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Abstract: Although Fuzzy Preference Relations (FPRs) are among the most commonly used preference 
models in Group Decision Making (GDM), they are not free from drawbacks. First of all, especially 
when dealing with many alternatives, the definition of FPRs becomes complex and time-consuming. 
Moreover they allow to focus on only two options at a time. This facilitates the expression of preferences 
but let experts lose the global perception of the problem with the risk of introducing inconsistencies that 
impact negatively on the whole decision process. For these reasons, different preference models are 
often adopted in real GDM settings and, if necessary, transformation functions are applied to obtain 
equivalent FPRs. In this paper we propose Fuzzy Rankings, a new approximate preference model that 
offers an higher level of user-friendliness with respect to FPRs while trying to maintain an adequate 
level of expressiveness. Fuzzy rankings allow experts to focus on two alternatives at a time without 
losing the global picture so reducing inconsistencies. Conversion algorithms from fuzzy rankings to 
FPRs and backward are defined as well as similarity measures, useful when evaluating the concordance 
between experts’ opinion. A comparison of the proposed model with related works is reported as well 
as several explicative examples. 
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1. Introduction and Related Work 
Group Decision Making (GDM) is a problem-solving activity by which a group of experts collectively 
select a belief or a course of action among several available alternatives. A GDM process consists in the 
evaluation of the alternatives and the choice of the most satisfactory one, taking into account all the 
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factors and contradictory requirements and according to the preferences of the majority of involved 
experts. GDM has been widely studied since it has applications in many fields and several approaches 
have been proposed so far for the representation of experts’ preferences, for their aggregation, for the 
selection of the best alternative and for consensus reaching [1, 2, 3, 4, 5, 6]. 
By looking at the representation of experts’ preferences (that is the focus of this paper) we see that many 
preference models already exist. With ordinal rankings [7] experts are asked to order the alternatives 
from the best to the worst; with utility vectors [8] they must assign an utility value to each alternative; 
with fuzzy estimates [9] they must assign them a linguistic evaluation that is subsequently translated into 
a fuzzy number; with preference relations [10] they must select, for every pair of alternatives, the 
preferred one; with Fuzzy Preference Relations (FPRs) [11] they must assign a degree of preference for 
each alternative over any other. 
Among existing models, ordinal ranking is the most simple and user-friendly and its adoption is 
especially useful when experts have difficulties in assessing quantitatively the strength of their 
preferences. For this reason, according to [12], using ordinal rankings reduces the possibility of deriving 
recommendations based on incorrect information. Conversely, the most diffused preference model is 
FPR. According to [13, 14], it allows experts to focus on two alternatives at a time facilitating the 
expression of more accurate preferences with respect to non-pairwise methods. It also ensures a high 
level of expressiveness and translation techniques are available to convert preference information from 
many other models to FPR [3].  
Although ordinal rankings are user-friendly and help reducing errors and inconsistencies, they are 
considered too simplistic to model preferences in real GDM settings. Experts in fact can be unable to 
assign a precise position in a ranking to alternatives that are considered equivalent or they may need to 
specify at what extent an alternative is better than the next preferred one. On the other hand, FPRs 
definition is often too complex and time-consuming. Moreover, they impose unnecessary precision in 
preference definition facilitating the emergence of errors and inconsistencies that impact the whole 
GDM process. 
To overcome these limitations, we introduce in this paper a new preference model named Fuzzy Ranking 
that can be considered a fair compromise between the expressive capability of FRP and the user-
friendliness of ordinal ranking. Like for ordinal rankings, experts are asked to order alternatives from 
the best to the worst but, using specific separators, experts can extend or contract the gap between 
subsequent positions to reinforce or weaken the ordering relation. Ties are admitted as well as partial 
and multiple rankings: partial rankings are useful when an expert is unable to evaluate some alternatives; 
multiple rankings helps an expert state that some alternatives are incomparable with some others.  
A first formulation of fuzzy ranking has been proposed in [15] for the expression of ordinal assessment 
statements within a work aimed at the application of GDM techniques in peer grading. The same model 
has been also adopted in [16] to collect expert preferences within a GDM model guided by social 
influence. In this paper we formalize and extend the model outlined in such papers, define conversion 
functions and similarity measures and compare the model with related work. 
The paper is organized as follows: section 2 provides background concepts related to GDM, useful to 
appreciate the subsequent sections; section 3 defines the fuzzy ranking model; sections 4 and 5 present 
conversion algorithms to and from FPRs; section 6 introduces partial and multiple fuzzy rankings; 
section 7 defines similarity measures on fuzzy rankings; section 8 presents similarities and differences 
with related work; section 9 points out conclusions. 

2. Background Concepts on GDM 
A GDM problem is characterized by a group of experts ܧ = {݁ଵ, … , ݁௠}, each with her own knowledge, 
ideas, experience and motivation, that express their preferences on a finite set of alternatives ܺ ,ଵݔ}= … ,  ௡} to achieve a common solution [17, 18, 19]. As anticipated in section 1, several ways toݔ
express and model experts’ preferences have been proposed. Among them, we introduce below the most 
closely related to our research: ordinal ranking and FPR. 
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Ordinal ranking is one of the simplest preference models. An ordinal ranking on elements of X can be 
denoted as: ݔఙ(ଵ) ≻ ⋯ ≻ :ߪ ఙ(௡) whereݔ {1, … ݊} → {1, … ݊} is a permutation function. It can be 
alternatively represented through an ordering array ܱ = ,ଵ݋) … , ௜݋ ௡) where each element݋ ∈ {1, … , ݊} 
states the position of i-th alternative within the ranking.  
FPR is one of the most commonly used preference models [20, 21, 22]. It specifies the degree to which 
each alternative ݔ௜ ∈ ܺ is at least as good as any other alternative ݔ௝ by means of a fuzzy relation P i.e. 
a fuzzy set on ܺ × ܺ with a membership function ߤ௉: ܺ × ܺ → [0,1] such that [23]: 

