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ABSTRACT Biological network alignment (NA) aims to identify similar regions between molecular
networks of different species. NA can be local or global. Just as the recent trend in the NA field, we also focus
on global NA, which can be pairwise (PNA) and multiple (MNA). PNA produces aligned node pairs between
two networks. MNA produces aligned node clusters between more than two networks. Recently, the focus
has shifted from PNA to MNA, because MNA captures conserved regions between more networks than
PNA (and MNA is thus hypothesized to yield higher-quality alignments), though at higher computational
complexity. The issue is that, due to the different outputs of PNA and MNA, a PNA method is only compared
to other PNA methods, and an MNA method is only compared to other MNA methods. Comparison of PNA
against MNA must be done to evaluate whether MNA indeed yields higher-quality alignments, as only this
would justify MNA’s higher computational complexity. We introduce a framework that allows for this. We
evaluate eight prominent PNA and MNA methods, on synthetic and real-world biological networks, using
topological and functional alignment quality measures. We compare PNA against MNA in both a pairwise
(native to PNA) and multiple (native to MNA) manner. PNA is expected to perform better under the pairwise
evaluation framework. Indeed this is what we find. MNA is expected to perform better under the multiple
evaluation framework. Shockingly, we find this not always to hold; PNA is often better than MNA in this
framework, depending on the choice of evaluation test.

INDEX TERMS Computational Biology, Graph Theory, Network Theory (Graphs)

I. INTRODUCTION

A. MOTIVATION AND BACKGROUND

NETWORKS can be used to model complex
real-world systems in many domains, includ-

ing computational biology. A popular type of bi-
ological networks are protein interaction networks
(PINs). While PIN data are available for multiple
species [1], the functions of many proteins in many
species remain unknown [2], [3]. Network align-
ment (NA) compares networks to find a node map-
ping that conserves similar regions between the net-
works. Then, analogous to genomic sequence align-
ment, NA can be used to predict protein functions

by transferring functional knowledge from a well-
studied species to a poorly-studied one between the
species’ conserved (aligned) PIN regions [4]–[8].
While we focus on the biological NA of PINs, NA
can be used for many applications [9], including
computer vision [10], online social networks [11],
and ontology matching [12].

NA is related to the subgraph isomorphism, or
subgraph matching, problem. This problem asks to
find a node mapping such that one network is an ex-
act subgraph of another network. NA is a more gen-
eral problem in that it asks to find a node mapping
that best “fits” one network into another network,
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even if the first network is not an exact subgraph of
the second. A widely used measure that quantifies
this “fit” is the amount of conserved (aligned) edges,
i.e., the size of the common conserved subgraph be-
tween the aligned networks. Since maximizing edge
conservation is NP-hard [13], heuristic methods are
needed for NA.

Like genomic sequence alignment, NA can be
local or global [7], [8]. Initial research was on
local NA, which searches for small highly conserved
regions across the compared networks, irrespective
of the overall similarity between the networks; the
conserved network regions can, but are not required
to, overlap. More recent efforts have focused on
global NA, which searches for a node mapping
that maximizes overall similarity of the compared
networks and thus results in large but suboptimally
conserved network regions. Each of local NA and
global NA has its (dis)advantages [7], [8], [14].
Because in the recent years global NA has received
more attention than local NA, in this paper we also
focus on global NA, and henceforth, we refer to
global NA as NA.

Also, and importantly for our study, NA methods
can be pairwise or multiple [5], [8]. While pairwise
NA (PNA) aligns two networks at once, multiple
NA (MNA) can align more than two networks at
once. Since MNA can capture conserved network
regions between multiple networks, it is hypoth-
esized that MNA may lead to deeper biological
insights (i.e., higher-quality alignments) compared
to PNA. However, this hypothesis has not been
tested yet (for reasons described in the following
paragraphs). Because of this, and because both PNA
and MNA have the same ultimate goal, which is
to transfer knowledge from well- to poorly-studied
species, we argue that they need to be compared
in order to determine which category of methods
produce higher-quality alignments. Note that MNA
is computationally harder than PNA, because the
complexity of the NA problem can increase expo-
nentially with the number of considered networks.
So, a comparison of PNA and MNA in terms of
their alignment quality can also answer whether
the additional computational complexity of MNA
is worth it.

Since typical PNA and MNA methods produce
alignments of different types (Fig. 1), it has been
difficult to compare them. Namely, when aligning
two networks, PNA typically produces a one-to-one
node mapping between the two networks, which
results in aligned node pairs (Fig. 1(a)). When
aligning more than two networks, MNA produces

One-to-one
2 networks

(a)

One-to-one
>2 networks

(b)

Many-to-many
2 networks

(c)

Many-to-many
>2 networks

(d)

FIGURE 1: Illustration of different alignment types.

a node mapping across the multiple networks, which
results in aligned node clusters. If an aligned cluster
contains more than one node from a single network,
then it is a many-to-many alignment (Fig. 1(d)). If
each of the aligned clusters contains at most one
node per network, then it is a one-to-one alignment
(Fig. 1(b)). Typical MNA methods produce many-
to-many alignments (Fig. 1(d)), and they are called
many-to-many MNA methods. MNA methods that
produce one-to-one alignments (Fig. 1(b)) are called
one-to-one MNA methods. MNA methods can also
be trivially used to align pairs of networks, which
results in aligned node clusters for many-to-many
MNA methods (Fig. 1(c)) and in aligned node pairs
for one-to-one MNA methods (Fig. 1(a)).

There is sometimes confusion in the literature
that one-to-one alignments are automatically global
(i.e., outputted by global NA methods), and that
many-to-many alignments are automatically local
(outputted by local NA methods). However, this is
not necessarily the case. First, one-to-one alignments
can result in only small regions aligned to each other
(clearly without any nodes overlapping), meaning
that they are local one-to-one alignments. Second,
many-to-many alignments can result in aligned node
clusters covering nodes from all analyzed networks,
meaning that they are global, many-to-many align-
ments. In other words, in our opinion, “local” and
“global” describe how much of the networks’ nodes
are covered by (i.e., are a part of) the given alignment,
and not on whether the nodes are aligned in one-
to-one or many-to-many fashion. It is important to
note that most of the recent one-to-one methods
will not actually produce local alignments, because
they require all nodes of the smaller networks to be
mapped to nodes of the larger networks, automat-
ically leading to global (one-to-one, or even more
formally, injective) alignments. However, this is an
algorithmic design choice of many existing methods
rather than a requirement of any and every one-to-
one method. As discussed above, we focus on global
NA, considering both one-to-one and many-to-many
methods.

Again, because PNA and MNA generally produce
alignments of different types (aligned node pairs
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versus aligned node clusters, respectively), alignment
quality measures designed for alignments of one type
do not necessarily work for alignments of the other
type. Also, alignment quality measures designed for
alignments of two networks do not necessarily work
for alignments of more than two networks. Due to
this difficulty, when a new PNA or MNA method
is proposed, it is only compared against other NA
methods from the same category. However, since
both PNA and MNA have the same goal of across-
species knowledge transfer, we argue that there is a
need to compare them. This is especially true because
early evidence suggests that aligning each pair of
considered networks via PNA and then combining
the pairwise alignments into a multiple alignment
spanning all of the networks can be superior to
directly aligning all networks via MNA [15].

B. OUR CONTRIBUTIONS
Thus, we propose an evaluation framework for a fair
comparison of PNA and MNA (Fig. 2).

We evaluate PNA and MNA on synthetic net-
works with known true node mapping (we know the
underlying alignment that a perfect method should
output) and real-world PINs of different species with
unknown node mapping (we do not know which
protein in one species corresponds to which protein
in the other species). The network data are discussed
in Section II-A.

