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Abstract 

The Gravity Recovery and Climate Experiment (GRACE) has been in operation since 

2002. Water storage estimates are calculated from gravity anomalies detected by the 

operating satellites and although not the true resolution, can be presented as 100 km x 100 km 

data cells if appropriate scaling functions are applied. Estimating total water storage has 

shown to be highly useful in detecting hydrological variations and trends. However, a 

limitation is that GRACE does not provide information as to where the water is stored in the 

vertical profile. We aim to partition the total water storage from GRACE into water storage 

components. We use a wavelet filter to decompose the GRACE data and partition it into 

various water storage components including soil water and groundwater. Storage components 

from the Australian Water Resources Assessment (AWRA) model are used as a reference for 

the decompositions of total storage data across Australia. Results show a clear improvement 

in using decomposed GRACE data instead of raw GRACE data when compared against total 

water storage outputs from the AWRA model. The method has potential to improve GRACE 

applications including a means to test various large scale hydrological models as well as 

helping to analyse floods, droughts and other hydrological conditions.  

Key words 

GRACE, wavelet analysis, soil moisture, groundwater storage, decomposition, stepwise 

regression  

1. Introduction  

The Gravity Recovery and Climate Experiment (GRACE) has been in operation since 

2002. Although it was originally planned to be a 5 year mission (Tapley et al., 2004), it still 

runs today (2017). Obtained monthly observations of the Earth’s gravity field are spatially 
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correlated with water on the Earth’s surface and in subsurface layers, allowing estimations of 

total water storage (TWS)  expressed as equivalent water thickness to be derived (Reager et 

al., 2015). TWS is the sum of all water stored in a GRACE cell regardless of how or where it 

is stored, i.e. surface water, soil water, groundwater and vegetation-bound water are all 

together in one TWS value (Rodell & Famiglietti, 2001). In recent years, GRACE TWS data 

has been used widely in many studies across many fields of science. GRACE is now a valued 

tool for scientists in a number of earth science fields (Wouters et al., 2014). It has been well 

validated against in situ, modelled and remotely sensed data (Seoane, et al., 2013; Awange, et 

al., 2011; Döll et al. 2014; Long et al. 2015; Long et al. 2017). A summary of relevant 

literature regarding the estimation of individual or multiple water storage for varying 

applications using GRACE TWS is presented in Table 1. 

While GRACE has proven to be a very useful tool for hydrology and other sciences, it 

has limitations (Awange et al., 2009) and the ability to only estimate vertically integrated 

terrestrial water storage is a particular one. Partitioning of these TWS values into individual 

or smaller storage components would enhance the potential of GRACE applications. 

Although, Yeh et al. (2006) used GRACE to measure only a single component, groundwater, 

there are no documented method to comprehensively ‘partition’ GRACE data into multiple 

desired water storage components using a technique such as wavelet decomposition. 

Measuring the variability in water storage across Australia has long proven to be a 

challenge (Cruetzfeldt et al., 2012). With limited water resources across the country (Chiew 

et al., 2011), it is important to understand where water is stored so that the best strategic 

water management actions can be applied. Hydrological models play an important role in 

water storage estimation across Australia. Physically based models are generally most 

relevant at the basin scale (Ragettli & Pellicciotti, 2012), where an appropriate amount of in 

situ data are more easily collected. There is a need for reliable estimates of various water 
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storage components that can be easily applied and which have little or no dependence on field 

data collection. 

In this paper, we aim to develop a partitioning method for estimating different vertical 

water storage components of GRACE TWS data. These components include, but are not 

limited to (1) shallow soil moisture and (2) deep soil moisture and unconfined aquifer water 

storage. We propose to use wavelet analysis to decompose GRACE TWS data, based on the 

assumption that soil moisture and groundwater at different depths have different temporal 

characteristics. The idea is that a wavelet analysis can decompose a time series into various 

temporal frequencies ranging from short (monthly) to long (seasonal – biannual), relative to 

the original time series (Wang & Ding, 2003). Decomposed GRACE data are statistically 

compared to the Australian Water Resources (AWRA) Model with the hypothesis that 

different combinations of decomposed temporal components correlate well to different 

storage components in the AWRA model and can be used to formulate storage estimations.  
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Table 1: A summary of relevant literature in the field of estimating individual or multiple water storage components for varying 

applications using GRACE TWS. 

