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Abstract

In this paper the Geometric Defuzzification strategy for type-2 fuzzy sets is reap-
praised. For both discretised and geometric fuzzy sets the techniques for type-1,
interval type-2, and generalised type-2 defuzzification are presented in turn. In the
type-2 case the accuracy of Geometric Defuzzification is assessed through a series
of test runs on interval type-2 fuzzy sets, using Exhaustive Defuzzification as the
benchmark method. These experiments demonstrate the Geometric Defuzzifier
to be wildly inaccurate. The test sets take many shapes; they are not confined
to those type-2 sets with rotational symmetry that have previously been acknowl-
edged by the technique’s developers to be problematic as regards accuracy. Type-
2 Geometric Defuzzification is then examined theoretically. The defuzzification
strategy is demonstrated to be built upon a fallacious application of the concept
of centroid. This explains the markedly inaccurate experimental results. Thus the
accuracy issues of type-2 Geometric Defuzzification are revealed to be inevitable,
fundamental and significant.

Keywords: Geometric Type-2 FIS, Geometric Defuzzification, Type-2
Defuzzification, Interval Type-2 Fuzzy Set, Centroid, Fallacy

1. Introduction

This paper is a critique of the technique of Geometric Defuzzification for type-
2 fuzzy sets. Fuzzy set theory, and its correlate, fuzzy logic, were originated by
Lotfi Zadeh [26] in the 1960s. Fuzzy logic is implemented in software through
the Fuzzy Inferencing System (FIS), which may be of any type. The type of the
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FIS is determined by the highest type of the fuzzy sets employed within it. There
are two sorts of type-2 FISs: 1. The Mamdani FIS for which the membership
function output is a type-2 fuzzy set that requires defuzzification; 2. The Takagi-
Sugeno-Kang FIS, with output membership functions that are either constant or
linear; defuzzification is therefore unnecessary. This paper, following the work on
Geometric Defuzzification, is concerned solely with the Mamdani style FIS.

A Mamdani FIS (of any type) consists of three stages: fuzzification, inferenc-
ing, and defuzzification:

1. Fuzzification is the process in which a crisp input value’s degree of mem-
bership of a fuzzy set is determined, based on the membership function of
the fuzzy set.

2. Inferencing, which may be further subdivided into three stages: (a) An-
tecedent computation; (b) Implication; (c) Aggregation. The fuzzy set out-
put by this stage is termed the aggregated set.

3. Defuzzification, in which the aggregated set is transformed into a crisp
number, the output of the FIS.

The Geometric Defuzzification technique may be applied unproblematically to
type-1 fuzzy sets [2].

Type-2 defuzzification conventionally breaks down into two stages [23] (Fig-
ure 1):

1. Type-reduction, which transforms the type-2 fuzzy set into a type-1 fuzzy
set;

2. Type-1 defuzzification of the resultant fuzzy set, converting it into a crisp
number.

Type-reduction in the mathematically justified form of Exhaustive Defuzzifica-
tion [11] (Subsection 3.1) is notoriously computationally complex, inspiring re-
searchers to develop alternative approximate strategies [10–12, 16–19], among
them Coupland and John, the authors of the Geometric Defuzzifier. They express
the motivation for their innovation thus [6, page 929]:

“DEFUZZIFICATION is a critical stage in any Mamdani fuzzy in-
ference system (FIS). It needs to be simple enough to permit system
execution in real time on embedded hardware and yet must be precise
and accurate so that correct decisions are taken.”
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Figure 1: The Mamdani Type-2 FIS [13].
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The type-2 Geometric Defuzzifier is appealingly simple as it totally eliminates
the stage of type-reduction. Dating from 2005, when the interval version was
presented [4], the method has been published since in [6–8] in both its interval
and generalised versions. In the context of the Geometric FIS, the technique has
been presented in [2, 3, 5].

That this technique performs unreliably with certain forms of type-2 fuzzy set
was acknowledged by its developers in 2008:

“The only known form of a set that is problematic for the Geometric
Defuzzifier is one that has rotational symmetry.” [6, page 940]

This caveat was reiterated in 2013 [7, page 95].
The purposes of the present paper are:

• To show that the type-2 Geometric Defuzzifier’s accuracy issues are per-
vasive and endemic across type-2 sets of all shapes, not just those that are
rotationally symmetrical;

• To reveal the flawed reasoning underlying type-2 Geometric Defuzzifica-
tion.

Geometric fuzzy sets are presented as differing conceptually from discretised
fuzzy sets [2, 5], but it is disputable whether the distinction is more than super-
ficial. At any rate the definitions of geometric and discretised fuzzy sets permit
creation of type-1 and type-2 fuzzy sets that may be construed as either geometric
or discretised. The interval type-2 fuzzy sets deployed as examples below are of
this dual nature.

