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ABSTRACT We propose channel charting (CC), a novel framework in which a multi-antenna network
element learns a chart of the radio geometry in its surrounding area. The channel chart captures the local
spatial geometry of the area so that points that are close in space will also be close in the channel chart
and vice versa. CC works in a fully unsupervised manner, i.e., learning is only based on channel state
information (CSI) that is passively collected at a single point in space, but frommultiple transmit locations in
the area over time. The method then extracts channel features that characterize large-scale fading properties
of the wireless channel. Finally, the channel charts are generated with tools from dimensionality reduction,
manifold learning, and deep neural networks. The network element performing CC may be, for example,
a multi-antenna base-station in a cellular system and the charted area in the served cell. Logical relationships
related to the position and movement of a transmitter, e.g., a user equipment (UE), in the cell, can then
be directly deduced from comparing measured radio channel characteristics to the channel chart. The
unsupervised nature of CC enables a range of new applications in UE localization, network planning, user
scheduling, multipoint connectivity, hand-over, cell search, user grouping, and other cognitive tasks that rely
on CSI and UEmovement relative to the base station, without the need of information from global navigation
satellite systems.

INDEX TERMS Autoencoders, deep learning, dimensionality reduction, localization, machine learning,
manifold learning. massive multiple-input multiple-output (MIMO), Sammon’s mapping.

I. INTRODUCTION
Future wireless communication systems must sustain
a massive increase in traffic volumes, number of ter-
minals, and reliability/latency requirements [1], [2].
In order to cope with these challenges, researchers have
proposed a range of new technologies that improve
spectral efficiency through massive multiple-input multiple-
output (mMIMO) [3]–[5], increase bandwidth by har-
nessing millimeter-wave (mmWave) bands for mobile

communication [6], and rely on an extreme densification of
network elements [7].

While the advantages of these emerging technolo-
gies are glaring, they entail severe practical challenges.
Mobility, in particular, poses problems for dense small-cell
networks [8], as well as for mMIMO and mmWave networks,
which provide extremely fine-grained angular separation.
In mmWave networks, coverage is often patchy and hand-
over regions between cells are sharp [9], [10]. Hence, smooth
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cell hand-over, multipoint operation, and/or cell search
requires multipoint channel-state information (CSI) [11].
However, potential solutions to some of these issues, such as
integrated multiband operation [12] or mobile relaying [13],
will require significant amounts of multi-point CSI.

To effectively manage and optimize these technolo-
gies, future wireless systems must lean heavily on the
availability of large amounts of high-dimensional CSI
acquired at a multi-antenna base-station (BS) over large
bandwidths and at fast rates, and from a large number of
user equipments (UEs). To effectively use the collected
CSI, the network has to learn the radio geometry in
which the UEs are moving. What needs to be learned is
a chart of the network radio geometry, which represents
UE location and velocity information related to CSI.
In order to automate functions, dynamically adapt to
changes in the environment, and avoid human interven-
tion for training, learning the radio geometry should be
unsupervised.

It is remarkable that this problem has not been approached
in the literature. Significant effort has been spent on wire-
less localization or positioning [14]–[16]. In addition, use-
case specific fingerprinting methods have been developed
in, e.g., [8], [17]–[22], with recent developments applying
state-of-the art deep learning methods for mMIMO chan-
nel fingerprinting [23]. However, fingerprinting methods
are fully supervised, do not lend themselves to automation
while acquiring labeled data, and do not scale to complex
channel environments that change dynamically. Note that
supervision achieved by acquiring precise location infor-
mation from application layer localization services, such
as global navigation satellite systems (GNSS), does not
apply when optimizing cellular networks—the application
layer is not even present in the whole LTE radio access
network [24].

A. CONTRIBUTIONS
We introduce channel charting (CC), a novel framework
that maps slowly varying CSI components of transmitters
(e.g., UEs) into a low-dimensional channel chart that pre-
serves the local geometry of the transmitters’ true spatial
locations. We show that by collecting and processing large
amounts of high-dimensional CSI, one can accurately learn
such channel charts in an unsupervised fashion, i.e., without
access to location information. Our key contributions are
summarized as follows:
• We propose a novel framework, which we call channel
charting, that maps CSI acquired from UEs in a cell into
a low-dimensional map that captures the local geometry
of the true UEs’ location in space. Channel charting
is unsupervised, i.e., does not require any information
from the true UEs’ location, e.g., obtained from global
navigation satellite systems (GNSSs).

• We describe how suitable CSI features can be extracted
from channelmeasurements.More specifically, we iden-
tify that taking the absolute value of the raw second
moment (R2M) in the angular (or beam-space) domain
delivers features that exhibit high trustworthiness and
continuity.

• We show analytically (in Example 2), that the
R2M captures large-scale fading components of wireless
channels which is key to enabling the concept of channel
charting.

• We develop three new channel charting algorithms by
extending existingmanifold learning and dimensionality
reduction techniques and adapting them to the tasks of
channel charting. We emphasize that we are not sim-
ply providing a survey of existing methods but rather
adapting and modifying them for our framework. Fur-
thermore, the Sammon’s mapping plus (SM+) method
which includes side information on the UEs movement
and the corresponding numerical algorithm developed in
Section V-B.3 has not been proposed in the literature—
not even for other, unrelated machine learning appli-
cations that use manifold learning or dimensionality
reduction.

• We provide a range of numerical simulation results
for three distinct channel models to demonstrate the
efficacy of our channel charting framework. More
specifically, our results show that channel charting is
feasible in line-of-sight (LoS) and non-LoS scenar-
ios, and performs surprisingly well at relatively low
signal-to-noise-ratio (SNR).

We envision a range of possible future applications for chan-
nel charting in cognitive tasks that rely on CSI and UE move-
ment relative to the BSs, including semantic localization [25],
cell search, hand-over and multi-connectivity [8], [11]–[13],
[26]–[28], link adaptation, user clustering, beam finding, etc.
However, being the first paper on the subject, this study
is intended to (i) introduce and validate the fundamental
concept of CC and (ii) compare a wide range of possible
algorithms to maximize the quality of the learned channel
charts.

B. RELEVANT PRIOR ART
To the best of the authors’ knowledge, direct charting of the
radio geometry of the UEs has not been addressed in the open
literature. All existing approaches are related to localizing
UEs in the true spatial geometry. Alternatively, look-up tables
based on supervised fingerprinting have been used to identify
use-case specific states of the channel. Conventional methods
to localize UEs in spatial geometry are mainly based on trian-
gulation or trilateration methods which use fixed geometrical
models to map a low-level descriptor of the channel, such
as the time-of-flight (ToF), angle-of-arrival (AoA), and/or
received signal strength (RSS) to a location in spatial geome-
try [14], [15]. Localization in amMIMO system based on ToF
and AoA measurements has been addressed recently in [16].
However, to provide a chart in radio geometry, such methods
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would have to be complemented with a map from spatial to
radio geometry.

A digital map is essentially a spatial geometry map that
associates radio geometry features (e.g., RSS) with a given
spatial location. Such maps have been created either by
prediction models (e.g., by network planning tools) or by
carrying out dedicated measurement campaigns [14], i.e.,
either based on analytical models, or in a fully supervised
manner.