,௜ݔ௉൫ߤ  ௝൯ݔ =
۔ۖەۖ
1ۓ if ௜ݔ is definitely preferred to ݔ௝,ܽ ∈ (0.5, 1) if ௜ݔ is slightly preferred to ௝,0.5ݔ if ݔ௜ and ݔ௝ are evenly preferred,ܾ ∈ (0, 0.5) if ௝ݔ is slightly preferred to ௜,0ݔ if ௝ݔ is definitely preferred to ݔ௜.  (1) 

A FPR can be conveniently represented as a ݊ × ݊ matrix ܲ = ൫݌௜௝൯ where ݌௜௝ = ,௜ݔ)௉ߤ  ௝). A FPRݔ
satisfying the additive reciprocity property so that ݌௜௝ + ௝௜݌ = 1 ∀ ݅, ݆ ∈ {1, … , ݊}, is said to be 
reciprocal. A FPR that satisfies the additive transitivity property so that ݌௜௝ + ௝௞݌ + ௞௜݌ = 1.5 ∀݅, ݆, ݇ ∈{1, … , ݊}, is also said to be additive consistent. 
Sometimes, due to domain complexity, limited expertise or pressure to make a decision, experts define 
incomplete FPRs [24, 25]. In [26, 27], a method to estimate missing FPR values applying reciprocity 
and additive transitivity properties is proposed while in [28, 29] alternative methods are introduced 
based on different properties. Using the definition of additive transitivity, it is possible to obtain the 
following estimates of any missing preference ݌௜௝, of alternative ݔ௜ over ݔ௝, using an intermediate 
alternative ݔ௞ with ݔ௜, ,௝ݔ ௞ݔ ∈ ܺ: 

௜௝൯݌௞ଵ൫ߝ  = ௜௞݌ + ௞௝݌ − ௜௝൯݌௞ଶ൫ߝ ;0.5 = ௞௝݌ − ௞௜݌ + ௜௝൯݌௞ଷ൫ߝ ;0.5 = ௜௞݌ − ௝௞݌ + 0.5. (2) 

If P is additive consistent, then ߝ௞ଵ൫݌௜௝൯ = ௜௝൯݌௞ଶ൫ߝ = ,݅ ௜௝൯ for݌௞ଷ൫ߝ ݆, ݇ ∈ {1, … , ݊}. Unfortunately, user 
defined FPRs are not always additive consistent. In this case it is still possible to use equation (2) to 
identify missing values that are as consistent as possible with the existing ones by mediating the 
estimates over any defined intermediate alternative as follows: 

௜௝൯݌൫ߝ  = ∑ ∑ ௞௟ߝ ൫݌௜௝൯௞∈௄೔ೕ೗ଷ௟ୀଵ ∑ หܭ௜௝௟ หଷ௟ୀଵ  (3) 

where the sets ܭ௜௝௟  for ݈ ∈ {1,2,3} include the indexes of the defined intermediate alternatives, useful for 
each estimator of ݌௜௝. The generation of missing values through equations (2)-(3) is done in several 
iterations. In each iteration new values are computed based on those previously known and added to the 
FPR.  
Once each expert has expressed her preferences on alternatives of X and missing FPRs values, if any, 
have been estimated through equations (2)-(3), m individual FPRs are available. A first step needed to 
reach a final decision is to aggregate available individual FPRs into a collective FPR using some 
aggregation operator. Several operators have been proposed for this purpose by different researchers 
like the weighted arithmetic and geometric mean, the min operator and the ordered weighted average 
[30, 31, 32]. 
Once the collective FPR P is obtained, the alternatives must be rated associating a degree of preference ߶(ݔ௜) to each ݔ௜ ∈ ܺ basing on P. Also in this case several measures exist like the dominance and non-
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dominance degree [33] as well as their quantifier guided versions [7]. Among the simples measures 
there is the Net Flow proposed in [23] as follows: 

(௜ݔ)߶  = ෍ ݆݅݌
݊

݆=1,݆≠݅ − ෍ ݆݅݌
݊

݆=1,݆≠݅  (4) 

where the first summation is the leaving flow i.e. the total degree of preference of ݔ௜ over all the other 
alternatives and the last summation is the entering flow i.e. the total degree of preference of all the other 
alternatives over ݔ௜. After having rated the available alternatives with one (or a combination) of the 
described measures, the one with the highest degree of preference is the solution of the GDM problem. 

3. The Fuzzy Ranking Model 
Given a set of alternatives ܺ = ,ଵݔ} … , ܴ ௡}, a fuzzy ranking on X can be defined as a sequenceݔ =൫ݔఙ(ଵ) ݏଵ ݔఙ(ଶ) ݇ ఙ(௞)൯ withݔ ௞ିଵݏ ఙ(௞ିଵ)ݔ  …  ≤ ݊. Terms in odd positions in the sequence represent a 
subset of the alternatives, while ߪ: {1, … ݊} → {1, … ݇} is a k-permutation function. Terms in even 
positions (separators) belong to the set of symbols ܵ = {≫, >, ≥, ≈} and define a degree of preference 
between subsequent terms (with ≫ meaning “is much better than”, > “is better than”, ≥ “is a little better 
than” and ≈ “is similar to”). Each alternative appears at most once in the ranking so cycles are not 
allowed although partial rankings are admitted. 

Example 1. The fuzzy ranking ܴ = ସݔ) ≫ ହݔ ≈ ଶݔ ≥ ଷݔ > ܺ ଵ) defined onݔ = ,ଵݔ} … ,  ,ହ} states thatݔ
according to expert’s opinion, the fourth alternative is much better than the fifth one that, in turn, is 
similar to the second one, while both are a little better than the third one that, in turn, is better than the 
first one. 