The structure of the remainder of this paper is as follows: The next section
deals with background, definitions and assumptions relevant to the rest of the
paper, after which, in Section 2, the defuzzification of type-1 fuzzy sets is dis-
cussed. Following that, Section 3 explores type-2 defuzzification. In Section 4,
the Geometric Defuzzifier is experimentally evaluated in relation to the defuzzifi-
cation of interval type-2 fuzzy sets. In Section 5 the fundamental flaw with type-2
Geometric Defuzzification is revealed. Section 6 concludes the paper, offering
suggestions for further research.

1.1. Preliminaries
1.1.1. Fuzzy Sets: Definitions

“Let X be a universe of discourse. A type-1 fuzzy set A on X is characterised
by a membership function µA : X → [0,1] and can be expressed as follows [26]:

A = {(x,µA(x))| µA(x) ∈ [0,1]∀x ∈ X}. (1)
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Note that the membership grades of A are crisp numbers. In the following we will
use the notation U = [0,1].” [12]

“Let P̃(U) be the set of fuzzy sets in U . A type-2 fuzzy set Ã in X is a fuzzy set
whose membership grades are themselves fuzzy [27–29]. This implies that µÃ(x)
is a fuzzy set in U for all x, i.e. µÃ : X → P̃(U) and

Ã = {(x,µÃ(x))| µÃ(x) ∈ P̃(U)∀x ∈ X}. (2)

It follows that ∀x ∈ X ∃Jx ⊆U such that µÃ(x) : Jx→U. Applying (1), we obtain:

µÃ(x) = {(u,µÃ(x)(u))| µÃ(x)(u) ∈U∀u ∈ Jx ⊆U}. (3)

X is called the primary domain and Jx the primary membership of x while U is
known as the secondary domain and µÃ(x) the secondary membership of x.

Putting (2) and (3) together we obtain

Ã = {(x,(u,µÃ(x)(u)))| µÃ(x)(u) ∈U,∀x ∈ X ∧∀u ∈ Jx ⊆U}.” [15] (4)

Definition 1 (Interval Type-2 Fuzzy Set [14]). “An interval type-2 fuzzy set is a
type-2 fuzzy set whose secondary membership grades are all 1.”

For interval type-2 fuzzy sets, Equation 4 reduces to:

Ã = {(x,(u,1)), ∀x ∈ X ∧∀u ∈ Jx ⊆U}. (5)

Definition 2 (Embedded Set [14]). “Let Ã be a type-2 fuzzy set in X. For discrete
universes of discourse X and U, an embedded type-2 set Ãe of Ã is defined as the
following type-2 fuzzy set

Ãe = {(xi,(ui,µÃ(xi)(ui)))|∀i ∈ {1, . . . ,N} : xi ∈ Xui ∈ Jxi ⊆U}. (6)

Ãe contains exactly one element from Jx1 , Jx2 , . . . , JxN , namely u1, u2, . . . , uN ,
each with its associated secondary grade, namely µÃ(x1)(u1), µÃ(x2)(u2), . . .,
µÃ(xN)(uN).”

Definition 3 (Slice [14]). “A slice of a type-2 fuzzy set is a plane either

1. through the x-axis, parallel to the u-z plane, or

2. through the u-axis, parallel to the x-z plane.”

Definition 4 (Vertical Slice [14, 24]). “A vertical slice of a type-2 fuzzy set is a
plane through the x-axis, parallel to the u-z plane.”
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Definition 5 (Horizontal Slice). A horizonal slice of a type-2 fuzzy set is a plane
through the u-axis, parallel to the x-z plane.

Definition 6 (Footprint Of Uncertainty [12]). “FOU stands for Footprint Of Un-
certainty, the projection of the type-2 fuzzy set onto the x-u plane.”

Definition 7 (Lower Membership Function [12]). “The Lower Membership Func-
tion (LMF) of a type-2 fuzzy set is the type-1 membership function associated with
the lower bound of the FOU.”

Definition 8 (Upper Membership Function [12]). “The Upper Membership Func-
tion (UMF) of a type-2 fuzzy set is the type-1 membership function associated with
the upper bound of the FOU.”

Definition 9 (Vertical Symmetry). A fuzzy set has vertical symmetry if it has re-
flectional symmetry in a vertical slice.

Definition 10 (Horizontal Symmetry). A fuzzy set has horizontal symmetry if it
has reflectional symmetry in a horizontal slice.

Definition 11 (Degree of Discretisation [14]). “The degree of discretisation is the
separation of the slices.”

For a type-2 fuzzy set discretisation is applied to both the primary and secondary
domains. The primary domain is discretised into vertical slices. The primary and
secondary domains do not necessarily have the same degree of discretisation and
that of the secondary domain may vary from one vertical slice to another.