Similarly, for channel fingerprinting [8], [17]–[21],
a coarse grained channel map is generated in a measurement
campaign [17]–[21] or by directly classifying RSS measure-
ment features by a network event, such as the vicinity of a
small cell [8]. More refined fingerprinting has been proposed
in [22], where mMIMO channel states are fingerprinted for
positioning purposes. In [23], state-of-the-art deep learning
methods are used for this purpose. Existing fingerprinting
methods are, however, fully supervised. This implies that
changes in the physical channel (e.g., new buildings) would
require a completely new measurement campaign. Further-
more, the method in [23] requires training of the channel at
wavelength scales in space. In contrast, CC is unsupervised,
which avoids costly measurement campaigns, and requires
orders-of-magnitude less dense spatial sampling.

In channel charting, we are primarily interested in pre-
serving the local neighborhood structure of the spatial geom-
etry when charting the radio geometry. For this, we shall
use and extend tools from manifold learning [29], [30]
and dimensionality reduction [31]. Multidimensional scaling
(MDS) [29] and Sammon’s mapping [30] attempt to embed
a high-dimensional manifold into a low-dimensional space.
We will show how CSI can be transformed into suitable
channel features that enable an unsupervised extraction of
accurate channel charts using such manifold learning and
dimensionality reduction tools.

C. PAPER OUTLINE
The rest of the paper is organized as follows. Section II intro-
duces the principles of CC. Section III details the used qual-
ity measures. Section IV discusses suitable channel features
that enable accurate CC. Section V proposes three different
CC algorithms. Section VI shows CC results for a range of
channel scenarios. We conclude in Section VII.

D. NOTATION
Lowercase and uppercase boldface letters stand for col-
umn vectors and matrices, respectively. For the matrix A,
the Hermitian is AH and the kth row and `th column entry
is Ak,` or [A]k,`. For the vector a, the kth entry is ak . The
Euclidean norm of a and the Frobenius norm ofA are denoted
by ‖a‖2 and ‖A‖F , respectively. The M × N all-zeros and
all-ones matrix is 0M×N and 1M×N , respectively, and the
M × M identity is IM . The collection of K vectors ak ,
k = 1, . . . ,K , is denoted by {ak}Kk=1. The real and imag-
inary parts of the vector a are denoted by <(a) and =(a),
respectively.

II. THE PRINCIPLES OF CHANNEL CHARTING
We now introduce the core ideas of CC. We first discuss the
main objective and then detail the operating principles as well
as the underlying assumptions.

A. MAIN OBJECTIVE
The main objective of CC is to learn a low-dimensional
embedding, the so-called channel chart, from a large amount
of high-dimensional CSI of transmitters (e.g., mobile or
fixed UEs) at different spatial locations over time. This
channel chart locally preserves the original spatial geometry,
i.e., transmitters that are nearby in real space will be placed
nearby in the low-dimensional channel chart and vice versa.
CCwill learn whether two transmitters are close to each other
by forming a dissimilarity measure [32] between CSI fea-
tures of these transmitters. Based on this, CC generates the
low-dimensional channel chart in an unsupervised fashion
from CSI only and without assumptions on the physical
channel, i.e., without the aid of information from GNSS,
such as the global positioning system (GPS), triangulation/
trilateration techniques, or fingerprinting-based localization
methods [14], [15]. This important property enables CC to
extract geometry information about the transmitters’ in a
completely passive manner, opening up a broad range of
novel applications.
Example 1: Figure 1 demonstrates the key concepts of CC:

(a) shows the considered scenario. A massive MIMO BS
with a uniform linear array (ULA) of B = 32 antennas
receives data from N = 2048 UE locations. We simulate
a narrowband, line-of-sight (LoS) channel at a signal-to-
noise ratio (SNR) of 0 dB (see Section VI for more details).
(b) illustrates the relation between carefully-designed chan-
nel features (obtained solely from CSI) and UE locations. The
scatter plot consists of points representing pairs of transmit-
ters. For each pair, there is a point, with x-value being the
pairwise spatial distance and y-value the pairwise feature
dissimilarity. The used CSI-features and dissimilarities are
discussed in Section IV. The channel features are designed
to ensure that the pairwise feature dissimilarity is approxi-
mately lower-bounded by the pairwise spatial distance (when
divided by a suitable reference distance). Thus, UEs that
are far apart in space will have dissimilar channel features.
(c) shows the resulting chart of one of our unsupervised
CC algorithms. We observe that the local geometric features
of the original spatial geometry are well-preserved. In fact,
we recover the ‘‘VIP’’ curve (which are UEs positioned in
space to form a contiguous curve) in the channel chart.

B. OPERATING PRINCIPLES OF CHANNEL CHARTING
Figure 2 provides a high-level overview of the CC frame-
work. Consider, for the sake of simplicity, a single-antenna
transmitter (Tx) that is either static or moves in real space.
We denote its spatial locations at discrete time instants
n = 1, . . . ,N by the set {xn}Nn=1 with xn ∈ RD, where D is
the dimensionality of the spatial geometry (for example the
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FIGURE 1. Illustration of channel charting: (a) Massive MIMO BS with a 32-antenna uniform linear array at location (x, y, z) = (0, 0, 10) meters
measures CSI from 2048 distinct gradient colored points in space. (b) Scatter plot with points representing pairs of transmitters. For each pair,
a point with pairwise spatial distance vs. pairwise feature dissimilarity, constructed from CSI. The dissimilarity is lower-bounded by the
pairwise spatial distance. (c) Channel chart obtained from channel features in an unsupervised manner. The blue points that
form the ‘‘VIP’’ curve illustrate the properties of the channel chart: local geometry is well-preserved (shown by the color
gradients) and one can identify ‘‘VIP’’ in the channel chart.

FIGURE 2. Channel charting (CC) overview. Mobile transmitters (Tx) at spatial location x are sending information to a multi-antenna receiver (Rx)
over the wireless channel H. Channel charting first uses channel-state information (CSI) h to extract channel features f, which are then processed
by a channel charting algorithm to learn a forward charting function C that generates an embedding in spatial geometry z that preserves local
geometry in an unsupervised manner.

three dimensions representing theUE’s x, y, and z coordinates
in real space). At each time instant n, the Tx sends data sn
(e.g., pilots or information symbols), which is received at
a multi-antenna receiver (Rx) with B antennas; this could
be a mMIMO BS [3]–[5]. The received data is modeled as
yn = H (sn) + nn, where the function H (·) represents the
wireless channel between the transmitter and receiver, and the
vector nn models noise.

1) CHANNEL FUNCTION
In what follows, we are not interested in the transmit-
ted data but rather in the associated CSI. Concretely, the
Rx uses the received data yn to extract CSI denoted by
the vector hn ∈ CM , where M denotes the dimensional-
ity of the acquired CSI from all antennas, frequencies,
and/or delays. The generated CSI typically describes angle-
of-arrival, power delay profile, Doppler shift, RSS, signal
phase, or simply first and second moments (e.g., mean and
covariance) of the received data; typically, we have M � D.
We denote the mapping from spatial location xn to

CSI hn with the following channel function:

H : RD
→ CM ,

where CM refers to the radio geometry. Clearly, the CSI rep-
resented by hnmainly depends on the Tx’s spatial location xn,
but also on moving objects within the cell, as well as on
noise and interference. Throughout this paper, we make the
following key assumption:
Assumption 1: We assume that the statistical properties

of the multi-antenna channel vary relatively slowly across
space, on a length-scale related to the macroscopic distances
between scatterers in the channel, not on the small fad-
ing length-scale of wavelengths. We furthermore assume the
channel functionH to be static.1

Large-scale effects of channels are considered to be created
by reflection, diffraction, and scattering of the physical envi-
ronment, whereas small-scale effects are caused by multipath
propagation and related destructive/constructive addition of

