54,
no. 4, pp. 816–820, 2009.

[22] P. J. Meyer, A. Girard, and E. Witrant, “Compositional abstraction and safety

synthesis using overlapping symbolic models,” IEEE Transactions on Automatic
Control, 2017, accepted.

[23] H. E. Bell, “Gershgorin’s theorem and the zeros of polynomials,” The American
Mathematical Monthly, vol. 72, no. 3, pp. 292–295, 1965.

[24] C. Godsil and G. Royle,Algebraic graph theory, ser. Graduate Texts inMathematics.

Springe, 2001.

[25] W. H. Young, “On classes of summable functions and their fourier series,” Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 87, no. 594, pp. 225–229, 1912.

8



8 APPENDIX
Proof. (Theorem 2.2) It is sufficient to show that (3) holds for

dynamical representation of Σ̂ in (4) and that of Σ. For any x ,x ′ ∈ X̂ ,

ν ∈ Û andw ∈ Ŵ ,

T̂x(x
′ |x ,ν ,w) = P(x ′ = ˆf (x ,ν ,w, ς))

= P(x ′ = Πx (f (x ,ν ,w, ς))) = P(f (x ,ν ,w, ς) ∈ Ξ(x ′)),

where Ξ(x ′) is the partition set with x ′ as its representative point
as defined in Step 4 of Algorithm 1. Using the probability measure

ϑ (·) of random variable ς we can write

T̂x(x
′ |x ,ν ,w) =

∫
Ξ(x ′)

f (x ,ν ,w, ς)dϑ (ς) = Tx(Ξ(x
′)|x ,ν ,w),

which completes the proof. □

Proof. (Theorem 4.2) We first show that SSF V in (12) sat-

isfies the inequality (9) for some K∞ function α . For any x =
[x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂ , one gets:

∥h(x) − ˆh(x̂)∥= ∥[h11(x1); . . . ;h1N (xN )]−[ ˆh11(x̂1); . . . ; ˆh1N (x̂N )]∥

≤

N∑
i=1

∥h1i (x̂i ) − ˆh1i (xi )∥ ≤

N∑
i=1

α−1

i (Vi (xi , x̂i )) ≤ ᾱ(V (x , x̂)),

with function ᾱ : R≥0 → R≥0 defined for all r ∈ R≥0 as

ᾱ(r ) := max

{∑N
i=1

α−1

i (si )
�� si≥ 0,

∑N
i=1

µisi = r
}
.

It is not hard to verify that function ᾱ(·) defined above is a K∞

function. By taking theK∞ function α(r ) := ᾱ−1(r ), ∀r ∈ R≥0, one

obtains

α(∥h(x) − ˆh(x̂)∥) ≤ V (x , x̂),

satisfying inequality (9). Now we prove that SSF V in (12) satis-

fies inequality (10). Consider any x = [x1; . . . ;xN ] ∈ X , x̂ =
[x̂1; . . . ; x̂N ] ∈ X̂ , and ν̂ = [ν̂1; . . . ; ν̂N ] ∈ Û . For any i ∈ {1, . . . ,N },

there exists νi ∈ Ui , consequently, a vector ν = [ν1; . . . ;νN ] ∈ U ,

satisfying (8) for each pair of subsystems Σi and Σ̂i with the inter-

nal inputs given by [w1; . . . ;wN ] = M[h21(x1); . . . ;h2N (xN )] and

[ŵ1; . . . ; ŵN ] = M̂[ ˆh21(x̂1); . . . ; ˆh2N (x̂N )]. Then we have the chain

of inequalities in (24) using conditions (13) and (14) and by defining

κ(·),ψ , ρext(·) as

κ(r ) := min

{ N∑
i=1

µiκi (si )
�� si≥ 0,

N∑
i=1

µisi = r

}
, ψ :=

N∑
i=1

µiψi ,

ρext(r ) := max

{ N∑
i=1

µiρiext(si )
�� si≥ 0, ∥[s1; . . . ; sN ]∥ = r

}
.