1.1.2. Geometric Fuzzy Sets: Definitions
Definition 12 (Geometric Type-1 Fuzzy Set [7]). “A geometric type-1 fuzzy set is
a series of ordered vertices that are connected by line segments to form a function
over a continuous domain. This function is linear in all but a finite set of points. A
geometric fuzzy set A over the domain X consists of pairs of vertices (x,y) where
the x ∈ X and the y components of all the vertices are in the interval [0,1] i.e.,

µA : X → [0,1].”

Definition 13 (Generalised Geometric Type-2 Fuzzy Set [7]). “A geometric type-
2 fuzzy set is defined as a collection of n triangles in 3D space where the edges of
these triangles connect to form a 3D polyhedron, i.e.

Ã =
⋃

i=1...n

t i where t i =

 xi
1 yi

1 zi
1

xi
2 yi

2 zi
2

xi
3 yi

3 zi
3


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where xi
1,x

i
2 and xi

3 ∈ X and yi
1,y

i
2,y

i
3,z

i
1,z

i
2 and zi

3 ∈ [0,1].”

Definition 13 is readily adapted to the interval geometric type-2 fuzzy set:

Definition 14 (Interval Geometric Type-2 Fuzzy Set). An interval geometric type-
2 fuzzy set is defined as a collection of n triangles in 3D space where the edges of
these triangles connect to form a 3D polyhedron, i.e.

Ã =
⋃

i=1...n

t i where t i =

 xi
1 yi

1 1
xi

2 yi
2 1

xi
3 yi

3 1


where xi

1,x
i
2 and xi

3 ∈ X and yi
1,y

i
2 and yi

3 ∈ [0,1].

As with the discretised interval type-2 fuzzy set, the geometric interval type-2
fuzzy set is completely defined by its FOU.

1.1.3. Assumptions
1. It is assumed, without loss of generality, that a type-2 fuzzy set is contained

in the unit cube and may be regarded as a set of points of the form (x,u,z).

2. The centroid method of type-1 defuzzification is employed throughout the
research reported below.

3. Exhaustive Defuzzification is taken to be the standard for accuracy for the
defuzzification of type-2 fuzzy sets.

4. The minimum t-norm is used in Exhaustive Defuzzification.

The next section concerns the defuzzification of discretised and geometric
type-1 fuzzy sets.

2. Defuzzification of Type-1 Fuzzy Sets

2.1. Conventional Type-1 Defuzzification
Definition 15 (Centroid of a Discretised Type-1 Fuzzy Set). “Let A be a non-
empty type-1 fuzzy set discretised into m vertical slices at x1, x2, . . . , xm. The
centroid of A is calculated by this formula:

XA =

i=m

∑
i=1

µA(xi)xi

i=m

∑
i=1

µA(xi)

.′′

7



2.2. Geometric Type-1 Defuzzification
To defuzzify a geometric type-1 fuzzy set, its membership function is con-

verted into a closed polygon by the inclusion of points on the x-axis, and if neces-
sary points on x = 0 and x = 1 [2].

Definition 16 (Centroid of a Geometric Type-1 Fuzzy Set [5]). “Let A be a non-
empty geometric type-1 fuzzy set augmented to form a closed polygon, consisting
of n vertices (x1,y1), (x2,y2), . . . , (xn,yn). The centroid of A is calculated by this
formula:

XA =

i=n

∑
i=1

(xi + xi+1)(xiyi+1− xi+1yi)

3
i=n

∑
i=1

(xiyi+1− xi+1yi)

.”

The formulae in Definitions 15 and 16 are not equivalent but produce good
approximations to each other.

3. Defuzzification of Type-2 Fuzzy Sets

3.1. Exhaustive Type-Reduction
For type-1 fuzzy sets defuzzification is computationally simple, with a choice

of several strategies, among them the centroid and the centre of maxima [21].
Type-2 defuzzification is conventionally performed in two stages [23]1:

1. Type-reduction, converting the type-2 fuzzy set to a type-1 fuzzy set known
as the Type-Reduced Set (TRS);

2. Defuzzification of the resultant type-1 fuzzy set.

The TRS is defined thus:

Definition 17 (TRS of a Type-2 Fuzzy Set [14]). “The TRS associated with a type-
2 fuzzy set Ã with primary domain X discretised into N points X = {x1,x2, . . . ,xN},

1This algorithm is derived from Zadeh’s Extension Principle [27], which generalises operations
defined on crisp numbers to type-1 fuzzy sets.
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is

CÃ =

{(
∑

N
i=1 xi ·uki

∑
N
i=1 uki

,µÃ(x1)(uk1)∗ . . .

. . .∗µÃ(xN)(ukN )

)∣∣∣∣∣∀(uk1 ,uk2, . . . ,ukN )

∈ Jx1× Jx2× . . .× JxN ⊆UN

}
, (7)

where ∗ is a t-norm.”