If we look at Example 1, it becomes clear that, by relying on standard ordinal rankings, it would have 
been impossible for the same expert to specify her belief so thoroughly. In fact, the ordinal ranking ݔସ ହݔ≺ ≻ ଶݔ ≻ ଷݔ ≻ ܱ ଵ that can be extracted from R and can be summarized with the ordering arrayݔ =(5, 3, 4, 1, 2), has a deeply different semantics: ties are not allowed so the equivalent alternatives ݔହ and ݔଶ are artificially ordered while the preference gaps between ݔସ and ݔହ, ݔଶ and ݔଷ, ݔଷ and ݔଵ seems 
comparable in O while they are very different in expert’s belief, as expressed in R. 
Figure 1 graphically illustrates the interpretation of the expert’s belief captured by the fuzzy ranking R 
of Example 1 and by the extracted ordinal ranking ܱ. As it can be seen, fuzzy rankings offer more tools 
to highlight differences between alternatives. Inspired by studies on the use of linguistic labels in GDM 
[34, 35, 36], the cardinality of S (i.e. the number of available symbols) has been chosen small enough 
so as not to impose useless precision to the experts and rich enough to allow a discrimination of the 
relative performance of the alternatives. On the other hand, the possibility to compose fuzzy rankings 
by chaining alternatives and symbols, allows to indirectly express a wide variety of preference levels. 

 
Figure 1. Interpretation of the fuzzy ranking R coming from Example 1  

and of the extracted ordinal ranking O 
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4. From Fuzzy Ranking to FPR 
From a fuzzy ranking ܴ = ൫ݔఙ(ଵ) ݏଵ ݔఙ(ଶ)  ఙ(௞)൯ it is possible to generate theݔ ௞ିଵݏ ఙ(௞ିଵ)ݔ  … 
corresponding FPR ܲ = ൫݌௜௝൯ in several ways. A first approach [15] consists in associating a predefined 
preference degree ݀(ݏ) to each symbol ݏ ∈ ܵ and obtain FPR elements as: 

ఙ(௜)ఙ(௜ାଵ)݌ • = ݅∀ (௜ݏ)݀ ∈ {1, … , ݇ − 1};  
ఙ(௜ାଵ)ఙ(௜)݌ • = 1 − ݅∀ (௜ݏ)݀ ∈ {1, … , ݇ − 1}; 
ఙ(௜)ఙ(௜)݌ • = 0.5 ∀݅{1, … , ݇}; 

(5) 

where the first statement transforms the degrees of preference embedded in R in values of P, while the 
second and third statements are aimed at ensuring the reciprocity of P according to the definition given 
in section 2. A feasible set of values for the function ݀(ݏ) is shown in Table 1 (second column).  

Symbol Preference degree ݀(ݏ) Relative strength |0 0.50 ≈ 0.5 0.58 ≤ 1 0.65 < 2 0.85 ≪ |ݏ 

Table 1. Feasible values for the preference degree and the relative strength  
associated to ranking string symbols 

It should be noted that, by applying equations (5) on a fuzzy ranking R, only 3݇ − 2 elements of P can 
be defined. Even in the case that R involves all available alternatives, (i.e. when ݇ = ݊), a number of ݊ଶ − 3݊ + 2 elements of P remain undefined and have to be estimated as explained in section 2. 
Moreover, the generated FPR, even when completed in this way, is not guaranteed to be additive 
consistent.  

Example 2. If ܴ = ସݔ) ≫ ହݔ ≈ ଶݔ ≥ ଷݔ > ܺ ଵ) is a fuzzy ranking on the setݔ = ,ଵݔ} … ,  ହ}, theݔ
following FPR is generated according to equation (5) using preferences degree values coming from 
Table 1. 

ܲ = ۈۉ
ۇ 0.5 − 0.35 − −− 0.5 0.58 − 0.50.65 0.42 0.5 − −− − − 0.5 0.85− 0.5 − 0.15 0.5 ۋی

ۊ
 

where the symbol – indicates an undefined cell. Applying equations (2)-(3) on P we obtain the missing 
values as follows: 

P = ۈۉ
ۇ 0.5 0.27 0.35 0 0.270.73 0.5 0.58 0.15 0.50.65 0.42 0.5 0.07 0.421 0.85 0.93 0.5 0.850.73 0.5 0.58 0.15 0.5 ۋی

ۊ
 

A second approach for generating a FPR from a fuzzy ranking is through a transformation function 
[16]. A relative strength |s| is associated to each symbol ݏ ∈ ܵ and, given a fuzzy ranking R, a fractional 
rank ݎ(ݔ௜) is associated to each alternative so that:  
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ఙ(௜)൯ݔ൫ݎ = 1 + ෍หݏ௝ห௜ିଵ
௝ୀଵ  (6) 

for ݅ ∈ {1, … , ݇} and ݎ(ݔ௜) is undefined if ߪ(݅) is undefined i.e. if ݔ௜ does not appear in R. 
Relative strength values should be selected so that each symbol doubles the strength of the next one. A 
feasible set of values is shown in Table 1 (third column). By only using the symbol >, the fuzzy ranking 
becomes an ordinal one and equation (6) generates an ordering array as defined in section 2. The use of 
the symbols ≫ or ≥ in place of >, respectively doubles or halves the distance of the preceding and 
subsequent terms in the ranking while the use of ≈ means that the preceding and subsequent terms have 
the same rank. Then, for any pair of alternatives ݔ௜ and ݔ௝ appearing in R, an element of P can be defined 
as follows:  

௜௝݌  = 12 ቆ1 + (௝ݔ)ݎ − ݔܽ݉ݎ(௜ݔ)ݎ − 1 ቇ (7) 

where ݔܽ݉ݎ = ݔܽ݉ݎ ఙ(௞)൯ is the maximum rank. The special caseݔ൫ݎ = 1, arising when an expert 
considers all alternatives as equivalent i.e. when she sets ܴ = ଵݔ) ≈ ⋯ ≈  ௞), is handled by directlyݔ
setting ݌௜௝ = 0.5 for any ݔ௜ and ݔ௝ appearing in R.  