Note that κ and ρext in (24) belong toK andK∞∪{0}, respectively,

because of their definition provided above. Hence, we conclude that

V is an SSF from Σ̂ to Σ. □

Proof. (Theorem 5.1) Since system Σ is incrementally passiv-

able, from (17), ∀x ∈ X and ∀x̂ ∈ X̂ , we have

α(∥h1(x) − h1(x̂)∥) = α(∥h1(x) − ˆh1(x̂)∥) ≤ V (x , x̂),

satisfying (7) with α(s) := α(s) ∀s ∈ R≥0. Now by taking the

conditional expectation from (19), ∀x ∈ X ,∀x̂ ∈ X̂ ,∀ν̂ ∈ Û ,∀w ∈

W ,∀ŵ ∈ Ŵ , we have

E
[
V (f (x ,L(x) + ν̂ ,w, ς), ˆf (x̂ , ν̂ , ŵ, ς))

��x , x̂ , ν̂ ,w, ŵ]
−

E
[
V (f (x ,L(x) + ν̂ ,w, ς), f (x̂ ,L(x̂) + ν̂ , ŵ, ς))

��x , x̂ , ν̂ ,w, ŵ]
≤ E

[
γ (∥ ˆf (x̂ , ν̂ , ŵ, ς) − f (x̂ ,L(x̂) + ν̂ , ŵ, ς)∥)

��x̂ , x̂ , ν̂ ,w, ŵ]
,

where
ˆf (x̂ , ν̂ , ŵ, ς) = Πx (f (x̂ ,L(x̂) + ν̂ , ŵ, ς)). Using Theorem 2.2

and inequality (5), the above inequality reduces to

E
[
V (f (x ,L(x) + ν̂ ,w, ς), ˆf (x̂ , ν̂ , ŵ, ς))

��x , x̂ , ν̂ ,w, ŵ]
−

E
[
V (f (x ,L(x) + ν̂ ,w, ς), f (x̂ ,L(x̂) + ν̂ , ŵ, ς))

��x , x̂ , ν̂ ,w, ŵ]
≤ γ (δ ).

Employing (18) and since h2 = ˆh2, we get

E
[
V (f (x ,L(x) + ν̂ ,w, ς), f (x̂ ,L(x̂) + ν̂ , ŵ, ς))

��x , x̂ , ν̂ ,w, ŵ]
−V (x , x̂) ≤ −κ̂(V (x , x̂)) +[

w − ŵ

h2(x) − ˆh2(x̂)

]T [
X̄ 11 X̄ 12

X̄ 21 X̄ 22

] [
w − ŵ

h2(x) − ˆh2(x̂)

]
.

It follows that ∀x ∈ X ,∀x̂ ∈ X̂ ,∀û ∈ U , and ∀w ∈W ,∀ŵ ∈ Ŵ ,

E
[
V (f (x ,L(x) + ν̂ ,w, ς), ˆf (x̂ , ν̂ , ŵ, ς)))

��x , x̂ , ν̂ ,w, ŵ]
−V (x , x̂)

≤ −κ̂(V (x , x̂)) + γ (δ ) +[
w − ŵ

h2(x) − ˆh2(x̂)

]T [
X̄ 11 X̄ 12

X̄ 21 X̄ 22

] [
w − ŵ

h2(x) − ˆh2(x̂)

]
,

satisfying (8) withψ = γ (δ ), ν = L(x) + ν̂ , κ = κ̂, ρext ≡ 0, and G,
Ĝ, H are identity matrices of appropriate dimensions. Hence, V is

an SStF from Σ̂ to Σ, which completes the proof. □

Proof. (Theorem 5.2) Here, we show that ∀x , ∀x̂ , ∀ν̂ , ∃ν , ∀ŵ ,

∀w , V satisfies
λmin(M̃ )

λmax(CT
1
C1)

∥C1x − Ĉ1x̂ ∥
2 ≤ V (x , x̂) and

E
[
V (f (x ,ν ,w, ς), ˆf (x̂ , ν̂ , ŵ, ς))

��x , x̂ , ν̂ ,w, ŵ]
−V (x , x̂)

≤ − (1 − κ̂)(V (x , x̂)) + (1 + 2/π )λmax(M̃)δ2

+

[
w − ŵ

h2(x) − ˆh2(x̂)

]T [
X̄ 11 X̄ 12

X̄ 21 X̄ 22

] [
w − ŵ

h2(x) − ˆh2(x̂)

]
.