Based on Definition 17, Mendel and John’s Representation Theorem [24] pro-
vides a straightforward, precise, type-reduction technique, which when presented
in algorithmic form [12] makes reference to embedded sets (Definition 2). This
algorithm has come to be known as the Exhaustive Method, as it necessitates each
type-1 embedded set to be defuzzified [17]. The defuzzified value is then paired
with the embedded set’s minimum secondary membership grade. The set of or-
dered pairs constitutes the TRS.

Inevitably, discretisation brings approximation with it, but the mathematically
rigourous Exhaustive Method does not engender inaccuracies beyond those pro-
duced by discretisation itself, hence its use as the standard for accuracy com-
parisons [11, 12]. A significant drawback of the Exhaustive Method is its high
computational complexity.

For the interval TRS Definition 17 reduces to:

Definition 18 (TRS of an Interval Type-2 Set [12]). “The TRS associated with
an interval type-2 fuzzy set Ã with primary domain X discretised into N points
X = {x1,x2, . . . ,xN}, is

CÃ =

{(
∑

N
i=1 xi ·uki

∑
N
i=1 uki

,1

)∣∣∣∣∣ ∀(uk1,uk2, . . .

. . . ,ukN ) ∈ Jx1× Jx2× . . .× JxN ⊆UN

}
.” (8)

3.2. Geometric Defuzzification of Interval Type-2 Fuzzy Sets
The Geometric Method avoids type-reduction altogether [4, page 452] “. . . instead

favouring a geometric interpretation of the centre of the FOU of the consequent
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set.” The FOU is already a closed polygon to which the same formula that is used
for type-1 Geometric Defuzzification is applied [2, page 83].

Definition 19 (Centroid of a Geometric Interval Type-2 Fuzzy Set). “Let Ã be
a non-empty geometric interval type-2 fuzzy set whose FOU is in the form of
a closed non-intersecting polygon, consisting of n vertices (x1,y1), (x2,y2), . . . ,
(xn,yn). The centroid of Ã is calculated by this formula:

XÃ =

i=n

∑
i=1

(xi + xi+1)(xiyi+1− xi+1yi)

3
i=n

∑
i=1

(xiyi+1− xi+1yi)

.”

3.3. Geometric Defuzzification of Generalised Type-2 Fuzzy Sets
For generalised type-2 fuzzy sets the interval Geometric Defuzzification strat-

egy is extended from the FOU to the polyhedron enclosing the membership func-
tion [6, page 937], [7, page 94].

Definition 20 (Centroid of a Geometric Generalised Type-2 Fuzzy Set [6, 7]).
“Let Ã be a non-empty geometric generalised type-2 fuzzy set whose membership
function is in the form of a polyhedron made up of q triangles, whereby the ith
triangle t i has vertices (xi

1,y
i
1,z

i
1), the x-value of the centroid of t i = Ci, and the

area of t i = Ai. The centroid of Ã is calculated by these equations:

CÃ =

i=q

∑
i=1

CiAi

i=q

∑
i=1

Ai

,

Ci =
xi

1 + xi
2 + xi

3
3

, and

Ai =
1
2

√√√√√√((yi
2− yi

1)(z
i
3− zi

1)− (yi
3− yi

1)(z
i
2− zi

1))
2+

((xi
2− xi

1)(z
i
3− zi

1)− (xi
3− xi

1)(z
i
2− zi

1))
2+

((xi
2− xi

1)(y
i
3− yi

1)− (xi
3− xi

1)(y
i
2− yi

1))
2.”

The next section reports on experiments assessing the accuracy of Geometric
Defuzzification of interval type-2 fuzzy sets.
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4. Accuracy Evaluation of Geometric Defuzzification for Interval Sets

For type-2 fuzzy sets, the attraction of Geometric Defuzzification is that the
computationally complex stage of type-reduction is removed, making the algo-
rithm computationally simple and therefore very fast. Defuzzification algorithms,
however, must be accurate as well as efficient. Yet the methods’ creators ac-
knowledge there to be an accuracy issue with the outputs of type-2 Geometric
Defuzzification for sets with rotational symmetry [7, page 95]: “Clearly, sets with
rotational symmetry are problematic to geometric type-2 fuzzy logic.” and [6,
page 940]: “The only known form of a set that is problematic for the Geomet-
ric Defuzzifier is one that has rotational symmetry.” They see this as a challenge
[7, page 95]: “For type-2 systems, the problem of defuzzifying type-2 fuzzy sets
with rotational symmetry remains unsolved.” Their confidence in the Geometric
Method is undispelled, as they suppose that such type-2 fuzzy sets are unlikely to
arise in practical applications [6, page 939]:

“In a real-world Mamdani system, it is unlikely that the final output
would ever have the property of rotational symmetry. Rules usually
only fire to a degree, and the implication operation (assuming a mini-
mum is used) will produce a result that is not rotational [sic] symmet-
ric, even if the consequent set was rotational symmetric. Typically,
more than one rule will fire, leading to a number of implied conse-
quent sets being aggregating [sic] prior to defuzzification. It is highly
unlikely that this final aggregated set will be rotational symmetric.”