We evaluate prominent PNA and MNA methods
that were published by the beginning of our study,
were publicly available, and had user-friendly im-
plementations. This includes four PNA methods
(GHOST [16], MAGNA++ [17], WAVE [18], and
L-GRAAL [19]), and four MNA methods (IsoRankN
[20], BEAMS [21], multiMAGNA++ [22], and Con-
vexAlign [23]), which are discussed in Section II-B.
Most of these methods are recent and were thus
already shown to be superior to many past methods,
e.g., IsoRank [24], MI-GRAAL [13], GEDEVO [25],
and NETAL [26] PNA methods, plus GEDEVO-
M [27], FUSE [28], and SMETANA [29] MNA
methods. Note that newer NA methods have ap-
peared since, such as SANA [30], ModuleAlign [31],
SUMONA [32], and PrimAlign [33], which is why
they were not included here. Importantly, we believe
that their inclusion is not required. This is because
our goal is not to determine the best existing (PNA or
MNA) method. Instead, it is to properly evaluate the
whole category of prominent recent PNA methods
against the whole category of equally prominent
recent and thus fairly comparable MNA methods.
While the best existing NA method would likely

change with introduction of each new method (or
possibly even a new measure for evaluating align-
ment quality), the best category of NA approaches
is less likely to change, unless there is a drastic
shift in how the NA problem is approached and
solved (or possibly even just how alignment quality
is evaluated). And one of the purposes of our study
is to determine if such a shift is needed.

We evaluate the PNA and MNA methods in terms
of their alignment quality (i.e., accuracy) as well
as running time. We evaluate alignment quality
using topological and functional alignment quality
measures. An alignment is of good topological
quality if it reconstructs well the underlying true node
mapping (when known) and if it has many conserved
edges (i.e., if it conserves a large common subgraph
between the networks). An alignment is of good
functional quality if its aligned node pairs/clusters
contain nodes with similar biological functions. The
alignment quality measures are described in Section
II-C.

We evaluate the PNA and MNA methods in both
a pairwise (native to PNA) and multiple (native to
MNA) manner, as described in Section II-D.

Section II describes the data, alignment quality
measures, and evaluation framework. Section III
describes our findings.

II. METHODS
A. DATA
We use five network sets: one synthetic network
set with known true node mapping, and four real-
world network sets with unknown true node mapping.
For each network, we use only its largest connected
component.
Network set with known true node mapping. This
synthetic network set, named Yeast+%LC, contains
a high-confidence S. cerevisiae (yeast) PIN with
1, 004 proteins and 8, 323 interactions [34], along
with five lower-confidence yeast PINs constructed
by adding 5%, 10%, 15%, 20%, or 25% of lower-
confidence interactions to the high-confidence PIN
(Supplementary Table S1). This network set has been
used in many existing studies [7], [13], [16], [22],
[35]–[37]. Since all networks have the same node set,
we know the true node mapping. Hence, for this set,
we can evaluate node correctness, i.e., how well the
given NA method reconstructs the true node mapping
(Section II-C1).
Network sets with unknown true node mapping.
The four real-world network sets with unknown node
mapping are named PHY1, PHY2, Y2H1, and Y2H2.
Each contains PINs of four species, S. cerevisiae
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Data
(Section II-A)

Network sets

Known mapping
Yeast+%LC
(6 networks)

Unknown mapping
PHY1 (4 networks)
PHY2 (2 networks)
Y2H1 (4 networks)
Y2H2 (2 networks)

NA methods
(Section II-B)

Pairwise NA
(PNA) methods

GHOST
MAGNA++
WAVE
L-GRAAL

Multiple NA
(MNA) methods

IsoRankN
ConvexAlign
BEAMS
multiMAGNA++

Evaluation
(Section II-D)

Pairwise evaluation (PE)
framework

Alignment of one pair of net-
works in the set at a time
(Section II-D1)

Multiple evaluation (ME)
framework

Alignment of all networks in
the set at once
(Section II-D2)

Alignment quality measures
(Section II-C)

Topological quality (TQ) measures
NCV-MNC (applicable to PE and ME)
NCV-CIQ (applicable to ME only)
NCV-GS3 (applicable to PE only)
LCCS (applicable to PE and ME)
(Section II-C1)

Functional quality (FQ) measures
MNE (applicable to PE and ME)
GO correctness (applicable to PE and ME)
Protein function prediction precision, re-
call, F-score (applicable to PE and ME)
(Section II-C2)

Results
(Section III)

PNA vs. MNA in terms of
overall TQ and FQ accuracy
as well as running time

PNA vs. MNA in terms of
the ultimate goal of protein
function prediction accuracy

FIGURE 2: Overview of our PNA versus MNA evaluation framework.

(yeast), D. melanogaster (fly), C. elegans (worm),
and H. sapiens (human). The PIN data, obtained from
BioGRID [1], have been used in recent studies [7],
[22]. For each species, four PINs are created that
contain the following protein interaction types and
confidence levels: all physical interactions supported
by at least one publication (PHY1) or at least two
publications (PHY2), as well as only yeast two-
hybrid physical interactions supported by at least
one publication (Y2H1) or at least two publications
(Y2H2) (Supplementary Table S1). Just as was done
in the existing studies, we also remove the fly and
worm networks from the PHY2 and Y2H2 network
sets, because these networks are too small and sparse
(53-331 nodes and 33-260 edges), resulting in the
PHY2 and Y2H2 network sets containing only two
networks each. The four network sets have unknown
true node mapping, and thus we cannot evaluate node
correctness. However, we use alternative measures of
alignment quality that are based on Gene Ontology
annotations (Section II-C2).
Gene Ontology (GO) annotations. For alignment
quality measures (Section II-C) that rely on GO
annotations of proteins [38], we use experimentally
obtained GO annotations from the GO database from
January 2016.
Protein sequences. When NA methods use pro-
tein sequence information to produce an alignment
(Section II-B), we use BLAST protein sequence
similarities as captured by E-values [39]. The se-
quence data were acquired from the NCBI website
(https://www.ncbi.nlm.nih.gov/).

B. NA METHODS THAT WE EVALUATE
We study GHOST, MAGNA++, WAVE, and L-
GRAAL PNA methods, and IsoRankN, BEAMS,
multiMAGNA++, and ConvexAlign MNA methods.
PNA methods. Most NA methods are two-stage
aligners: first, they calculate the similarities (based
on network topology and, optionally, protein se-

quences) between nodes of the compared networks,
and second, they use an alignment strategy to find
high scoring alignments with respect to the total
similarity over all aligned nodes. GHOST is a two-
stage PNA method (Supplementary Section S1.1).
An issue with two-stage methods is that while they
find high scoring alignments with respect to total
node similarity (a.k.a. node conservation), they do
not account for the amount of conserved edges during
the alignment construction process. But the quality
of an alignment is often measured in terms of edge
conservation. To address this, MAGNA++ directly
optimizes both edge and node conservation while
the alignment is constructed (Supplementary Section
S1.1). MAGNA++ is a search-based (rather than a
two-stage) PNA method. Search-based aligners can
directly optimize edge conservation or any other
alignment quality measure. WAVE and L-GRAAL
were proposed as two-stage (rather than search-
based) PNA methods that, just as MAGNA++, op-
timize both node and (weighted) edge conservation
(Supplementary Section S1.1).

MNA methods. IsoRankN, BEAMS, and Convex-
Align are two-stage MNA methods. IsoRankN op-
timizes node conservation. BEAMS and Convex-
Align optimize both node and edge conservation
(Supplementary Section S1.1). On the other hand,
like MAGNA++, multiMAGNA++ is a search-based
method that optimizes both edge and node conserva-
tion. IsoRankN and BEAMS produce many-to-many
alignments. ConvexAlign and multiMAGNA++ pro-
duce one-to-one alignments.

Aligning using network topology only versus us-
ing both topology and protein sequences. In our
analysis, for each method, we study the effect on
output quality when (i) using only network topol-
ogy while constructing alignments (T alignments)
versus (ii) using both network topology and protein
sequence information while constructing alignments
(T+S alignments). For T alignments, we set method
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parameters to ignore any sequence information. All
methods except BEAMS can produce T alignments
and all methods can produce T+S alignments. For
T+S alignments, we set method parameters to in-
clude sequence information. Supplementary Table
S2 shows the specific parameters that we use, and
Supplementary Section S1.1 justifies our parameter
choices.

C. ALIGNMENT QUALITY MEASURES
Typical PNA methods produce alignments compris-
ing node pairs and typical MNA methods produce
alignments comprising node clusters. We introduce
the term aligned node group to describe either an
aligned node pair or an aligned node cluster. With
this, we can represent a pairwise or multiple align-
ment as a set of aligned node groups. For formal
definitions, see Supplementary Section S1.2.