Differently from the first approach, by applying equation (7) it is possible to directly define ݇ଶ elements 
of the corresponding FPR. When R involves all alternatives, (i.e. when ݇ = ݊), the generated FPR 
presents no undefined elements. In [16] it has been demonstrated that the additive consistency property 
is verified for all the defined elements a FPR generated from a fuzzy ranking according to equations (6)-
(7).  

Example 3. Let ܴ = ସݔ) ≫ ହݔ ≈ ଶݔ ≥ ଷݔ >  ଵ) be the fuzzy ranking of the previous example. Usingݔ
relative strength values coming from Table 1 in (6), we obtain the following fractional ranks: ݎ(ݔଵ) (ଶݔ)ݎ ,4.5= = (ଷݔ)ݎ ,3 = (ସݔ)ݎ ,3.5 = (ହݔ)ݎ ,1 = 3. Then, according to equation (7), it is possible to 
generate the corresponding FPR as follows:  

ܲ = ۈۉ
ۇ 0.5 0.29 0.36 0 0.290.71 0.5 0.57 0.21 0.50.64 0.42 0.5 0.14 0.431 0.79 0.86 0.5 0.790.71 0.5 0.57 0.21 0.5 ۋی

 .ۊ
Differently from the previous example, in Example 3 there is no need to complete the FPR with 
techniques coming from section 2. Moreover, the resulting FPR is additive consistent. 

5. From FPR to Fuzzy Ranking 
In some cases it can be useful to translate the preferences expressed with a FPR P back to a fuzzy 
ranking. This process can help making manifest and easy to understand experts’ defined FPRs or 
obtaining a meaningful ranking of available alternatives from the collective FPR.  
In both cases it is needed to calculate the degree of preference ߶(ݔ௜) of each ݔ௜ ∈ ܺ from P as explained 
in section 2. Then, the fuzzy ranking ܴ = ൫ݔఙ(ଵ) ݏଵ ݔఙ(ଶ)  ߪ ఙ(௡)൯ is obtained whereݔ ௡ିଵݏ ఙ(௡ିଵ)ݔ  … 
is a permutation function such that ߶൫ݔఙ(௜)൯ ≥ ߶൫ݔఙ(௜ାଵ)൯ and ݏ௜ ∈ ܵ for any ݅ ∈ {1, … , ݊ − 1}. Two 
approaches can be then adopted (reversing the approaches proposed in section 4) to identify the symbols ݏଵ, … ,   .௡ିଵݏ
Given two adjacent alternatives ݔఙ(௜) and ݔఙ(௜ାଵ) in R, the first approach determines the intermediate 
symbol ݏ௜ from the preference value ݌ఙ(௜)ఙ(௜ାଵ) of P as follows: 
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௜ݏ  = ۔ۖەۖ
≈ۓ if ఙ(௜)ఙ(௜ାଵ)݌ < 0.54≥ if 0.54 ≤ ఙ(௜)ఙ(௜ାଵ)݌ < 0.62> if 0.62 ≤ ఙ(௜)ఙ(௜ାଵ)݌ < 0.75≫ if ఙ(௜)ఙ(௜ାଵ)݌ ≥ 0.75  (8) 

for any ݅ ∈ {1, … , ݊ − 1}, where the threshold values 0.54, 0.62 and 0.75 are obtained by averaging each 
pair of subsequent preference degree values from Table 1. This approach is feasible when the FPR to be 
translated respects additive transitivity property i.e. when every FPR value is consistent to the others. 
Otherwise, it may happen that one or more non-coherent values are selected and then incongruent 
ranking symbols generated.  

Example 4. From the additive consistent FPR P resulting from Example 3 it is possible to generate the 
degree of preference of each alternative in terms of Net Flow according to equation (4) as follows: ߶ேி(ݔଵ) = −2.14; ߶ேி(ݔଶ) = 0; ߶ேி(ݔଷ) = −0.71; ߶ேி(ݔସ) = 2.86; ߶ேி(ݔହ) = 0. By ordering 
alternatives based on these values, it is possible to obtain the ordinal ranking: ݔସ ≻ ଶݔ ≻ ହݔ ≻ ଷݔ  ଵ. The corresponding fuzzy ranking and the related separators can be obtained from equation (8) basedݔ≺
on the FPR values: ݌ସ,ଶ = ଶ,ହ݌ ;0.79 = ହ,ଷ݌ ;0.5 = ଷ,ଵ݌ ;0.57 = 0.64 as follows: ܴ = ସݔ) ≫ ଶݔ ହݔ≈ ≥ ଷݔ >  .(ଵݔ

Given two adjacent alternatives ݔఙ(௜) and ݔఙ(௜ାଵ) in a fuzzy ranking R, the second approach determines 
the intermediate symbol ݏ௜ from the degrees of preference ߶൫ݔఙ(௜)൯ and ߶൫ݔఙ(௜ାଵ)൯ associated to the 
alternatives according to methods described in section 2: 