1An extension to time-varying channels is part of ongoing research.
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signal components [33]. To motivate Assumption 1, we con-
sider the following example, which demonstrates that the
statistical moments of interest for this paper (see Section IV)
indeed capture large-scale effects of the wireless channel.
Example 2: The channel between a single Tx and a

B-antenna Rx is modeled with a set of rays and we assume
Ns scatterers. We consider a NLoS scenario for which all rays
are in the far field, so that they can be modeled by plane
waves. The distance from Tx t to scatterer s is dts, and the
distance from scatterer s to Rx-antenna r is dsr . The attenu-
ation between two points x and y is modeled by a function
of the distance, axy = a(dxy), which absorbs the relevant
scatterer cross sections, antenna gains, etc. The distance
dependence is typically a power law, and changes in a(d)
happen on length scales much larger than the wavelength λ;
for conventional ray-tracing, a(d) ∼ d−2, corresponding to
free-space path loss [34]. In addition, each scatterer s is mod-
eled by a phase shift φs, related to the dielectric properties
of the scatterer [35], [36]; these are assigned i.i.d. random
variables for each scatterer. The channel between t and r can
thus be modeled as

ht,r =
Ns∑
s=1

ats asr exp
(
j
(
2π
λ
(dts + dsr )+ φs

))
.

When the number of scatterers Ns → ∞, the channel
becomes Rayleigh fading. This is a characteristic of the dis-
tribution of the absolute value of the channel coefficients,
when considered a random variable, where randomness is
according to the location of the transmitter within a small
scale neighborhood of a few wavelengths. Long term channel
characteristics are averaged over this neighborhood. For a
mean of a MIMO channel, as a large-scale channel feature
that describes the statistics of small scale fading, the per-
tinent characteristics are thus the mean absolute value of
the channel at each antenna r, and the mean relative phase
difference between antennas. For the means, following [34],
and averaging over a small scale neighborhood of a few
wavelengths, one finds that the wavelength (λ) dependence
vanishes. For the angular difference, a similar argument
leads to the observation that they are large-scale effects of
the channel.
Concretely, evaluating the raw 2nd moment of the channel

from Tx t to Rx antennas r, r ′ yields[
Eφ
[
hthHt

]]
r,r ′
=

Ns∑
s=1

Ns∑
s′=1

Eφ
[
ats ats′e

j 2π
λ (dts−dts′)

× asr as′r ′e
j 2π
λ (dsr−ds′r ′)+j(φs−φ

′
s)
]

=

Ns∑
s=1

a2ts asr asr ′e
j 2π
λ (dsr−dsr ′),

where for clarity, we have considered the expectation over
the random phases φ only, assuming that the distances
are fixed. In the limit, this expression changes only slowly
with the distances dts through the attenuation function ats.

Now consider the (raw) covariance matrix estimated for two
transmitters t and t ′. If ats ≈ at ′s for all scatterers s, then the
covariance matrices Rt and Rt ′ are approximately the same.
The covariance matrices differ only at length scales where
the change in the distances between the transmitter and the
scatterers is significant—changes in the channel covariance
is a large-scale fading effect, driven by the quenched random
process that creates the scatterers in the environment.

2) CHANNEL CHARTING
By relying on Assumption 1, we are ready to detail the
CC procedure. CC starts by distilling the CSI hn into suitable
channel features fn ∈ RM ′ that capture large-scale properties
of the wireless channel; here, M ′ denotes the feature dimen-
sion and, typically, we have M ′ � D. See Section IV for
the details on how to design channel features. We denote the
feature extraction stage by the function

F : CM
→ CM ′ .

Feature extractionmainly serves three purposes: (i) extracting
large-scale fading properties from CSI, (ii) distilling CSI
into useful information for the subsequent CC pipeline, and
(iii) reducing the vast amount of channel data. CC then pro-
ceeds by using the set of N collected features {fn}Nn=1 to learn
the so-called forward charting function (with possible side
information; see Section V-B) in an unsupervised manner.
We denote the forward charting function to be learned by

C : CM ′
→ RD′ ,

which maps each channel feature fn to a point zn ∈ RD′ in the
low-dimensional channel chart; typically, we have D′ ≈ D.
The objective for learning C is as follows:

The forward charting function C should preserve local
geometry between neighboring data points, i.e., it should
satisfy the following condition:

dz(z, z′) ≈ dx(x, x′).

Here, x, x′ ∈ RD are two points in real space within
a certain neighborhood, and z, z′ ∈ RD′ are the corre-
sponding vectors in the learned channel chart. The func-
tions dx(x, x′) and dz(z, z′) are suitably definedmeasures
of distance (or, more generally, dissimilarity) and the
neighborhood size depends on the physical channel.

The goal of CC is to generate a channel chart {zn}Nn=1 satis-
fying the distance property above for x and x′ in a neighbor-
hood as large as possible. We would like to learn this channel
chart solely from the set of N channel features {fn}Nn=1 in
an unsupervised manner, i.e., without using the true spatial
locations {xn}Nn=1 of the UEs.
Remark 1: The assumption that the channel features
{fn}Nn=1 were obtained from a single transmitter (e.g., UE)
is not important. In fact, we are merely interested in col-
lecting N channel features from as many locations in spatial
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FIGURE 3. Summary of the geometries involved in CC. Transmitters (Tx)
are located in spatial geometry RD and a receiver (Rx) extracts channel-
state information (CSI) in radio geometry CM . Feature extraction distills
useful informatin into feature geometry CM′

, which is then used to
learn the forward charting function that maps the features into a
low-dimensional channel map in RD′

that preserves the local
geometry of the original spatial locations RD.

geometry as possible. The fact that certain subsets of channel
features stem from a single UE can be used as potential side
information, which improves the geometric relationships in
the learned channel chart; see Section V-B for a concrete
example.

C. INVOLVED GEOMETRIES AND USAGE OF CC
Figure 3 provides a summary of the geometries involved
in CC. The transmitters are located in spatial geometry
denoted by RD (e.g., representing their coordinates). The
physical wireless channel H maps data (pilots and infor-
mation) into CSI in radio geometry space denoted by CM .
This non-linear mapping into radio geometry obfuscates the
spatial relationships between transmitters. The purpose of
feature extraction is to find a representation from which
spatial geometry is easily recovered. CC then learns—in an
unsupervised manner—the forward charting function C that
maps the channel features into low-dimensional points in the
channel chart RD′ such that neighboring transmitters (in real-
world coordinates) will be neighboring points in the channel
chart, i.e., CC preserves the local geometry. Note that in some
application scenarios one may be interested in the inverse
charting function C−1 that maps channel charts information
back into feature geometry.2

Example 3: An example of how CC could be used in prac-
tice is as follows. Amobile UE is served by a cellular network,

2For example, with C−1, the amount of multipoint CSI required for
multipoint transmission [37] and interference alignment [38] can be reduced.

and is connected to a particular BS. Conventionally, cell
hand-over is executed based on RSSmeasurements performed
at the UE. The UE continually monitors synchronization
signals transmitted by all BSs in the network, and sends the
measurement results to the BS. Handover is then reactively
performed, according to these measurements. In a location-
based mobility management scenario [39], to decrease
signaling and UE measurements, the network proactively
performs hand-over based on spatial localization of the UE.
The user is first localized by fusing ToF and AoA measure-
ments of multiple BSs. Based on the UE location, environment
specific information is used to calculate the best cell. In a
CC-based approach to cell hand-over, the BS would have a
chart of the radio features in the cell served by it, labeled
by locations where handover events have occurred. From
uplink pilots transmitted by the UE, it may localize the UE in
the radio geometry, and execute handover when the
CC indicates a point where handovers happen. Note that
in CC, the decision to execute handover is based on measure-
ments at a single BS; network wide fusion is not required.
In contrast, the location-based method discussed in the lit-
erature [39] applies both network-wide fusion for spatial
localization, and side information related to propagation
condition between a BS, and a UE at a given spatial location.
Furthermore, by tracking and predicting a UE’s movement
in the channel chart, one can even anticipate cell hand-over
events before they happen.

