
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2011, Article ID 685219, 22 pages
doi:10.1155/2011/685219

Research Article

Secure Rateless Deluge: Pollution-Resistant Reprogramming and
Data Dissemination for Wireless Sensor Networks

Yee Wei Law,1 Yu Zhang,2 Jiong Jin,1 Marimuthu Palaniswami,1 and Paul Havinga3

1 Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
2 School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
3 Pervasive Systems Group, Faculty of EEMCS, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Correspondence should be addressed to Yee Wei Law, ywlaw@unimelb.edu.au

Received 24 February 2010; Revised 22 June 2010; Accepted 19 July 2010

Academic Editor: Damien Sauveron

Copyright © 2011 Yee Wei Law et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A network reprogramming protocol is made for updating the firmware of a wireless sensor network (WSN) in situ. For security
reasons, every firmware update must be authenticated to prevent an attacker from installing its code in the network. While existing
schemes can provide authentication services, they are insufficient for a new generation of network coding-based reprogramming
protocols like Rateless Deluge. We propose Secure Rateless Deluge or Sreluge, a secure version of Rateless Deluge that is resistant to
pollution attacks (denial-of-service attacks aimed at polluting encoded packets). Sreluge employs a neighbor classification system
and a time series forecasting technique to isolate polluters, and a combinatorial technique to decode data packets in the presence of
polluters before the isolation is complete. For detecting polluters, Sreluge has zero false negative rate and a negligible false positive
rate. TOSSIM simulations and experimental results show that Sreluge is practical.

1. Introduction

There are occasions when new applications need to be
installed, or when existing applications need to be modified
or patched in a WSN. Given the difficulty of physically
redeploying sensors, this requires the new firmware to be
securely and remotely transmitted to all the nodes in the
network.

In the core of a secure network, reprogramming protocol
(also known as secure code update or secure code distri-
bution in the literature) is a data dissemination protocol
that distributes the new firmware to all the nodes in the
network in an energy-efficient manner. In the beginning,
the base station broadcasts a command (CMD) globally to
announce the availability of the new firmware (which can be
generalized as any data). The basic epidemic-like workflow
established by SPIN [1] then takes place: (i) a node with the
new firmware broadcasts an advertisement (ADV) locally;
(ii) the receivers of the advertisement compare the advertised
version number with their existing version number, and
send requests (REQ) for the new firmware if their version
number is lower; (iii) the advertiser starts sending data to the

requesters; (iv) the receivers of the data in turn become the
advertisers. Starting from Deluge [2] (the classic benchmark
protocol in the literature), the firmware is disseminated page
by page. After successfully collecting a page, the page is
written to a nonvolatile memory. After successfully collecting
all the pages, a node’s next action depends on the semantics
of CMD. For example, if the CMD is “disseminate,” the
node’s job is done; if the CMD is “disseminate and reboot,”
the node then reboots using the new firmware (these are two
existing commands in TinyOS 2.x). The problem of securing
the protocol boils down to authenticating the CMD, ADV,
REQ, and data packets, and addressing the threat of denial-
of-service (DoS) attacks in every step of the protocol. In this
work, we are primarily concerned with the authentication of
data packets and the mitigation of DoS attacks during the
process.

In the recent years, the technique of network coding
[3] has been applied to improve the dissemination of data
packets, resulting in such protocols as AdapCode [4] and
Rateless Deluge [5] (more precisely, these protocols use
random linear codes). Like Deluge, these protocols still
divide the new firmware into pages and divide a page into

2 EURASIP Journal on Wireless Communications and Networking

Base station
Nodes

Component for
pre-dissemination
processing of
firmware

· · ·

Component for CMD authentication

Component for ADV/REQ authentication

Component for DATA authentication

Rateless deluge

Sreluge

Figure 1: Components of Sreluge: shaded components are our contribution; unshaded components are drop-in replacements from the
literature. For CMD authentication, Sreluge can utilize either Elliptic Curve Cryptography with the proper DoS countermeasure or a
multiple-time signature scheme (see Section 2.1). For ADV/REQ authentication, Sreluge utilizes a pairwise key predistribution scheme—
either deterministic or probabilistic—to achieve authenticated local broadcast and authenticated local unicast (see Section 5.2).

packets. The advantage of network coding-based protocols is
that they are resilient to packet loss. For example, at a packet
loss rate of 5%, Rateless Deluge transmits three times less
data packets than Deluge does [5]. Resilience to packet loss
is a much desirable feature in disruptive environments (e.g.,
marine environment) where loss of connectivity occurs fre-
quently. There is hence much incentive in using protocols like
Rateless Deluge for reprogramming in these environments.
For reprogramming protocols that are not based on network
coding, several security schemes have been proposed. The
technique common to these proposals is the use of a hash
function that binds a later packet to an earlier packet which
ultimately leads to a digital signature signed by the base
station, to facilitate authentication. This technique works
on uncoded data packets, while in network coding-based
reprogramming protocols, data packets are transmitted as
random linear combinations of the original data packets. In
other words, although this existing technique can be used to
authenticate uncoded data packets, rogue nodes can pollute
encoded data packets, thereby executing the kind of DoS
attack known as pollution attack in the literature [6].

Our contribution is Sreluge, a security-enhanced version
of Rateless Deluge that is resistant to pollution attacks.
Figure 1 highlights our specific contribution in terms of
the components that make up Sreluge. Sreluge employs a
neighbor classification system and a time series forecasting
technique to isolate attackers, and a combinatorial technique
to decode data packets in the presence of attackers before the
isolation is complete. TOSSIM simulations show that when
20% of the nodes in a 27-degree, 100-node network are pol-
luters, using Sreluge, dissemination on average takes roughly
twice as long to finish as when there is no attack; a node
transmits twice as many REQ and data packets, and performs
50% more decoding per page. Experimental results using
Crossbow IRIS motes show that the overhead of Sreluge in
an 11-node network is insubstantial. Sreluge is equally useful

in cases where nonmalicious but faulty nodes “inadvertently”
feed corrupted data packets to their neighbors.

This paper is organized as follows. Section 2 discusses
related work. Section 3 details the attacker model on which
this proposal is based. Section 4 describes the central
problem in a more formal setting. Sections 5 and 6 describe
the algorithms of Sreluge in detail. Analysis is provided in
Section 7. In Section 8, both simulation and experimental
results are presented. Finally, we conclude in Section 9 and
list some future work.

2. Related Work

Our main contribution is in the authentication of data packets
under the threat of pollution attacks. For completeness, we
also discuss related work for the authentication of CMD,
ADV, and REQ packets. As Sreluge performs a limited form
of intrusion detection and response during reprogramming,
we also discuss some relevant work in this area.

2.1. Authentication of CMD Packets. A CMD packet contains
a command, meta-information about the new firmware,
cryptographic commitment for the ensuing data packets,
and a signature of the packet itself. The CMD packet is
authenticated by verifying the signature. There are two kinds
of signature schemes as follows.

(i) Unlimited-Time Signature Schemes. These schemes can be
used to sign an unlimited number of messages and are usu-
ally based on public-key cryptography. Among public-key
cryptosystems, Elliptic Curve Digital Signature Algorithm
(ECDSA) is as yet known to be the most secure and efficient
for resource-constrained devices, and is thus commonly
prescribed [7–12]. Performance results of TinyECC [13]
show that a signature verification time of 2 seconds is

EURASIP Journal on Wireless Communications and Networking 3

achievable at a ROM cost of 14.4 KB and a RAM cost of
1.6 KB on a modest MSP430F1611 MCU. An execution time
in the order of seconds, however, means that an attacker
can launch DoS attacks by generating random signatures
that nonetheless need to be verified. One solution is Seluge’s
message-specific puzzle [11, 14], which provides “weak pre-
authentication” of a signature. Tan et al. [15] propose a
minor variation of message-specific puzzle.

Wang and Kulkarni’s scheme [16] uses message authen-
tication codes, and so in principle can sign an unlimited
number of messages, but it has the following problems: (i)
the signature size increases with the network size; (ii) it only
takes a small number of nodes to be captured to compromise
a large proportion of the key pool.

(ii) Multiple-Time Signature Schemes. These schemes can
only be used to sign a fixed number of distinct messages,
but they use less code space and require less computation for
signature verification. The disadvantage is that these schemes
give longer signatures and their security is lower compared
to ECC-based schemes. Notable examples are Krontiris and
Dimitriou’s [17] and Ugus et al. [18, 19].

Tan et al.’s scheme [20] can also be classified in this
category. They propose using a separate one-way hash chain
for each hop group (group of nodes with the same hop count
from the base station), based on the assumption that all
members of the same hop group receive the same messages
at once. In practice, this assumption is difficult to uphold.
Moreover, their scheme has the following disadvantages:
(i) the network topology must be determined prior to
deployment; (ii) uncertainties arise when the hop count of
a node from the base station changes, as would happen when
some nonleaf nodes fail or die of battery exhaustion.

Sreluge can utilize either kind of signature scheme.

2.2. Authentication of ADV/REQ Packets. To prevent external
attackers from forging ADV/REQ, Zhang et al. [21] has
specifically designed a scheme based on the Combined
Public Key cryptosystem (international patent number
WO/2006/074611), but it is computationally expensive and
the security of the patented cryptosystem is uncertain.

There is a simpler approach. First, note that ADV packets
should be sent in authenticated local broadcast channels
whereas REQ packets should be sent in authenticated local
unicast channels. The best known way to achieve authenti-
cated local broadcast is for a node to establish a cluster key
chain with its neighbors [22]. Establishing this cluster key
chain can be done with most pairwise key predistribution
protocols, which can be either deterministic (e.g., [22–24]) or
probabilistic (e.g., [25–27]). Sreluge is compatible with either
kind of pairwise key predistribution schemes. In Section 5.2,
we will describe how we can use an example of either kind
to establish a cluster key chain between a node and its
neighbors. Authenticated local unicast is achieved by simply
using the pairwise key between two neighboring nodes.

2.3. Authentication of Data Packets. Given a stream of data
packets, we can authenticate each packet independently, for

example, by signing each packet. However, this approach
tends to be inefficient. Instead of signing each packet, Itani et
al. propose PETRA [28], a scheme that “authenticates” each
packet independently using a Bloom filter. In PETRA, the
base station registers all data packets with a Bloom filter, signs
and broadcasts the Bloom filter (essentially a bit-vector)
globally. Each node authenticates the Bloom filter and waits
for subsequent data packets. Each incoming data packet is
checked against the Bloom filter. The probability that a data
packet has not been registered with the Bloom filter and yet
passes the check is called the false positive rate. Contrary
to their suggestion, the false positive rate is not negligible,
especially at high data packet count.