1) Topological quality (TQ) measures
A good NA method should produce aligned node
groups that have internal consistency with respect to
protein labels. If we know the true node mapping
between the networks, we can let the labels be
node names. We consider measures that rely on
node names to be capturing topological quality
(TQ) of an alignment. If we do not know the true
node mapping, we let the labels be nodes’ (i.e.,
proteins’) GO terms. We consider measures that
rely on GO terms to be capturing functional quality
(FQ) of an alignment; we discuss such measures in
Section II-C2. We measure internal consistency of
aligned protein groups in a pairwise alignment via
precision, recall, and F-score of node correctness (P-
NC, R-NC, and F-NC, respectively); these measures,
introduced by [7], work for both one-to-one and
many-to-many pairwise alignments (Supplementary
Section S1.2.1). We do this in a multiple alignment
via adjusted multiple node correctness (NCV-MNC);
this measure, introduced by [22], works for both
one-to-one and many-to-many multiple alignments
(Supplementary Section S1.2.1).

Also, a good NA method should find a large
amount of common network structure, i.e., pro-
duce high edge conservation. We measure edge
conservation in a pairwise alignment via adjusted
generalized S3 (NCV-GS3); this measure, introduced
by [7], works for both one-to-one and many-to-many
pairwise alignments (Supplementary Section S1.2.1).
We do this in a multiple alignment via adjusted
cluster interaction quality (NCV-CIQ); this measure,
introduced by [22], works for both one-to-one and
many-to-many multiple alignments (Supplementary

Section S1.2.1).
Finally, for a good NA method, conserved edges

should form large and dense (as opposed to small or
isolated) conserved regions. We capture the notion of
large and connected conserved network regions (for
both pairwise and multiple alignments) via largest
common connected subgraph (LCCS). This measure,
recently extended from PNA [37] to MNA [22],
works for both one-to-one and many-to-many align-
ments, and for both pairwise and multiple alignments
(Supplementary Section S1.2.1).

2) Functional quality (FQ) measures
Per Section II-C1, a good alignment should have
internally consistent aligned node groups. Instead of
protein names as in Section II-C1, in this section we
use GO terms as protein labels to measure internal
consistency. Having aligned node groups that are
internally consistent with respect to GO terms is
important for protein function prediction.

We measure internal node group consistency with
respect to GO terms in two ways. First, we do so
via mean normalized entropy (MNE); this measure,
introduced by [20] (also, see [22] for formal def-
inition), works for both one-to-one and many-to-
many alignments, and for both pairwise and multiple
alignments (Supplementary Section S1.2.2). Second,
we do so via an alternative popular measure, GO
correctness (GC); this measure, recently extended
from PNA [35] to MNA [22], works for both one-
to-one and many-to-many alignments, and for both
pairwise and multiple alignments (Supplementary
Section S1.2.2).

In addition to measuring internal node group
consistency, we directly measure the accuracy of
protein function prediction. That is, we first use a
protein function prediction approach (Section II-C3)
to predict protein-GO term associations, and then
we compare the predicted associations to known
protein-GO term associations to see how accurate the
predicted associations are. We do so via precision,
recall, and F-score measures (P-PF, R-PF, and F-
PF, respectively); these measures work for both one-
to-one and many-to-many alignments, and for both
pairwise and multiple alignments (Supplementary
Section S1.2.2).

3) Protein function prediction approaches
Here, we discuss how we predict protein-GO term
associations from the given alignment. We use a
different protein function prediction approach for
each alignment type. Therefore, below, first, we
discuss an existing approach that we use to pre-
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dict protein GO-term associations from pairwise
alignments (approach 1). Second, we discuss an
existing approach that we use to predict these associ-
ations from multiple alignments (approach 2). Third,
since the existing approach for multiple alignments
(approach 2) is very different from the existing
approach for pairwise alignments (approach 1), to
make comparison between pairwise and multiple
alignments (i.e., between PNA and MNA) more fair,
we extend approach 1 for pairwise alignments into a
new approach for multiple alignments (approach 3).
As we show in Section III-E1, our new approach 3 in
general improves upon the existing approach 2. So,
we propose approach 3 as a new superior strategy
for predicting protein-GO term associations from
multiple alignments, which is another contribution
of our study.

Approach 1. Existing protein function prediction
for pairwise alignments. Here, we predict protein
GO-terms associations using a multi-step process
proposed by [7]. For each protein v in the alignment
that has at least one annotated GO term, and for
each GO term g, first, we hide v’s true GO term(s).
Second, we determine if the alignment is statistically
significant with respect to g, i.e., if the number of
aligned node pairs in which the aligned proteins
share GO term g is significantly high (p-value below
0.05 according to the hypergeometric test; see [7] for
details). Repeating this process for all nodes and GO
terms results in set X of predicted protein-GO term
associations.

Approach 2. Existing protein function prediction
for multiple alignments. Here, we predict protein
GO-term associations using the approach of [4], as
follows. For each protein v in the alignment that has
at least one annotated GO term, and for each GO
term g, first, we hide the protein’s true GO term(s).
Second, given that v belongs to aligned node group
C, we measure the enrichment of C in g using the
hypergeometric test. If C is significantly enriched
in g (p-value below 0.05; see [22] for details), then
we predict v to be associated with g. Repeating this
process for all nodes and GO terms results in set X
of predicted protein-GO term associations.

Approach 3. New protein function prediction for
multiple alignments. Here, we introduce a new
approach to predict protein GO-term associations
from a multiple alignment. First, for each node group
Ci in the alignment, Ci is converted into a set of all
possible

(|Ci|
2

)
node pairs in the group. The union of

all resulting node pairs over all groups Ci forms
the set F of all aligned node pairs. Second, for

each protein v in the alignment that has at least one
annotated GO term, and for each GO term g, we
hide v’s true GO term(s). Third, we determine if the
alignment is statistically significant with respect to g,
i.e., if the number of aligned node pairs F in which
the aligned proteins share GO term g is significantly
high (p-value below 0.05 according to the hyperge-
ometric test; see Supplementary Section S1.2.3 for
details). Repeating this process for all nodes and GO
terms results in a set of predicted protein-GO term
associations. Our proposed approach 3 is identical
to approach 1 except for its first step of converting a
multiple alignment into a set of aligned node pairs.

4) Statistical significance of alignment quality
scores
Since PNA and MNA methods result in different
output types (as they produce alignments that differ
in the number and sizes of aligned node groups for
the same networks), to allow for as fair as possible
comparison of the different NA methods, we do
the following. For each NA method, each pair/set
of aligned networks, and each alignment quality
measure, we compute the statistical significance
(i.e., p-value) of the given alignment quality score.
Then, we take the significance of each alignment
quality score into consideration when comparing
the NA methods (as explained in Section II-D3).
We compute the p-value of a quality score of an
alignment as described in Supplementary Section
S1.2.4.

D. EVALUATION FRAMEWORK
Given a network set, to fairly compare PNA and
MNA, we compare the NA methods when aligning
all possible pairs of networks in the set (pairwise
evaluation framework, Section II-D1), as well as
when aligning all networks in the set at once (mul-
tiple evaluation framework, Section II-D2). PNA
is expected to perform better under the pairwise
evaluation framework (which is native to PNA),
and MNA is expected to perform better under the
multiple evaluation framework (which it is native to
MNA).

1) Pairwise evaluation (PE) framework
In the PE framework, given a network set, we
compare NA methods using pairwise alignments
of all possible pairs of networks in the set. Due
to the various ways that a pairwise alignment of
two networks can be created using PNA or MNA
methods, we categorize the pairwise alignments into
the following three categories. Specifically:
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• We apply PNA to all possible network pairs,
denoting the resulting alignments as the PE-P-P
alignment category. Here, since all PNA meth-
ods are one-to-one, their pairwise alignments
will be one-to-one.

• We apply MNA to all possible network pairs,
denoting the resulting alignments as the PE-M-
P alignment category. Here, if an MNA method
is many-to-many, then its pairwise alignments
will also be many-to-many. Otherwise, they will
be one-to-one.