D. DO WE HAVE SUFFICIENT CSI FOR CHANNEL
CHARTING?
To extract accurate channel charts in an unsupervisedmanner,
we require high-dimensional CSI that is from as many dis-
tinct transmit locations as possible and acquired at multiple
BS antennas over large bandwidths and at fast rates. Fortu-
nately, virtually all modern wireless systems already generate
high-dimensional CSI data at extremely fast rates.
Example 4: ABS for 3GPP long-term evolution (LTE) [40]

measures up to 100 MIMO channels each millisecond, lead-
ing to more than 1010 complex-valued numbers per day
for a 2 × 4 MIMO channel. A similar amount of data is
collected by active user equipments (UEs), which signal up
to 226 bits of CSI to the BS every 2ms [24]. Currently, most
of that data is discarded immediately after use (e.g., for data
detection or precoding), with a limited amount kept in order
to track the average received signal strength (RSS) of theUEs.

For CC, the idea is to collect and process the acquired
CSI to learn channel charts. The total dimensionality M of
each CSI vector is determined by the number of receiver
antennas B times the number of subcarriers (or delays) W .
As we will show in Section IV, we intentionally ‘‘lift’’ the
CSI vectors into a higher dimensional space, effectively
squaring the total feature dimension. We collect channel
features from N distinct transmitter locations, which further
amplifies the amount of data available for channel charting.
Hence, the total number of channel features used for CC can
easily be in the billions.
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Example 5: Consider a wideband massive MIMO receiver
with B = 32 BS antennas and W = 128 subcarriers, which
results in M = BW = 212 dimensional CSI vectors. If we
lift each CSI vector into an M ′ = M2 dimensional space,
we have features with M ′ = 224 dimensions. By collecting
channel features from N = 2,048 distinct spatial locations,
we have a total dimension of 235, which is a dataset con-
taining more than 34 billion complex-valued channel feature
coefficients.

Note that these numbers are conservative. Fifth-generation
(5G) wireless networks likely have many more BS antennas
and subcarriers, and receive data from a large number of UEs.
This torrent of channel features is a blessing and a curse
at the same time. Clearly, the proposed CC methods will
have sufficient data to learn from. However, the vast amount
of CSI poses severe challenges for storage and processing.
Channel feature extraction must reduce the size of this data,
and charting algorithms must scale appropriately. We will
discuss suitable features in Section IV and computationally
efficient CC algorithms in Section V.

III. QUALITY MEASURES FOR CHANNEL FEATURES
AND CHANNEL CHARTS
To characterize the usefulness of channel features and the
quality of the generated channel charts, we need a measure
of how well the channel features or points in the channel
chart preserve the spatial geometry of the true transmitter
locations—suitable features would preserve the local geome-
try for a neighborhood as large as possible. To assess the chan-
nel charting quality, we borrow two metrics typically used
to measure the quality of dimensionality reduction methods,
namely continuity (CT) and trustworthiness (TW) [41]–[43].
We next explain both of these quality measures in the

context of two abstract sets of data points with cardinality N ,
i.e., {un}Nn=1 from an original space and {vn}Nn=1 from a
representation of the original space; the point vn is said to
represent un. In the CC context, the original space would be
the spatial geometry and the representation space can either
be the feature geometry or the channel chart (see Figure 3),
depending on whether we want to measure the quality of the
channel features or of the learned channel chart.

In what follows, we define the K -neighborhood of a
point u as the set containing its K nearest neighbors in terms
of the chosen distance (or dissimilarity) function du(u,u′).
The neighborhood of v is defined analogously using dv(v, v′).

A. CONTINUITY (CT)
Neighbors in the original space can be far away (dissimilar)
in the representation space. In such situations, we say that
the representation space does not preserve the continuity of
the original point set. To measure such situations, we first
define the point-wise continuity for K neighbors of the data
point ui. Let VK (ui) be the K -neighborhood of point ui in
the original space (but not necessarily in the representation
space). Also, let r̂(i, j) be the ranking of point vj among the
neighbors of point vi, ranked according to their similarity

to vi. For example, r̂(i, j) = k indicates that point vj is the
kth most similar point to vi. Then, the point-wise continuity
of the representation vi of the point ui is defined as

CTi(K ) = 1−
2

K (2N − 3K − 1)

∑
j∈VK (ui)

(r̂(i, j)− K ).

The (global) continuity between a point set {un}Nn=1 and
its representation {vn}Nn=1 is simply the average over
all the point-wise continuity values, i.e., CT(K ) =
1
N

∑N
i=1 CTi(K ) [41]. Both the point-wise and global continu-

ity measures range between zero and one. If continuity is low
(e.g., 0.5 or smaller), then points that are similar is the orig-
inal space are dissimilar in the representation space. When
continuity is large (close to 1), the representation mapping is
neighbor preserving.

B. TRUSTWORTHINESS (TW)
Continuity measures whether neighbors in the original space
are preserved in the representation space. However, it may be
that the representationmapping introduces new neighbor rela-
tions that were absent in the original space. Trustworthiness
measures how well the feature mapping avoids introducing
these kinds of false relationships. Analogous to the point-
wise continuity, we first define the point-wise trustworthiness
for a K -neighborhood of point vi. Let UK (vi) be the set of
‘‘false neighbors’’ that are in the K -neighborhood of vi, but
not of ui in the original space. Also, let r(i, j) be the ranking
of point uj in the neighborhood of point ui, ranked according
to their similarity to ui. The point-wise trustworthiness of the
representation of point ui is then

TWi(K ) = 1−
2

K (2N − 3K − 1)

∑
j∈UK (vi)

(r(i, j)− K ).

The (global) trustworthiness between a point set {un}Nn=1
and its representation {vn}Nn=1 is simply the average over
all the point-wise trustworthiness values, i.e., TW(K ) =
1
N

∑N
i=1 TWi(K ) [41]. Both the point-wise and global trust-

worthiness range between zero and one. Low trustworthiness
values represent situations in which most data points that
seem to be similar in representation space are actually dis-
similar in the original space. If the trustworthiness lies close
to one, then data points that are close in representation space
are also similar (close) in original space.
Remark 2: Since we are interested in preserving local

geometry, we set K to 5% of the total number of points N ,
i.e., K = 0.05N. Note that this is a common choice in the
dimensionality-reduction literature [41].

C. USES OF CT AND TW FOR CHANNEL CHARTING
We will use the CT and TW measures for two purposes.
First, we will use both measures to assess the quality of chan-
nel features {fn}Nn=1. For this purpose, we measure CT and
TW between the spatial geometry and the feature geometry
(see Figure 3). See Section IV-D for a detailed analysis of
channel features that preserve the CT and TW and, hence, are
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suitable for CC. Second, we will use these measures to assess
the quality of the learned channel charts {zn}Nn=1. For this pur-
pose, we measure CT and TW between the spatial geometry
and the channel chart. See Section VI for a comparison of the
CC algorithms proposed in this paper.

IV. CHANNEL FEATURES
We now focus on the feature extraction stage. Concretely,
we show that computing the raw 2nd moment of CSI, feature
scaling, and transforming the result in the angular domain
yields channel features that accurately represent large-scale
fading properties of wireless channels.