௜ݏ  = ۔ۖەۖ
≈ۓ if ߶൫ݔఙ(௜ାଵ)൯ − ߶൫ݔఙ(௜)൯ < 0.25 ⋅ ≤ߜ if 0.25 ⋅ ߜ ≤ ߶൫ݔఙ(௜ାଵ)൯ − ߶൫ݔఙ(௜)൯ < 0.75 ⋅ <ߜ if 0.75 ⋅ ߜ ≤ ߶൫ݔఙ(௜ାଵ)൯ − ߶൫ݔఙ(௜)൯ < 1.5 ⋅ ≪ߜ if ൫ݔఙ(௜ାଵ)൯ − ߶൫ݔఙ(௜)൯ ≥ 1.5 ⋅ ߜ  (9) 

where ߜ is the average difference between the degrees of preference of two subsequent alternatives in 
the ranking: 

ߜ  = 1݊ − 1 ෍ ቀ߶൫ݔఙ(௜ାଵ)൯ − ߶൫ݔఙ(௜)൯ቁ௡ିଵ
௜ୀଵ  (10)

and the threshold values 0.25, 0.75, 0.75 are obtained by averaging each pair of subsequent relative 
strength values from Table 1.  
Being based only on preference degrees associated to each alternative, the second approach is insensible 
to the consistency of the original FPR. Moreover, any transformations introduced in the calculation of 
such degrees of preference according to the methods described in section 2, is considered in the selection 
of the ranking symbols too. 

Example 5. From the FPR resulting from Example 3, after having generated the degree of preference 
of each alternative in terms of Net Flow, as seen in Example 4, the resulting ordinal ranking is: ݔସ ଶݔ≺ ≻ ହݔ ≻ ଷݔ ≻ ߜ ଵ. By applying equation (10) on such degrees of preferences we obtainݔ = 1.25. 
Basing on equation (9) we can then obtain the fuzzy ranking of available alternatives as: ܴ = ସݔ) ଶݔ≪ ≈ ହݔ ≥ ଷݔ >  .(ଵݔ

6. Partial and Multiple Fuzzy Rankings 
As specified in section 3, each alternative appears at most once in a fuzzy ranking so partial rankings 
i.e. rankings involving only k alternatives with ݇ < ݊, are admitted. The exclusion of one or more 
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alternatives from a fuzzy ranking means that the expert who defined the ranking is unable to evaluate 
such alternatives or she considers them incomparable to the others.  
In such cases, the transformation methods defined in section 4 produce incomplete FPRs. In particular, 
if R is a partial fuzzy ranking on the set X and ܲ = ൫݌௜௝൯ is the corresponding FPR obtained with 
equations (5) or (6)-(7), for any ݔ௜ ∈ ܺ not included in R, the corresponding elements ݌௜௝ and ݌௝௜ remain 
undefined for any ݆ ∈ {1, … , ݊}. Unfortunately, in this case, missing values cannot be estimated through 
equations (2)-(3) given that no estimators exist for missing values. In [37], the authors refer to this case 
as an ignorance situation and suggest to initialize missing values with some seed values that are 
subsequently refined through an iterative process based on equations (2)-(3) to make them as consistent 
as possible with the existing values. 

Example 6. Let ܴ = ସݔ) ≫ ହݔ ≈ ଶݔ > ܺ ଵ) be a partial fuzzy ranking onݔ = ,ଵݔ} … ,  ହ}, usingݔ
equation (6) with relative strength values coming from Table 1, we obtain the fractional rank of each 
alternative involved in R as: ݎ(ݔଵ) = (ଶݔ)ݎ ,4 = (ସݔ)ݎ ,3 = (ହݔ)ݎ ,1 = 3. The fractional rank of ݔଷ is 
undefined given that it does not appear in R. According to equation (7), it is then possible to generate 
the corresponding FPR as follows:  

ܲ = ۈۉ
ۇ 0.5 0.33 − 0 0.330.67 0.5 − 0.17 0.5− − − − −1 0.83 − 0.5 0.830.67 0.5 − 0.17 0.5 ۋی

 .ۊ
The third row and the third column of P are undefined because no information has been provided on ݔଷ. To complete P it is possible to inject seed values coming from other experts or similar alternatives 
according to [37]. The simpler (and rougher) method is to set undefined preferences to 0.5 assuming 
the indifference between ݔଷ and any other alternative and then iterate equations (2)-(3) until 
convergence obtaining the following updated version of P: 

ܲ = ۈۉ
ۇ 0.5 0.33 0.33 0 0.330.67 0.5 0.47 0.17 0.50.67 0.53 0.5 0.27 0.531 0.83 0.73 0.5 0.830.67 0.5 0.47 0.17 0.5 ۋی

 .ۊ
As anticipated in section 3, experts may be allowed to provide multiple fuzzy rankings: sets of partial 
fuzzy rankings ܴଵ, … , ܴ௟ interesting disjoint subsets of X i.e. so that if an alternative ݔ௜ ∈ ܺ appears in 
a component fuzzy ranking ܴ ௝ with ݆ ∈ {1, . . , ݈}, then ݔ௜ does not appear in any other component ranking ܴ௞ with ݇ ∈ {1, . . , ݈} ∖ {݆}. The use of multiple fuzzy rankings allows experts to deal with subsets of 
alternatives they consider as mutually incomparable. 
To simplify the notation we can represent a multiple fuzzy ranking within a single sequence ܴ =൫ݔఙ(ଵ) ݏଵ ݔఙ(ଶ)  ఙ(௞)൯ where terms in even positions belong to the upgraded set ofݔ ௞ିଵݏ ఙ(௞ିଵ)ݔ  … 
symbols ܵ ∪ {∧}. The additional symbol ∧ is used to interlock the component rankings ܴଵ, … , ܴ௟ 
interesting disjoint subsets of X. Also in this case each alternative appears at most once in the ranking 
although partial rankings are admitted. 