They believe, furthermore, that it is possible to prevent the creation of aggre-
gated sets with rotational symmetry:

“The only known form of a set that is problematic for the geometric
defuzzifier is one that has rotational symmetry. However, this result
can now be taken into account when designing type-2 membership
functions in a practical system, by avoiding membership functions
that are rotationally symmetrical.” [6, page 940]

It is hard to imagine how sets with rotational symmetry can be avoided, as mem-
bership functions based on S-curves and Z-curves are so prevalent in fuzzy infer-
encing. Even if it were possible to exclude them from the fuzzification and infer-
encing stages, it is not obvious that this would prevent the aggregated set having
rotational symmetry. Were this avoidance strategy indeed valid, its validity would
require proof.
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Whether rotationally symmetrical type-2 aggregated sets are unlikely to occur
naturally, and whether their occurrence can be prevented is immaterial unless it
can be established that it is only rotationally symmetrical type-2 fuzzy sets that
are susceptible to accuracy issues under Geometric Defuzzification. In the fol-
lowing subsections, the scope of the accuracy issue is surveyed experimentally, to
establish, in the interval case, what forms of type-2 fuzzy sets are affected by the
accuracy problem. Beginning with sets that have rotational symmetry, interval test
sets with a variety of shapes are defuzzified, firstly by means of the benchmark
Exhaustive Method, and secondly, using the Geometric Method; the resultant de-
fuzzified values are contrasted (Table 1). Fourteen interval type-2 fuzzy sets are
tested altogether. The first ten are specifically constructed to exhibit certain char-
acteristics. The last four are aggregated sets taken from a prototype Type-2 FIS.

4.1. Interval Sets Having Rotational Symmetry
In Figure 2, interval Test Set TSY is depicted. This set has rotational sym-

metry, and is comparable to a problematic example provided by the authors [7,
page 95]. There is a huge discrepancy between the geometric and exhaustive
defuzzified values. Test Set TSZ (Figure 3) is a reflection of TSY in the line
x = 0.5. Exhaustive defuzzification of sets TSY and TSZ gives a range of defuzzi-
fied values of 0.432, whereas counterintuitively, Geometric Defuzzification gives
the identical value of 0.500 for both test sets.

4.2. Interval Sets Not Having Rotational Symmetry
The test sets featured in this subsection do not have any symmetry. Test Set

NSY (Figure 4), which is Test Set TSA slightly modified so that it is not perfectly
rotationally symmetrical, nonetheless exhibits a striking discrepancy between its
geometric defuzzified value and its exhaustive defuzzified value. Indeed the dis-
crepancy is worse than for Test Set TSA. Test Sets NSP, NSQ, and NSR (Figures 5
to 7) perform badly under geometric defuzzification; for Test Sets NSQ and NSR
one might expect better results from random generation of a number between 0
and 1.

4.3. Interval Sets Having Reflectional Symmetry
The test sets considered in this subsection all have reflectional symmetry. Test

Set HMSA (Figure 8) has horizontal symmetry; the Geometric Defuzzifier per-
forms poorly with this set. Test Sets VMSC and VMST (Figures 9 and 10) have
vertical symmetry, VMSC being centrally placed along the domain and VMSC

12



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ

Figure 2: FOU of Test Set TSY, which has rotational symmetry. The degree of discretisation is
0.125. Exhaustive defuzzified value: 0.716. Geometric defuzzified value: 0.500. Discrepancy:
0.216.
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Figure 3: FOU of Test Set TSZ, which has rotational symmetry. The degree of discretisation is
0.125. Exhaustive defuzzified value: 0.284. Geometric defuzzified value: 0.500. Discrepancy:
0.216.
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Figure 4: FOU of Test Set NSY, which almost has rotational symmetry. The degree of discretisa-
tion is 0.25. Exhaustive defuzzified value: 0.720. Geometric defuzzified value: 0.461. Discrep-
ancy: 0.259.
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Figure 5: FOU of Test Set NSP, which has no symmetry. The degree of discretisation is 0.1.
Exhaustive defuzzified value: 0.612. Geometric defuzzified value: 0.434. Discrepancy: 0.178.
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Figure 6: FOU of Test Set NSQ, which has no symmetry. The degree of discretisation is 0.1.
Exhaustive defuzzified value: 0.651. Geometric defuzzified value: 0.239. Discrepancy: 0.412.
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Figure 7: FOU of Test Set NSR, which has no symmetry. The degree of discretisation is 0.1.
Exhaustive defuzzified value: 0.547. Geometric defuzzified value: 0.149. Discrepancy: 0.398.
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placed off-centre. For both these test sets, the Geometric Defuzzifier gives com-
pletely precise results. Test Set TMSA (Figure 11) has both rotational and vertical
symmetry. Despite its rotational symmetry, with this test set the Geometric De-
fuzzifier gives totally accurate results.
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Figure 8: FOU of Test Set HMSA, which has horizontal symmetry. The degree of discretisation
is 0.25. Exhaustive defuzzified value: 0.492. Geometric defuzzified value: 0.748. Discrepancy:
0.256.