• We apply MNA to the whole network set and
break the resulting multiple alignment into all
possible pairwise alignments, as illustrated in
Fig. 3(a). Specifically, given a multiple align-
ment spanning all of the networks (in our Fig.
3(a) illustration, three), we create a pairwise
alignment for every pair of networks (i.e., three
pairs) as follows: for the two networks in a given
pair, we remove every node from the multiple
alignment that is not a part of the two networks,
which results in a pairwise alignment of the
two networks. We denote the resulting pairwise
alignments as the PE-M-M alignment category.
Again, for a one-to-one or many-to-many MNA
method, its pairwise alignments will also be
one-to-one or many-to-many, respectively.

In the PE framework, we align all pairs of net-
works within each of the five analyzed network sets
(Yeast+%LC, PHY1, PHY2, Y2H1, and Y2H2; Sec-
tion II-A). We evaluate using all alignment quality
measures for pairwise alignments, namely F-NC,
NCV-GS3, and LCCS TQ measures as well as MNE,
GC, and F-PF FQ measures (Section II-C).

2) Multiple evaluation (ME) framework
In the ME framework, given a network set, we
compare NA methods using the resulting multiple
alignments of the set. Due to the various ways
that a multiple alignment of a network set can be
created, we categorize the multiple alignments in the
following three categories. Specifically:
• We apply PNA to all possible network pairs and

combine the resulting pairwise alignments into
a multiple alignment that spans all networks in
the set using a variation of a method introduced
by [15], as illustrated in Figs. 3(b)-(c) and
Supplementary Section S1.3. In more detail,
given pairwise alignments of all networks pairs
in the set (in our Fig. 3(b)-(c) illustrations,
three pairs of networks, (G1,G2), (G2,G3), and
(G1,G3)), produced by PNA, we combine the
pairwise alignments into a multiple alignment

as follows. First, we select a “scaffold” network
(in our illustration, G2). Second, we create a
set of node groups consisting of the pairwise
alignments between the scaffold network and
the other networks (in our illustration, (G1,G2)
and (G2,G3)). Third, we merge node groups
that have at least one node in common. This
procedure yields a multiple alignment of all
networks in the set. We denote the resulting
alignment as the ME-P-P alignment category.
Here, even though all PNA methods are one-to-
one, their pairwise-combined-to-multiple align-
ments will be many-to-many.

• We apply MNA to all possible network pairs
and combine the resulting pairwise alignments
into a multiple alignment that spans all net-
works in the set using the same variation of the
method introduced by [15] as above (Fig. 3(b)-
(c) and Supplementary Section S1.3), denoting
the resulting alignment as the ME-M-P align-
ment category. Here, independent of whether an
MNA method is one-to-one or many-to-many,
its pairwise-combined-to-multiple alignments
will be many-to-many.

• We apply MNA to the whole network set to
align all networks at once, denoting the result-
ing alignment as the ME-M-M category. Here,
if an MNA method is one-to-one, its direct
multiple alignments will also be one-to-one.
Otherwise, they will be many-to-many.

In the ME framework, we align each of the ana-
lyzed network sets that has more than two networks
(Yeast%+LC, PHY1, and Y2H1; Section II-A). We
evaluate using all alignment quality measures for
multiple alignments, namely NCV-MNC, NCV-CIQ,
and LCCS TQ measures as well as MNE, GC, and
F-PF FQ measures (Section II-C).

3) Comparing the performance of NA methods
We compare two NA methods in terms of their
alignment quality (i.e., accuracy) and running time.

In terms of alignment quality, given a network
pair/set and an alignment quality measure (i.e.,
in a given evaluation test), we compare two NA
methods as follows. Let x and y be the methods’
respective alignment quality scores. If both x and y
are significant (p-values below 0.001; Section II-C4)
and are within 1% of each other ( |x−y|(x+y)/2 < 0.01),
then the two methods are tied. They are also tied if
both x and y are non-significant. If both x and y are
significant and not tied, then the method with the
best score is superior. If x is significant and y is not,
then the method with score x is superior, and vice
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(a)

G1 G2 G3

G1 G2 G3 G1 G2 G3 G1 G2G3

(b)

G1 G2 G2 G3 G1 G3 G1 G2 G3

G1 G2 G3

(c)

G1 G2 G2 G3 G1 G3 G1 G2 G3

G1 G2 G3

FIGURE 3: Illustration on a set of three networks
(G1, G2, and G3) of how we convert: (a) a multiple
alignment to pairwise alignments, (b) one-to-one
pairwise alignments to a multiple alignment, and
(c) many-to-many pairwise alignments to a multiple
alignment.

versa.
Given k network pairs/sets and l alignment quality

measures, i.e., given k × l evaluation tests, for each
evaluation test, we rank all methods from the best
one to the worst one, as follows. Given the methods’
alignment quality scores, for methods with non-
significant scores, we rank the methods last. For
methods with significant scores, we perform the
following procedure. If a given method has the best
alignment quality score, then we give it rank 1 (as the
1st best method). We give the next best performing
method rank 2, and so on. If a given method is tied
with the next best performing method, then we rank
both methods with the superior (i.e., lower) rank.
The subsequent methods are ranked as if the previous
methods were not tied. For example, if methods a and
b are tied, they are both given rank 1, and if method
c is not tied with method a or method b, then method
c is given rank 3). We call this resulting rank for
a given evaluation test an evaluation test rank. We
calculate the overall ranking of an NA method by
taking the mean of its ranks over all k × l evaluation
tests. To evaluate whether the overall rankings of two
methods are significantly different from each other,
we apply the one-tailed Wilcoxon signed-rank test
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FIGURE 4: Comparison of the quality of T align-
ments versus the corresponding T+S alignments,
under each of the PE and ME frameworks. Each
bar shows the number of cases (here, a case refers
to a combination of NA method, a network pair/set,
and an alignment quality measure) in which the T
alignment is superior, the T+S alignment is superior,
or the two alignments are tied (i.e., within 1% of
each other’s accuracy). The cases are separated into
network pairs/sets with known true node mapping
and network pairs/sets with unknown true node
mapping.

on the k× l evaluation test ranks of the two methods.
We also compare the NA methods with respect to

their running times. Specifically, for each network
pair/set, for each alignment category in the PE and
ME frameworks, we give the fastest method rank 1,
the second fastest method rank 2, and so on. Each
method is restricted to use a maximum of 64 cores.

III. RESULTS AND DISCUSSION
In Section III-A, we compare the quality of T
alignments and T+S alignments. In Sections III-C
and III-D, we compare PNA against MNA in the PE
and ME framework, respectively, in terms of TQ and
FQ accuracy as well as running time. In Section III-E,
we compare PNA against MNA exclusively in terms
protein function prediction accuracy, as the main goal
of biological NA is to predict protein functions in
one species from protein functions in another species,
based on the species’ network alignment.

A. T VERSUS T+S ALIGNMENTS
Network topology alone can be used to find good
alignments of PINs [35]. But protein sequence infor-
mation can be used to complement network topology
in order to produce superior alignments [40]. Due to
the complementarity of network topology and protein
sequence information, we expect T+S alignments to
have higher alignment quality than T alignments. In
fact, we verify this. Namely, for each NA method,
we compare the given method’s T alignments to their
corresponding T+S alignments, in terms of TQ and
FQ measures, under the PE and ME frameworks (Fig.
4). We find the following.

For networks with known true node mapping,
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T+S alignments are superior to the corresponding
T alignments in almost all cases. Note that as already
recognized by [22], for these networks, i.e., for the
Yeast+%LC network set, the superiority of T+S
alignments over T alignments is not a surprising
result. This is because this dataset contains networks
that all have the same set of nodes. Consequently,
it contains many inter-network pairs of nodes that
are the same proteins. Sequence similarities of such
matching node pairs are higher than those of other
non-matching node pairs. These matching inter-
network node pairs can likely form aligned node
groups that have very high intra-group sequence
similarity due to the node pairs containing identical
proteins. This could explain the superiority of T+S
alignments over T alignments for the set of networks
with known node mapping.