Study Relevant Aims Study duration and size Method/Approach Major outcomes related to this study 
(Eicker et al., 2016) Isolating and removing 

the contribution of El 

Nino on GRACE data 

 

2003 – 2012 Global Contributions of El 

Nino to GRACE TWS 

are discovered using an 

independent 

component analysis, 
then removed from 

GRACE TWS 

 

El Nino explains roughly 24% of non 

seasonal variations and more accurate 

TWS estimations are given after its 

removal 

(Famiglietti et al., 2011) Estimate the groundwater 

component of GRACE 

TWS to better monitor 

depletion 

2003-2010, California, 

154,000 km2 
Measured snow and 

surface water values 

and modelled soil 

moisture values are 

subtracted from 

GRACE TWS to 

isolate groundwater 

estimations.  

 

Groundwater depletion close to previous 

model based estimates 

(Feng et al., 2013) Estimate the groundwater 

component of GRACE 

TWS to better monitor 

depletion 

2003-2010, Northern 

China, 370,000 km2 
Simulated soil moisture 

changes are removed 

from GRACE TWS to 

obtain groundwater 

estimates. 

 

Groundwater depletion in deep aquifers is 

similar to what was previously estimated.  

(Forootan et al., 2012) Separate GRACE TWS 

signals from those of the 

surrounding ocean 

 

2002-2012, Australia An independent 

component analysis is 

applied to GRACE 

TWS data 

 

Spatially independent patterns are 

extracted from GRACE TWS data using 

the independent component analysis 

(Frappart et al., 2011) Separate atmospheric, 

oceanic and terrestrial 

water storage from noise 

 

2002-2009, Global An independent 

component analysis 

based filter is used to 

partition GRACE into 

subcomponents 

The independent component analysis is a 

very effective method for separating TWS 

from noise 
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(Houborg et al., 2012) Improve drought 

indicators by 

decomposing TWS into 

different vertical 

components. 
 

2002-2009, North 

America. 

GRACE observations 

are assimilated into a 

climate land surface 

model. 

The model shows a modest but statistically 

significant improvement in groundwater 

and soil moisture estimations.  

(Leblanc et al., 2009) Observe a multi-year 

drought and its impact on 

multiple water stores. 

2000-2008, Murray 

Darling Basin ~ 1 million 

km2 

GRACE TWS is used 

alongside hydrological 

observations and land 

surface models to help 

infer drought severity.  

 

GRACE TWS trends correlate highly to a 

basin scale simulated water depletion in 

groundwater, soil moisture and surface 

water. GRACE helps to provide integrated 

drought observations. 

(Long et al., 2016) Improve estimations of 

groundwater depletion by 

coupling GACE with 

other techniques 

2003-2013, Northwest 

India Aquifer ~438,000 

km2 

GRACE is used in 

conjunction with 

constrained forward 

modelling and soil 

moisture storage from 
GLDAS-1 Noah is 

subtracted. 

 

The method produces results more 

consistent with in ground measurements, 

and previous estimates of groundwater 

depletion in the area may have been 

overestimated in the area. 

(Reager et al., 2015) State disaggregation of the 

vertically-integrated TWS. 

 

 

 

2002-2014, Northern 

Plains of the USA 

GRACE observations 

are assimilated into a 

climate land surface 

model. 

 

Groundwater and root zone soil moisture 

estimates of the model assimilated with 

GRACE generally agree with field 

observations. 

(Rodell et al., 2006) Estimate the groundwater 

component of GRACE 

TWS 

2002-2005, Mississippi, 

900,000 km2 
Estimations of soil 

moisture and snow are 

subtracted from 
GRACE TWS to 

estimate groundwater 

storage changes. 

 

Groundwater estimates from GRACE 

compare favourably to 58 monitored wells 

around the study area.  

(Schrama et al., 2007) To identify signals and 

noise in GRACE potential 

coefficient sets 

 

2003-2006Global An empirical 

orthogonal function 

approximation method 

to extract the most 

significant eigenvectors 

from the data. 