4.4. FIS Generated Aggregated Sets
It may be objected that the foregoing examples of interval type-2 fuzzy sets are

contrived and unrealistic, and therefore that those giving rise to discrepancies are
not valuable as counterexamples. To counteract such an objection, this subsection
reports trials on four FOUs from aggregated sets (Figure 1) output by the infer-
encing stage of a prototype type-2 FIS, coded in MatlabT M. In effect these trials
contrast the performance of the Geometric Method with that of the Exhaustive
Method, in the context of an FIS.

Three rule sets were employed 2:

Heater FIS, with 5 rules and 2 inputs, is designed to calculate the optimum set-
ting for a heater.

Washing Powder FIS, with 4 rules and 3 inputs, aims to determine the quantity
of washing powder required by a washing machine.

2Specific details of these rule sets may be found in [11].
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Figure 9: FOU of Test Set VMSC, which has vertical symmetry and is centrally placed along the
domain. The degree of discretisation is 0.25. Exhaustive defuzzified value: 0.500. Geometric
defuzzified value: 0.500. Discrepancy: 0.000.
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Figure 10: FOU of Test Set VMST, which has vertical symmetry and is not centrally placed along
the domain. The degree of discretisation is 0.25. Exhaustive defuzzified value: 0.250. Geometric
defuzzified value: 0.250. Discrepancy: 0.000.
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Figure 11: FOU of Test Set TMSA, which has both vertical and horizontal symmetry. The degree
of discretisation is 0.25. Exhaustive defuzzified value: 0.500. Geometric defuzzified value: 0.500.
Discrepancy: 0.000.

Shopping FIS, with 4 rules and 3 inputs is intended to answer the dilemma of
whether to go shopping by car, or walk, depending on weather conditions,
amount of shopping, etc.. The defuzzified value is therefore rounded to
either 0 or 1.

For each rule set the FIS was invoked with two different sets of parameters, so
creating six test sets [9, 11]. Two of these were discarded as they possess near
perfect rotational symmetry and such sets have already been discussed (Subsec-
tion 4.1). This left four test sets, two for the Heater FIS, and one each from the
Washing Powder FIS and the Shopping FIS3.

The aggregated type-2 fuzzy sets created through inferencing were converted
from generalised type-2 fuzzy sets to interval type-2 fuzzy test sets, simply by
changing all secondary membership grades to 1. These test sets are depicted in
Figures 12 to 15. All four defuzzification tests show wide discrepancies between
the exhaustive defuzzified value and the geometric defuzzified value. The closest
result is for Test Set HeaterTest0.125; unsurprisingly this set has some semblance
of vertical symmetry (Figure 12).

3Heater0p0625 is not a more finely discretised version of Heater0p125; it uses different input
parameters.

18



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ

Figure 12: FOU of Test Set HeaterTest0.125. The degree of discretisation is 0.125. Exhaustive
defuzzified value: 0.604. Geometric defuzzified value: 0.495. Discrepancy: 0.109.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

µ

Figure 13: FOU of Test Set HeaterTest0.0625. The degree of discretisation is 0.0625. Exhaustive
defuzzified value: 0.280. Geometric defuzzified value: 0.505. Discrepancy: 0.225.
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Figure 14: FOU of Test Set powderTest0.1. The degree of discretisation is 0.1. Exhaustive de-
fuzzified value: 0.313. Geometric defuzzified value: 0.533. Discrepancy: 0.220.
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Figure 15: FOU of Test Set shoppingTest0.1. The degree of discretisation is 0.1. Exhaustive
defuzzified value: 0.589. Geometric defuzzified value: 0.409. Discrepancy: 0.180.
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4.5. Summary of Interval Results
For the fourteen test sets, Table 1 summarises the results contrasting the ex-

haustive interval type-2 defuzzified value with the geometric interval type-2 de-
fuzzified value. Apart from the test sets with vertical symmetry, the results are so
poor that there is not a single instance in which even the first decimal place of the
defuzzified value is correct.