Example 7. The fuzzy ranking ܴ = ସݔ) ≫ ଵݔ ∧ ଶݔ ≥ ଷݔ > ܺ ହ) defined onݔ = ,ଵݔ} … ,  ହ} states thatݔ
the fourth alternative is much better than the fifth one and that the second one is a little better than the 
third one that, in turn, is better than the first one. Moreover it manifests the expert’s inability to compare 
alternatives coming from the subset {ݔଵ, ,ଶݔ} ସ} with alternatives coming fromݔ ,ଷݔ  .{ହݔ

To obtain a FPR P from a multiple fuzzy ranking R it is enough to iterate equations (5) or (6)-(7) on any 
component ranking ܴଵ, … , ܴ௟ of R and merge the obtained FPRs ଵܲ, … , ௟ܲ. Being ܴଵ, … , ܴ௟ partial fuzzy 
rankings interesting disjoint subsets of X, for any pair of alternatives ݔ௜, ௝ݔ ∈ ܺ there exist at most one 
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FPR ௞ܲ = ൫݌௜௝௞ ൯ with ݇ ∈ {1, … , ݈} so that ݌௜௝௞  is defined. For this reason, any element ݌௜௝ of the overall 
FPR P can be obtained from the elements of ଵܲ, … , ௟ܲ as follows: 

௜௝݌  = ௜௝௞݌ : ݇ ∈ {1, … , ݈}, ௜௝௞݌ is defined. (11)

When for some ݅, ݆ ∈ {1, … , ௜௝௞݌ ,{݊  is undefined for any ݇ ∈ {1, … , ݈} then ݌௜௝ remains undefined too. 
This case happens when ݔ௜ and ݔ௝ only appear in different component rankings of R or when either ݔ௜ 
or ݔ௝ do not appear at all in any component ranking of R. In particular, the latter case happens when the 
multiple ranking is also a partial ranking. 

Example 8. The multiple fuzzy ranking ܴ = ସݔ) ≫ ଵݔ ∧ ଶݔ ≥ ଷݔ >  ହ) coming from the previousݔ
example can be split in the two component rankings ܴଵ = ସݔ) ≫ ଵ) and ܴଶݔ = ଶݔ) ≥ ଷݔ >  .(ହݔ
Applying equation (6) we obtain that ݎ(ݔଵ) = (ଶݔ)ݎ ,3 = 1 from ܴଵ and ݎ(ݔଶ) = (ଷݔ)ݎ ,1 = (ହݔ)ݎ ,1.5 = 2.5 from ܴ ଶ. Applying equation (7) on such fractional ranks we then obtain the following FPRs:  

ଵܲ = ۈۉ
0.5ۇ − − 0 −− − − − −− − − − −1 − − 0.5 −− − − − ۋی−

ۊ ; ଶܲ = ۈۉ
−ۇ − − − −− 0.5 0.67 − 1− 0.33 0.5 − 0.83− − − − −− 0 0.17 − 0.5 ۋی

 .ۊ
Merging ଵܲ and ଶܲ through equation (11) the following FPR is obtained: 

ܲ = ۈۉ
0.5ۇ − − 0 −− 0.5 0.67 − 1− 0.33 0.5 − 0.831 − − 0.5 −− 0 0.17 − 0.5 ۋی

 .ۊ
As it can be seen, preference values between alternatives from {ݔଵ,  ସ} (that are referenced in ܴଵ) andݔ
alternatives from {ݔଶ, ,ଷݔ  ହ} (that are referenced in ܴଶ) remain undefined. As for Example 6 it isݔ
possible to estimate missing values with methods proposed in [37]. 

7. Similarity Between Fuzzy Rankings 
In GDM problems, each expert ݁௜ ∈ ܺ defines an individual fuzzy ranking ܴ௜ on the same set ܧ ,ଵݔ}= … ,  ௡}. To assess the level of agreement between experts, it is useful to define similarity measuresݔ
between fuzzy rankings. A possible approach for that is to extend to fuzzy rankings existing similarity 
measures defined on ordinal rankings like Kendall’s and Spearman’s rank correlation coefficients. 
Let ܱ ௜ and ௝ܱ be two ordinal rankings on X, the Kendall’s rank correlation coefficient [38, 39] is defined 
as: 

 ߬൫ ௜ܱ, ௝ܱ൯ = 2(ܿ௜௝ − ݀௜௝)݊(݊ − 1)  (12)

where ܿ௜௝ is the number of concordant pairs and ݀௜௝ the number of discordant pairs between ௜ܱ and ௝ܱ. 
A concordant pair is pair of alternatives of X which have the same order in the two rankings while a 
discordant pair is a pair of alternatives which have the opposite order in the two rankings. 
To extend the Kendall’s rank correlation coefficient to fuzzy rankings it is needed to redefine ܿ௜௝ and ݀௜௝ based on the notion of fractional rank given in section 4 so taking ties and partial rankings into 
account. If ݎ௜(ݔ௞) denotes the fractional rank of an alternative ݔ௞ ∈ ܺ in a fuzzy ranking ܴ௜ and ݎߜ௞௟௜ (௞ݔ)௜ݎ= − ,௞ݔ for (௟ݔ)௜ݎ ௟ݔ ∈ ܺ, we can say that (ݔ௞,  ௟) is a concordant pair between two ranking ܴ௜ andݔ
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௝ܴ on X if both alternatives appear in both rankings and the condition ݎߜ௞௟௜ ⋅ ௞௟௝ݎߜ > 0 or ݎߜ௞௟௜ = ௞௟௝ݎߜ = 0 
is verified (i.e. ݎߜ௞௟௜  and ݎߜ௞௟௝  are both positive, both negative or both 0). Conversely, (ݔ௞,  ௟) is aݔ
discordant pair if both alternatives appear in ܴ௜ and ௝ܴ but the preceding condition is not met (i.e. ݎߜ௞௟௜  
and ݎߜ௞௟௝  are one positive and the other negative or one equal to 0 and the other different from 0).  
Based on ܿ௜௝ and ݀௜௝ we can define the Kendall’s correlation coefficient for fuzzy rankings as: 

 ߬൫ܴ௜, ௝ܴ൯ = 2(ܿ௜௝ − ݀௜௝)݇݉ܽݔ௜௝൫݇݉ܽݔ௜௝ − 1൯ (13)

where ݇݉ܽݔ௜௝ = max൫݇௜, ௝݇൯ while ݇௜ and ௝݇ are the number of alternatives involved, in turn, in ܴ௜ and ௝ܴ (with ݇௜, ௝݇ ≤ ݊). 