Errors in GRACE data are significantly 

larger than simulated background model 

errors derived from 

ocean tide and atmospheric pressure 

models. 
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(Swenson et al., 2008) Estimate the groundwater 

component of GRACE 

TWS 

2002-2006, Oklahoma 

over 280,000 km2 
Soil moisture is 

estimated over the area 

using a network of soil 

moisture probes. This 

is subtracted from 
GRACE TWS to give 

regional groundwater 

estimates  

 

Results align well with measurements 

from local groundwater wells showing 

relative inter-annual variability.  

(Syed et al., 2008) GRACE TWS is 

partitioned into snow, soil 

and canopy water storage  

2002-2004, Global GRACE is assimilated 

with NOAH land 

surface model 

 

GRACE based storage estimates agree 

with modelled estimates. 

(Yeh et al., 2006) Estimate the groundwater 

component of GRACE 

TWS to better monitor 

storage. 

2002-2005, Illinois, 

200,000 km2 
Soil moisture is 

subtracted from 

GRACE TWS to 

estimate groundwater. 
Uniquely (at the time) 

only in situ 

measurements soil 

moisture measurements 

are used, not models.  

 

Groundwater estimations perform 

relatively well against well based 

observations r2 = .63. 

This Study Decompose GRACE TWS 

into shallow soil water 

and deep soil water + 

groundwater 

2002-2013, Australia, 

650,000 km2 

Wavelet decomposition 

is used to provide new 

storage estimations 

based on stepwise 

regression and a 
reference model as 

opposed to subtracting 

TWS components 

For each of the desired components 

(shallow soil water and deep soil water + 

groundwater) the method provides 

estimates which perform significantly 

better than raw GRCE TWS values alone.  
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2. Data 

2.1 GRACE Data 

We use GRACE total water storage (TWS) data from The University of Texas Centre 

for Space Research (CSR), which can be freely downloaded from the GRACE Tellus website 

(http://grace.csr.nasa.gov/data/get-data/). Data has already been post-processed (Swenson & 

Wahr, 2006). Signal attenuation and leakage errors are mitigated by applying the scaling 

functions provided by Landerer & Swenson (2012). We used the monthly time series of TWS 

from March 2003 to December 2014. The data are presented spatially in 100 km by 100 km 

grid cells. We selected which cells should be included based on a shape file of Australia. If at 

least two thirds of the cell was part of the continent they were included, this eliminated some 

cells which covered only a small coastal part. 

There are a few occurrences of a month of data missing in the CSR data set. These 

months were filled in by averaging the values for each cell from the months either side of the 

missing data. Because of the monthly temporal resolution this was deemed appropriate and 

maintained the average seasonal cycle well (Long et al., 2015).  

2.2       AWRA Model Data 

The AWRA model is a comprehensive, Australia-wide model of various water storage 

components (Vaze et al., 2013). Van Dijk et al. (2011) tested the performance of the AWRA 

model compared to GRACE and found it to be reasonably well matched in most areas, with 

the exception of a smaller seasonal amplitude in the AWRA model which also 

underestimated some storage changes after unusual high rainfall. Forootan et al. (2012) also 

observed a high correlation between GRACE TWS anomalies and the AWRA model. The 

AWRA model is calibrated using both remote sensing data and field observations. The 
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model’s documentation states that every effort has been made to prioritise the use of field 

measurements where possible. The AWRA model is deemed appropriate as a reference for 

the different sources of water storage within GRACE TWS.  

The output of the AWRA at daily resolution and a cell size of .05 degree, roughly 5 

by 5 km, was supplied by CSIRO (Van Dijk , 2010). Outputs include hydrological storages 

and fluxes in groundwater, soil, vegetation and the atmosphere. We focus on the soil and 

groundwater storage components and select to analyse four storage components; surface soil 

water (S0) (0-0.1 m), shallow soil water (Ss) (0.1-1 m), deep soil water (Sd) (1m-unconfined 

aquifer) and the unconfined aquifer (Sg). To make the data comparable to the GRACE data, 

those cells that lay within the area of a single GRACE cell were averaged to match the 

GRACE resolution. Monthly averages of these cells were taken to match the temporal 

resolution. This was again based on an Australia shape file and only those cells where at least 

two thirds of the cell was part of the continent were included. The temporal extent of AWRA 

data matched the GRACE data, 2003 – 2014.  