Test Exhaustive Geometric Discre-
Set Defuzzified Defuzzified pancy

Value Value

TSY 0.716 0.500 0.216
TSZ 0.284 0.500 0.216
NSY 0.720 0.461 0.259
NSP 0.612 0.434 0.178
NSQ 0.651 0.239 0.412
NSR 0.547 0.149 0.398
HMSA 0.492 0.748 0.256
VMSC 0.500 0.500 0.000
VMST 0.250 0.250 0.000
TMSA 0.500 0.500 0.000
HeaterTest0.125 0.604 0.495 0.109
HeaterTest0.0625 0.280 0.505 0.225
PowderTest0.1 0.313 0.533 0.220
ShoppingTest0.1 0.589 0.409 0.180

Table 1: The test results for fourteen interval type-2 fuzzy test sets contrasting the exhaustive
defuzzified value with the geometric defuzzified value. The results for the three test sets with
vertical symmetry are shown in bold.

In the next section, Geometric Defuzzification is critiqued theoretically, ex-
posing the reason for the experimental discrepancies observed in this section.

5. Theoretical Critique of Geometric Type-2 Defuzzification

In this section, the issue of the accuracy of type-2 Geometric Defuzzification is
examined theoretically. For the majority of the fourteen defuzzified test sets (Sub-
sections 4.1 to 4.4), the Geometric Defuzzifier’s outputs are wildly inaccurate.
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The exceptions are those sets which have vertical symmetry, for which Geometric
Defuzzification gives absolutely accurate results.

How can these astonishing results be explained? In extending defuzzification
from type-1 to interval type-2 fuzzy sets, the x-value of the centroid of the area
under the membership function curve still needs to be calculated, but, the mem-
bership function having been blurred, this is no longer straightforward.

For discretised interval type-2 fuzzy sets, the Exhaustive Method of Defuzzi-
fication [12] is rigourous and precise, but impractical owing to its enormous com-
putational complexity. Three practical alternatives are the Nie-Tan Method [25],
the Greenfield-Chiclana Collapsing Defuzzifier [16], and the Karnik-Mendel Iter-
ative Procedure [20]. These techniques are all good approximations to Exhaustive
Defuzzification [12], and all involve some form of type-reduction. In the case of
the Nie-Tan Method the resultant type-1 fuzzy set consists of the midpoints of
the LMF and the UMF. For the Collapsing Defuzzifier, the resultant type-1 set
approximates to that of the Nie-Tan Method 4. As well as providing a good ap-
proximation to the defuzzified value, defuzzifying the type-1 set formed from the
midpoints of the LMF and the UMF is an intuitively appropriate ad hoc procedure.

The Geometric Defuzzifier finds the x-value of the centroid of the area be-
tween the LMF and the UMF of the blurred membership function curve. I.e. it
defuzzifies the FOU of the type-2 set rather than the blurred membership function.
If a fuzzy set’s membership function is rotated, one would expect its defuzzified
value to change. Under type-2 Geometric Defuzzification, it remains the same.

The experimental discrepancies are attributable to the Geometric Defuzzifier’s
misapplication of the centroid formula. The authors claim that

“Geometric defuzzification finds the center of the area of the mem-
bership function of the type-2 fuzzy set.” [6, page 938]

However they are mistaken; this is what is required, but not what is achieved.
Their interval approach is misguided as they apply the centroid formula to the
FOU itself rather than the membership function.

Their extension of their interval method to generalised type-2 fuzzy sets suf-
fers from the same fallacy as their interval approach since it is a 3-D version of
the same specious technique. It is intrinsically unreliable. In [6, pages 938-939]
the authors describe testing type-2 Geometric Defuzzification on three generalised

4The Karnik-Mendel Iterative Procedure type-reduces to the TRS in a manner entirely different
from that of the Nie-Tan and Collapsing Methods.
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test sets, one with perfect vertical symmetry, one close to having vertical symme-
try, and one based on an S-curve. Naturally the first test set performed perfectly
with the Geometric Defuzzifier, and the second performed well. The third test set
performed poorly, which reinforced the spurious supposition that only sets with
rotational symmetry cause problems for type-2 Geometric Defuzzification. Per-
haps if further trials had been undertaken on a range of test sets with more varied
characteristics (as in [11] and [12]) before testing on a mobile robot navigation
FIS [2, 8], a fuller picture of the extent of the method’s shortcomings would have
emerged.

Consider an interval type-2 fuzzy set that has vertical symmetry in the line
x = a. Its FOU has vertical symmetry in its line of symmetry (x = a) [1, page
668]. The defuzzified value of a type-2 fuzzy set that has vertical symmetry in the
line x = a is a. This is because the TRS is formed from a collection of embedded
sets, each of which has its reflection in the line x = a. The defuzzified values
of any embedded set and its reflected counterpart will be equidistant to but on
opposite sides of the line x = a; the TRS interval will therefore defuzzify to x = a.