Example 9. Let ܴଵ, … , ܴହ be the fuzzy rankings shown in the first column of Table 2, defined on ܺ ,ଵݔ}= … ,  ହ}. Using equation (6) we obtain, for each ranking ܴ௜, the fractional ranks reported in columnsݔ
2-6 of the same table. Then, exploiting the definition of concordant and discordant pairs, we obtain: ܿଵ,ଶ = 6, ܿଵ,ଷ = 10, ܿଵ,ସ = 6, ܿଵ,ହ = 1, ݀ଵ,ଶ = 4, ݀ଵ,ଷ = 0, ݀ଵ,ସ = 0, ݀ଵ,ହ = 9. By considering that ݇݉ܽݔ௜௝ = 5 for any  ݅, ݆ ∈ {1, … ,5} we obtain from equation (13): ߬(ܴଵ, ܴଶ) = 0.2 (weak positive 
correlation), ߬(ܴଵ, ܴଷ) = 1 (equivalence), ߬(ܴଵ, ܴସ) = 0.6 (moderate positive correlation), ߬(ܴଵ, ܴହ) = −0.8 (strong negative correlation).  

Ranking ݎ௜(ݔଵ) ݎ௜(ݔଶ) ݎ௜(ݔଷ) ݎ௜(ݔସ) ݎ௜(ݔହ) ܴଵ = ସݔ) ≫ ହݔ ≈ ଶݔ ≥ ଷݔ > ଵ)  4.5 3 3.5 1 3 ܴଶݔ = ହݔ) > ସݔ ≥ ଷݔ ≥ ଶݔ ≈ ଵ)  3 3 2.5 2 1 ܴଷݔ = ସݔ) ≥ ହݔ ≈ ଶݔ ≫ ଷݔ ≥ ଵ)  4 1.5 3.5 1 1.5 ܴସݔ = ସݔ) ≫ ହݔ ≈ ଶݔ > ଵ)  4 3 − 1 3 ܴହݔ = ଷݔ) ≈ ଵݔ ≥ ହݔ ≫ ସݔ ≥  ହ)  1 1.5 1 3.5 4ݔ

Table 2. Five sample fuzzy rankings and the fractional rank of each involved alternative 

A limit of the Kendall’s correlation coefficient is that it considers only the position of alternatives in the 
ranking disregarding the preference gaps quantified by the separators. In addition, it can bring some 
pragmatic issues in case the rankings are not precise as outlined in [40]. In fact, in Example 9, ܴଵ and ܴଷ are considered as equivalent even if, by looking at the separators used, we can see that the experts’ 
beliefs captured by the two rankings are quite different. In fact the preference gap between ݔସ and ݔହ is 
wide in ܴଵ and thin in ܴଷ while the preference gap between ݔଶ and ݔଷ is thin in ܴଵ and wide in ܴଷ [16]. 
In [41] the Spearman’s correlation coefficient is introduced as a measure of consensus in GDM 
problems modeled with FPRs. Following that results, with the aim of taking fuzzy separators into 
account when computing the similarity between fuzzy rankings, we introduce the Spearman’s 
correlation coefficient for fuzzy rankings as an extension of the homonymous correlation coefficient for 
ordinal rankings defined in [42] as follows: 

,൫ܴ௜ߩ  ௝ܴ൯ = ∑ (௞ݔ)௜ݎ) − (௞ݔ)௝ݎపഥ)൫ݎ − ∑ఫഥ൯௡௞ୀଵටݎ (௞ݔ)௜ݎ) − పഥ)௡௞ୀଵݎ ଶ ට∑ ൫ݎ௝(ݔ௞) − ఫഥ൯௡௞ୀଵݎ ଶ (14) 

where ݎపഥ = ଵ௡ ∑ ௡௞ୀଵ(௞ݔ)௜ݎ  is the average fractional rank extracted from ܴ௜ and ݎఫഥ is the average fractional 
rank extracted from ܴ௝ in the same way.  
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Example 10. Let ܴଵ, … , ܴହ be the fuzzy rankings defined in Example 9 and summarized in Table 2 with 
their fractional ranks. By applying equation (14) we obtain the following values for the Spearman’s 
correlation coefficient: ߩ(ܴଵ, ܴଶ) = 0.41 (moderate positive correlation), ߩ(ܴଵ, ܴଷ) = 0.83 (strong 
positive correlation), ߩ(ܴଵ, ܴସ) = 0.97 (very strong positive correlation), ߩ(ܴଵ, ܴହ) = −0.68 
(moderate negative correlation).  

By looking at the results of Example 10, it can be seen that ܴଵ and ܴଷ are only strongly correlated 
according to the Spearman’s coefficient rather than equivalent as in the previous case. This happens 
because the Spearman’s coefficient, being based on differences between fractional ranks, also takes into 
account the preference gaps quantified by the separators that are used within the fuzzy ranking.  