A. FEATURES FROM CSI VIA MOMENTS
To limit the search for suitable channel features, we focus on
Frobenius (or Euclidean) distance as dissimilarity measure
on pairs of features, i.e., we use df (F,F′) = ‖F − F′‖F ,
where (by abuse of notation) we allow the features to be
matrices. To generate suitable channel features, we focus on
a second order statistical moment of the received CSI. Let
ht ∈ CM be a vector containing CSI acquired (e.g., during
the training phase) at time instant t . We compute the raw 2nd

moment (R2M) of dimension M2 as follows: H̄ = E
[
hhH

]
.

Here, expectation is over noise, interference, and potential
variations in CSI caused by small-scale motion during short
time (i.e., well-below the coherence time of the channel).
It is important to note that computing the outer product leads
to a representation of CSI that is agnostic to any global
phase rotation that may stem from small-scale fading. In prac-
tice, we compute H̄ = 1

T

∑T
t=1 hth

H
t for a small number

(e.g., ten or less) of time instants T . We can then use H̄ to
extract the necessary channel features in two steps: (i) CSI
scaling and (ii) feature transform. Both of these steps are
detailed next.

B. STEP 1: CSI SCALING
One of the most critical aspects in the design of good features
for CC is to realize that CSI in radio geometry is a poor
representation of spatial geometry. Figure 4 illustrates this
aspect. Assume that the two Txs A and B are close to the Rx,
and the Txs C and D are further away. Due to path-loss,
the CSI measurements HC and HD of Txs C and D appear
weaker (i.e., have small Frobenius norm) than those of the
Txs nearby, HA and HB. If we now directly compare the
Frobenius distance betweenC andD, their distance appears to
be smaller than that betweenA andB (because they have small
norm), even though they should be further apart. To compen-
sate for this phenomenon, we ‘‘unwrap’’ the CSI so that it is
more compatible with spatial geometry (see Figure 4). This
approach is called CSI scaling and explained next.

Consider a transmitter that is separated d meters from a
uniform linear array (ULA) with B antennas. Assume a nar-
rowband LoS channel without scatterers and a 2-dimensional
plane wave model (PWM). For this scenario, each entry b of

FIGURE 4. Illustration of the importance of CSI scaling during feature
extraction. The solid lines show the dissimilarity between the UEs A
and B, as well as C and D in the various geometries. The dotted lines
indicate the UEs located on the same incident rays, i.e., A and C, as well
as D and B. In radio geometry, the acquired CSI misrepresents the true Tx
distance due to path-loss. Concretely, UEs far away in spatial geometry
appear similar in radio geometry and vice versa. To compensate for this
distortion effect, we perform CSI scaling that unwraps radio geometry
into feature geometry that better represents an Euclidean space.

the normed3 CSI vector h ∈ CB is given by [44]

hb = d−ρ exp
(
−j

2π
λ
1r(b− 1) cos(φ)

)
(1)

for b = 1, . . . ,B, where ρ > 0 is the path-loss exponent,
1r is the antenna spacing, and φ is the incident angle of
the Tx to the Rx. Let H̄ = hhH be the associated R2M.
As in Figure 4, assume two Txs A and C with the same
incident angle φ but with distances dA and dC to the receiver.
Our goal is now to scale the CSImatrices so that the Frobenius
distance dh(H̃A, H̃C) = ‖H̃A − H̃C‖F of the scaled moments
H̃A and H̃C is exactly their true distance. For the above
LoS scenario, we have the following result.
Lemma 1: Consider the LoS channel model in (1). Assume

two UEs A and C with the same incident angle φ, with
distances dA and dC to the BS. By scaling the R2M of both
UEs as

H̃ =
Bβ−1

‖H̄‖βF
H̄ with β = 1+ 1/(2σ ), (2)

the distance dh(H̃A, H̃C) = ‖H̃A − H̃C‖F of the scaled
moments H̃A and H̃C is exactly their true distance

dh
(
H̃A, H̃C

)
= |dA − dC| (3)

if the parameter σ ∈ (0,∞] matches the path-loss
exponent ρ.

Proof: The proof follows immediately from the require-
ment in (3) and the fact that both users A and C are associated
with the same channel vectors h given by the LoS model in
(1) that only differ in terms of the path loss. �

Since β ≥ 1, CSI from transmitters far away is amplified
and nearby CSI is attenuated. In words, feature scaling as
in (2) unwraps the radio geometry as illustrated in Figure 4.
Remark 3: As the path-loss exponent ρ > 0 is often

unknown in practice, we can use the parameter σ in (2) as a
tuning parameter. As shown in Section VI, 1 ≤ σ ≤ 16 yields

3The vector’s h phase is rotated so that h1 is real and positive.
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excellent CC quality (in terms of TW and CT) for various
scenarios. Furthermore, as seen from (2), the extreme case of
σ →∞ ignores the magnitude of CSI altogether; this is, for
example, useful in multi-user systems that deploy transmit-
power control or in scenarios in which shadowing effects are
dominating.

C. STEP 2: FEATURE TRANSFORM
We are now ready to transform the scaled CSI moments H̃
into channel features. Since we focus on the Frobenius dis-
tance as dissimilarity, a straightforward choice of a channel
feature is to set the feature directly to the scaled CSI moments
F = H̃; we denote this feature by ‘‘C{·}’’. However, as we
will show in Section IV-D, applying certain nonlinear trans-
forms to the scaled CSI moments can significantly improve
the feature quality. In particular, we also consider taking
the entry-wise real part (denoted by ‘‘<{·}’’), imaginary part
(denoted by ‘‘={·}’’), angle (denoted by ‘‘6 (·)’’), or abso-
lute value (denoted by ‘‘| · |’’) of the scaled CSI moments.
We furthermore say that all these channel features were taken
in the antenna domain (denoted by ‘‘Ant.’’). We also con-
sider the case in which we take the scaled CSI vectors and
transform then into the angular domain (denoted by ‘‘Ang.’’)
followed by one of the nonlinearities mentioned above. For
the scaled R2M, denoted by H̃, we compute DH̃DH , where
D is the M × M discrete Fourier transform matrix that
satisfies DHD = IM . This approach transforms the scaled
CSI moments from the antenna domain into the angular
(or beamspace) domain, which represents the incident angles
of the Tx and potential scatterers to the array in a concise
way [45]. We then either use this feature directly or apply
one of the above mentioned nonlinearities.

D. FEATURE ANALYSIS AND COMPARISON
We now evaluate the effectiveness of the channel features dis-
cussed above. We first detail the simulation parameters, and
then evaluate the associated CT and TW measured between
spatial geometry and radio geometry.

1) SIMULATION SETUP
We consider a scenario as depicted in Figure 1(a) with a
narrowband non-LoS (NLoS) channel generated from the
Quadriga channel model [46]; the key parameters are sum-
marized in Table 1. We record CSI of N = 2048 randomly
selected (with the exception of the ‘‘VIP’’ curve, which have
been placed to form a contiguous curve) spatial locations
within a square area of 1000m× 500m; the median distance
between nearest neighbors is approximately 7.86 meters,
i.e., we sample CSI in space at roughly 53 wavelengths.
We acquire CSI at an SNR of 0 dB, average over T = 10
time instants, and set σ = 16.