2.3 In situ soil moisture data  

In situ soil moisture data from Aldinga, South Australia was used to demonstrate the 

method. The soil moisture measurements were taken with capacitance probes at seven depths: 

0.1 m, 0.3 m, 0.5 m (shallow), 0.7 m and 1.1 m, 1.5 m and 2.5 m (deep).  Roughly 31,000 

data points at 15-minute intervals from November 2011 to September 2012 were condensed 

to 310 daily values. Soil moisture data was split into two layers, ‘shallow’ and ‘deep’ 

according to their response to rainfall events. The top three layers showed soil moisture peaks 

in response to rainfall, and the bottom four did not. Given as a moisture percentage, the 

values were converted to mm based on the depths of the measurement points. 
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3. Methodology 

The steps involved in the study are outlined in figure 1, and explained in greater detail 

thereafter. 

 

Figure 1: An outline of the steps involved in this study. 

3.1 Wavelet Decomposition 

The first step was to decompose the GRACE TWS data into different temporal 

components using a discrete wavelet transform. The method expresses decompositions as a 

multitude of smaller ‘waves’ at different frequencies (He et al., 2013). The Meyer wavelet is 

applied here to decompose GRACE TWS into components at different temporal scales and is 

suitable for this temporal data (He & Guan, 2013). This is relatively easy to achieve by means 
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of a simple MATLAB code using the ‘wavdec’ function. Data are decomposed into four 

‘approximation’ and ‘detail’ components, each having a different temporal scale. 

Approximation series maintain trends in the data while detail series neglect trends (Nalley et 

al., 2012).  The resulting time series are labelled A1, A2, A3, A4 and D1, D2, D3 D4 for 

approximations and details respectively, with the time scale increasing with the 

decomposition number e.g. A1/D1 (2-month scale), A2/D2 (4-month scale), A3/D3 (8-month 

scale) and A4/D4 (16-month scale). Four levels can be reasonably extracted given the data 

length and monthly frequency of the data. Further decomposition would result in roughly 3- 

and 6-year time scales which are too coarse for a time series of only 11 years of raw data. The 

wavelet decomposition results in eight new time series, which can be compared to the 

AWRA model components, as well as with the original GRACE data. 

3.2 Stepwise regression 

We initially used a stepwise regression for every cell with one of the four AWRA 

model components at a time as the dependant variable and the eight decomposed GRACE 

outputs as predictor variables. In various early tests we found that the results from using S0 

and Ss were similar. The same was true for Sd and Sg. To simplify the experiment we 

decided to sum S0 and Ss, and Sd and Sg together, creating 2 new storage components from 

the AWRA model, Sshallow (S0 + Ss) and Sdeep (Sd+Sg). 

3.3 Demonstration of the method using in situ soil moisture data 

The method was tested using both in situ soil moisture measurements from a single 

site. The length of the time series was not long enough to support the common way of 

splitting the data into a training and validation sets by using the first half of the data for 

training and second half for validation. Hence, an alternating approach was adopted instead in 

which even days were used in the initial stepwise regressions as the training set. Based on the 
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‘p-values’ of each regression, variables which should stay in the final estimations were 

selected and others are excluded. The results of the stepwise regressions were then tested 

using odd days/months as a validation set. This produced new estimations of soil moisture for 

the various depths based on the decomposed sum of the soil moisture data.  

3.4 Demonstration of the method on a large scale 

To justify the idea of using the decomposed GRACE instead of raw GRACE data, 

Sshallow and Sdeep were summed (Sall) and statistically analysed against both raw and 

decomposed GRACE data with a similar stepwise regression method as above with even 

months used in the training set and odd months used for validation. New TWS estimates were 

made based on the results of the stepwise regression. R
2
 values and root mean squared error 

(RMSE) were determined for the raw data and decomposed TWS estimation compared to 

(Sall) from the AWRA model. This was a proof of concept test, it does not benefit the overall 

aim as it does not estimate water storage in different layers, but serves to show whether there 

is an improvement in the estimation by using decomposed GRACE data instead of raw 

GRACE data. 

  3.5 Estimating TWS components on a large scale 

Estimations of Sshallow and Sdeep for every cell across Australia were made using the stepwise 

regression method above. The GRACE TWS decompositions were used as predictor 

variables and the Sshallow and Sdeep components of the AWRA model were used as dependant 

variables relatively. Again, even months used in the training set and odd months used for 

validation. Estimations of the water storage in the shallow and deep components were made 

calculated equation 1 with the selected predictor variables. 
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                 (1) 

Where Y is the estimates storage value, β0 is the intercept, βi is the slope of variable i, Xi is the 

independent variable i and ε is the error. 