Instead, the mainstream approach is based on Gennaro
and Rohatgi’s algorithm [29]: given a stream of packets,
every packet except the first is authenticated using the hash
appended to the preceding packet, and the first packet is
authenticated using a signed hash. Mathematically, let H
represents a one-way hash function, then the original packets
P1, . . . ,Pn are transformed into Sig(h0), P1‖h1, P2‖h2,. . ., Pn
(hi = H(Pi+1‖hi+1), for all i ∈ {0, . . . ,n− 2}; hn−1 = H(Pn))
before dissemination. Lanigan et al.’s Sluice [7] uses this
method to authenticate a stream of pages. The page is the
basic unit of data transfer introduced by Deluge: data is
divided into pages and a page is divided into packets. Dutta
et al.’s [8] and Nilsson et al.’s [10] schemes are similar but
operate on the packet level instead of the page level. These
schemes require packets within a page to arrive sequentially.
Using Deng et al.’s hash tree construction [9], the data
packets within a page can arrive out of order, giving the
advantage of shorter dissemination time. Instead of deriving
a hash tree for each page, in Seluge, Hyun et al. [11] derive
a Merkle hash tree only for the first page, and append
the hash of the ith data packet of the jth page to the
ith data packet of the (j − 1)th page. This represents an
improvement over Deng et al.’s scheme in terms of overall
communication overhead. Despite the progress in secure
reprogramming, none of the aforementioned schemes can be
used as is for network coding-based reprogramming because,
in the aforementioned schemes, the packets of a page are
transmitted as is without encoding.

The security issues of network coding have long been
recognized. Among the so-called secure network coding
schemes listed in Table 1, only the first two deal with recovery
from pollution, so only these two are relevant. However,
these two schemes assume an attacker can only inject its
packets at a known and fixed low rate, while in reality, an
attacker can inject its packets at a variable rate and at a rate
that is comparable to the capacity of a receiver.

It is seen that by modifying the coding scheme itself—
as secure network coding schemes do—little headway can be
made against more powerful attackers. Later proposals focus
on implementing cryptographic schemes on top of network
coding. Homomorphic signature [36] and homomorphic
hash function [37] are too resource-intensive for WSNs
because they make extensive use of modular exponentiations.
Agrawal and Boneh’s homomorphic MAC [38] operates in
a small finite field, and is hence more efficient. However,
the resultant message authentication tag is considerably

4 EURASIP Journal on Wireless Communications and Networking

Table 1: Secure network coding schemes.

Resilience to eaves dropping Pollution detection Recovery from pollution

Jaggi et al. [30] N N Y

Ngai and Yang [31] Y N Y

Ho et al. [32] N Y N

Tan and Médard [33] Y N N

Cai and Yeung [34] Y N N

Lima et al. [35] Y N N

long for little security (e.g., 49 bytes for 8-bit security).
Yu et al.’s scheme [39] detects pollution by attaching
multiple authentication tags to a message which amount
to considerable overhead. The scheme also allows polluted
packets to travel a small number of hops before detection,
which absolutely must not happen during reprogramming.
We also add that the schemes mentioned in this paragraph
are all about detection of pollution, and are not concerned
with recovery from pollution.

The recent years have seen schemes that are not only
more lightweight, but also include recovery mechanisms.
Buttyán et al. [6] address the problem of recovering data
from coding-based distributed storage systems that are
subjected to pollution attacks. In their problem setting,
however, downloading data has negligible cost, while in our
case, to receive more data packets is costly. Dong et al.’s DART
[40, 41] emulates the delayed key disclosure mechanism of
μTESLA [42]. Like μTESLA, DART requires the nodes to be
time-synchronized. In the ith time interval, a sender sends
encoded packets to a receiver. In the (i + 1)th interval, the
sender sends a checksum generated and signed by the base
station, corresponding to the earlier encoded packets, to the
receiver. While time synchronization is not too stringent
a requirement, in Sreluge, we take the shortcut approach
of communicating the checksums (which in our case are
cryptographic hashes) to the receivers in the beginning of
the protocol, thus allowing us to avoid time synchronization
and to use a signature only once. We acknowledge that DART
addresses a more difficult problem where the total number of
packets is not known in advance. Bohli et al. [43] address the
problem of authenticating LT-coded data packets in Synapse
[44]. LT codes [45], like random linear codes in Rateless
Deluge, are also a kind of rateless codes. As it stands, Bohli
et al.’s protocol is a direct competitor to Sreluge, just as
Synapse is a direct competitor to Rateless Deluge. As their
work is discovered after the completion of this paper, and
as they cannot disclose their source code, we must defer a
comparison of their protocol to Sreluge to a later work.

2.4. Intrusion Detection and Response. It has been suggested
that reactive defense schemes (such as Sreluge) are a promis-
ing approach to securing network coding-based protocols
[46]. Reactive schemes are best exemplified by intrusion
detection (and response) systems (IDS). An essential part
of these systems is rating the reputation or trustworthiness
of a node’s neighbors. Ganeriwal et al.’s RFSN [47] model
reputation values as Beta-distributed random variables and

update the probability density function (pdf) of the random
variables using Bayesian inference based on the outcome of
binary events (e.g., neighbor either did or did not forward a
packet as requested). Sun et al. [48] offer more alternatives
for modelling trust. Many more schemes are described in
Lopez et al.’s survey [49].

Due to the brief duration of reprogramming, it is an
overkill to build an entire IDS into Sreluge. Rather, it is more
beneficial to take the results of a reprogramming session
as input to an enclosing IDS. In Section 6, we will give an
example of such interaction.

3. Attacker Model

An attacker is computationally bounded. This is a standard
cryptographic assumption, implying even if the attacker has
access to supercomputers, its computing power is at most
polynomial. Most key management schemes in the WSN
literature are built on this assumption.

The base station is the only trusted entity in the network.
An attacker may introduce its own nodes in a network,
or it may capture, compromise, and reintroduce existing
nodes in the network, as sensor nodes are generally not
tamper-resistant. When a node is captured, its cryptographic
keys may be exposed to the attacker. These cryptographic
keys may allow the compromised nodes to rejoin the
network later and become internal/insider attackers. These
internal attackers can establish secure channels even with
uncompromised nodes. We call internal attacker nodes that
send out invalid data packets or corrupt data packets in
transit polluters.

Pollution attacks are the focus of this paper. Attacks on
the physical layer (e.g., jamming), data link layer (e.g., smart
jamming), or network layer (e.g., packet dropping) are not
considered, because countermeasures against these attacks
are considered complementary to this work.

4. Problem Description and Key Definitions

According to the attacker model, internal attackers may
fabricate control packets (CMD, ADV, REQ) and/or data
packets. Fake control packets waste bandwidth and energy
whereas fake data packets can corrupt the whole page a
recipient is decoding. Both represent a form of DoS attack,
but a fake data packet can destroy a whole page of at least
ψ packets—that is equivalent to an effort ratio of ψ−1, a
“sound investment” for the attacker—and is thus a more

EURASIP Journal on Wireless Communications and Networking 5

Table 2: List of frequently used symbols.

ψ
Minimum number of packets to receive per page
(ψ > 1)

Ψ
Number of packets to receive for a page
(ψ ≤ Ψ ≤ Ψmax)

H(·) A collision-resistant hash function

αi Packet ID of the ith encoded packet

f Packet ratio; see Definition 2

l Maximum bit-length of data payload

P Number of pages

| · | (i) Bit-length of · or (ii) number of elements in
set ·

w Number of hashes that can fit in a packet

{·}K Authenticated encryption of · using key K

[·]K Message authentication code of · using key K

‖ Concatenation operator

S Set of suspected nodes

B Set of identified polluters

ṡ Set of prime suspect (|ṡ| ≡ 1)

I Set of acquitted suspects

A
Set of suspects investigation of which has been
abandoned

N Total number of nodes

τ Fraction of polluters among neighbors

potent form of DoS attack. This more potent kind of attacks,
called pollution attacks, is the main topic of this paper. It
is worth noting that energy-efficient link-layer jamming is
another potent form of DoS attack, but it is a topic that
we have already addressed at great length in [50]. For the
definition of symbols in the ensuing discussion, please refer
to Table 2.

In the original Rateless Deluge (and naturally in Sreluge),
every page of packets are encoded before transmission. To
send a page consisting of packets X1, . . . ,Xψ , the packets are
encoded as Y1, . . . ,Yψ according to
⎡
⎢⎢⎢⎢⎢⎢⎣

H(α1) H2(α1) · · · Hψ(α1)

H(α2) H2(α2) · · · Hψ(α2)
...

. . .

H
(
αψ
)
H2
(
αψ
)
· · · Hψ

(
αψ
)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

X1, j

X2, j
...

Xψ, j

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

Y1, j

Y2, j
...

Yψ, j

⎤
⎥⎥⎥⎥⎥⎦
. (1)

In (1), Xi, j denotes the jth byte of Xi and αi is the packet
ID corresponding to Yi. By populating the matrix on the
left-hand side with pseudorandom numbers, the matrix is
rendered almost surely nonsingular. Decoding Y1, . . . ,Yψ to
X1, . . . ,Xψ is by means of Gaussian elimination. Denote by q
the size of the field where Xi, j and Yi, j are defined, then the
probability of successful decoding is given by [5]

(
qψ − 1

)∏ψ−1
i=1

(
qψ − qi − 1

)

qψ2 . (2)

We plot (2) against ψ with a field size of q = 28 (for
efficiency) in Figure 2, which shows that ψ should preferably

0.996078

0.996078

0.996078

0.996078

5 10 15 20

•

• • • • • • • • • • • • • • •

Figure 2: Probability of successful decoding versus ψ with q = 28.

be at least 6 for this field size. On the other hand, to limit
computational overhead, it is best if ψ does not exceed 20
[5]. To summarize, 6 ≤ ψ ≤ 20 for practicality.

A receiver must receive at least ψ packets before it can
decode the entire page, because otherwise the system of linear
equations in (1) is unsolvable. If any of the received packets
are polluted, the whole page becomes invalid. If the receiver
knows which of its neighbors are polluters, then it only has
to discard all the packets from them. The problem is when
an invalid page is contributed by more than one neighbor,
the receiver would not know which packets are invalid, let
alone which senders are rogue.

Like most other security countermeasures, the solution
proposed here starts with the evaluation of the severity of an
attack. The metric to use in this case is the probability of page
corruption. To derive this probability, we first formally define
page-round, decode-round, and packet ratio.

Definition 1. A page-round transpires whenever a page is
received and decoded. When a page has exactly ψ packets,
exactly one decode-round is required to decode the page, if
the page is actually decodable. When a page has more than ψ

packets, say Ψ packets, at least one but at most
(
Ψ
ψ

)
decode-

rounds are required to decode the page, if the page is actually
decodable.

Definition 2. Suppose that in the ith page-round, a node
collected Ψi packets. Among the Ψi packets, xi packets are
from neighbor u, then the packet ratio of neighbor u in the
ith page-round, denoted by fu(i), is fu(i) = xi/Ψi.

The packet ratio should be understood as a random variable.
Denote Ai as the event that the page is polluted in the ith
page-round; Ψi as the number of packets received for the ith
page-round; define Fi �

∑
u∈{good neighbors} fu(i). Then,

Pr
(
Ai | Ψi = ψ

) = Pr(Fi < 1),

Pr
(
Ai | Ψi > ψ

) = Pr
(
Fi <

ψ

Ψi

)
.

(3)

Furthermore,

Pr(Fi <1)=Pr
(
Fi <

ψ

Ψi

)
+Pr

(
ψ

Ψi
≤ Fi <1

)

≥ Pr
(
Fi <

ψ

Ψi

)
,

∴ Pr
(
Ai | Ψi = ψ

) ≥ Pr
(
Ai | Ψi > ψ

)
.

