

This is the post peer-review accepted manuscript of:

Capotondi, Alessandro, and Andrea Marongiu. "On the effectiveness of OpenMP teams for cluster-based
many-core accelerators." 2016 International Conference on High Performance Computing & Simulation
(HPCS). IEEE, 2016.

The published version is available online at: https://ieeexplore.ieee.org/document/7568399

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works

On the Effectiveness of OpenMP Teams for
Cluster-Based Many-Core Accelerators

Alessandro Capotondi
DEI - Università di Bologna

Email: alessandro.capotondi@unibo.it

Andrea Marongiu
IIS - ETH Zurich

Email: a.marongiu@iis.ee.ethz.ch

Abstract—With the introduction of more powerful and mas-
sively parallel embedded processors, embedded systems are
becoming HPC-capable. Heterogeneous on-chip systems (SoC)
that couple a general-purpose host processor to a many-core
accelerator are becoming more and more widespread, and pro-
vide tremendous peak performance/watt, well suited to execute
HPC-class programs. The increased computation potential is
however traded off for ease programming. Application devel-
opers are indeed required to manually deal with outlining code
parts suitable for acceleration, parallelize them efficiently over
many available cores, and orchestrate data transfers to/from the
accelerator. In addition, since most many-cores are organized
as a collection of clusters, featuring fast local communication
but slow remote communication (i.e., to another cluster’s local
memory), the programmer should also take care of properly
mapping the parallel computation so as to avoid poor data
locality. OpenMP v4.0 introduces new constructs for computation
offloading, as well as directives to deploy parallel computation in
a cluster-aware manner. In this paper we assess the effectiveness
of OpenMP v4.0 at exploiting the massive parallelism available in
embedded heterogeneous SoCs, comparing to standard parallel
loops over several computation-intensive applications from the
linear algebra and image processing domains.

I. INTRODUCTION

Nowadays multi- and many-core designs are widely used

in most computing domains, from high-performance (HPC)

to mobile/embedded systems [1]. Energy efficiency is the key

driver for platform evolution, be it for decreasing the energy

bills of large data centers [2] or for improving battery life

for high-end embedded devices [3]. Architectural heterogene-

ity has proven an effective design paradigm to successfully

tackle many technology walls in the past decade [4] [5].

One of the most common heterogeneous system templates

envisions single-chip coupling of a powerful, general-purpose

host processor to one (or more) programmable many-core
accelerator(s) (PMCA) featuring tens-to-hundreds of simple

and energy efficient processing elements (PE). PMCAs deliver

much higher performance/watt, compared to host processors,

for a wide range of computation-intensive parallel workloads.

To overcome the scalability bottlenecks encountered when

interconnecting such a large amount of PEs, several recent

embedded many-core accelerators leverage tightly-coupled

clusters as building blocks. Representative examples include

NVIDIA X1 [6], Kalray’s MPPA 256 [7], PEZY-SC [8], ST

Microelectronics STHORM [9], or Toshiba 32-core accelerator

for multimedia applications [10]. These products leverage a

hierarchical design, which groups PUs into small-medium

sized subsystems (clusters) with shared L1 memory and high-

performance local interconnection. Scalability to larger system

sizes employs cluster replication and a scalable interconnec-

tion medium like a network-on-chip (NoC).

The tremendous GOps/Watt figures that such architectures

can achieve are traded-off for an increased programming

complexity: extensive and time-consuming rewrite of applica-

tions is required, using specialized programming paradigms.

OpenCL [11], one of the most representative examples of

such category of programming models, aims at providing a

standardized way of programming accelerators, however it

offers a very low-level coding style. Higher-level program-

ming styles are offered by directive-based approaches such as

OpenACC [12] or OpenMP [13], which has included in the

latest specification document to manage accelerators.

Directive-based programming models have shown their ef-

fectiveness in filling the gap between programmability and

performance on heterogeneous many-core architectures. Di-

rectives do no alter exiting code written for homogenous

CPUs, which enables rapid and maintainable code develop-

ment thanks to an incremental parallelization style. Several

initiatives from academia and from industry follow this path

achieving ease of programming at small or no performance

loss compared to optimized code written with low level API

[14] [15] [16] [17] [18] [19].

Offloaded regions of codes and may include sequential,

parallel, and nested parallel regions. Nested parallelism is

particularly important to effectively use many cores organized

as a fabric of clusters. Indeed, while communication to local

L1 memory leverages fast and high-bandwidth channels such

as crossbars, inter-cluster communication is subject to non-

uniform memory access (NUMA) effects, as it relies on multi-

hop transactions over a network-on-chip, which offers lower

bandwidth and higher latency.

OpenMP 4.0 offers constructs to deploy the parallelism

and to distribute the work among clusters in a cluster-aware

manner. Specifically, the teams construct allows the creation

of a team of worker threads each belonging to a different

cluster. Each team master can then create nested parallel

teams, whose threads are recruited from local resources. In

a scratchpad-based architecture, the master thread is typically

responsible for bringing data in and out via DMA transfers,

thus it is extremely important that the thread-to-core mapping

follows a cluster-aware policy such as the one enabled by

the teams construct. Distributing work among threads in a

locality aware manner can be done at the loop-level using the

distribute clause.