Since C1 = Ĉ1, we have ∥C1x − Ĉ1x̂ ∥
2 = (x − x̂)TCT

1
C1(x − x̂).

Since λmin(C
T
1
C1)∥x−x̂ ∥

2 ≤ (x−x̂)TCT
1
C1(x−x̂) ≤ λmax(C

T
1
C1)∥x−

x̂ ∥2
and similarly λmin(M̃)∥x−x̂ ∥2 ≤ (x−x̂)T M̃(x−x̂) ≤ λmax(M̃)∥x−

x̂ ∥2
, it can be readily verified that

λmin(M̃ )

λmax(CT
1
C1)

∥C1x − Ĉ1x̂ ∥
2 ≤

V (x , x̂) holds ∀x , ∀x̂ , implying that inequality (7) holds with α(s) =
λmin(M̃ )

λmax(CT
1
C1)

s2
for any s ∈ R≥0. We proceed with showing that the

inequality (8) holds, as well. Given any x , x̂ , and ν̂ , we choose ν via

the following interface function:

ν = νν̂ (x , x̂ , ν̂ ) := K(x − x̂) + ν̂ . (26)

By employing the definition of the interface function, we simplify

Ax+Bνν̂ (x , x̂ , ν̂ )+Dw+N̄ς−Πx (Ax̂+Bν̂+Dŵ+N̄ς)

to

(A + BK)(x − x̂)+D(w − ŵ)+ F ,
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E
[N∑
i=1

µi
[
Vi (fi (xi , νi , wi , ςi ), ˆfi (x̂i , ν̂i , ŵi , ςi )) | x, x̂, ν̂

] ]
−

N∑
i=1

µiVi (xi , x̂i )=
N∑
i=1

µiE
[
Vi (fi (xi , νi , wi , ςi ), ˆfi (x̂i , ν̂i , ŵi , ςi )) | x, x̂, ν̂

]
−

N∑
i=1

µiVi (xi , x̂i )

=

N∑
i=1

µiE
[
Vi (fi (xi , νi , wi , ςi ), ˆfi (x̂i , ν̂i , ŵi , ςi )) | xi , x̂i , ν̂i

]
−

N∑
i=1

µiVi (xi , x̂i ) ≤
N∑
i=1

µi

(
−κi (Vi (xi , x̂i ))+ρiext( ∥ν̂i ∥) +ψi +

[
Giwi − Ĝi ŵi

h2i (xi ) − Hi ˆh2i (x̂i )

]T
[
X̄ 11

i X̄ 12

i
X̄ 21

i X̄ 22

i

] [
Giwi − Ĝi ŵi

h2i (xi ) − Hi ˆh2i (x̂i )

] )
=

N∑
i=1

−µiκi (Vi (xi , x̂i )) +
N∑
i=1

µi ρiext( ∥ν̂i ∥) +
N∑
i=1

µiψi

+



G1w1 − Ĝ1ŵ1

.

.

.

GNwN − ĜN ŵN
h21(x1) − H1

ˆh21(x̂1)

.

.

.

h2N (xN ) − HN ˆh2N (x̂N )



T 

µ1X̄ 11

1
µ1X̄ 12

1

. . .
. . .

µN X̄ 11

N µN X̄ 12

N
µ1X̄ 21

1
µ1X̄ 22

1

. . .
. . .

µN X̄ 21

N µN X̄ 22

N





G1w1 − Ĝ1ŵ1

.

.

.

GNwN − ĜN ŵN
h21(x1) − H1

ˆh21(x̂1)

.

.

.

h2N (xN ) − HN ˆh2N (x̂N )


=

N∑
i=1

−µiκi (Vi (xi , x̂i ))

+

N∑
i=1

µi ρiext( ∥ν̂i ∥)+
N∑
i=1

µiψi +



GM


h21(x1)

.

.

.
h2N (xN )

 − ĜM̂


ˆh21(x̂1)

.

.

.
ˆh2N (x̂N )


h21(x1) − H1

ˆh21(x̂1)

.

.