(4)

6 EURASIP Journal on Wireless Communications and Networking

In other words, besides trying to isolate the polluters, we
should set Ψi > ψ in the presence of polluters. Setting Ψi >
ψ potentially increases the number of decode-rounds, so it
should be done with discretion. The objective is Fi ≥ ψ/Ψi or
Ψi ≥ ψ/Fi. By limiting Ψi to Ψi ≤ Ψmax, we have

ψ

Fi
≤ Ψi ≤ Ψmax. (5)

Recall Fi is the combined packet ratio of the good neighbors,
hence 1 − Fi is the combined packet ratio of the polluters. If
we can find FT such that FT ≥ 1 − Fi or 1/Fi ≤ 1/(1 − FT),
and set Ψ = ψ/(1− FT), then (5) is satisfied.

To identify the polluters among the neighbors, there are
two opposing ways: one being the most memory-efficient
and the other the most time-efficient. In the most memory-
efficient approach, we use one buffer for decoding and
concentrate on one sender in one page-round. Whenever
a page consisting of packets solely from the sender fails
verification, the sender is labelled a polluter. In the most
time-efficient approach, we use n buffers for decoding
(assuming n is the number of neighbors), with each of
the buffers dedicated to a sender. When any of the buffers
fills up, we decode the buffer and if the decoded page fails
verification, we label the corresponding sender a polluter.
Due to the resource limitation of a typical sensor node,
and the fact that TinyOS 2.x deprecates the use of dynamic
memory allocation, we adopt the most memory-efficient
approach for Sreluge, that is, using only one buffer to identify
one polluter in one page-round. We note though that it is
possible to adopt a middle-ground approach where we use a
fixed small number of buffers to identify several polluters in
parallel, but this will be explored in a future work.

5. Sreluge: Predissemination

This section describes what happens prior to the dissemina-
tion of a new firmware.

5.1. On the Base Station. The firmware to be disseminated
is divided into pages (whose size is not necessarily the same
as the page size of a Flash memory). For example, the
Deluge implementation in TinyOS 2.x allocates 1024 bytes
for each page. Sreluge allocates lψ bits per page, where l is
the maximum data payload size in bits and ψ is the number
of packets per page. Pages are indexed from 1. From the ith
page, the hash hi is derived. The goal is to pack the hashes
hi (i = 1, . . . ,P) in as few packets as possible, with the
added constraint that each of these packets is independently
authenticable. Following Deng et al.’s naming convention [9],
let us call these packets index packets. An example of how
index packets are constructed from 10 pages is shown in
Figure 3.

The key idea is constructing a Merkle hash tree [51] and
determining the height of the tree. Denote by L the height of
the tree. Denote by w the number of hashes that can fit in
a packet, so w = �l/|H(·)|�. By inspecting Figure 3, we can
see that L is the minimum value such that 2L ≥ 	ψ/(w− L)
.
The root of the tree is signed. This construction is identical

to Seluge’s [11], except that in our case the leaves are hashes
of pages, not hashes of packets.

5.2. On the Nodes. In order for a node u to send authen-
ticated messages to its neighbor v, u needs to establish a
pairwise key Kuv with v. A REQ from u to v is sent as
REQ‖[REQ]Kuv .

Once Kuv is established, setting up an authenticated local
broadcast channel from u to its neighbors is straightforward.
First, u generates a cluster key chain Au,n, Au,n−1, . . . ,Au,0,
where Au,i = H(Au,i+1). Then, u sends the key chain
commitment Au,0 to v encrypted with Kuv. An ADV from
u to its neighbors is broadcast as ADV‖i‖[ADV‖i]Au,i

.
Authentication is successful if H(i− j)(Au,i) = Au, j for some
j < i, and [ADV‖i]Au,i

is valid.
We now describe how either a deterministic key predis-

tribution scheme called LEAP+ [22] or a probabilistic key
predistribution scheme by Eschenauer and Gligor [25] can
be used to establish Kuv.

LEAP+. Before deployment, every node gets an initial key
KIN . At boot-up, every node u computes (i) an individual
key Ku = [IDu]KIN ; (Here, we are using a MAC, such as
CBC-MAC, as a pseudorandom function [52].), and (ii) a
cluster key chain Au,n, Au,n−1, . . . ,Au,0. u establishes Kuv with
v, for all v ∈ {u′s neighbors} using the following protocol:

u −→ ∗ : IDu

v : Kuv ←− [IDu]Kv

v −→ u : {IDv || IDu}Kuv
u : Kv ←− [IDv]KIN , Kuv ←− [IDu]Kv .

(6)

Some time after the above protocol, KIN is erased. This
scheme is only suitable for static networks.

Eschenauer-Gligor. Before deployment, every node gets m
keys randomly chosen from a key pool of n keys. During
neighbor discovery, every pair of neighbors can find at least
one common key at a probability of 1 − (n−mm)/(n

m). Using
the common key(s), two neighbors can establish a pairwise
key. If there is no common key between two neighbors u and
v, u and v can go through a common neighbor w who has
common key(s) with both u and v, to establish a pairwise key.
This scheme is suitable for both static networks and networks
with limited mobility.

Note that with these authentication channels in place, an
internal attacker will still be able to send authentic yet invalid
data packets, but absolutely no external attackers can send
their packets through. Moreover, an internal attacker could,
after compromising sufficient keys, impersonate any node in
the network. The amount of effort required of the attacker
depends on the resilience of the key management scheme
used. This topic is extensively studied in the key management
literature (e.g., see [22, Section 3.6], for LEAP+ and [53,
Section 4.2], for Eschenauer-Gligor), and will not be pursued
here.

EURASIP Journal on Wireless Communications and Networking 7

CMD packet: CMD g1−4 Signature

g1−2 g3−4

g1 g2 g3 g4

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10

Index packets: h1 h2 h3 g2 g3−4 h4 h5 h6 g1 g3−4 h7 h8 h9 g4 g1−2 h10 g3 g1−2

Figure 3: Construction of individually authenticable index packets using the Merkle tree from 10 pages.

6. Sreluge: Dissemination

To start disseminating the new firmware, the base station
sends a CMD packet consisting of the root of the Merkle hash
tree and a signature of the root (Figure 3). The signature is
used to authenticate the root, and the root in turn is used
to authenticate the index packets. For example, when the
first index packet of Figure 3 arrives, it is partitioned into h1,
h2, h3, g2, and g3−4. If H(H(H(h1‖h2‖h3)‖g2)‖g3−4) equals
the root, then the first index packet is authenticated. The
ith authenticated index packet is used to authenticate the ith
page later.

Following the index packets, the base station sends the
pages in the form of encoded data packets. For each page,
a minimum of ψ packets, encoded according to (1), are to
be received. Pollution attacks happen when some of these
encoded packets are maliciously modified. Note that unlike
the index packets which are individually authenticable, these
encoded packets are not. It is only by failing to verify a
decoded page using its corresponding hash that we can
deduce the presence of polluted encoded packets in the page.
The core of Sreluge is a pollution detection engine that
partitions the neighbors of a node into five sets:

(i) S: nodes that are suspected to be polluters;

(ii) B: nodes that have been blacklisted as polluters;

(iii) A: nodes that were suspected but investigation of
which has been abandoned because Sreluge timed out
waiting for their packets;

(iv) I: innocent nodes that have been acquitted and are
no longer suspected;

(v) Unclassified: nodes that do not belong to any of the
above categories.

The basic idea (see Figure 4) is that whenever a decoded page
fails verification, the neighbors that contributed to that page
are placed in S. A prime suspect, defined as a single-element

set ṡ ⊆ S, is picked based on some criteria, and a page is
solicited only from ṡ. If the page from ṡ passes verification
later, then ṡ is put into I and removed from S. If however the
page fails verification, ṡ is put into B and removed from S. If
however after some timeout, the page expected of ṡ still has
not fully arrived, the investigation of ṡ is abandoned, that is,
ṡ is placed in A and removed from S.

After the firmware is successfully received, Sreluge could
pass the results, in the form of B, to an enclosing IDS. For
example, suppose the enclosing IDS is based on RFSN, then
a neighbor is associated with two parameters: α and β, which
specify a Beta distribution function. The IDS will change
(α,β) to (α,β + 1) if the corresponding neighbor ∈ B, or
to (α+ 1,β) if otherwise. This way, Sreluge does not cause the
permanent isolation of a falsely identified polluter due to a
small but finite false positive rate (see Section 7.2.1).

Implementing Sreluge requires modifying the following
components of Rateless Deluge: (i) the decode procedure, (ii)
the data processing procedure—the procedure that processes
incoming data packets, and (iii) the data request procedure—
the procedure that sends REQ packets. These modifications
are described in detail in the following subsections.

6.1. The Decode Procedure. Encoded data packets are col-
lected in the Ψmax-size c-buffer, and decoded in the ψ-size
d-buffer. The procedure decode is invoked after Ψ packets
have been collected. It is paramount to note that before any
pollution is detected, Ψ = ψ, but once pollution is detected,
Ψ is varied between ψ and Ψmax to satisfy (5). We will give
more detail on the adjustment algorithm in Section 6.1.3.

The main task of decode (see Procedure 1) is to decode
each combination of ψ packets until one of the following
happens:

(i) decoding fails due to linear dependence, and there are
not enough potentially linearly independent packets
left in c-buffer (lines 10−15);

8 EURASIP Journal on Wireless Communications and Networking

Send packets

Page verification
failed

Suspects
Choose
prime
suspect

Other packets
filtered

Accept packets

Receives from
prime suspect

Prime suspect chosen

Verification
failed

Ti
m

ed
ou

t

Veri
fica

tio
n

su
cce

ed
ed

Polluter

Investigation
abandoned

Acquitted

Case I
Good node u

Polluter v

Contributes

c-buffer:

Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

Case II
Good node u

Polluter v

Contributes

Packet 1
Packet 2
Packet 3
Packet 4
Packet 5

d-buffer:

Packet 1
Packet 2
Packet 3
Packet 4

Packet 1
Packet 2
Packet 3
Packet 5

|senders1 \ senders2| = 1
⇒ polluter = senders1 \ senders2 = {v}

Packet 2
Packet 3
Packet 4
Packet 5

|senders1| = 1
⇒ polluter = senders1 = {v}

Failed verification:
senders1 = {u, v}

Successful verification:
senders2 = {u}

Failed verification:
⇒ senders1 = {v}

Figure 4: (Top) A simplified view of neighbor classification upon detection of page pollution. (Bottom) Two ways of identifying a polluter,
with ψ = 4 and Ψ = 5 in this example.

(ii) decoding succeeds but verification fails, and there are
not enough potentially intact packets left in c-buffer
(lines 16−26);

(iii) decoding succeeds and verification succeeds (lines
27−35).

At the end of decode, the variable decodeStatus is
assigned one of three values. Depending on the value of
decodeStatus, Sreluge takes the following action.

LinearDependence. The linearly dependent packets
in d-buffer are discarded and more packets are set to be
collected.

VerificationFailure. The algorithm is flowcharted
in Figure 5. The main idea is that if a polluter has been
found, then a new prime suspect is chosen and Ψ is adjusted.