This explains why the interval type-2 Geometric Defuzzifier gives accurate
results for type-2 fuzzy sets which have vertical symmetry. These sets form a
special group for which the centre of area (or volume) of the FOU (or volume
under the surface of the membership function) is equal to the defuzzified value of
the blurred membership function. The closer a set approximates to vertical sym-
metry, the more accurate will be the results of the technique5. It is the lack of
vertical symmetry, not the presence of rotational symmetry in a type-2 fuzzy set,
that determines whether Geometric Defuzzification will give rise to an accurate
defuzzified value. If a fuzzy set has vertical symmetry, then Geometric Defuzzifi-
cation will give perfect results, even if the set also has rotational symmetry, as in
the case with Test Set TMSA (Figure 11).

In their mistaken belief that only rotationally symmetrical type-2 fuzzy sets
are susceptible to accuracy issues under Geometric Defuzzification, the methods’
creators offer this explanation for the problems [7, pages 94-95]:

“The membership function of a geometric type-1 fuzzy set is a piecewise-
linear function, which is closed to form a polygon for defuzzification.
For a geometric type-2 fuzzy set the membership function is already
a closed polyhedron. So, why is this important? It means a type-

5To explain the success of the testing on mobile robots one might speculate that the FOUs of
the type-2 fuzzy sets approximated to vertical symmetry.
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1 geometric membership function can only ever have on [sic] line
of symmetry parallel to the y axis. A type-2 geometric membership
function can also have a line [sic] of rotational symmetry. A geomet-
ric defuzzifier will identify this line of symmetry, which may not be
the required answer.”

Both type-1 and type-2 fuzzy sets may have rotationally symmetrical membership
functions. The authors’ argument appears to be that for a type-2 fuzzy set with ro-
tational symmetry, the Geometric Defuzzifier will identify the point about which
the blurred region (i.e. the FOU in the interval case, the volume under the surface
of the membership function in the generalised case), is rotationally symmetrical.
Perhaps unwittingly, they actually point out the intrinsic fallacy of their method:
Rather than defuzzifying the membership function, the type-2 Geometric Defuzzi-
fier finds the centroid of the blurred region within the type-2 fuzzy membership
function.

6. Conclusions

1. Far from suffering from a peculiarity restricted to type-2 sets with rota-
tional symmetry, the Geometric Defuzzifier in its application to type-2 fuzzy
sets is deeply flawed, as evidenced by the numerous examples presented of
wildly inaccurate performance on test sets. Indeed the only situation in
which the Geometric Defuzzifier may be relied upon is where the type-2
fuzzy set has vertical symmetry, for which the centroid is easily found as
it lies on the line of symmetry. Contrary to its developers’ intentions (Sec-
tion 1), type-2 Geometric Defuzzification is by no means “. . . precise and
accurate so that correct decisions are taken.”[6, page 929]

2. The unexpected and unacceptable results have been shown to derive from
fallacious reasoning. In the interval case it is wrongly assumed that finding
the centroid of the FOU is equivalent to defuzzifying the blurred member-
ship function of the interval type-2 fuzzy set. In the generalised case it is
wrongly assumed that finding the centroid of the volume under the surface
of the membership function is equivalent to defuzzifying the blurred mem-
bership function of the generalised type-2 fuzzy set.

3. Since it is demonstrably not fit for purpose, the type-2 Geometric Defuzzi-
fier is best avoided by developers of Type-2 FIS applications.
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4. In order to quickly identify accuracy issues in proposed defuzzification al-
gorithms, it is prudent to test them using a varied range of test sets before
evaluating them in the context of an FIS.

5. If possible, it is advisable to formally prove the correctness of defuzzifica-
tion algorithms mathematically.

6.1. Further Work
6.1.1. Distinction between Discretised and Geometric Fuzzy Sets

Is the distinction between geometric fuzzy sets and discretised fuzzy sets gen-
uine, or merely one of presentation? Both forms of fuzzy sets are defined as a
collection of points (Subsections 1.1.1 and 1.1.2). As shown in Section 4, there is
no difficulty in creating type-1 and interval type-2 test sets that may be construed
as either geometric or discretised.

6.1.2. Non-Geometric Type-2 Fuzzy Inferencing Applications
The authors of the Geometric Defuzzifier developed a mobile generalised

type-2 robot navigation FIS [2, 8], which performed well, outperforming both
type-1 and interval type-2 fuzzy logic controllers on the same task [8]. Since, for
type-2 fuzzy sets, the Geometric Defuzzifier outperformed type-1 fuzzy inferenc-
ing even with a flawed approach to defuzzification, using a sound defuzzifier is
likely to give even better results. More applications need to be developed using
defuzzification techniques that have stood up well to testing on test sets, such as
the interval Nie-Tan Method [25] and Greenfield-Chiclana Collapsing Defuzzifier
[16], both evaluated in [12], and the generalised sampling method [15, 19] and
Vertical Slice Centroid Type-Reduction [22], both evaluated in [11].
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