Even for the sets of networks with unknown
node mapping (PHY1, PHY2, Y2H1, Y2H2), whose
networks contain different node sets, we still see that
T+S alignments are overall superior to T alignments.
Namely, only in terms of TQ, T alignments are
somewhat superior to T+S alignments, but T+S
alignments are still superior to or tied with the
corresponding T alignments in just under a half of all
cases. In terms of FQ, T+S alignments are superior to
or tied with the T alignments in almost all evaluation
tests.

So, we conclude that T+S alignments are overall
superior to T alignments. Because of this, because
T+S alignments are more relevant in the computa-
tional biology domain, and because of space con-
straints, henceforth, we mainly analyze T+S align-
ments. Importantly, our findings for T+S alignments
also hold for T alignments (Supplementary Fig. S6).

Due to space constraints, for additional results on
the similarity (overlap) of the alignments produced
the different NA methods, which demonstrate that
using protein sequence information overall yields
alignment consistency between the different NA
methods, see Supplementary Section S1.4 and Sup-
plementary Figs. S1–S3.

B. METHOD COMPARISON: EVALUATION
DETAILS
In Fig. 5, we compare PNA and MNA over all evalua-
tion tests (where a test is a combination of a network
pair/set and an alignment quality measure) for T+S
alignments; analogous comparison for T alignments
is shown in Supplementary Fig. S6. In this section,
we discuss how we evaluate and compare PNA and
MNA. We show the results of the comparison in
Section III-C for the PE evaluation framework and

in Section III-D for the ME evaluation framework.
In all of Sections III-B, III-C, and III-D, when we

refer to an “NA method”, we mean the combination
of a PNA or MNA method and an alignment category
(Section II-D). Namely, there are 12 NA methods in
the PE framework (four PNA methods associated
with the PE-P-P category and four MNA methods
associated with each of the PE-M-M and PE-M-P
categories) and 12 NA methods in the ME framework
(four PNA methods associated with the ME-P-P
category and four MNA methods associated with
each of the ME-M-M and ME-M-P categories). We
analyze the NA methods via three views, described
below and visualized in Fig. 5:

• View I: Overall ranking of the NA methods, as
described in Section II-D3. Since there are 12
methods in a given (PE or ME) framework, the
possible ranks range from 1 to 12. The lower
the rank, the better the given method. The “p1-
value” column shows the statistical significance
of the difference between the ranking of the 1st

best ranked method and each other method. The
“p2-value” column shows the statistical signif-
icance of the difference between the ranking
of the 2nd best ranked method and each other
method. The “Non. sig. (fail)” column shows
the fraction of all evaluation tests in which
the alignment quality score is not statistically
significant, and, in brackets, the fraction of
evaluation tests in which the given NA method
failed to produce an alignment.

• View II: Pie charts showing the fraction of
evaluation test ranks that fall into the 1–4,
5–8, and 9–12 rank bins out of all evaluation
test ranks in the given alignment category. For
example, for the PE framework, in the PE-P-
P alignment category, 56%, 26%, and 18%
of the evaluation test ranks fall into ranks
1–4, 5–8, and 9–12, respectively, totaling to
100% of the evaluation test ranks in the PE-P-P
alignment category. The pie charts allow us to
compare the three alignment categories rather
than individual NA methods in each category.
The larger the pie chart for the better (lower)
ranks, and the smaller the pie chart for the worse
(higher) ranks, the better the alignment category.
For example, in the PE framework, PE-P-P has
the most evaluation tests ranked 1–4 and the
fewest evaluation tests ranked 9–12, followed
by PE-M-P, followed by PE-M-M. This implies
that PE-P-P is superior to PE-M-P and PE-M-
M.

• View III: Overall ranking of an NA method
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NA method Overall rank p1-value p2-value Non-sig (fail)

MAGNA++ (PE-P-P) 4.22 (2.98) NA NA 0.06 (0.00)
multiMAGNA++ (PE-M-P) 4.33 (3.87) 5.51e-01 NA 0.11 (0.00)

WAVE (PE-P-P) 4.84 (4.27) 9.38e-02 5.41e-02 0.14 (0.00)
LGRAAL (PE-P-P) 5.81 (3.50) 9.48e-05 3.44e-04 0.19 (0.05)
GHOST (PE-P-P) 6.07 (4.39) 1.12e-05 1.11e-04 0.27 (0.15)

ConvexAlign (PE-M-P) 6.38 (4.24) 1.53e-03 7.01e-03 0.04 (0.00)
multiMAGNA++ (PE-M-M) 6.49 (3.55) 8.27e-09 1.72e-09 0.20 (0.00)

ConvexAlign (PE-M-M) 6.99 (4.04) 2.83e-06 1.52e-04 0.12 (0.00)
IsoRankN (PE-M-M) 8.42 (3.17) 4.88e-13 2.27e-11 0.30 (0.00)
BEAMS (PE-M-P) 8.51 (3.48) 1.15e-11 1.01e-09 0.23 (0.00)

IsoRankN (PE-M-P) 8.57 (3.39) 1.95e-13 3.94e-11 0.32 (0.00)
BEAMS (PE-M-M) 8.95 (3.41) 6.19e-13 2.70e-10 0.31 (0.00)

NA method Overall rank p1-value p2-value Non-sig (fail)

MAGNA++ (ME-P-P) 3.69 (2.60) NA NA 0.00 (0.00)
multiMAGNA++ (ME-M-P) 4.06 (3.70) 4.82e-01 NA 0.06 (0.00)

WAVE (ME-P-P) 4.88 (4.21) 1.26e-01 4.44e-02 0.06 (0.00)
GHOST (ME-P-P) 5.00 (4.34) 1.86e-01 1.52e-01 0.12 (0.00)

LGRAAL (ME-P-P) 5.44 (3.86) 1.10e-01 1.11e-01 0.19 (0.00)
multiMAGNA++ (ME-M-M) 5.88 (3.72) 1.74e-02 6.67e-03 0.06 (0.00)

ConvexAlign (ME-M-M) 6.69 (3.66) 3.89e-02 9.26e-02 0.00 (0.00)
IsoRankN (ME-M-M) 6.69 (3.11) 1.32e-02 2.67e-02 0.12 (0.00)

ConvexAlign (ME-M-P) 8.06 (4.96) 1.64e-02 1.59e-02 0.25 (0.00)
BEAMS (ME-M-M) 8.25 (3.86) 3.42e-03 5.85e-03 0.31 (0.00)
IsoRankN (ME-M-P) 9.50 (3.22) 6.31e-04 1.12e-03 0.50 (0.00)
BEAMS (ME-M-P) 9.75 (3.53) 6.42e-04 1.50e-03 0.56 (0.00)

PE-P-P PE-M-P PE-M-M

9-
1
2

5
-8

1-
4

R
a
n
k

ME-P-P ME-M-P ME-M-M

9-
1
2

5
-8

1-
4

R
a
n
k

Network type, measure type
Known mapping, TQ measures
Known mapping, FQ measures
Unknown mapping, TQ measures
Unknown mapping, FQ measures

PE-P-P PE-M-P PE-M-M

yeast
fl
y

yea
st

w
orm

yeast
h
u
m
a
n

fl
y

w
orm

fl
y

h
u
m
an

w
orm

h
u
m
an

G
H
O
S
T

W
A
V
E

M
A
G
N
A
+
+

L
G
R
A
A
L

A
ve
ra
ge

Is
oR

an
k
N

B
E
A
M
S

m
u
lt
iM

A
G
N
A
+
+

C
on

ve
x
A
li
gn

A
ve
ra
ge

Is
oR

an
k
N

B
E
A
M
S

m
u
lt
iM

A
G
N
A
+
+

C
on

ve
x
A
li
gn

A
ve
ra
g
e

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

0.25

4.00

64.00

NA method

R
u
n
n
in
g
ti
m
e
(h
o
u
rs
,
lo
g
sc
a
le
)