If a polluter has not been found, then more suspects are
added to S, before a new prime suspect is chosen and
Ψ is adjusted. The three procedures: findAddSuspects,
newPrimeSuspect, and adjustMaxNumPktsRecvd will be
discussed in more detail later.

VerificationSucceess. The algorithm is flowchar-
ted in Figure 6. If there is already a prime suspect, the prime
suspect is acquitted. Then, a new prime suspect is chosen and
Ψ is adjusted. If there has not been a prime suspect, Ψ is
simply set to ψ, on the optimistic assumption that there will
subsequently be no pollution. The verified page is written to
the Flash memory.

6.1.1. Procedure findAddSuspects. This purpose of this
procedure (see Procedure 2) is to identify the senders to be

EURASIP Journal on Wireless Communications and Networking 9

Decode status
=veificationFailure

ṡ /= φ

No

|senders| = 1

No

FindAddSuspects (senders)

Yes
(polluter found)

Yes
(polluter found)

newPrimeSuspect ()

adjustMaxNumPktsRecvd()

Ṡ /= φ

Yes

keep packets in c-buffer from ṡ

and erase all others

End

clear c-buffer
No

Figure 5: Flowchart for handling the case decodeStatus = verificationFailure. ṡ is the set of prime suspect. “senders” refer to the
senders of the packets in c-buffer.

DecodeStatus
= verificationSuccess

ṡ /= φ

No

Ψ← ψ

Yes

I ← ṡ∪ I

newPrimeSuspect ()

adjustMaxNumPktsRecvd ()

Start writing page to memory

End

Figure 6: Flowchart for handling the case decodeStatus = verificationSuccess. ṡ is the set of prime suspect. I is the set of acquitted
ex-suspects.

classified in S. Denote by senders the set of senders who
contributed to a polluted page. Any member of senders that
is not already in either S, B, I, or A is admitted to S. If there
is no such member, then any member of senders that is
not already in S, B, or I but maybe in A is added. Recall
that A is the set of neighbors investigation of which had
been abandoned due to Sreluge timing out waiting for their
packets. We take the opportunity to reopen investigation of
these neighbors here.

6.1.2. Procedure newPrimeSuspect. The purpose of this
procedure (see Procedure 3) is to pick a prime suspect among
the suspects. The logic of the procedure revolves around the
concept of the packet ratio (see Definition 2). To obtain a
verdict on the prime suspect as soon as possible, we hope
to get ψ packets from it in the shortest time possible. Clearly,
the higher the packet ratio of the prime suspect, the more

packets we can get from it within a fixed amount of time.
Hence, the rationale of newPrimeSuspect is to choose the
suspect with the highest packet ratio for the next page-round.
The problem is future packet ratios are not known in advance
and thus must be forecast.

To cater for the possibility that the forecast might be
wrong and the packet ratio might turn out to be zero,

we need to set a time-out. Denote by f̂ (i + 1) the packet
ratio of the prime suspect forecast for the (i + 1)th page-

round. If f̂ (i + 1) is larger or equal to a threshold value
fT , then we will have to collect at most 1/ fT packets in
order to receive the first packet from the prime suspect.
In other words, if we set a timer (called probationTimer
in newPrimeSuspect) to 1/ fT , then the first packet from
the prime suspect should arrive before the timer fires. The
probationTimer is decremented for every packet received
(see line 6 of Procedure 4).

10 EURASIP Journal on Wireless Communications and Networking

CMD Root Signature

Page 1 Page 2 Page 3 · · · Page P

Tier 1

Tier 2

Figure 7: Reduction of security proof.

Based on the analysis above, the challenges are (i) to
forecast the suspects’ packet ratios for the next page-round,
and (ii) to determine a suitable value for fT .

We first present the solution for challenge (i). The
packet ratios of a sender are a discrete-valued stochastic
process that depends on many factors, for example, the
underlying medium access control protocol, the topology,
the radio environment, the transfer rate of the Flash memory,
and so forth. The complexity forbids the derivation of a
comprehensive analytical model. However, with respect to
the standard TinyOS 2.x protocol stack, the time series
analysis and simulation-based study in Section 8.1 suggest

that the forecast f̂ (i + 1) = f (i) is good enough.
As the solution for challenge (ii), we need a suitable value

for fT . A value for fT should be high enough so that we do
not need to wait for too long before we collect enough of the
prime suspect’s packets, but low enough so that we do not
miss out actual polluters with low packet ratios. Simulation
results in Section 8.2 suggest that fT = 0.5 is a reasonable
tradeoff.

6.1.3. Procedure adjustMaxNumPktsRecvd. The purpose of
this procedure is to adjust Ψ according to whether there is a
prime suspect:

(i) When there is a prime suspect, packets will be
received solely from the prime suspect, hence Ψ← ψ.

(ii) When there is no prime suspect, packets will be
received from polluters and nonpolluters alike. To
satisfy (5), Ψ should be set to ψ/(1 − FT), where
FT is at least as large as the combined packet ratio
of the polluters. We set FT = |S ∪ A| fT , because
(i) |S ∪ A| fT tends to overestimate the combined
packet ratio of the polluters, thereby satisfying the
requirement for FT ; (ii) this facilitates a termination
proof for Sreluge in the form of Proposition 1.

There are two special cases that need to be taken care of:

(1) when ψ/(1− |S ∪A| fT) > Ψmax;

(2) when ψ/(1− |S ∪A| fT) < 0.

These cases happen when there are many suspects, in which
case the necessary value for Ψ would be too high. For these
cases, we set Ψ = ψ.

6.2. The Data Processing Procedure. Upon the reception of
a data packet, the procedure filterData is invoked. The
main tasks of filterData (see Procedure 4) are to filter
packets from blacklisted polluters when there is no prime
suspect (lines 1−4) and to filter packets not sent by the prime
suspect when there is a prime suspect (lines 5−18).

6.3. The Data Request Procedure. Before a REQ is sent,
the destination node has to be decided, and obviously,
the destination cannot be any member of B. If there is a
prime suspect, then the REQ is sent to the prime suspect.
Otherwise, the REQ is sent to the neighbor with the highest
forecast packet ratio that is not a member of B. Due to the
simplicity of the algorithm, the pseudocode of this procedure
is omitted.

7. Analysis of Sreluge

A complete analysis would involve all the components
in Figure 1, but it is only meaningful to focus on the
components contributed by this work, that is, the compo-
nent for pre-dissemination processing of firmware and the
component for data authentication. The two components
are analyzed together, and the analysis consists of two
parts: cryptographic properties (Section 7.1) and noncryp-
tographic properties (Sections 7.2.1 and 7.2.2).

7.1. Cryptographic Properties. In informal terms, the security
objective is to prevent an attacker from substituting a
firmware page(s) with its own page(s). The security proof
is reduced to the security proof of the signature schemes
labelled Tier 1 and Tier 2 in Figure 7. In formal terms, the
security objective is that both Tier 1 and Tier 2 signature
schemes are existentially unforgeable under known-message
attacks [54, Definition 1.5]. Usually, a signature scheme is
required to satisfy a stronger security notion: existentially
unforgeable under (adaptive) chosen-message attacks [54,
Definition 1.6]. However, since the base station is trusted
in the attacker model, an attacker cannot adaptively choose
messages to sign, so an attacker can at most only launch
known-message attacks.

As a candidate for the Tier 1 signature scheme, ECDSA
has been proven existentially unforgeable under chosen-
message attacks in a generic group model by Brown [55].
While the generic group model used in Brown’s proof is

EURASIP Journal on Wireless Communications and Networking 11

1: // Precondition: packets have been collected in c-buffer
2: // Output: decodeStatus
3: senders 1 ←∅;
4: senders 2 ←∅;
5: decodeStatus← verifcationFailure

4: for i← 1 to
(
Ψ
ψ

)
do

7: Choose a fresh combination of ψ packets in c-buffer
8: Copy the packets from c-buffer to d-buffer
9: Decode the packets in d-buffer
10: if decoding failed due to linear dependence then
11: x ← |linearly dependent packets in d-buffer|
12: If Ψ− x < ψ then
13: decodeStatus← linearDependence
14: break
15: end if
16: else if decoding succeeded but verification failed then
17: // Case II in Figure 4
18: senders1← senders of packets in d-buffer
19: if |senders1| = 1 then
20: B ← senders1 ∪B
21: x← |packets in c-buffer not from senders1|
22: if x < ψ then
23: decodeStatus← verificationFailure
24: break
25: end if
26: end if
27: else if decoding and verification succeeded then
28: // Case I in Figure 4
29: senders2← senders of packets in d-buffer
30: if senders1 /= ∅; and |senders1 \ senders2|= 1 then
31: B ← |senders1 \ senders2| ∪ B
32: end if
33: decodeStatus← verificationSuccess
34: break
35: end if
36: end for

Procedure 1: Decode.

candidates ← senders \ (S ∪B ∪ I ∪A)
if |candidates| = 0 then

candidates ← senders \ (S ∪ B ∪ I)
S ← candidates ∪ S

end if

Procedure 2: FindAddSuspects (senders).

If S = ∅ and ṡ = ∅ then
x ← member of S whose f̂x(i + 1) is the highest

if f̂x(i + 1) ≥ fT then
ṡ ← {x}
probationTimer ← 1/ fT
S ← S \ ṡ

end if
end if

Procedure 3: newPrimeSuspect.

12 EURASIP Journal on Wireless Communications and Networking

invalid for supersingular elliptic curves [56], the model is
valid for the curves defined in the standard [57]. There are
currently no formal security proofs for Krontiris and Dim-
itriou’s [17] and Ugus et al.’s [18] multiple-time signature
schemes.

As a candidate for the Tier 2 signature scheme, the Merkle
tree has been proven existentially unforgeable under chosen-
message attacks [58]. Therefore, it can be concluded here that
if ECDSA is used at Tier 1 and the Merkle tree is used at
Tier 2, then the component for pre-dissemination processing
of firmware and the component for data authentication of
Sreluge are provably secure.

7.2. Noncryptographic Properties. In terms of noncrypto-
graphic properties, our main concern is the resilience of
Sreluge against the following DoS attacks.

(i) DoS Attacks on the Index Packets. Since the index
packets can be received out of order, they are more
resilient to DoS attacks than if they have to be
received in order such as in [9].

(ii) DoS Attacks on the Encoded Date Packets. As
explained, pollution is a major threat due to the
nature of network coding. Since Sreluge functions
like an intrusion detection system during the dis-
semination phase, we are interested in the false
negative rate and false positive rate of the algorithm
for identifying polluters. Another important goal is
to prove the total correctness of the algorithm. These
three properties ensure that, provided the underlying
cryptographic framework is secure, no polluter can
escape detection and no polluter can cause Sreluge to
execute indefinitely. The analysis of these properties
is the focus of the remainder of this section.

7.2.1. False Negative and False Positive Rates. A false negative
is when a node fails to identify a polluter whereas a false
positive is when a node mistakes a good neighbor as a
polluter.

Theorem 1. Sreluge has zero false negative rate and a false
positive rate that is upper-bounded by

1− (1− BER)lmax(Ψ−ψ,ψ), (7)

where BER is the bit error ratio, and other symbols are as
defined in Table 2.