 

We primarily use a Nash Sutcliffe Efficiency (NSE) for every cell to test the newly 

estimated water storage components against the AWRA modelled data for the same (odd) 

days/months. A NSE above 0 suggests that the regression performs better than the mean of 

the original dataset, with a value of 1 being the most outstanding fit (Legates & McCabe Jr., 

1999). We also calculate RMSE for the new estimations for comparison with the AWRA 

dataset. The NSE is calculated as shown in equation 2,    

    

         
        

  
   

         
  

   

        (2) 

where E is the NSE, Oi is the observed value at time i, Pi is the estimated value at time i and 

Ō is the mean of the observed values. 

4. Results  

 4.1 Concept Demonstration 
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Figure 2 shows an example of a 4-level wavelet decomposition. 144 months of raw GRACE 

data are decomposed resulting in 4 different detail (Ds) and 4 different approximation (As) 

coefficients.  

Figure 2: An example of a wavelet decomposition from the western-most cell in Australia (S 

23.5°, E113.5°). Notice the visible trends in the approximations, which are normalised in the 

details. 

 

A test of the method using soil moisture data from Aldinga Scrub demonstrates the 

improvement to estimations that can made using the method (Figure 3). High frequency 

variables are exclusively included in the top layer estimation (D1, A1) but D4 and D6 are 

also included. Only low frequency data are included in the bottom layer estimate (D4, A6, 

D7). The inclusion of variables D4 and A6 in both ‘shallow’ and ‘deep’ shows that the 

method allows for overlap of trends and frequencies between them. 
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Figure 3: Results using the wavelet decomposition and stepwise regression method for 

estimates of soil moisture at different depths. Plots a and b show the soil TWS vs the shallow 

and deep layers. Plots c and d show the estimations of the shallow and deep soil layers. The r
2
 

value is increased using the estimation method and both display high Nash Sutcliffe 

Efficiencies. 

 

 

The result from the first large scale proof of concept test, which compared both raw 

and decomposed GRACE data with the AWRA model shows a clear improvement in 

correlation and RMSE when the selected decomposed data are used (Figure. 4). The R
2
 

values increased across the entire study area, while a few regions sit well above the 1:1 line. 

The decomposed GRACE data also shows an overall decrease in the RMSE with a clear trend 

of values moving below the 1:1 line. The student-t tests confirm that the results were 

statistically highly significant with a t-statistics and p values of respectively 10.86 and < 10
-5

 

for the R
2
 test and 4.422 and <10

-4
 for the RMSE test.  
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Figure 4: (a) results from the proof of concept test. R
2
 values for estimations of all water 

storage components using raw GRACE data vs R
2
 values for estimations of all water storage 

components using decomposed GRACE data. (b) RMSE for estimations of all water storage 

components using raw GRACE data vs RMSE for estimations of all water storage 

components using decomposed GRACE data. The decomposed GRACE data shows a clear 

improvement in R
2 

values and a decrease of the RMSE. 

 

As the AWRA data used in the test is the sum of the four water storage components, 

there is no intention that it should provide any new estimations, after all we are essentially 

comparing two different versions of TWS. The results are simply a demonstration of how the 

decomposed GRACE data can serve as an improved version of raw GRACE data. 

For the second large scale proof of concept test, new total water storage estimations 

were produced for Sshallow + Sdeep using the odd months of data. These based on stepwise 

regressions using the even months for training data. The results for the estimations of Sshallow 

+ Sdeep show that in general there is an improvement in using decomposed GRACE data for 

the estimation of water storage compared to raw GRACE data (Figure 5). Again, at this stage 

the storage components are not split and the result simply further demonstrates the concept 

and ability of the method. 
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Figure 5: (a) NSE values for raw GRACE data compared to the sum of all four AWRA model 

water storage components. The results are generally poor with few values above 0 and many 

negative NSEs (depicted by white areas within the boundary). (b) NSE values for the sum of 

all decomposed GRACE values compared to the sum of all four AWRA model values. The 

results are well improved with higher values across the continent and fewer negative NSEs. 