In this paper we explore the benefits of using the new

OpenMP 4.0 directives for heterogeneous architectures in an

embedded cluster-based many-core accelerator, considering

several benchmarks from the linear algebra and image pro-

cessing domain, and showing different programming patterns

enabled by OpenMP 4.0. We highlight the benefits of such

recent additions to the specifications, comparing the results to

a flat parallelization scheme, i.e., one which uses all the pro-

cessors available from a single logical thread team. In this case

only a single master thread for the whole platform is available

to orchestrate data transfers, which generates computation with

poor locality. We also compare the distributed approach to the

use of standard OpenMP nested parallel regions and show that

in absence of cluster awareness these perform even worse.

The rest of the paper is organized as follows. Section

II describes the target heterogeneous SoC and cluster-based

manycores. Section III discusses the key background notions

for OpenMP v4.0. Section IV introduces the considered bench-

marks and discuss acceleration and parallelization schemes.

Section V discusses the evaluation of the described schemes.

Section VI describes related work and Section VII concludes

the paper.

II. ARCHITECTURAL TEMPLATE

In this work we consider as a many-core based heteroge-

neous system the ST Microelectronics STHORM platform [9],

but the results discussed later can be applied to a broader class

of devices which share with STHORM a common architectural

template. Figure 1 shows the block diagram of the target het-

erogeneous embedded system template. A powerful general-

purpose processor (the host) is coupled to a programmable

many-core accelerator composed of several tens of simple pro-

cessors, where critical computation kernels of an application

can be offloaded to improve overall performance/watt [9] [7]

[8] [10] [20] [21].

Similar to GPGPUs, the many-core accelerator leverages

a multi-cluster design to overcome scalability limitations [9]

[7]. Processors within a cluster are tightly-coupled to local

L1 scratchpad memory, which implies low-latency and high-

bandwidth communication. Globally, the many-core accelera-

tor leverages a partitioned global address space (PGAS). Every

remote memory can be directly accessed by each processor,

but inter-cluster communication travels through a NoC, and

is subject to non-uniform memory access (NUMA) latency

and bandwidth. Unlike the typical GPU data-parallel cores,

that rely on a common fetch/decode phase, the processors

considered here are simple independent RISC cores, perfectly

suited to execute both single-instruction, multiple-data (SIMD)

and multiple-instruction, multiple-data (MIMD) types of par-

allelism. This allows to efficiently support a programming

model such as OpenMP, that leverages not only data-level

parallelism, but also sophisticated forms of dynamic and

irregular parallelism (e.g., tasking).

Fig. 1. Heterogeneous embedded SoC template

Fig. 2. On-chip shared memory cluster

The simplified block diagram of the target cluster is shown

in Figure 2. It contains sixteen RISC32 processor cores, each

featuring a private instruction cache. Processors communicate

through a multi-banked, multi-ported Tightly-Coupled Data

Memory (TCDM). This shared L1 TCDM is implemented as

explicitly managed SRAM banks (i.e., scratchpad memory),

to which processors are interconnected through a low-latency,

high-bandwidth data interconnect which allows 2-cycle L1

accesses (one for request, one for response). This is compatible

with pipeline depth for load/store for most processors, hence

it can be executed in TCDM without stalls – in absence of

conflicts. The interconnection supports up to 16 concurrent

processor-to-memory transactions within a single clock cycle,

given that the target addresses belong to different banks

(one port per bank). Multiple concurrent reads at the same

address happen in the same clock cycle (broadcast). A real

conflict takes place only when multiple processors try to access

different addresses within the same bank. In this case the

requests are serialized on the single bank port. To minimize

the probability of conflicts i) the interconnection implements

address interleaving at the word-level; ii) the number of banks

is M times the number of cores (M=2 by default).

Processors can synchronize by means of standard read/write

operations to an area of the TCDM which provides test-and-
set semantics (a single atomic operation returns the content of

the target memory location and updates it).

Mnemonic Description
STRAS Matrix multiplication using Strassen decomposition
GSID Generalized squared interpoint distance
LRFR Local reference frame radius (surface matching)
HIST Histogram interpolation
NCC Normalized cross-correlation algorithm
CT Object tracking based on a specific color
FAST Corner detector [22]

TABLE I
BENCHMARK SET.

Since the L1 TCDM is typically very small (256KB for

STHORM) it is impossible to permanently host all data therein

or to host large data chunks. The software must thus explicitly

orchestrate data transfers from main memory to L1, to ensure

that the most frequently referenced data at any time are kept

close to the processors. To allow for performance- and energy-

efficient transfers, the cluster is equipped with a DMA engine.

The OpenMP v4.0 implementation that we consider for our

exploration is based on this work [14] and has been extended

to include all the features for kernel offloading.