Proof. There are two cases when a node is labelled as a
polluter (see Figure 4). We discuss these two cases separately.

Case I. This case is handled by line 31 of procedure decode.
Denote by Sbad the set of packets that decode into a page that
fails verification and by Sgood the set of packets that decode
into the correct page. Then, the packets in Sbad \ Sgood must
be responsible for the pollution. Moreover, if all of Sbad\Sgood

originated from a single sender, there are two possibilities: (i)
either the sender is a polluter or (ii) the sender is good but
some of its packets are unintentionally corrupted.

(i) The Sender Is Indeed a Polluter. Sreluge correctly
identifies it as a polluter, so there is no false negative.

(ii) The Sender Is Actually Good. Denoting by Ei the
event that |Sbad \Sgood| = i; by BER the bit error ratio;
by l the number of bits in a data payload. Then, the
probability of this false positive is

FPRI =
Ψ−ψ∑

i=1

Pr(Ei)
[

1− Pr
(
packet is intact | Ei

)i]

=
Ψ−ψ∑

i=1

Pr(Ei)
[

1− (1− BER)li
]

≤
[

1− (1− BER)l(Ψ−ψ)
]Ψ−ψ∑

i=1

Pr(Ei)

= 1− (1− BER)l(Ψ−ψ).

(8)

Case II. This case is handled by line 20 of procedure decode.
Again, there are two possibilities as follows.

(i) The Sender Is Indeed a Polluter. Sreluge correctly
identifies it as a polluter, so there is no false negative.

(ii) The Sender Is Actually Good. Denoting by BER the
bit error ratio and by l the number of bits in a data
payload, the probability of this false positive is

FPRII = 1− Pr(packet is intact)ψ

= 1− (1− BER)lψ .
(9)

Meanwhile, the combined false positive rate is

FPR = FPRI · Pr(Case I) + FPRII · Pr(Case II)

= (FPRI − FPRII)Pr(Case I) + FPRII.
(10)

Since (10) is linear in Pr(Case I), the maximum of FPR
is either when Pr(Case I) = 0 or when Pr(Case I) = 1.
Therefore,

FPR ≤ max(FPRI, FPRII)=1−(1−BER)lmax(Ψ−ψ,ψ). (11)

The implication of the above analysis is that the false negative
rate is zero, and the false positive rate is negligible in practice.

7.2.2. Total Correctness. An algorithm is said to satisfy
total correctness if given a precondition, the algorithm is
guaranteed to terminate and the resulting state satisfies the
postcondition. In our case, the precondition is that after
discounting polluters, a node is at least 1-connected to
the base station whereas the postcondition is that a node
eventually receives all the pages.

It is trivial to show that if a node has only good neighbors
and the collective transmission rate of the good neighbors is
nonzero, then the node will eventually receive all pages and
Sreluge running on the node will eventually terminate. If a

EURASIP Journal on Wireless Communications and Networking 13

1: if ṡ = ∅ then
2: if sender ∈ B then drop packet
3: else accept packet
4: end if
5: else
6: probationTimer ← probationTimer − 1 // Dec. timer
7: if sender ∈ B or sender /∈ ṡ then
8: drop packet
9: else if sender = ṡ then
10: accept packet
11: probationTimer ← 1/ fT // Reset timer
12: end if
13: if probationTimer = 0 then
14: A ← ṡ∪ A
15: clear c-buffer
16: newPrimeSuspect()
17: end if
18: end if

Procedure 4: FilterData(packet).

node has one polluter among its neighbors, Proposition 1
says that Sreluge will eventually terminate with the node
successfully receiving all pages. Proposition 1 depends on
Definition 3.

Definition 3. The packet ratio f is oscillatory around fT if it
can be represented by a two-state Markov process, with states
A : f ≥ fT and B : f < fT , and transition matrix

⎡
⎣Pr(A | A) Pr(B | A)

Pr(A | B) Pr(B | B)

⎤
⎦ =

[
0 1
1 0

]
. (12)

None of the packet ratio processes in Figure 9 is oscilla-
tory around any value of fT . We can safely assume that the
packet ratio processes are generally not oscillatory around
any reasonable value of fT . It is theoretically feasible for an
attacker to manipulate its packet ratio such that the packet
ratio is oscillatory around a specific fT , but in practice
this requires the attacker to have continuous and absolute
influence on the packet ratios of the good neighbors, which
is difficult to achieve.

Proposition 1. Suppose a node has one polluter among its
neighbor and at least one good neighbor with positive
transmission rate. Provided the packet ratio of the polluter is
not oscillatory around fT , Sreluge will eventually terminate
with all pages successfully received and verified.

Proof. For the proof, let us label the node running Sreluge
as v and the polluter as u. Figure 8 shows the finite
state automaton representing Sreluge. Sreluge would not
terminate if it is trapped in some loop in Figure 8. We first
note that the transitions c and d do not contribute to any
loop because in states 3 and 4, ṡ is eliminated from further
consideration. We then note that there are three potential
loops: (i) a-e-h, (ii) b-g, and (iii) a-e-h-b-g.

Consider first the possibility of infinite loop a-e-h.
Transition e is triggered by the condition fu|52 < fT . After

transition h, in state 1, the condition f̂u = fu|52 < fT (recall

that in Section 6.1.2, we defined f̂u to be the most recent
value of fu) triggers transition b instead of a. Hence, the
infinite loop a-e-h is not possible. Using the same reasoning,
the infinite loop b-g can be shown to be impossible.

Consider now the possibility of infinite loop a-e-h-b-g.
Given the packet ratio fu is not oscillatory around fT , we can
write the transition matrix of the Markov process describing
fu as

⎡
⎣Pr(A | A) Pr(B | A)

Pr(A | B) Pr(B | B)

⎤
⎦ =

⎡
⎣π11 π12

π21 π22

⎤
⎦,

π11 + π12 = 1, π21 + π22 = 1, π12π21 < 1,

(13)

where the states A and B of the Markov process correspond
to the conditions fu ≥ fT and fu < fT , respectively.
The infinite loop a-e-h-b-g necessitates that the process
alternates between states A and B. The probability of this
happening indefinitely is limi→∞(π12π21)i, but π12π21 < 1 ⇒
limi→∞(π12π21)i = 0, so while the loop a-e-h-b-g is possible,
it cannot occur indefinitely.

The implication of the above analysis is that u will
eventually be labelled as a polluter (in state 4), or abandoned
(in state 5). In the former case, all polluted packets from u
will be filtered and as long as the collective transmission rate
of the good neighbors is nonzero, enough intact packets will
be received. In the latter case, at least ψ in Ψ packets will be
intact, and the ψ packets can be decoded and successfully
verified. Note that u will never be labelled as innocent (in
state 3) because according to Theorem 1, Sreluge has zero
false negative rate.

Proposition 1 addresses the case where there is one
polluter. The case where a node has multiple polluters among

14 EURASIP Journal on Wireless Communications and Networking

Page
pollution
detected

0
findAddSuspects()

1
newPrimeSuspect()

2
ṡ← {u}
S← S \ ṡ

3
I ← ṡ∪ I

4
B ← ṡ∪ B

5
A← ṡ∪ A

6
ṡ← φ
Ψ← ψ\ (1− fT)

7
v decodes and verifies page

a b

c d e

f

g

h

a: f̂u ≥ fT
b: S = φ ∨ f̂u < fT
c: fu |32≥ fT and verification succeeded
d: fu |42≥ fT and verification failed
e: fu |52< fT

f: fu |76≤ fT
g: fu |16> fT h: none

Definitions:
f̂u � the forecast value of the next fu
fu | ji� the value of fu between states i and j

Figure 8: A finite state automaton for proving the total correctness of Sreluge, where u is the polluter and v is the node running Sreluge.

its neighbors requires a more thorough proof using formal
logic, which will be given in a later work.

8. Simulation and Experimental Results

Simulations are performed using TOSSIM Live [59] of
TinyOS 2.x. The advantage of using TOSSIM is that large
scale network dynamics can be observed more easily, and the
code can be ported to actual sensor nodes with little to no
modification.

Two classes of polluters are simulated as follows.

(i) Basic polluters behave like normal nodes except that
they send out invalid data packets. A Basic polluter
can be implemented, for example, by capturing a
normal node and setting the memory address of the
outgoing data packet to an arbitrary value.

(ii) Aggressive polluters are more aggressive than Basic
polluters, in that (i) they advertise the falsehood
that they possess all the pages, and (ii) they reply
to requests immediately with invalid data packets.
Implementing an Aggressive polluter requires more
effort from the attacker. Most likely, the attacker
would need to program its own node, and copy the
necessary cryptographic keys from a captured node
to its own node. Basic polluters are significantly easier
to implement than Aggressive polluters, so we deem
Basic polluters a more prevalent threat.

50 and 100 nodes are distributed in a 40 m × 40 m
area in 12 random topologies and a 19-page firmware is
disseminated. The networks with 50 nodes have an average
network degree of 13 whereas the networks with 100 nodes
have an average network degree of 27. Radio parameters (as

Table 3: Radio parameters used in the simulations.

Path loss exponent 4.7

Shadowing s.d. 3.2

d0 1.0

PL(d0) 55.4

Noise floor −105.0

S11 0.9

S12 −0.7

S21 −0.7

S22 1.2

White Gaussian noise s.d. 4.0

defined in [60]) are configured as in Table 3. Sreluge-specific
parameters are configured as such: ψ = 8, Ψmax = 1.5ψ (i.e.,
ψ ≤ Ψ ≤ 1.5ψ). ADV, REQ, and data packets are fixed in
size and are 14, 10, and 29 bytes long, respectively. The three
cases τ = 0%, τ = 10%, and τ = 20% are simulated. Four
performance metrics are used.

(i) Number of REQ Packets Transmitted per Page per Node. In
the ideal case, and in the absence of attacks, a node sends 1/n
request packet per page.

(ii) Number of Data Packets Transmitted per Page per Node.
A data packet is typically much longer than a request packet,
hence this metric is necessary. In the ideal case, and in the
absence of attacks, a node sends ψ/n data packets per page.

(iii) Number of Decode-Rounds per Page per Node . In the
ideal case, and in the absence of attacks, a node decodes each
page once.

EURASIP Journal on Wireless Communications and Networking 15

−0.2

−0.1

0

0.1

0.2
D

iff
er

en
ce

d
pa

ck
et

ra
ti

o

0 10 20
The ith page-

round

(a)

−1

−0.5

0

0.5

1

0 10 20

The ith page-
round

(b)

−1

−0.5

0

0.5

1

0 10 20

The ith page-
round

(c)

−0.1
−0.05

0
0.05
0.01
0.15

0 10 20

The ith page-
round

(d)

−1

−0.5

0

0.5

1

0 10 20 30

The ith page-
round

(e)

−0.4
−0.2

0
0.2
0.4
0.6

0 10 20 30

The ith page-
round

(f)

0
2
4
6
8

10

N
u

m
be

r
of

oc
cu

rr
en

ce
s

−0.2 0 0.2
Differenced
packet ratio

(g)

0

1

2

3

4

−1 0 1
Differenced
packet ratio

(h)

0

1

2

3

−1 0 1
Differenced
packet ratio

(i)

0

5

10

15

20

−0.2 0 0.2
Differenced
packet ratio

(j)

0
2
4
6
8

10

−1 0 1
Differenced
packet ratio

(k)

0

5

10

15

−0.5 0 0.5
Differenced
packet ratio

(l)

Figure 9: (a)−(f) Six randomly sampled packet ratio processes plotted against page-round, after first-order differencing. (g)−(l) Histograms
of the differenced packet ratio processes appear Gaussian for most cases. The best ARIMA models for the processes are found to
be ARIMA(6,1,2), ARIMA(0,1,1), ARIMA(0,1,3), ARIMA(0,1,0), ARIMA(0,1,1), and ARIMA(0,1,1), respectively; chosen among the
candidates ARIMA(p,1,q), p, q ∈ {0, . . . , 6}, based on Akaike’s information criterion.