Overall rank
3
6
9
12

ME-P-P ME-M-P ME-M-M

w
orm

,
yeast,

fl
y,

h
u
m
an

G
H
O
S
T

W
A
V
E

M
A
G
N
A
+
+

L
G
R
A
A
L

A
ve
ra
ge

Is
oR

an
k
N

B
E
A
M
S

m
u
lt
iM

A
G
N
A
+
+

C
on

ve
x
A
li
g
n

A
ve
ra
ge

Is
oR

an
k
N

B
E
A
M
S

m
u
lt
iM

A
G
N
A
+
+

C
on

ve
x
A
li
gn

A
ve
ra
ge

1

4

16

64

NA method

R
u
n
n
in
g
ti
m
e
(h
o
u
rs
,
lo
g
sc
al
e)

P-P M-P M-M

PE framework ME framework
V

ie
w

I
V

ie
w

II
V

ie
w

II
I

FIGURE 5: Alignment category comparison results for each of the PE and ME frameworks over all evaluation
tests for T+S alignments. The alignment categories (i.e., PE-P-P, etc.) are color-coded. View I. Overall ranking
of the NA methods. The “Overall rank” column shows the rank of each method averaged over all evaluation
tests, along with the corresponding standard deviation (in brackets). View II. Alternative view of ranking of
the NA methods. Each pie chart shows the fraction of evaluation test ranks that fall into the 1–4, 5–8, and 9–12
rank bins out of all evaluation test ranks in the given alignment category. The pie charts are color-coded with
respect to alignments of network pairs/sets with known and unknown node mapping, and TQ and FQ measures.
View III. Overall ranking of an NA method versus its running time for the Y2H1 network set. The size of
each point visualizes the overall ranking of the corresponding method over all evaluation tests, corresponding
to the “Overall rank” column in View I; the larger the point size, the better the method.
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versus its running time, as described in Section
II-D3. In order to allow for easier compari-
son between the different alignment categories,
“Average” shows the average running times
and average rankings of the methods in each
alignment category.

C. METHOD COMPARISON: RESULTS IN THE
PE FRAMEWORK
We expect that under the PE framework, PNA will
perform better than MNA. This is exactly what
we observe. So, the most interesting and shocking
results of our study do not originate from this
section. Instead, they originate from Section III-D
below, when comparing PNA and MNA in the ME
framework.

Namely, in the PE framework, the overall ranking
of the PNA methods (T+S alignments from the PE-P-
P category) is generally better (lower) than the over-
all ranking of the MNA methods (T+S alignments
from the PE-M-P and PE-M-M categories) (View I
of Fig. 5). An exception is multiMAGNA++’s align-
ments from the PE-M-P category (multiMAGNA++
directly applied to network pairs), whose overall
ranking is also very good (low). This could be due to
multiMAGNA++ being a one-to-one MNA method,
which might have caused it to behave similarly as
PNA methods (all of which are also one-to-one)
when it is used to align only two networks. This
is further supported by the fact that the only other
considered one-to-one MNA method, ConvexAlign,
and specifically its PE-M-P version, is also ranked
better (lower) than the remaining two many-to-many
MNA methods, IsoRankN and BEAMS. Nonetheless,
ConvexAlign still has worse (higher) ranking than
any PNA method (View I of Fig. 5).

Next, we break down the results into those for
networks with known versus unknown node mapping,
and also, into those for TQ versus FQ measures
(View II of Fig. 5); additional, even more detailed
results for the PE framework are shown in Sup-
plementary Table S14. For networks with known
mapping, we find that PNA performs better than
MNA in terms of both TQ and FQ. For networks
with unknown mapping, PNA performs better than
MNA in terms of TQ, while in terms of FQ, the
situation is not as clear.

Namely, for networks with unknown mapping
and FQ, as can be seen in View II of Fig. 5, MNA
falls into the best (lowest) ranks 1-4 in more of the
evaluation tests than PNA. This implies that MNA is
better than PNA. However, at the same time, MNA
also falls into the worst (highest) ranks 9-12 in more

of the evaluation tests than PNA. This implies that
MNA is worse than PNA. Because we are interested
in comparing the whole category of the considered
PNA approaches against the whole category of the
considered MNA approaches (per our discussion in
Section I-B), the above two results combined could
be interpreted as MNA and PNA being comparable
for networks with unknown mapping and FQ. On the
other hand, for the same networks (with unknown
mapping) and TQ, as well as for networks with
known mapping and both TQ and FQ, PNA falls
into the best ranks 1-4 in more of the evaluation tests
than MNA, and at the same time, PNA falls into the
worst ranks 9-12 in fewer of the evaluation tests than
MNA, which means that PNA is superior to MNA.

Another observation is as follows (Supplementary
Tables S4–S7). For evaluation tests in which PNA is
clearly superior in terms of method rankings to MNA
(again, with the exception of multiMAGNA++’s PE-
M-P version), which are tests excluding networks
with unknown mapping and FQ, the best-ranked
PNA method (MAGNA++ or WAVE) is significantly
superior to the best-ranked MNA method (multi-
MAGNA++’s PE-M-M version, followed by all other
MNA methods that are all similarly ranked), with p-
values below 1.8 × 10−6. On the other hand, for
tests where it is unclear which of PNA and MNA
is better, which are tests involving networks with
unknown mapping or FQ, the best-ranked MNA
method (ConvexAlign’s PE-M-P version) is only
marginally better than the best-ranked PNA method
(MAGNA++), with p-values between 0.048 and
0.332. This justifies referring to PNA and MNA as
comparable for networks with unknown mapping
and FQ, and to PNA as being superior in all other
cases.

Next, we want to comment on the two MNA
methods that perform well in at least some evalu-
ation tests in the PE (pairwise) framework: multi-
MAGNA++ and ConvexAlign. Both of these meth-
ods produce one-to-one mappings, unlike the other
two MNA methods, BEAMS and IsoRankN, which
produce many-to-many mappings. Given that all
PNA (pairwise) methods are also one-to-one, it
might not be surprising that the two one-to-one MNA
methods also perform well in the PE framework.
This could be because the existing measures for pair-
wise alignment accuracy favor one-to-one mappings.
However, we believe that it is not just the one-to-one
aspect of multiMAGNA++ and ConvexAlign that
is relevant. First, while multiMAGNA++ performs
reasonably well in all tests (networks with both
known and unknown node mappings, and both TQ
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and FQ), ConvexAlign performs poorly for networks
with known mapping or TQ but exceptionally well
(marginally better than multiMAGNA++) for net-
works with unknown mapping and FQ. So, even
though both methods are one-to-one, each has its
unique (dis)advantages. Second, in Section III-D,
which evaluates the methods in the ME (multiple)
framework, of the four MNA methods, it is again mul-
tiMAGNA++ and ConvexAlign that perform the best.
This is despite the fact that the existing measures
for multiple alignment accuracy do not necessarily
favor one-to-one mappings, and some (especially
FQ) actually favor many-to-many mappings.

A likely reason why ConvexAlign performs well
only for networks with unknown node mapping
and FQ is because its parameter values that were
recommended and pre-set by its authors and that we
use (Supplementary Section S1.1) were determined
via cross-validation, by optimizing FQ (GO term
similarity of mapped nodes) in alignments of net-
works with unknown node mapping (PPI networks
of mouse and human) [23]. Hence, ConvexAlign
is semi-supervised, i.e., pre-trained to achieve high
FQ scores, which makes it biased compared to the
other considered NA methods, all of which are
unsupervised.
Accuracy versus running time. The PNA methods
are not only more accurate in general (as demon-
strated above), but on average they are also at least
somewhat if not much faster (View III of Fig. 5). In
fact, no MNA method has both better running time
and better ranking than any PNA method, while many
PNA methods have both better running time and
better ranking than every MNA method. Additional
results where each method is restricted to use a single
core are shown in Supplementary Fig. S4.

D. METHOD COMPARISON: RESULTS IN THE
ME FRAMEWORK
We expect that under the ME framework, MNA will
perform better than PNA. Shockingly, we do not find
this. Instead, our results reveal the opposite trends,
which match those observed under the PE framework.
So, the most interesting results of our study originate
from this section.