2) FEATURE COMPARISON
Table 2 summarizes the global TW and CT for a range of
channel features with a neighborhood of K = 0.05N ; the
numbers in the parentheses indicate the standard deviation

TABLE 1. Key parameters of the Quadriga NLoS channel model [46].

over the point-wise TW and CT measures. We see that the
absolute value of R2M in the angular domain yields high
TW and CT values. Other features, such as the absolute
value of the R2M in the antenna domain perform poorly.
In summary, we observe that—given appropriate channel
features—even challenging NLoS channel scenarios at low
SNR exhibit surprisingly high TW and CT. This observation
supports the validity of Assumption 1 and paves the way for
the CC methods proposed next.
Remark 4: We conducted the same experiments for a

‘‘vanilla’’ LoS (V-LoS) channel as in (1) as well as a
Quadriga-based LoS (Q-LoS) channel, and we arrived at
the same conclusions. We emphasize that absolute value of
the R2M in the angular domain turned out to be the most
robust channel feature for all considered channel models and
scenarios.

V. CHANNEL CHARTING ALGORITHMS
We now introduce three distinct CC algorithms with varying
complexity, flexibility, and accuracy. We propose principal
component analysis (PCA), Sammon’s mapping (and a vari-
ation theoreof), and autoencoders in the context of CC. For
each method, we briefly discuss the pros and cons. Corre-
sponding channel chart results are shown in Section VI.

A. PRINCIPAL COMPONENT ANALYSIS
As a baseline charting algorithm, we perform PCA [47], [48]
on a centered version of the channel features. PCA is
among the most popular linear and parametric methods for
dimensionality reduction and maps a high-dimensional point
set (the channel features) into a low-dimensional point set
(the channel chart) in an unsupervised manner. The specific
method we use for channel charting is detailed next.

1) ALGORITHM
We collect all N channel features, vectorize them, and con-
catenate them in the M ′ × N matrix F = [f1, . . . , fN ].
We then normalize each row of F to have zero empirical
mean; we call the resulting matrix F̄. We then compute an
eigenvalue decomposition on the empirical covariance matrix
of the centered channel features so that F̄

H
F̄ = U6UH .

Here, the N × N matrix U is unitary, i.e., UHU = IN , and
6 is a diagonal matrix with the N eigenvalues on the
main diagonal sorted in descending order of their value
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TABLE 2. Comparison of channel features extracted from the Raw 2nd Moment (R2M)
in terms of global trustworthiness (TW) and continuity (CT) for K = 0.05N .

(assuming all eigenvalues are real-valued), i.e., 6 =

diag(σ1, . . . , σN ) so that σk ≥ σ` for 1 ≤ k < ` ≤ N .
Finally, we compute the D′ × N matrix containing the low-
dimensional points in the channel chart Z = [z1, . . . , zN ].
Let ud denote the d th column of U. Then, the channel chart
obtained via PCA is given by

ZPCA =
[√
σ1u1, . . . ,

√
σD′uD′

]H
. (4)

2) PROS AND CONS
PCA is straightforward to implement and can be carried
out in a computationally efficient manner using power
iterations [49], [50]. However, as shown in Section VI,
PCA performs worse in terms of TW and CT than the nonlin-
ear CC methods proposed in the next two subsections.

B. SAMMON’S MAPPING
Sammon’smapping (SM) [30] is a classical nonlinear method
that maps a high-dimensional point set into a point set of
lower dimensionalitywith the goal of retaining small pairwise
distances between both point sets—exactly what we wished
for in Section II-B. We next describe SM for CC in detail,
explain an efficient algorithm to compute the channel chart,
and propose a modified version that takes into account side
information (called SM+ in what follows).

1) SM BASICS
First, we compute a pairwise distance matrixD of all channel
features

Dn,` = df (Fn,F`), n = 1, . . . ,N , ` = 1, . . . ,N ,

where we use the Frobenius distance (see Section IV-A).
SM tries to find a low-dimensional channel chart, i.e., a
point set {zn}Nn=1, that results from the following optimization
problem:

(SM)


minimize
zn∈RD

′

n=1,...,N

∑
n=2,...,N
`=1,...,n−1

D−1n,`(Dn,` − ‖zn − z`‖2)2

subject to
∑

n=1,...,N

zn = 0D′×1,

where we omit pairs of points for which Dn,` = 0. The
objective function of SM promotes channel charts for which
the Euclidean distance of pairs of nearby points inRD′ agrees

with the feature distance. Points for which D−1n,` is small
(i.e., points that are dissimilar in feature geometry) are dis-
counted; this ensures that SM retains small pairwise distances
between both point sets. Since the objective function is invari-
ant to global translations, we use a constraint that enforces the
channel chart to be centered in each of the coordinates inRD′ .

2) FORWARD-BACKWARD SPLITTING FOR SM
The problem (SM) is non-convex and typically solved using
quasi-Newton methods [51]. We next detail an efficient first-
order method that enables us to include side information that
is available for CC. We use an accelerated forward-backward
splitting (FBS) procedure [52], [53] that solves a class of
convex optimization problems of the following general form:

minimize
Z∈RD′×N

f (Z)+ g(Z),

where the function f (Z) =
∑K

n=1 fn(zn) should be con-
vex and smooth and g should be convex, but must not
be smooth or bounded. FBS mainly consists of the simple
iteration

Z(t+1)
= proxg

(
Z(t)
− τ (t) ∇f (Z(k)), τ (t)

)
for t = 1, . . . ,Tmax or until convergence. Here, ∇f (Z) is the
gradient of the smooth function f , and the proximal operator
for the nonsmooth function g is defined as [54]

proxg(Z, τ ) = argmin
V

{
τg(V)+

1
2
‖V− Z‖2F

}
.

The sequence {τ (t) > 0} contains carefully selected step-size
parameters that ensure convergence of FBS.

For CC, the matrix Z = [z1, . . . , zN ] contains all points in
the channel chart. The function f is chosen to be

f (Z) =
∑

n=2,...,N
`=1,...,n−1

D−1n,`(Dn,` − ‖zn − z`‖2)2, (5)

and the nth column of the gradient of f is

[∇f (Z)]n = 2
∑

`=1,...,n
6̀=n

D−1n,`(Dn,` − ‖zn − z`‖2)
zn − z`
‖zn − z`‖2

.
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The centering constraint in (SM) is enforced by choosing

g(Z) = χ

(
N∑
n=1

zn

)
,

where the ‘‘characteristic function’’ χ is zero when its
argument

∑N
n=1 zn is zero, and infinity otherwise. The

proximal operator of this characteristic function is simply a
re-projection onto the centering constraint given by

proxg(Z, τ ) = Z−
1
K
Z1N×11TN×1.

Remark 5: Since the function f is nonconvex, FBS is not
guaranteed to find a global minimizer. We will demonstrate
in Section VI that FBS with a suitable initialization and step-
size criterion yields excellent CC results in a computationally
efficient manner. Concretely, we initialize FBS with the solu-
tion from PCA Z(1)

= ZPCA as detailed in Section V-A and
we deploy the adaptive step-size procedure proposed in [53].

3) SM WITH SIDE-INFORMATION
We now provide an example of how CC can be improved
with side information. Note that the methods in this section
remain unsupervised as they do not require information about
the transmitter’s spatial locations.