0

0.1

0.2

5 10 15

ARIMA(0,1,1),
0.080123

(a)

0
0.2
0.4
0.6
0.8

1

5 10 15

ARIMA(0,1,1),
0.511674

(b)

0
0.2
0.4
0.6
0.8

1

5 10 15

ARIMA(0,1,1),
0.541553

(c)

0

0.04

0.08

0.12

5 10 15

ARIMA(0,1,1),
0.029463

(d)

0
0.2
0.4
0.6
0.8

1

5 10 15 20 25

ARIMA(0,1,1),
0.384715

(e)

0
0.1
0.2
0.3
0.4
0.5

5 10 15 20 25

ARIMA(0,1,1),
0.171494

(f)

0

0.1

0.2

5 10 15

ARIMA(0,1,0),
0.081111

(g)

0
0.2
0.4
0.6
0.8

1

5 10 15

ARIMA(0,1,0),
0.516185

(h)

0
0.2
0.4
0.6
0.8

1

5 10 15

ARIMA(0,1,0),
0.555903

(i)

0

0.04

0.08

0.12

5 10 15

ARIMA(0,1,0),
0.029463

(j)

0
0.2
0.4
0.6
0.8

1

5 10 15 20 25

ARIMA(0,1,0),
0.364907

(k)

0
0.1
0.2
0.3
0.4
0.5

5 10 15 20 25

ARIMA(0,1,0),
0.180278

(l)

Figure 10: Forecast results of the six randomly sampled packet ratio processes from Figure 9. The top and bottom rows are based on models
ARIMA(0,1,1) and ARIMA(0,1,0), respectively. Solid lines represent the original time series whereas dashed lines represent the results of
real-time forecasting with a forecast horizon of 1. Root mean square errors between the actual time series and the forecast time series are
given above each graph.

Table 4: Comparison of Sreluge to Rateless Deluge (“R.D.”) when τ = 0%. Figures are mean values.

50 nodes 100 nodes

R.D. Sreluge R.D. Sreluge

REQ/page/node 1.47 1.47 0.82 0.80

Data/page/node 3.59 3.56 2.01 1.97

Decoding/page/node 1.00 1.01 1.00 1.00

Dissemination time 128.17 123.75 79.08 73.83

16 EURASIP Journal on Wireless Communications and Networking

0

0.5

1

1.5

2

N
u

m
be

r
of

R
E

Q
pa

ck
et

s/
pa

ge
/n

od
e

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

(a)

0

1

2

3

4

5

N
u

m
be

r
of

D
A

TA
pa

ck
et

s/
pa

ge
/n

od
e

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

(b)

0

0.4

0.8

1.2

N
u

m
be

r
of

de
co

de
-r

ou
n

ds
/p

ag
e/

n
od

e

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

ARIMA(0,1,1)
ARIMA(0,1,0)

(c)

0

50

100

150

200

D
is

se
m

in
at

io
n

ti
m

e
(s

)

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

ARIMA(0,1,1)
ARIMA(0,1,0)

(d)

Figure 11: Comparison of forecast models for packet ratios. fT = 0.5.

(iv) Dissemination Time . This metric considers the amount
of time in seconds required for the disseminated firmware
to reach all the nodes in the network, but does not take
into account the time required for the nodes to reboot
themselves using the new firmware. Note that the timing
results here are only rough estimates as TOSSIM does not
simulate computation delay.

For the simulations, key predistribution and distribution
of index packets are not implemented; 10-byte-long hashes
derived from the pages are hard-coded. Assuming both
Rateless Deluge and Sreluge implement the same key pre-
distribution scheme and index packet scheme, then the
overhead for both Rateless Deluge and Sreluge in this regard
would be the same, and the comparison between the two
protocols given here would not be far off.

When τ = 0%, Sreluge behaves like Rateless Deluge,
as evidenced by Table 4. This confirms that Sreluge does
not incur unnecessary overhead when there is no attack.
Table 4 also shows that higher network density quickens
dissemination in a pollution-free network. In the ensuing
subsections, results will be given

(1) to compare forecast methods of the packet ratio,
assuming Basic polluters;

(2) to compare different values of fT , assuming Basic
polluters;

(3) to compare Sreluge with a prescient countermeasure
called Prescient Sreluge, assuming Basic polluters;

(4) to compare the effects of Basic and Aggressive
polluters on the performance of Sreluge.

Experimental results using Crossbow IRIS motes will also be
given.

8.1. Comparison of Forecast Methods of the Packet Ratio.
In procedure newPrimeSuspect, packet ratios need to be
forecast. By simulations, we find that first-order differenced
packet ratio processes are mostly stationary and may well
be modelled using moving average processes. For example,
among the six randomly sampled packet ratio processes
in Figure 9, after first-order differencing, the best model
for half of the processes is found to be the first-order

EURASIP Journal on Wireless Communications and Networking 17

0

0.5

1

1.5

2

2.5

N
u

m
be

r
of

R
E

Q
pa

ck
et

s/
pa

ge
/n

od
e

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

(a)

0

1

2

3

4

5

6

N
u

m
be

r
of

D
A

TA
pa

ck
et

s/
pa

ge
/n

od
e

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

(b)

0

0.5

1

1.5

N
u

m
be

r
of

de
co

de
-

ro
u

n
ds

pa
ge

/n
od

e

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

fT = 0
fT = 0.1
fT = 0.2
fT = 0.3
fT = 0.4
fT = 0.5

fT = 0.6
fT = 0.7
fT = 0.8
fT = 0.9
fT = 1

(c)

0

50

100

200

D
is

se
m

in
at

io
n

ti
m

e
(s

)

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

fT = 0
fT = 0.1
fT = 0.2
fT = 0.3
fT = 0.4
fT = 0.5

fT = 0.6
fT = 0.7
fT = 0.8
fT = 0.9
fT = 1

(d)

Figure 12: Comparison of different values of fT . ARIMA(0,1,0) is used as the forecast model for packet ratios.

moving average, MA(1). For the ensuing discussion, we
employ the standard notation ARIMA(p,d,q) to denote the
autoregressive integrated moving average time series, f (t),
defined by the following [61]:

φp(B)(1− B)d f (t) = μ + θq(B)εt (14)

where

Bi f (t) = f (t − i) ∀i = 0, 1, . . . , t,

φp(B) = 1− φ1B − · · · − φpBp,

θq(B) = 1 + θ1B + · · · + θqB
q,

εt ∼ N
(
0, σ2).

(15)

B is called the lag operator and μ is called the deterministic
trend term when d ≥ 1. Using this standard notation, we say
that for half of the randomly sampled packet ratio processes
in Figure 9, the best model is found to be ARIMA(0,1,1).
While it is inconclusive whether ARIMA(0,1,1) is the best
model for the majority of packet ratio processes besides these
six, it is beyond the capability of standard sensor nodes
to perform real-time model selection as well as parameter
estimation for high-order ARIMA models.

Reusing the packet ratio processes from Figure 9, we
further compare ARIMA(0,1,1) to ARIMA(0,1,0) in terms of
their accuracy in forecasting packet ratios in real-time.

When the model is ARIMA(0,1,1), we use the method of
moments [62, page 125] for parameter estimation and the

innovations algorithm [62, page 115] for forecasting. We use
these algorithms instead of the higher-accuracy Kalman filter
because the latter is much more resource-intensive.

When the model is ARIMA(0,1,0), we first write down
the equation for the model:

f (t)− f (t − 1) = μ + εt , (16)

which is essentially a first-order autoregressive process,
AR(1). We then apply the Wiener-Kolmogorov prediction
formula [61, page 80] for AR(1):

E
[
f (t + s) | f (t), f (t − 1), . . .

] = μ + φs1
[
f (t)− μ]. (17)

Substituting φ1 = 1 as implied by (16), and s = 1 for a
forecast horizon of 1, in (17), we have

E
[
f (t + 1) | f (t), f (t − 1), . . .

] = f (t) (18)

which means the forecast for the next sample is simply the
current sample. We must note that the Wiener-Kolmogorov
prediction formula is based on an infinite number of obser-
vations, so it is only used for asymptotic approximation.

The results in Figure 10, obtained offline using R [63],
show that in all cases, forecasting using ARIMA(0,1,0) is only
slightly worse than using ARIMA(0,1,1). While the results
in Figure 10 are obtained offline, the results in Figure 11
are obtained online, which show that the slight degradation
in forecast accuracy of ARIMA(0,1,0) does not result in

18 EURASIP Journal on Wireless Communications and Networking

0

0.5

1

1.5

2

N
u

m
be

r
of

R
E

Q
pa

ck
et

s/
pa

ge
/n

od
e

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

(a)

0

1

2

3

4

5

N
u

m
be

r
of

D
A

TA
pa

ck
et

s/
pa

ge
/n

od
e

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

(b)

0

0.4

0.8

1.2

N
u

m
be

r
of

de
co

de
-

ro
u

n
ds

/p
ag

e/
n

od
e

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

Prescient sreluge
Sreluge

(c)

0

50

100

150

200

D
is

se
m

in
at

io
n

ti
m

e
(s

)

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

Prescient sreluge
Sreluge

(d)

Figure 13: Comparison of Sreluge with Prescient Sreluge. For regular Sreluge, ARIMA(0,1,0) is used as the forecast model for packet ratios;
fT = 0.5.

any practical difference in the four performance metrics.
Consequently, we adopt the simpler ARIMA(0,1,0) as the

model, and in the interest of resource conservation, f̂ (i+1) =
f (i) as the forecast formula.

8.2. Comparison of Different Values of fT . In procedure
newPrimeSuspect, fT is used as the threshold for choosing
a prime suspect. A suitable value is chosen via simulations.
For the simulations, 11 values ranging from 0.0 to 1.0 are
used. When fT = 0.0, the procedure newPrimeSuspect
always finds a prime suspect. When fT = 1.0, the procedure
almost never finds a prime suspect. The results in Figure 12
show that the number of REQ/data packets and the dissem-
ination time generally manifest a downward trend against
fT whereas the number of decode-rounds generally increases
with fT . As such, fT = 0.5 presents a reasonable tradeoff.

8.3. Comparison with Prescient Sreluge. Sreluge is a reactive
countermeasure that tries to identify polluters. If the good
nodes knew in advance which neighbors of theirs are
polluters, then the overhead could be drastically reduced.
With this prescience, the nodes will drop all ADV and data
from the polluters. We call this prescient countermeasure
Prescient Sreluge. This is not a realistic protocol, but as a

comparison to Sreluge, it sheds light on how close Sreluge is
to a solution with prior information. Figure 13 shows that,
in the worst case (100 nodes with 20% polluters), Sreluge
requires 100% more REQ packets, 50% more data packets,
50% more decode-rounds, and 100% more dissemination
time.