 

4.2 Applying the method on a large scale 

An important part of running a stepwise regression is finding out which of the 

decomposed GRACE time series’ are used in the estimations. The decompositions that are 

included also provide information about the behaviour of water spatially. For Sshallow, the 

included predictor variables for each cell were quite varied (Figure 6). There are a small 

number of cells which include decompositions or variables in the estimations but that do not 

pertain to any pattern or clustering. The variable with most cells in the estimations is D4. 

These cells show a strong spatial coherence. As Sshallow represents the soil moisture in the top 

metre of soil, it is highly dynamic due to infiltration and evapotranspiration; the residence 

time for the soil water is minimal. Hence, it is unexpected that we do not see in more cells 

with D1 included, which pertains to a smaller temporal frequency. A possible explanation is a 

root water uptake occurring at a similar rate to that of infiltration.  

Because detailed coefficients remove any trends it is reasonable that we see so many 

cells that include D4, which roughly represents a bi-annual frequency reflecting yearly wet 
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and dry periods. The second most significant variable is D3 which roughly corresponds to a 

seasonal frequency, with a large cluster of included cells across the northern part of the 

continent. Though not quite in the tropics, Northern Australia does receive more rainfall than 

other parts of the country. It is reasonable to assume that D3 is included in this part of the 

continent simply as an extension of D4, i.e. more rainfall results in a greater range of 

frequencies. With more rain in this area it does not follow such a strict seasonal or annual 

cycle as other parts of the continent. 

Figure 6: For each GRACE decomposition the areas that are included in the stepwise 

regressions for the estimation of Sshallow are highlighted in red. Although spatially varying the 

most important variables are D4, followed by D3 and D1. 

 

The comparison between the estimated Sshallow  storage component and the shallow 

storage of the AWRA model shows a wide range of NSE’s across the continent, from average, 

slightly above 0, to very good, above 0.9 (Figure 7). Areas with high NSE’s are observed in 

the northern most part of the continent, the south west corner of Western Australia and most 

of the coastal fringe. NSE’s are lowest in central Western Australia. They are also average or 

close to 0 throughout central Australia and along the coast of the Great Australian Bight in 

the southern part of the continent. 
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Figure 7: Nash Sutcliffe efficiencies for Sshallow estimation compared to the AWRA model. 

Results show strong spatial structure with the highest NSE’s located in the north, south west 

and scattered throughout the east of the continent. NSEs equal to or less than zero are 

depicted by white areas within the boundary. 

 

The predictor variables which are included in the regression for Sdeep are not as varied 

as in Sshallow, mainly A4 and D1 are selected (Figure 8). The dominance of A4 is exactly what 

is expected for deep soil and groundwater. A4 has roughly an annual resolution, but unlike 

D4 it maintains any trends in the data and hence represents slow moving nature of deep soil 

water and groundwater. There are however some spatially coherent areas in which A4 is not 

included in the estimations. These areas include northeast Australia as well as southern and 

northern parts of Western Australia. In most areas with A4 in the estimations, D1 is also 

selected. D1 is included in areas throughout Queensland and Western Australia that did not 

include A4. D1 represents a trendless time series with roughly a monthly temporal scale. This 

could suggest that deep percolation in the AWRA model corresponds to the D1 scale.  
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Figure 8: Areas for each variable that are selected for the estimations of Sdeep by stepwise 

regressions are highlighted in red. For Sdeep there is a very strong, continent-wide inclusion of 

A4 and D1 as well as an interesting inclusion of D4 almost exclusively around the coast. 

 

Sdeep also shows a range of spatially varying NSE’s ranging from average to very 

good (Figure 9). There is a very large cluster of high NSE’s on the eastern half of the 

continent. These span from Queensland, through New South Wales and Victoria and into 

South Australia. Another very well performing area is through southwest Western Australia, 

as well as parts of central Western Australia and the Northern Territory. Areas of poorer 

performance include the northern-most area of the continent, parts of Western Australia and 

parts of Central Australia. Even where the NSE’s are lower, there are a minimal number of 

areas with a negative NSE, meaning the estimation’s performance is still good overall. 
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Figure 9: Nash Sutcliffe Efficiencies for each for the comparison of the Sdeep estimations 

versus the AWRA model. Results are best through the Great Artesian Basin, South-Western 

Australia and central parts of the continent. NSEs equal to or less than zero are depicted by 

white areas within the boundary. 