In practice, one often collects many CSI vectors from
a single transmitter (e.g., a UE). In this case, the channel
features for a given transmitter u form a time series {fn}n∈Nu ,
where Nu contains the temporally ordered channel feature
indices associated with UE u. Since transmitters move with
finite velocity, we know that temporally adjacent CSI vectors
from the same UE should lie close together in the chan-
nel chart. To exploit this information, we include a squared
`2-norm penalty in the objective function that keeps tem-
porally adjacent points in Nu nearby in the channel chart.
Concretely, for each transmitter u, we add

fu(Z) = αu
∑
n∈Nu

‖zn − zn+1‖22

to the objective of (SM), where the parameter αu > 0
determines the spatial smoothness of transmitter u in the
channel chart. The nth row of the gradient of this penalty can
be computed effectively and is given by

[∇fu(Z)]n = 2αu((zn − zn+1)+ (zn − zn−1))

for n ∈ Nu. In what follows, we refer to the resulting
CC algorithm as Sammon’s mapping plus (SM+).

4) PROS AND CONS
The main advantages of SM/SM+ are that (i) they directly
implement the desirables for CC summarized in Section II-B,
which results in excellent TW and CT (see Section VI
for results), and (ii) temporal side information is easily
included. The drawbacks are that (i) they are nonparametric,
which would require an out-of-sample extension procedure
as proposed in, e.g., [55], if new points need to be mapped
without relearning the channel chart, and (ii) the complexity
is substantially higher than that of PCA.

C. AUTOENCODER
Autoencoders (AEs) [56] are single- or multi-layer (deep)
artificial neural networks that are commonly used for unsu-
pervised dimensionality reduction tasks [31] and have shown
to yield excellent performance on numerous real-world
datasets [57]. We now detail how AEs can be used for CC.

1) AUTOENCODERS FOR CC
The basic idea of an AE is to learn two functions, an encoder
C : RM ′

→ RD′ and a decoder C−1 : RD′
→ RM ′ , with

M ′ > D′, so that the average approximation error

E =
1
N

N∑
n=1

‖fn − C−1(C(fn))‖22 (6)

for a set of vectors {fn}Nn=1 is minimal. Since the codomain
(outputs) of the encoder C is typically of lower dimension
than the domain (inputs), we have that fn ≈ C−1(C(fn)),
but this is not a perfect equality. The hope is that the
AE implements a low dimensional representation zn = C(fn)
that captures the essential components of the inputs fn.

We now describe how AEs can be used for CC. First, it is
important to realize that the encoder C directly corresponds
to the forward charting function with fn being the inputs;
the decoder C−1 corresponds to the inverse charting function.
Second, we will use multi-layer (or deep) AEs [56] to learn
the two functions C and C−1 in an unsupervised manner.
Example 6: Consider a simple (shallow) AE whose

encoder and decoder consist of a single layer, the inputs
are the channel features, and the outputs of the decoder
correspond to the points in the channel chart. Each layer first
multiplies the inputs with a matrix (containing the weights)
and adds a bias term; a (nonlinear) activation function (also
known as neuron) is then applied element-wise to generate
the outputs. Mathematically, such a shallow AE is described
as follows:

C : z = fenc(Wencf+ benc) (7)

C−1 : f̂ = fdec(Wdecz+ bdec). (8)

Here, the forward charting function C (the encoder) first
computes a matrix-vector product between the weight matrix
Wenc ∈ RD′×M ′ and the vectorized channel feature f (the
inputs), followed by adding a bias vector benc ∈ RD′ . The
result of this operation is then passed through a nonlinear
activation function fenc that operates element-wise on the
entries of the argument. The inverse charting function C−1
(the decoder) uses another weight matrix Wdec ∈ RM ′×D′ ,
bias vector bdec ∈ RM ′ , and activation function fdec to map
the input z ∈ RD′ to the channel feature geometry in RM ′ .

In practice, one often resorts to multi-layer (or so-called
deep) AEs [56] instead of the shallow network discussed in
Example 6, as they often yield superior performance for many
dimensionality-reduction tasks [31]. For such deep AEs, one
simply cascades the inputs and outputs of multiple single-
layer networks as in (7) and (8). The key design parameters
of such deep AEs are the number of layers L (per encoder

47692 VOLUME 6, 2018



C. Studer et al.: CC: Locating Users Within the Radio Environment Using CSI

FIGURE 5. Structure of the deep autoencoder used for CC. The entire
artificial neural network consists of 10 layers; circles correspond to
activation functions, trapezoids correspond to the weights and biases;
the bottom text indicates the activation function type and the top text the
output dimension of each layer.

and decoder), the dimensions of the weight matrices and bias
vectors on each layer, and the activation function types for
each layer—all these parameters are fixed at design time.
During the CC procedure, one jointly learns the entries of the
weight matrices {W(l)

enc,W
(l)
dec} and bias vectors {b(l)enc,b

(l)
dec},

where l = 1, . . . ,L denotes the layer index, solely from the
set of channel features {fn}Nn=1 so that the approximation error
in (6) is minimal. Learning is typically accomplished by a
procedure known as back-propagation [56], which is compu-
tationally efficient and scales favorably to large datasets.

2) IMPLEMENTATION DETAILS
We use a deep AE as illustrated in Figure 5. We carefully
selected the number of layers and their dimensionality, as well
as the involved activation functions. The encoder and decoder
both consist of L = 5 layers.
The inputs of the encoder C (the forward charting function)

are the M ′-dimensional channel features {fn}Nn=1, the out-
puts correspond to points in the D′ dimensional channel
chart {zn}Nn=1. For each layer l, the linear operation with the
weightsW(l)

enc and bias b
(l)
enc are represented by the trapezoids

in Figure 5. For the layers l = {1, 2, 4}, we set the activation
to the hyperbolic tangent function f (l)enc(x) = ex−e−x

ex+e−x . For layer

three, we use the softplus function f (3)enc(x) = log(1+ exp(x)).
For layer five, we use the identity f (5)enc(x) = x. The number of
neurons for each layer are as follows: R(1) = 500, R(2) = 100,
R(3) = 50, R(4) = 20, and R(5) = D′.
The inputs of the decoder C−1 (the inverse charting

function) are the points in the channel chart {zn}Nn=1 of
dimension D′, and the outputs correspond to estimates of
the M ′-dimensional channel features {f̂n}Nn=1. As shown
in Figure 5, the decoder is essentially a mirrored version of
the encoder, having the same number of neurons per layer
(but in reverse order). The only difference is the activation
function on the sixth layer, where we use the rectified linear
unit (ReLU) defined as f (6)dec(x) = max{x, 0} instead of a
hyperbolic tangent.
To reduce the approximation error of our AE and to obtain

better TW and CT values, the weights in layer l = 5 have
been regularized. We include a squared Frobenius-norm reg-
ularizer on the entries ofW(5)

enc (also known as weight decay)

by using the following average approximation error:

E =
1
2N

N∑
n=1

‖fn − C−1(C(fn))‖22 +
β

2
‖W(5)

enc‖
2
F ,

where the parameter β > 0 was tuned for best performance.
For learning of the AE, we use Tensorflow [58].

3) PROS AND CONS
The key advantages of AE-based CC compared to PCA, SM,
and SM+ are as follows: (i) AEs directly yield a parametric
mapping of the forward and inverse channel charting func-
tion and (ii) they can be trained efficiently, even for very
large datasets. The key drawback is the fact that identifying
good network topologies, activation functions, and learning-
rate parameters for AEs is notoriously difficult and involves
tedious and time-consuming trial-and-error efforts by the
user [59].