8.4. Comparison of Basic and Aggressive Polluters. Figure 14
shows that Aggressive polluters make Sreluge send more REQ
packets and perform more decoding. However, Aggressive
polluters neither make Sreluge send more data packets,
nor make Sreluge spend more time on dissemination. This
surprising outcome can be explained by the fact that as the
Aggressive polluters start polluting data earlier than the Basic
polluters do, they tend to be blacklisted earlier than the
Basic polluters do as well. With pollution blocked earlier, the
session can finish earlier. Since the Aggressive polluter does
not cause more “damage” than the Basic polluter does for
the amount of effort that is required of the attacker, the Basic
polluter should be considered a more prevalent threat.

Consistent with intuition, Figures 11−14 show that a
higher percentage of polluters increases all four metrics. On
the other hand, for the same percentage of polluters, higher
network density results in less REQ/data packets, shorter
dissemination time, but more decode-rounds.

EURASIP Journal on Wireless Communications and Networking 19

0

0.5

1

1.5

2

2.5

N
u

m
be

r
of

R
E

Q
pa

ck
et

s
/p

ag
e/

n
od

e

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

(a)

0

1

2

3

4

5

N
u

m
be

r
of

D
A

TA
pa

ck
et

s/
pa

ge
/n

od
e

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

(b)

0

0.5

1

1.5

N
u

m
be

r
of

de
co

de
-r

ou
n

ds
/p

ag
e/

n
od

e

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

Aggressive polluter
Basic polluter

(c)

0

50

100

150

200

D
is

se
m

in
at

io
n

ti
m

e
(s

)

N = 50, τ = 0.1 N = 50, τ = 0.2 N = 100, τ = 0.1 N = 100, τ = 0.2

Aggressive polluter
Basic polluter

(d)

Figure 14: Comparison of the effects of Basic and Aggressive polluters on the performance of Sreluge. ARIMA(0,1,0) is used as the forecast
model for packet ratios. fT = 0.5.

0
0.2
0.4
0.6
0.8

1
1.2

Number of REQ
pkts/page/node

Number of DATA
pkts/page/node

Number of decode-
rounds/page/node

Dissemination
time (1k sec)

Sreluge (no polluters)
Prescient sreluge (2 polluters)
Sreluge (2 polluters)

Figure 15: Experimental results comparing Sreluge to Prescient
Sreluge in the presence of polluters, and to Sreluge in the absence
of polluters

8.5. Experimental Results. The objective of the experiments
is to compare the performance of Sreluge under attack,
and Sreluge not under attack as well as the performance
of Prescient Sreluge under attack. For the experiments, 11

Crossbow IRIS motes running Sreluge on top of the CVS
version of TinyOS 2.x are used—one of which serves as the
base station, five of them are placed one hop away from the
base station, and the remaining five are placed two hops from
the base station. All nodes in the same hop distance from
the base station are interconnected. Packet length is set to
33 and the transmission power is set to the minimum to
minimize interference and the area of the network. A TinyOS
image of 191 pages is disseminated by the base station.
To simulate attacks, two Basic polluters (τ = 20%, not
counting the base station) are placed in the first hop of the
network. For each scenario, the experiment is carried out
five times. The results are shown in Figure 15. Note that due
to practical constraints, this experimental network is much
sparser than the simulated networks, and hence the results
here are not directly comparable to the simulation results in
the previous sections.

Figure 15 shows that the overhead of Sreluge in the
face of a 20% attack is insubstantial compared to the case
when there is no attack at all. Intuition may suggest that
all the performance metrics will be lowest when there is no
attack, and highest when there is attack and Sreluge (not

20 EURASIP Journal on Wireless Communications and Networking

Prescient Sreluge) is used. However, Figure 15 turns out to
be conflicting with intuition in terms of the number of
REQ packets and in terms of dissemination time. According
to observation, polluters tend to saturate the medium with
ADV packets when Prescient Sreluge is used, consequently
the normal nodes have less opportunity to send REQ packets
and it takes a much longer time for the dissemination to
finish. During the course of the experiments, it is found that
Flash-write failures (BlockWrite.write returns FAIL) on
the IRIS motes are more common than expected, but neither
the official Deluge nor the official Rateless Deluge code
handles this exception because they are targeted at the TelosB
platform. Moreover, interference-induced packet corruption
happens more frequently than expected, such that a simple
2-byte CRC on the data link layer is no longer adequate. In
view of these exceptions, improvements have been made to
Sreluge to ensure Sreluge will only proceed after a successful
Flash write, and interference-induced packet corruption is
detected using a 4-byte SHA-1 hash (not to be confused with
the hashes used for page verification).

On the IRIS platform, Sreluge compiles to 52078 bytes
in the Flash memory, but the figure also includes the
code and data structures for collecting experimental results.
The compiler reports a RAM usage of 3131 bytes. Most
of the RAM space is used for maintaining per-neighbour
information. This figure is a result of hard-coding the
following size limits: number of neighbors ≤ 40, |S| ≤ 25,
|B| ≤ 10, |A| ≤ 25, and |I| ≤ 10. (recall that TinyOS
2.x deprecates dynamic memory allocation). The exact ROM
and RAM figures would also vary slightly with the exact
version of TinyOS 2.x used.

9. Conclusion and Future Work

To address the inadequacy of existing schemes for securing
network coding-based reprogramming protocols, we pro-
pose Sreluge, a secure version of Rateless Deluge that is
resistant to pollution attacks. Sreluge features a neighbor
classification system and a time series forecasting technique
to isolate polluters, and a combinatorial technique to decode
packets in the presence of polluters before the isolation
is complete. For detecting polluters, Sreluge has zero false
negative rate and a negligible false positive rate. TOSSIM
simulations show that when 20% of the nodes in a 27-degree,
100-node network are polluters, using Sreluge, dissemination
on average takes roughly twice as long to finish as when
there is no attack; a node transmits twice as many REQ and
data packets, and performs 50% more decoding per page.
Experimental results using Crossbow IRIS motes show that
the overhead of Sreluge in a 11-node network is insubstantial.
Sreluge is equally useful in cases where nonmalicious but
faulty nodes “inadvertently” feed corrupted data packets to
their neighbors.

The current limitation is that there is no analytical
model that describes the negotiation dynamics (exchange
of ADV/REQ/data) of Deluge (which Rateless Deluge and
Sreluge inherit), and as a result Sreluge resorts to simulation-
based study to forecast packet ratios. In fact, due to the lack
of this model, most creators of post-Deluge reprogramming

protocols rely on implementation results to make com-
parisons between Deluge and their own protocols. Sreluge
currently investigates one prime suspect in one page-round.
There are potential savings in bandwidth and energy if
multiple prime suspects are investigated within a page-
round, given enough memory. More investigation will be
carried out in this direction.

Acknowledgments

This work is partly supported by the Australian Research
Council under grant DP1095452 and the European Commis-
sion under the Contract no. INFSO-ICT-215923 (SENSEI).
The authors would like to thank Andrew Hagedorn for
sharing his Rateless Deluge source code; Chieh-Jan Liang,
Razvan Musaloiu-E., Miklos Maroti, and Philip Levis for
their help with TinyOS; Osman Ugus for his feedback.
Lastly, the authors thank the anonymous reviewers for their
immensely helpful reviews.

References

[1] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive
protocols for information dissemination in wireless sensor
networks,” in Proceedings of the 5th Annual ACM/IEEE
International Conference on Mobile Computing and Networking
(MobiCom ’99), pp. 174–185, ACM, 1999.

[2] J. W. Hui and D. Culler, “The dynamic behavior of a data
dissemination protocol for network programming at scale,” in
Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems (SenSys ’04), pp. 81–94, New York,
NY, USA, November 2004.

[3] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory,
vol. 46, no. 4, pp. 1204–1216, 2000.

[4] I.-H. Hou, Y.-E. Tsai, T. F. Abdelzaher, and I. Gupta, “Adap-
Code: adaptive network coding for code updates in wireless
sensor networks,” in Proceedings of the 27th IEEE Conference on
Computer Communications (INFOCOM ’08), pp. 2189–2197,
2008.

[5] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless
Deluge: over-the-air programming of wireless sensor networks
using random linear codes,” in Proceedings of the 7th Interna-
tional Conference on Information Processing in Sensor Networks
(IPSN ’08), pp. 457–466, IEEE Computer Society, 2008.

[6] L. Buttyán, L. Czap, and I. Vajda, “Securing coding based
distributed storage in wireless sensor networks,” in Proceedings
of the 5th IEEE International Conference on Mobile Ad-Hoc and
Sensor Systems (MASS ’08), pp. 821–827, October 2008.

[7] P. E. Lanigan, R. Gandhi, and P. Narasimhan, “Sluice:
secure dissemination of code updates in sensor networks,”
in Proceedings of the 26th IEEE International Conference on
Distributed Computing Systems (ICDCS ’06), pp. 53–63, IEEE
Computer Society, 2006.

[8] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler, “Securing
the deluge network programming system,” in Proceedings of
the 5th International Conference on Information Processing in
Sensor Networks (IPSN ’06), pp. 326–333, ACM, April 2006.

[9] J. Deng, R. Han, and S. Mishra, “Secure code distribution
in dynamically programmable wireless sensor networks,” in

EURASIP Journal on Wireless Communications and Networking 21

Proceedings of the 5th International Conference on Information
Processing in Sensor Networks (IPSN ’06), pp. 292–300, April
2006.

[10] D. K. Nilsson, U. Lindqvist, T. Roosta, and A. Valdes,
“Key management and secure software updates in wireless
process control environments,” in Proceedings of the 1st ACM
Conference on Wireless Network Security (WiSec’08), pp. 100–
108, ACM, 2008.

[11] S. Hyun, P. Ning, A. Liu, and W. Du, “Seluge: secure and DoS-
resistant code dissemination in wireless sensor networks,” in
Proceedings of the 7th International Conference on Information
Processing in Sensor Networks (IPSN ’08), pp. 445–456, IEEE
Computer Socity, April 2008.

[12] A. Liu, P. Ning, and C. Wang, “Lightweight remote image
management for secure code dissemination in wireless sensor
networks,” in Proceedings of the 28th IEEE Conference on
Computer Communications (INFOCOM ’09), pp. 1242–1250,
April 2009.

[13] A. Liu and P. Ning, “TinyECC: a configurable library for
elliptic curve cryptography in wireless sensor networks,” in
Proceedings of the International Conference on Information
Processing in Sensor Networks (IPSN ’08), pp. 245–256, IEEE
Computer Society, 2008.

[14] P. Ning, A. Liu, and W. Du, “Mitigating DoS attacks against
broadcast authentication in wireless sensor networks,” ACM
Transactions on Sensor Networks, vol. 4, no. 1, article 1, 2008.