 

For both Sshallow and Sdeep, water storage estimations performed well in many areas 

across the continent. The relatively clear spatial clustering of good and average performing 

areas increases the confidence in the estimations and demonstrate the opportunity to explain 

the spatial patterns. Areas of weak performance tell us that the decomposed GRACE data was 

unable to estimate the various water storage components corresponding to the simulated 

storage components of the AWRA model.  

  

5. Discussion 

Though the aim of this paper is not to evaluate the AWRA model, we must consider 

that a possible reason for areas with lower NSE’s could be a result of inaccuracies in the 

AWRA model. For example, for Sshallow the areas of high NSE in part have a relationship to 

well populated areas. It is expected that the AWRA model is less well constrained in 

rural/unpopulated areas where field measurements are scarce, leading to an apparent lower 

performance of the decomposed GRACE estimations. A similar situation exists for Sdeep. 

Some of the best performance of the estimations occurs in the Great Artesian Basin and 
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Murray Darling Basin, areas that have been heavily monitored in recent times and where data 

are abundant.   

The same method could be applied using other models as a reference whether it be for 

Australia or anywhere else globally due to the coverage of GRACE. The range of results 

would vary depending on the layers included in the reference model, e.g. it could include 

vegetation or more specific vertical depths layers. It has the potential to be used for 

testing/calibrating large scale models with similar vertical layering, which can be altered 

depending on the reference model used. This would be particularly useful for areas where a 

model is largely reliant on interpolation of data or models which rely on strong assumptions 

in their initial conditions or parameterisation. 

 

The separation of GRACE water storage components extends its use in many 

applications such as a more detailed spatiotemporal estimation of the quantitative status of 

the water resources. Groundwater generally makes up that largest part of the water storage 

and has the largest changes (Leblanc et al., 2009). As such quantifying this storage 

component is often of paramount importance. Famiglietti et al. (2011), Swenson et al. (2008), 

Rodell et al. (2006) and Feng et al. (2013) all estimate the groundwater component of 

different areas using GRACE TWS. Each subtracts various unwanted simulated (and/or 

measured) storage components from TWS to derive groundwater storage estimations. Yeh et 

al. (2006) do not use simulated data in their study, but solely rely on in situ measurements in 

an attempt to be less dependent on assumptions or poor interpolations produced by models. 

As such GRACE alone may provide a more reliable indicator of water status such as drought 

than looking at storage components individually (Long et al. 2013).  
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While previous results are promising, the level of success is determined by the quality 

of the model used and/or the data measured. This is a problem partially fixed by decomposing 

GRACE TWS and using significant variables to create estimations. The need for 

interpolation is limited due to the reference models’ spatial equivalent to GRACE data. Of 

course a similar problem potentially exists as the estimations can only be as good as the 

quality of the reference model, which may have been constructed based on large 

interpolations, assumptions and estimates. On the other hand the method can be expanded to 

as many different components as exist in a suitable reference model, making it highly 

versatile. Another potential limitation of the method is when the assumption that shallow and 

deep moisture stores change at different temporal frequencies is not met. For example, results 

are likely to be poor where shallow soil moisture and groundwater have a similar phase of 

change. 

GRACE has been previously used to study ecosystem performance which is largely 

contributed by shallow water availability, as opposed to deep soil moisture and groundwater 

(Yang, et al., 2014). The ability to identify the component of GRACE TWS that would 

contribute to shallow water availability potentially gives significant improvement in the 

applicability and confidence of using GRACE as a tool for this purpose.  

For the same reason, partitioning GRACE into different vertical layers could also 

improve the application of GRACE in studying floods. Infiltration limitation and saturation 

excess are the two main drivers of flooding (Reager, et al., 2015). Knowing how close to 

saturation the near-surface soil layers are can create a better understanding of how vulnerable 

an area is to flooding (Fitzjohn, et al., 1998). This has not previously been an option using 

data at large scales as GRACE. 

Studying droughts is another application of GRACE (Thomas, et al., 2014), which 

could benefit from the separation of storage components. Similar to the application for flood 
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studies, knowing which water stores are depleted allows for a better understanding of the 

severity and type of drought. Droughts are defined in many different ways throughout the 

world (Dracup et al., 1980), so a large range of options to quantify them is desirable. 