Namely, in the ME framework, the overall ranking
of the PNA methods (T+S alignments from the
ME-P-P category) is generally better (lower) than
the overall ranking of the MNA methods’ T+S
alignments from the ME-M-M category, which in
turn is generally better than the overall ranking of the
MNA methods’ T+S alignments from the ME-M-P
category (View I of Fig. 5). Again, multiMAGNA++

is an exception: its alignments from the ME-M-P
category (multiMAGNA++ first being applied to
network pairs and then its pairwise alignments being
combined into a multiple alignment) are ranked very
good (low).

When we inspect the ranking of the methods in
more detail (View II of Fig. 5), again, we find similar
trends as in the PE framework. Namely, for networks
with known mapping, we find that PNA performs
better than MNA in terms of both TQ and FQ. For
networks with unknown mapping, PNA performs
better than MNA in terms of TQ. In terms of FQ, just
as under the PE framework, MNA falls into the best
(lowest) ranks in more of the evaluation tests than
PNA, but at the same time, MNA also falls into the
worst (highest) ranks in more of the evaluation tests
than PNA. Additional, even more detailed results
for the ME framework are shown in Supplementary
Table S15.

Another result also applies to the ME framework:
of the MNA methods, multiMAGNA++ and Convex-
Align perform better than BEAMS and IsoRankN,
where multiMAGNA++ performs consistently well
across all tests, and ConvexAlign performs extremely
well only for networks with unknown node mapping
and FQ (Supplementary Tables S8–S11).

Notice that under the ME framework, the best
(PNA or MNA) methods are all one-to-one. Because
all considered PNA methods are one-to-one, one
might suspect that PNA may be overall better than
MNA in the ME framework not because of the
“pairwise” part but simply because of the “one-to-
one” part, possibly because one might suspect our
evaluation measures in the ME framework to favor
one-to-one methods. However, we argue that this is
not the case, as follows.

First, if we could show that any existing one-
to-one method performed worse than any existing
many-to-many method in our ME framework, this
would suffice to show that our ME framework
does not favor one-to-one-methods. While for our
considered methods it is the case that one-to-one
(PNA or MNA) methods are superior to many-to-
many (MNA) methods, this could be simply because
the considered one-to-one methods are more recent
and thus more powerful than the considered many-
to-many methods. Indeed, when we add to our ME
evaluation an older (and thus inferior) one-to-one
MNA method, GEDEVO-M [27], we find that this
one-to-one method is outperformed by the consid-
ered many-to-many MNA methods (Supplementary
Tables S16–S20). If one-to-one methods had some
advantage over many-to-many methods in our ME
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framework, this would not have happened. So, a
method’s performance in our ME framework does
not seem to be directly related to it being one-to-one
or many-to-many.

Second, by design, our evaluation measures do
not favor one-to-one methods. Namely, recall that
many of our evaluation measures were proposed by
studies that introduced or analyzed many-to-many
NA methods (Section II-C). An example is one of our
considered FQ measures, mean normalized entropy
(MNE), which originates from the IsoRankN study
[20], where IsoRankN is one of the considered many-
to-many MNA methods. So, MNE is unlikely to favor
one-to-one methods, as it was proposed in the many-
to-many context. Actually, when we mirror the exact
same MNE evaluation as in the IsoRankN study
(see [20] for details) on the methods we consider
here (rather than combine MNE with our other FQ
measures as done so far in the paper), the considered
one-to-one methods still perform well (i.e., the
best of all considered one-to-one methods is still
better than the best of all considered many-to-many
methods) (Supplementary Tables S12–S13). That is,
even a measure designed explicitly for many-to-many
alignments still ranks one-to-one-alignments better
than many-to-many alignments. This additionally
confirms that the overall superiority of the considered
one-to-one (PNA or MNA) methods over the con-
sidered many-to-many (MNA) methods in the ME
framework is likely because the one-to-one methods
actually yield higher-quality alignments.

In summary, with these two findings in mind,
it is more likely that the considered one-to-one
methods perform better than the considered many-to-
many methods in the ME framework because recent
studies have focused on one-to-one alignments. Con-
sequently, increased research in this area has likely
led to better methodological advancements of one-to-
one methods compared to many-to-many methods,
explaining the one-to-one methods’ superior perfor-
mance.
Accuracy versus running time. When we compare
the overall rankings of the NA methods to their
running times (View III of Fig. 5), again, we find
similar trends as in the PE framework: the PNA
methods are not only more accurate (as demonstrated
above), but on average they are also faster.

Since the PNA methods must align every pair of
networks in order to produce a multiple alignment,
and since this results in a quadratically increasing
running time with respect to the number of networks
k, we ask whether there is some value of k at
which PNA might become less efficient (i.e., slower)

than MNA. Due to space constraints, we present
this discussion in Supplementary Section S1.5 and
Supplementary Table S3. Additional results where
each method is restricted to use a single core are
shown in Supplementary Fig. S5.

E. METHOD COMPARISON FOCUSING ON
ACCURACY OF PROTEIN FUNCTION
PREDICTION
1) New function prediction approach under the ME
framework
Here, we focus on addressing a potential issue with
the existing approach for protein function prediction
for multiple alignments, which we have used up to
this point. As discussed in Section II-C3, since the
existing approach for multiple alignments (approach
2) is very different than the existing approach for
pairwise alignments (approach 1), to make com-
parison between pairwise and multiple alignments
(i.e., between PNA and MNA) more fair, we extend
approach 1 for pairwise alignments into a new
approach for multiple alignments (approach 3).

Then, we compare the new approach 3 against
the existing approach 2, in hope that approach 3
will outperform approach 2. If so, in our subsequent
analyses, we will use approach 3 for protein function
prediction for multiple alignments. This way, com-
paring results of approaches 1 and 3 will be much
more fair than comparing results of approaches 1
and 2. Consequently, we will be able to more fairly
compare PNA against MNA.

Indeed, we find that our new approach 3 overall
outperforms the existing approach 2 (Fig. 6 and
Supplementary Fig. S7). Specifically, approach 3 is
overall comparable to approach 2 for networks with
known node mapping (marginally inferior in terms
of precision, marginally superior in terms of recall)
and it is superior to approach 2 for networks with
unknown node mapping (in terms of both precision
and recall).

For networks with known node mapping, the
number of predictions made by approach 3 is just
0.5%-5.8% larger than that made by approach 2,
depending on the NA method, as shown in Supple-
mentary Fig. S7 (with the exception of ConvexAlign,
which produces up to 54% more predictions under
approach 3 than under approach 2). The slightly more
predictions by approach 3 could explain its slightly
lower precision and slightly higher recall. But the
differences in the number of predictions as well as
accuracy of these two approaches on networks with
known mapping are so minor (within 2%-5%) that
we consider them as comparable.
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FIGURE 6: Comparison of protein function pre-
diction accuracy between the new (approach 3)
versus existing (approach 2) prediction approach
for multiple alignments. Each bar on the left of the
figure shows the number of cases (i.e., alignments)
in which the new approach is superior, the existing
approach is superior, or the two approaches are tied.
Each table shows the precision, recall, and number of
predictions averaged over all tests. In parentheses, we
show standard deviations. The results are separated
into network sets with known and unknown node
mapping.

For networks with unknown node mapping, the
number of predictions made by approach 3 is 2%-
72% smaller than the number of predictions made
by approach 2, depending on the NA method (with
exception of ConvexAlign and BEAMS, which in
one instance produce 6% and 158% more predictions,
respectively, under approach 3). While the fewer
predictions under approach 3 could explain higher
precision of approach 3 compared to approach 2,
interestingly, approach 3 also results in higher recall
than approach 2, despite the latter making more
predictions (Fig. 6).

2) Protein function prediction under PE versus ME
frameworks

Next, we compare protein function prediction accu-
racy between the PE and ME frameworks, relying on
approach 1 for pairwise alignments and on the fairly
comparable approach 3 for multiple alignments. For
analogous results where we use the existing approach
2 for the ME framework, see Supplementary Fig.
S10.