[15] H. Tan, D. Ostry, J. Zic, and S. Jha, “A confidential and DoS-
resistant multi-hop code dissemination protocol for Wireless
Sensor Networks,” in Proceedings of the 2nd ACM Conference
on Wireless Network Security (WiSec ’09), pp. 245–252, March
2009.

[16] L. Wang and S. S. Kulkarni, “Authentication in reprogram-
ming of sensor networks for mote class adversaries,” in
Proceedings of the 21st International Parallel and Distributed
Processing Symposium (IPDPS ’07), pp. 1–8, March 2007.

[17] I. Krontiris and T. Dimitriou, “Authenticated in-network
programming for wireless sensor networks,” in Ad Hoc Mobile
Wireless Networks, vol. 4104 of Lecture Notes in Computer
Science, pp. 390–403, 2006.

[18] O. Ugus, D. Westhoff, and J.-M. Bohli, “A ROM-friendly
secure code update mechanism for WSNs using a stateful-
verifier T-time signature scheme,” in Proceedings of the 2nd
ACM Conference on Wireless Network Security (WiSec ’09), pp.
29–40, 2009.

[19] M. Rossi, N. Bui, G. Zanca, L. Stabellini, R. Crepaldi, and M.
Zorzi, “SYNAPSE++: code dissemination in wireless sensor
networks using fountain codes,” IEEE Transactions on Mobile
Computing. In press.

[20] H. Tan, S. Jha, D. Ostry, J. Zic, and V. Sivaraman, “Secure
multi-hop network programming with multiple one-way key
chains,” in Proceedings of the 1st ACM Conference on Wireless
Network Security (WiSec ’08), pp. 183–193, ACM, April 2008.

[21] Y. Zhang, X.-S. Zhou, Y.-M. Ji, Z.-Y. Fang, and L.-F. Wang,
“Secure and DoS-resistant network reprogramming in sensor
networks based on CPK,” in Proceedings of the 4th Interna-
tional Conference on Wireless Communications, Networking and
Mobile Computing (WiCOM ’08), pp. 1–5, October 2008.

[22] S. Zhu, S. Setia, and S. Jajodia, “LEAP+: efficient security
mechanisms for large-scale distributed sensor networks,”
ACM Transactions on Sensor Networks, vol. 2, no. 4, pp. 500–
528, 2006.

[23] S. A. Çamtepe and B. Yener, “Combinatorial design of
key distribution mechanisms for wireless sensor networks,”

IEEE/ACM Transactions on Networking, vol. 15, no. 2, pp. 346–
358, 2007.

[24] D. Sánchez and H. Baldus, “A deterministic pairwise key
pre-distribution scheme for mobile sensor networks,” in
Proceedings of the 1st International Conference on Security
and Privacy for Emerging Areas in Communications Networks
(SecureComm ’05), pp. 277–288, September 2005.

[25] L. Eschenauer and V. D. Gligor, “A key-management scheme
for distributed sensor networks,” in Proceedings of the 9th ACM
Conference on Computer and Communications Security, pp. 41–
47, ACM Press, November 2002.

[26] W. Du, J. Deng, Y. S. Han, P. K. Varshney, J. Katz, and A.
Khalili, “A pairwise key predistribution scheme for wireless
sensor networks,” ACM Transactions on Information and
System Security, vol. 8, no. 2, pp. 228–258, 2005.

[27] D. Liu, P. Ning, and R. Li, “Establishing pairwise keys in dis-
tributed sensor networks,” ACM Transactions on Information
and System Security, vol. 8, no. 1, pp. 41–77, 2005.

[28] W. Itani, A. Kayssi, and A. Chehab, “PETRA: a secure
and energy-efficient software update protocol for severely-
constrained network devices,” in Proceedings of the 5th ACM
International Symposium on QoS and Security for Wireless and
Mobile Networks (Q2SWinet ’09), pp. 37–43, ACM, 2009.

[29] R. Gennaro and P. Rohatgi, “How to sign digital streams,”
Information and Computation, vol. 165, no. 1, pp. 100–116,
2001.

[30] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M.
Médard, “Resilient network coding in the presence of Byzan-
tine adversaries,” in Proceedings of the 26th IEEE International
Conference on Computer Communications (INFOCOM ’07),
pp. 616–624, IEEE, May 2007.

[31] C. K. Ngai and S. Yang, “Deterministic secure error-correcting
(SEC) network codes,” in Proceedings of the IEEE Information
Theory Workshop (ITW ’07), pp. 96–101, September 2007.

[32] T. Ho, B. Leong, R. Koetter, M. Médard, M. Effros, and
D. R. Karger, “Byzantine modification detection in multicast
networks using randomized network coding,” in Proceedings of
the IEEE International Symposium on Information Theory (ISIT
’04), p. 144, IEEE, July 2004.

[33] J. Tan and M. Médard, “Secure network coding with a cost
criterion,” in Proceedings of the 4th International Symposium
on Modeling and Optimization in Mobile, Ad Hoc and Wireless
Networks, pp. 1–6, IEEE, 2006.

[34] N. Cai and R. W. Yeung, “Secure network coding,” in Pro-
ceedings of the IEEE International Symposium on Information
Theory, p. 323, July 2002.

[35] L. Lima, M. Médard, and J. Barros, “Random linear network
coding: a free cipher?” in Proceedings of the IEEE International
Symposium on Information Theory, pp. 546–550, 2007.

[36] D. Charles, K. Jain, and K. Lauter, “Signatures for network
coding,” International Journal of Information and Coding
Theory, vol. 1, no. 1, pp. 3–14, 2009.

[37] M. N. Krohn, M. J. Freedman, and D. Mazières, “On-the-
fly verification of rateless erasure codes for efficient content
distribution,” in Proceedings of the IEEE Symposium on Security
and Privacy, pp. 226–240, 2004.

[38] S. Agrawal and D. Boneh, “Homomorphic MACs: MAC-
based integrity for network coding,” in Proceedings of the 7th
International Conference on Applied Cryptography and Network
Security, vol. 5536 of Lecture Notes in Computer Science, pp.
292–305, Springer, 2009.

22 EURASIP Journal on Wireless Communications and Networking

[39] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An efficient
scheme for securing XOR network coding against pollution
attacks,” in Proceedings of the 28th Conference on Computer
Communications (INFOCOM ’09), pp. 406–414, April 2009.

[40] J. Dong, R. Curtmola, and C. Nita-Rotaru, “Practical defenses
against pollution attacks in intra-flow network coding for
wireless mesh networks,” in Proceedings of the 2nd ACM
Conference on Wireless Network Security (WiSec ’09), pp. 111–
122, March 2009.

[41] J. Dong, R. Curtmola, and C. Nita-Rotaru, “Secure network
coding for wireless mesh networks: threats, challenges, and
directions,” Computer Communications, vol. 32, no. 17, pp.
1790–1801, 2009.

[42] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar,
“SPINS: security protocols for sensor networks,” in Proceed-
ings of the 7th Annual International Conference on Mobile
Computing and Networking, pp. 189–199, ACM, July 2001.

[43] J.-M. Bohli, A. Hessler, O. Ugus, and D. Westhoff, “Security
enhanced multi-hop over the air reprogramming with foun-
tain codes,” in Proceedings of the Conference on Local Computer
Networks (LCN ’09), pp. 850–857, 2009.

[44] M. Rossis, G. Zancas, L. Stabellini, R. Crepaldi, A. F. Harris
III, and M. Zorzi, “SYNAPSE: a network reprogramming
protocol for wireless sensor networks using fountain codes,”
in Proceedings of the 5th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON ’08), pp. 188–196, June 2008.

[45] M. Luby, “LT codes,” in Proceedings of the 34rd Annual IEEE
Symposium on Foundations of Computer Science, pp. 271–282,
IEEE Computer Society, November 2002.

[46] J. Dong, R. Curtmola, R. Sethi, and C. Nita-Rotaru, “Toward
secure network coding in wireless networks: threats and
challenges,” in Proceedings of the 4th IEEE Workshop on Secure
Network Protocols (NPSec ’08), pp. 33–38, October 2008.

[47] S. Ganeriwal, L. K. Balzano, and M. B. Srivastava, “Reputation-
based framework for high integrity sensor networks,” ACM
Transactions on Sensor Networks, vol. 4, no. 3, article 15, pp.
1–37, 2008.

[48] Y. L. Sun, Z. Han, W. Yu, and K. J. R. Liu, “A trust
evaluation framework in distributed networks: vulnerability
analysis and defense against attacks,” in Proceedings of the 25th
IEEE International Conference on Computer Communications
(INFOCOM ’06), pp. 1–13, 2006.

[49] J. Lopez, R. Roman, I. Agudo, and C. Fernandez-Gago,
“Trust management systems for wireless sensor networks: best
practices,” Computer Communications, vol. 33, no. 9, pp. 1086–
1093, 2010.

[50] Y. W. Law, M. Palaniswami, L. V. Hoesel, J. Doumen, P.
Hartel, and P. Havinga, “Energy-efficient link-layer jamming
attacks against wireless sensor network MAC protocols,” ACM
Transactions on Sensor Networks, vol. 5, no. 1, article 6, 2009.

[51] R. C. Merkle, “A certified digital signature,” in Proceedings on
Advances in Cryptology (CRYPTO ’89), pp. 218–238, Springer,
1989.

[52] M. Bellare, J. Kilian, and P. Rogaway, “Security of the
cipher block chaining message authentication code,” Journal
of Computer and System Sciences, vol. 61, no. 3, pp. 362–399,
2000.

[53] J. Newsome, E. Shi, D. Song, and A. Perrig, “The Sybil attack in
sensor networks: analysis & defenses,” in Proceedings of the 3rd
International Symposium on Information Processing in Sensor
Networks (IPSN ’04), pp. 259–268, ACM, 2004.

[54] J. Katz, Digital Signatures, Springer, Berlin, Germany, 2010.

[55] D. R. L. Brown, “Generic groups, collision resistance, and
ECDSA,” Designs, Codes, and Cryptography, vol. 35, no. 1, pp.
119–152, 2005.

[56] N. Koblitz, and A. Menezes, “Another look at generic groups,”
Advances in Mathematics of Communications, vol. 1, no. 1, p.
13, 2007.

[57] Certicom Research, Standards for Efficient Cryptography. SEC2:
Recommended Elliptic Curve Domain Parameters, 1st edition,
2000.

[58] L. C. C. Garcı́a, “On the security and the efficiency of the
Merkle signature scheme,” Cryptology ePrint Archive: Report
2005/192, 2005.

[59] C. Metcalf, TOSSIM Live: towards a testbed in a thread, M.S.
thesis, Colorado School of Mines, Golden, Colo, USA, 2007.

[60] M. Zuniga and B. Krishnamachari, “Analyzing the transitional
region in low power wireless links,” in Proceedings of the 1st
Annual IEEE Communications Society Conference on Sensor
and Ad Hoc Communications and Networks (SECON ’04), pp.
517–526, IEEE, October 2004.

[61] J. D. Hamilton, Time Series Analysis, Princeton University
Press, Princeton, NJ, USA, 1994.

[62] R. H. Shumway and D. S. Soffer, Time Series Analysis and Its
Applications With R Examples, Springer, Berlin, Germany, 2nd
edition, 2006.

[63] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical Com-
puting, Vienna, Austria, 2008.