VI. RESULTS
We are finally ready to provide results for CC for various
channel models and the methods discussed above.

A. SIMULATION SETTINGS
Each channel chart shown next is generated for the system
scenario depicted in Figure 1(a). We record CSI of N = 2048
randomly placed (with the exception of the 234 points repre-
senting the ‘‘VIP’’ curve) spatial locations within a square
area of 1000m× 500m; the median sampling distance, mea-
sured in the spatial domain and between nearest neighbors,
is approximately 53 wavelengths. We acquire CSI at an SNR
of 0 dB, average noise over T = 10 samples, and set ρ = 16.
We compare results for a ‘‘vanilla’’ LoS channel (V-LoS)
as in (1) at a carrier frequency of 2GHz with λ/2 antenna
spacing, and for Quadriga LoS (Q-LoS) and Quadriga NLoS
(Q-NLoS) channels (see Table 1 for the model parameters).
Since the analysis in Section IV-D revealed that the feature
configuration {R2M, Ant., | · |} yields the most robust results
with respect to CT and TW for all the above channel models
(see Remark 4), we will generate channel charts solely for
this channel feature. For each channel chart, we provide the
global CT and TWvaluesmeasured between spatial geometry
and the channel chart for K = 0.05N nearest neighbors.
In contrast to Figure 1, which has been tuned for visual
appearance, the channel charts shown next are optimized for
best TW and CT values.

B. CHANNEL CHARTS
Figure 6 shows learned channel charts for PCA, SM, SM+,
and AE. For these CC algorithms and the three channel
models, we obtain CT values between 0.91 and 0.94. This
means that the neighborhood of a point in spatial geometry
is strongly preserved in the channel charts, i.e., most points
nearby in the spatial geometry space are nearby in the channel
charts. The TW values are also high, ranging between 0.84
and 0.89; this indicates that most neighbors of a point in the

VOLUME 6, 2018 47693



C. Studer et al.: CC: Locating Users Within the Radio Environment Using CSI

FIGURE 6. Comparison of D′ = 2 dimensional channel charts for different channel models and CC algorithms. We compare ‘‘vanilla’’
LoS (V-LoS), Quadriga LoS (Q-LoS), and Quadriga non-LoS (Q-NLoS), with principal component analysis (PCA), Sammon’s mapping
(SM), Sammon’s mapping with temporal continuity (SM+), and autoencoder (AE). We see that AE, SM, and SM+ achieve the highest
CT and TW, whereas SM+ delivers the most visually pleasing results. (a) V-LoS, PCA, CT=0.91, TW=0.84 (b) Q-LoS, PCA, CT=0.91,
TW=0.84. (c) Q-NLoS, PCA, CT=0.92, TW=0.85. (d) V-LoS, SM, CT=0.93, TW=0.84. (e) Q-LoS, SM, CT=0.93, TW=0.86. (f) Q-NLoS,
SM, CT=0.93, TW=0.85. (g) V-LoS, SM+, CT=0.93, TW=0.84. (h) Q-LoS, SM+, CT=0.93, TW=0.86. (i) Q-NLoS, SM+, CT=0.93,
TW=0.85. (j) V-LoS, AE, CT=0.94, TW=0.89. (k) Q-LoS, AE, CT=0.93, TW=0.86. (l) Q-NLoS, AE, CT=0.91, TW=0.86.
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FIGURE 7. Comparison of continuity (CT) and trustworthiness (TW) for various channel models and CC algorithms. We observe that autoencoders
(AEs) outperform the other algorithms in terms of TW, while Sammon’s mapping (SM) and its extension (SM+) perform only slightly worse.
In terms of CT, however, AEs only work well for simple LoS channels, whereas SM and SM+ perform better for channels generated from the
Quadriga model. PCA yields surprisingly good results across the board and performs close to that of SM and SM+ in terms of CT for more
challenging channel scenarios (Q-LoS and Q-NLoS). (a) V-LoS, continuity (CT). (b) Q-LoS, continuity (CT). (c) Q-NLoS, continuity (CT).
(d) V-LoS, trustworthiness (TW). (e) Q-LoS, trustworthiness (TW). (f) Q-NLoS, trustworthiness (TW).

channel charts are also neighbors in spatial geometry. We can
also visually inspect the obtained results, e.g., by comparing
the color gradient in Figure 6 with that of the scenario in
Figure 1(a) or that of the ‘‘VIP’’ curve in spatial geometry and
in the channel chart. To facilitate such a visual comparison,
we have rotated and scaled all channel charts (note that this
does not affect CT and TW).

The first row, Figures 6(a,b,c), shows the results for PCA.
Quite surprisingly, PCA yields high CT and TW values for
all channel models, and also provides a visually accurate
embedding of the spatial geometry. This behavior is due
to the fact that we use channel features that well-represent
spatial geometry. The second row, Figures 6(d,e,f), shows
the results for SM. SM yields superior CT and TW values
than PCA and provides excellent preservation of the color
gradients, especially for the two LoS scenarios. The third row,
Figures 6(g,h,i), shows the results for SM+ in which
we include spatial constraints obtained via temporal side-
information. While the CT and TW values are nearly the
same as that of SM, SM+ provides extremely well-preserved
embeddings of the channel geometry, even for the chal-
lenging Q-NLoS scenario. The last row, Figures 6(j,k,l),
shows the results for the AE. The AE yields high CT
and TW values, comparable to those of SM/SM+, but
slightly lower CT for Q-NLOS. In addition, the chan-
nel charts are less visually pleasing than those of SM+,
but demonstrate excellent preservation of local spatial
geometry.

C. CT AND TW MEASURES
To gain additional insight into the quality of the learned
channel charts, Figure 7 shows the CT and TW values for
different neighborhood sizes, i.e., K ranges from 1 to 100.
We see that, for the simplistic V-LoS channel, the AE pro-
vides the best performance, both in terms of CT and TW;
SM and SM+ perform slightly worse, as does PCA. For
the more realistic Q-LoS scenario that takes into account
multi-path propagation, the performance of the AE drops
significantly, while even PCA performs better. SM and SM+
have, once more, similar performance but perform better than
the other two methods. For the most challenging scenario,
the Quadriga non-LoS channel (Q-NLoS), SM and SM+
perform best, followed by PCA. Evidently, the AE struggles
in achieving high CT. We address this issue to the fact that
we train the AE only on the N = 2048 points and the fact
that we could spend another week in tuning the neural net
architecture and learning rates.

VII. CONCLUSIONS
We have proposed channel charting (CC), a novel unsu-
pervised framework to learn a map between channel-state
information (CSI) acquired at a single base-station (BS) and
the relative transmitter (e.g., user equipment) locations. Our
method relies on the extraction of suitable features from
large amounts of high-dimensional CSI acquired at a mas-
sive MIMO BS, followed by CC algorithms that borrow
ideas from dimensionality reduction and manifold learning.
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We have developed four distinct CC algorithms with vary-
ing complexity, flexibility, and accuracy that produce charts
that preserve the local geometry of the transmitter loca-
tions for a range of realistic channel models. Since channel
charting is unsupervised, i.e., does not require knowledge
of the true user locations, the proposed method finds use
in numerous applications relevant to 5G networks, includ-
ing (but not limited to) rate adaptation, network planning,
user scheduling, hand-over, cell search, user tracking, user
grouping for device-to-device (D2D) communication, beam
prediction for mmWave or terahertz systems, and other cog-
nitive tasks that rely on CSI and the relative UE movement to
the BS.

There are many avenues for future work. A mathe-
matical analysis of the proposed feature extraction and
CC algorithm stages that provides insight into what aspects
are relevant for the learning of accurate channel charts
is a challenging open research question. Improved chan-
nel features that are particularly resilient to shadowing
and more advanced CC algorithms, such as methods rely-
ing on metric learning or convolutional neural networks
that take into account side information, have the poten-
tial to yield even better continuity and trustworthiness.
Finally, an extension to semi-supervised methods, time-
varying channels, and multi-user scenarios is part of ongoing
work.
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