For both the network sets with known and un-
known node mapping, the predictions under the
PE framework have higher precision while the
predictions under the ME framework have higher
recall (Fig. 7 and Supplementary Fig. S8. Note that
here, higher precision and lower recall for the PE
framework compared to the ME framework could
be due to somewhat fewer predictions under the PE
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FIGURE 7: Comparison of protein function predic-
tion accuracy under the the PE and ME frameworks.
The figure can be interpreted the same way as Fig. 6.
Here, we use new approach 3 for the ME framework.

framework than under the ME framework. Also, note
that for networks with known node mapping, both
sets of predictions have impressively high precision
and recall scores, so any difference in their scores
(1%-6%) can be considered marginal. This is not
the case for networks with unknown node mapping,
where the scores are lower. In this case, the superi-
ority of the PE framework’s precision over the ME
framework’s precision (17%) is more pronounced
than the superiority of the ME framework’s recall
over the PE framework’s recall (8%). Additionally,
achieving higher precision might be more preferred
than achieving higher recall in the task of protein
function prediction by experimental scientists who
would potentially validate the predictions. Thus, we
can argue that overall the PE framework (i.e., pair-
wise alignments) results in more accurate predictions
than the ME framework (i.e., multiple alignments).

IV. CONCLUSION
We introduce an evaluation framework for a fair
comparison of PNA against MNA, in order to test the
hypothesis that MNA can capture deeper biological
insights, i.e., produce higher-quality alignments,
compared to PNA. We find that (i) the consid-
ered PNA methods produce pairwise alignments
that are of higher quality than the corresponding
pairwise alignments produced by the considered
MNA methods, and (ii) the PNA methods produce
multiple alignments that are of higher quality than the
corresponding multiple alignments produced by the
MNA methods. Also, using the pairwise alignments
leads to higher protein function prediction accuracy
than using the multiple alignments. Importantly, in
addition to PNA being overall more accurate, it is
also overall faster than MNA. This holds both both
of T+S alignments and T alignments.

In our evaluation, i.e., thus far in the paper,
we have aimed to compare the two categories of
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approaches, PNA and MNA, rather than to identify
which specific NA method (whether of the PNA
or MNA type) is the best, for reasons discussed
in Section I-B. Only here, we briefly comment on
the performance of the best approach(es) in each
category.

In the PNA category, most of the considered
approaches, and especially MAGNA++, perform
well consistently across the different scenarios (in
both PE and ME framework, for both networks with
known and unknown node mapping, and for both
TQ and FQ), with some exceptions (Supplemen-
tary Tables S4–S11). In the MNA category, only
multiMAGNA++ works well consistently across all
scenarios. Additionally, ConvexAlign works well for
FQ and networks with unknown node mapping.

However, no method is always the best (i.e., has an
overall rank of 1 over all evaluation tests). Namely,
while in both PE and ME frameworks several PNA
methods and the multiMAGNA++ MNA method
achieve very good (low) overall ranks in the 1-2
range for networks with known node mapping or TQ,
for networks with unknown node mapping and FQ,
overall ranks start at about 4 (Supplementary Tables
S4–S11). That is, for networks with unknown map-
ping and FQ, even the best methods (ConvexAlign
and multiMAGNA++) work well for some but not all
networks or alignment quality measures. So, there
seems to be a lot more room for improvement on
how to better perform PNA or MNA to improve
FQ (the quality of functional predictions) from
networks with unknown mapping (PPI networks of
different species). Fig. 7 further signals this, given
low prediction accuracy under both the PE and ME
frameworks.

Importantly, the best approaches in our study
in terms of FQ are of the one-to-one type, which
we hypothesize is because of heavier recent focus
on and thus methodological advancements of such
methods compared to those of the many-to-many
type, per our discussion in Section III-D. But one-
to-one alignments cannot capture gene duplication
events that exist in biological networks [41], which
require existence of paralogs, i.e., a gene in one
network being mapped to multiple genes in the same
or another network. While many-to-many alignments
can in theory capture these events, the considered
many-to-many methods do not perform well in terms
of FQ. So, developing better many-to-many methods
might be a crucial future step in NA research.

Since we demonstrate in the ME framework
that PNA can (by integrating pairwise alignments)
produce multiple alignments that are superior to

multiple alignments produced by MNA, we believe
that any new MNA methods should be compared not
just to existing MNA methods but also to existing
PNA methods using our evaluation framework, to
properly judge the quality of alignments that they
produce. Our suggestion is similar to that of [7],
who evaluated local versus global NA (rather than
PNA versus MNA) and concluded that any new NA
method should be compared against existing local as
well as global NA methods.

Moreover, in the ME framework, PNA can pro-
duce multiple alignments that are superior to multiple
alignments produced by MNA even with the sim-
ple variation of the pairwise alignment integration
strategy (i.e., scaffolding procedure) introduced by
[15]. Any more sophisticated scaffolding procedure
that might be developed in the future will yield even
more superior PNA-based multiple alignments and
consequently even further emphasize the superiority
of PNA over MNA. In other words, for MNA to gain
advantage over PNA, a drastic redesign of the current
MNA algorithmic principles might be needed.

In summary, our current results suggest that per-
haps it might be sufficient to focus on the faster PNA
and integration of pairwise alignments into multiple
ones rather than on the slower MNA. Of course, with
development of newer approaches, the conclusions
from our study might change. It is crucial that we
(the NA community) gain in-depth understanding of
practical implications of one-to-one versus many-to-
many, pairwise versus multiple, local versus global,
and other types of NA. This understanding is even
more crucial given recent shift from traditional NA
of static and homogeneous (single node type and
single edge type) networks towards dynamic [42]–
[44] or heterogeneous [45], [46] NA, as well as from
data-uninformed (i.e., unsupervised) to data-driven
(i.e., supervised) NA [47].
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in global network alignment,” Bioinformatics, vol. 30, no. 20,
pp. 2931–2940, 2014.

[38] The Gene Ontology Consortium, “Gene Ontology: tool for the
unification of biology,” Nature Genetics, vol. 25, pp. 25–29,
2000.

[39] J. Ye, S. McGinnis, and T. L. Madden, “BLAST: improve-
ments for better sequence analysis,” Nucleic Acids Research,
vol. 34, pp. W6–W9, July 2006.
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[47] S. Gu and T. Milenković, “Data-driven network alignment,”
arXiv, preprint arXiv:1902.03277.

VIPIN VIJAYAN was born in Kol-
lam, Kerala, India in 1986. He received
the B.S. in physics and mathematics
from the Virginia Polytechnic and State
University in 2009 and the M.S. and
Ph.D. degree in computer science and
engineering from University of Notre
Dame in 2012 and 2017, respectively.
From 2010 to 2017, he was a Research
Assistant in the Computer Vision Re-

search Lab and the Complex Networks Lab respectively in Uni-
versity of Notre Dame. He has authored multiple articles in the
fields of computer science and network science. His research
interests include network science, computer vision, and machine
learning, with a focus on satellite imagery and activity analysis.
He is currently a Machine Learning Engineer in the Research and
Development organization at Radiance Technologies.

SHAWN GU received the B.S. degree
in mathematics and the B.A. degree in
computer science from Duke University,
Durham, NC, in 2016. Since 2016, he
has been a Research Assistant in the
Complex Networks Lab at the Univer-
sity of Notre Dame. His research inter-
ests include network science, computa-
tional biology, and machine learning.

ERIC T. KREBS was born in Indi-
anapolis, IN, USA in 1996. He received
the B.S. degree in computer engineering
from the University of Notre Dame,
Notre Dame, IN, in 2018.

From 2016 to 2017, he was an Un-
dergraduate Researcher in Dr. Tijana
Milenkovic’s Complex Networks Lab.
In 2017, he worked as a Software En-
gineering Intern at Garmin. After his

graduation, he lived as Novice with the friars of the Dominican
Eastern Province. Since 2019, he has worked as a Software
Engineer at Zenuity in Novi, MI. He has interests in graph theory
and autonomous driving software.

Mr. Krebs was a recipient of the Ford College Network Schol-
arship in 2017 and the Steiner Award for all-around excellence
in the Notre Dame College of Engineering in 2018. He also is a
member of Tau Beta Pi.

LEI MENG received the BSc degree in
software engineering from Harbin Insti-
tute of Technology, Harbin, China, the
MSc degree in computer science from
Baylor University, the Ph.D. degree in
computer science at the University of
Notre Dame, under the supervision of
Dr. A. Striegel and Dr. T. Milenković.
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