8. Comparison with Related Works 
To the best of our knowledge, the concept of fuzzy ranking is quite new. We have presented a first 
definition of this model in [15] with the name of ranking string together with a translation method to 
FPR (the first approach seen in section 4). In [16], we have defined a new, more performing translation 
method to FPR (the second approach seen in section 4). In the present work, after having formalized 
and extended the model outlined in such previous papers, we have included useful special cases (like 
partial and multiple fuzzy rankings), defined conversion functions from FPR backward to fuzzy ranking 
as well as similarity measures. 
An alternative formulation of the fuzzy ranking concept has been recently proposed in [43] as a 
generalization of crisp rankings. While in a crisp ranking each object is assigned just one position, in 
the fuzzy ranking model defined in [43], the same object may be assigned to many positions with 
different degrees of membership. So, to characterize it, an ݊ × ݊ ordering matrix R is used whose generic 
element ݎ௜௝ ∈ [0,1] denotes the membership degree of the i-th object to the j-th position and ∑ ௜௝ݎ =௡௜ୀଵ ∑ ௜௝ݎ =௡௝ୀଵ 1 for all ݅, ݆ ∈ {1, … , ݊}. 
The main difference with respect our model resides in the way the ranking concept is fuzzyfied. Instead 
of allowing the same object belong to multiple positions, in fact, our model allows to extend or contract 
the gap between subsequent positions to reinforce or weaken the ordering relation. As well as being 
more useful to support preferences expression in GDM, our approach also allows the use of a more 
compact and user-friendly notation for rankings definition. The definition of an ordering matrix, like 
that needed for the model described in [43] is in fact quite difficult and comparable to the direct 
definition of a FPR, nullifying in this way any advantage carried out by the adoption of an alternative 
model.  
In [44, 45] the Linguistic Preference Relations (LPR) have been defined as an alternative to the FPR. In 
LPR, the relative preference of each alternative with respect to any other is expressed with a linguistic 
term (that is subsequently converted into a fuzzy number) rather than with a membership degree in [0,1]. 
A LPR can be so represented with an ݊ × ݊ matrix ܲ =  ௜௝ states the݌ where each element (௜௝݌)
linguistically assessed preference degree of the alternative ݔ௜ over ݔ௝. 
Similarly to LPRs, fuzzy rankings allow to specify fuzzy statements about pairs of alternatives, 
differently from LPRs (where a linguistic term must be chosen for every pair of alternatives), in fuzzy 
rankings a fuzzy statement is specified only for a subset of all possible pairs i.e. only for alternatives 
that are adjacent in the ranking. On one hand, this allows fuzzy rankings to adopt a more compact and 
meaningful notation; on the other hand, it is possible to easily infer missing preferences by avoiding 
inconsistencies. Moreover, while fuzzy rankings can be transformed in FPRs and processed with 
standard GDM methods and tools, LPRs need specific fuzzy extensions of such methods and tools. 
A topic quite related to fuzzy rankings is that of fuzzy numbers ranking. How to rank fuzzy numbers is 
an important problem in GDM, and is particularly felt when experts use fuzzy estimates (maybe 
expressed in form of linguistic terms) to specify their preferences. According to [46], more than 30 fuzzy 
ranking indices have been proposed since 1976 for this purpose. By directly using fuzzy rankings instead 
of fuzzy estimates to specify preferences can be considered as a convenient and user-friendly method to 
overcome the fuzzy numbers ranking issue. 



 12

In [47, 48] the FSQL language has been proposed to handle fuzzy information within databases. In order 
to perform queries involving fuzzy quantities, such language introduces several fuzzy comparators like: 
F= (fuzzy equal than), F<> (fuzzy different to), F> (fuzzy greater than), F>= (fuzzy greater or equal 
than), F< (fuzzy less than), F<= (fuzzy less or equal than), F≫ (fuzzy much greater than), F≪ (fuzzy 
much less than) where each comparator is associated to an algorithm able to compare fuzzy numbers as 
those used for ranking.  
As it can be noted, there is a substantial similarity between symbols used by fuzzy comparators and 
those adopted by fuzzy rankings. Nevertheless, fuzzy rankings use such symbols to state fuzzy relations 
about crisp objects rather than to assess if a crisp relation exists between fuzzy quantities. For this reason, 
even if syntactically similar, the semantics under these symbols is very different. 

9. Final Remarks 
This paper defines a new approximate preference model for GDM named fuzzy ranking that combines 
the user-friendliness of the ordinal ranking model with the expressive capability of FPRs. Like FPRs, 
fuzzy rankings allow experts to focus on two alternatives at a time, in fact meaningful separators must 
be placed between pair of alternatives. Differently from FPRs it is not needed to assess preference 
degrees for any pair of available alternatives (resulting in ݊ଶ comparisons with n alternatives) but just 
for adjacent alternatives in the defined ranking (resulting in just ݊ − 1 comparisons). 
Fuzzy rankings offer a compact notation that do not impose unnecessary precision in preference 
definition. In this way it is impossible to introduce inconsistencies in the GDM process while allowing 
to reason by approximation. The impossibility to evaluate alternatives is supported with partial fuzzy 
rankings while the incomparability between alternatives is allowed through multiple fuzzy rankings. To 
let use standard GDM methods and tools even when preferences are expressed with fuzzy rankings 
translation functions to and from FPRs are provided as well as similarity measures to assess the 
convergence of experts’ opinions. 
Fuzzy rankings have been already experimented even for the expression of ordinal assessment 
statements within a work aimed at the application of GDM techniques in peer grading [15] and for the 
collection of expert preferences within a GDM model guided by social influence [16, 49]. The first 
outcomes regarding their adoption are positive both when supported by results coming from in-silico 
experiments (like in [15, 16]) than when such models are applied in real contexts (like in [50, 51]) and 
encourage its application in further application contexts [52, 53]. 
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