.

h2N (xN ) − HN ˆh2N (x̂N )



T

X̄cmp



GM


h21(x1)

.

.

.
h2N (xN )

 − ĜM̂


ˆh21(x̂1)

.

.

.
ˆh2N (x̂N )


h21(x1) − H1

ˆh21(x̂1)

.

.

.

h2N (xN ) − HN ˆh2N (x̂N )


=

N∑
i=1

−µiκi (Vi (xi , x̂i ))

+

N∑
i=1

µi ρiext( ∥ν̂i ∥) +
N∑
i=1

µiψi +


h21(x1) − H1

ˆh21(x̂1)

.

.

.

h2N (xN ) − HN ˆh2N (x̂N )


T [

GM
Iq̃

]T
X̄cmp

[
GM
Iq̃

] 
h21(x1) − H1

ˆh21(x̂1)

.

.

.

h2N (xN ) − HN ˆh2N (x̂N )


≤

N∑
i=1

−µiκi (Vi (xi , x̂i )) +
N∑
i=1

µi ρiext( ∥ν̂i ∥) +
N∑
i=1

µiψi ≤ −κ (V (x, x̂ )) + ρext( ∥ν̂ ∥) +ψ .

(24)

E
[
V (f (x, ν, w, ς ), ˆf (x̂, ν̂, ŵ, ς ))

�� x, x̂, ν̂, w, ŵ
]
−V (x, x̂ ) = (x − x̂ )T (A + BK )T M̃ (A + BK )(x − x̂ ) + 2(x − x̂ )T (A + BK )T M̃D(w − ŵ )

+(w − ŵ )TDT M̃D(w − ŵ )+2(x − x̂ )T (A + BK )T M̃E
[
F | x, x̂, ν̂, w, ŵ

]
+2(w − ŵ )TDT M̃E

[
F | x, x̂, ν̂, w, ŵ

]
+E

[
FT M̃F | x, x̂, ν̂, w, ŵ

]
−V (x, x̂ ) ≤

[
x − x̂
w − ŵ

]T [
(1 + π )(A + BK )T M̃ (A + BK ) (A + BK )T M̃D

DT M̃ (A + BK ) (1 + π )DT M̃D

] [
x − x̂
w − ŵ

]
+ (1 + 2/π )λmax(M̃ )δ 2 −V (x, x̂ )

≤

[
x − x̂
w − ŵ

]T [
κ̂ M̃ +CT

2
X̄ 22C2 CT

2
X̄ 21

X̄ 12C2 X̄ 11

] [
x − x̂
w − ŵ

]
+ (1 + 2/π )λmax(M̃ )δ 2 −V (x, x̂ )

= −(1 − κ̂)(V (x, x̂ )) +
[

w − ŵ
C2x − Ĉ2x̂

]T [
X̄ 11 X̄ 12

X̄ 21 X̄ 22

] [
w − ŵ

C2x − Ĉ2x̂

]
+ (1 + 2/π )λmax(M̃ )δ 2

(25)

where F =Ax̂+ Bν̂ +Dŵ+ N̄ς − Πx (Ax̂ + Bν̂ + Dŵ + N̄ς). Using
Young’s inequality [25] as ab ≤ π

2
a2 + 1

2π b
2, for any a,b ≥ 0 and

any π > 0, and by employing Cauchy-Schwarz inequality, C2 = Ĉ2,

and since

∥F ∥ ≤ δ , FT M̃F ≤ λmax(M̃)δ2,

one can obtain the chain of inequalities in (25). Hence, the proposed

V in (21) is an SStF from Σ̂ to Σ, which completes the proof. Note that

functions α ∈ K∞, κ ∈ K , ρext ∈ K∞ ∪ {0}, and matrix X̄ in Defini-

tion 3.1 associated withV in (21) are defined as α(s) = λmin(M̃ )

λmax(CT
1
C1)

s2
,

κ(s) := (1−κ̂)s , ρext(s) := 0, ∀s ∈ R≥0, and X̄ =

[
X̄ 11 X̄ 12

X̄ 21 X̄ 22

]
. More-

over, positive constantψ in (8) isψ = (1 + 2/π )λmax(M̃)δ2
. □
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