Furthermore, different regions have different water stores. In a groundwater dependent region, 

knowing that depleted shallow soil moisture and surface water are the main contributors to a 

lowered TWS while deep groundwater remains relatively stable is highly valuable 

information that could not be achieved using raw GRACE TWS alone. For example, Multi-

year droughts in the Colorado River Basin were caused predominately by depletion of surface 

water and soil moisture in parts of the basin (Scanlon et al. 2015). Droughts (and other 

aspects of hydrology) extend to multiple disciplines such as agriculture, geography and 

meteorology (Dai, 2011). This means that the method we present has potential to benefit a 

much broader range of disciplines than GRACE is typically used for. 

 

6. Conclusion 

We aimed to develop a new method for estimating various water storage components 

across Australia using decomposed GRACE data, with the AWRA model as a reference. The 

stepwise regression was successful in determining which variables should be used in the 

estimation of different storage components across the continent. A simple analysis of the 

decomposed GRACE data compared to raw GRACE data showed that decomposing the data 

improved its correlation to the AWRA, increasing R
2
 values and decreasing the RMSE. The 

estimations for Sshallow and Sdeep showed varying results with regard to the new estimations’ 

performance, ranging from average to very good. The spatial clustering of the results allowed 

interpretation and understanding of poor estimation performance, which could be linked to 

areas where the AWRA model is likely less reliable. This opens the opportunity for this 
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methodology to be applied as a tool in various hydrological applications including testing of 

other hydrological models.  
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Table 1: A summary of relevant literature in the field of estimating individual or multiple 

water storage components for varying applications using GRACE TWS. 

 

Figure 1: An outline of the steps involved in this study. 

Figure 2: An example of a wavelet decomposition from the western-most cell in Australia (S 

23.5°, E113.5°). Notice the visible trends in the approximations, which are normalised in the 

details. 

 

Figure 3: (a) results from the proof of concept test. R
2
 values for estimations of All water 

storage components using raw GRACE data vs R
2
 values for estimations of all water storage 

components using decomposed GRACE data. (b) RMSE for estimations of All water storage 

components using raw GRACE data vs RMSE for estimations of all water storage 

components using decomposed GRACE data. The decomposed GRACE data shows a clear 

improvement in R
2 

values and a decrease of the RMSE. 

 

Figure 4: (a) NSE values for raw GRACE data compared to the sum of all four AWRA model 

water storage components. The results are generally poor with few values above 0 and many 

negative NSEs (depicted by white cells within the boundary). (b) NSE values for the sum of 

all decomposed GRACE values compared to the sum of all four AWRA model values. The 

results are well improved with higher values across the continent and fewer negative NSEs. 

 

Figure 5: Results using the wavelet decomposition and stepwise regression method for 

estimates of soil moisture at different depths. Plots a and b show the soil TWS vs the shallow 

and deep layers. Plots c and d show the estimations of the shallow and deep soil layers. The r
2
 

value is increased using the estimation method and both display high Nash Sutcliffe 

Efficiencies. 

 

Figure 6: For each GRACE decomposition the cells (in red) are highlighted that are included 

in the stepwise regressions for the estimation of Sshallow. Although spatially varying the most 

important variables are D4, followed by D3 and D1. 

 

Figure 7: Nash Sutcliffe efficiencies for each cell for the Sshallow estimation compared to the 

AWRA model. Results show strong spatial structure with the highest NSE’s located in the 

north, south west and scattered throughout the east of the continent. NSEs equal to or less 

than zero are depicted by white cells within the boundary. 

 

Figure 8: Cells for each variable that are selected for the estimations of Sdeep by stepwise 

regressions are highlighted in red. For Sdeep there is a very strong, continent-wide inclusion of 

A4 and D1 as well as an interesting inclusion of D4 almost exclusively around the coast. 

 

Figure 9: Nash Sutcliffe Efficiencies for each cell for the comparison of the Sdeep estimations 

versus the AWRA model. Results are best through the Great Artesian Basin, South-Western 

Australia and central parts of the continent. NSEs equal to or less than zero are depicted by 

white cells within the boundary. 
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 Wavelet decomposition is use to split total water storage into different 

components 

 Decomposed data performs better than raw when compared to a reference 

model 

 This study expands the potential use of GRACE for articulating drought 

impacts on the root zone and groundwater.  

 