III. BACKGROUND

OpenMP v4.0 [13] introduces offloading directives to pro-

gram accelerators. Similar to any previous OpenMP construct,

these directives apply to the code block that they enclose. The

key construct is the target directive, which highlights the

structured code block that should be compiled and loaded for

execution onto a device. The map clause can be additionally

used to specify which data items have to be transferred to

and from the device. In addition, the target data directive

allows to allocate and transfer data before the actual offload

takes place (i.e., a sort of data pre-fetching). The device
clauses allows to specify the exact device to use if more than

one is present in the system.

Within a target region most standard OpenMP constructs

for parallelism can be used. Thus, upon offload a single

thread is created that starts execution of the target region,

until a parallel construct is encountered. Since many

accelerators are organized into clusters, and since inter-cluster

communication is typically costlier than internal transactions,

OpenMP v.4.0 also introduces directives to abstractly expose

architecture organization at the program level. The teams
directive groups the threads of a device into sets (teams)

that are later mapped onto physical clusters, thus achieving

uniform and high-locality inter-thread communication. The

programmer can control the number of teams (num_teams
clause) and the maximum number of threads in each team

(thread_limit clause) along with the teams directive,

respectively. One of the threads in each team is designated

team master and the structured block following the directive

is executed by all team masters across the different teams.

Upon team start only team masters execute, sequentially, one

per cluster. When a parallel directive is encountered, all

the threads in each team start execution, to collaborate in the

execution of the enclosed structured block.

As most of the parallel work in offloaded kernels is typically

found within loops, the distribute directive is provided to

distribute loop iterations across teams, and then across threads

therein. Note that the same thing could not be simply achieved

by nesting two parallel for constructs, as this would

require manually rewriting the loop as a nested loop (with

outer and inner loops).

These new constructs allows to achieve a cluster-aware

mapping of threads but also loops, without requiring that

the programmer explicitly handles these aspects. In the next

section we illustrate how these constructs can be used to

efficiently offload computation to a many-core accelerator.

IV. BENCHMARKS AND ACCELERATION SCHEMES

In this section we briefly describe the six benchmarks used

for our exploration, and the acceleration schemes enabled by

the OpenMP v4.0 offload directives. The benchmarks were se-

lected from the linear algebra, image processing and computer

vision domains, and are representative of the computational

kernels typically offloaded to many-core accelerators. A brief

description can be found in Table I.

FAST is particularly sensitive to input data, in terms of

the available degree of parallelism. The two parameters that

impact the performance the most are input image size and

corner density. The former influences the overall number

of iteration. Being the core computation kernel of FAST

particularly fine-grained, a very small number of iterations per

threads results in visible parallelization overheads. The latter

influences the actual parallel work, which is protected by an

if statement that quickly filters out image block that clearly

don’t contain a corner. For this reason, we consider here six

variants of the benchmark execution, with as many different

input images. Table II describes the input images used as data

set for FAST.

Mnemonic Size Description
1.5 S QVGA 1.5% corner density image
6 S QVGA 6% corner density image
15 S QVGA 15% corner density image
1.5 L VGA 1.5% corner density image
6 L VGA 6% corner density image
15 L VGA 15% corner density image

TABLE II
FAST IMAGE INPUT DATASET.

Since in STHORM the host and the accelerator physically

share the main L3 memory, the offload infrastructure by

default simply passes pointers to data structures therein, rather

than copying them to the accelerator space. However, for

improved performance and energy efficiency, data has to be

moved in the TCDM. In absence of a data cache this has to

be explicitly done in the program via DMA transfers.

Each of the considered benchmarks operates on input and

output data sets that are too large to fit in the TCDM.

Thus, such data structures are divided in stripes, which are

transferred in and out of the TCDM following a traditional

double buffering scheme.

void KER(in, out) {
#pragma omp parallel for
for(i = 0; i < … ; i++){

[A L G O R I T H M]
}

}
#pragma omp target \

map(in, out)
for(stripe = 0;

stripe < N_STRIPES;
stripe++)

{
dma_in(in[stripe]);
KER (in[stripe], out[stripe]);
dma_out(out[stripe]);

}

#pragma omp target \
map(in, out)

for(stripe = 0;
stripe < N_STRIPES;
stripe++)

{
dma_in(in[stripe]);
KER (in[stripe], out[stripe]);
dma_out(out[stripe]);

}

Fig. 3. Flat parallelization pattern.

#pragma omp target teams \
map(in, out)\
num_teams(4)

#pragma omp distribute
for(stripe = 0;

stripe < N_STRIPES;
stripe++)

{
dma_in(in[stripe]);
KER (in[stripe], out[stripe]);
dma_out(out[stripe]);

}

#pragma omp target teams \
map(in, out)\
num_teams(4)

#pragma omp distribute
for(stripe = 0;

stripe < N_STRIPES;
stripe++)

{
dma_in(in[stripe]);
KER (in[stripe], out[stripe]);
dma_out(out[stripe]);

}

void KER(in, out) {
#pragma omp parallel for
for(i = 0; i < … ; i++){

[A L G O R I T H M]
}

}

Fig. 4. Distribute parallelization pattern.

DMA transfers of data stripes are typically taken care of

by a single thread (the master), from within an outer loop.

Additional threads are involved in parallel computation when

the transfer is complete. To parallelize the target benchmarks

we have used three different approaches.

The simplest approach to use all available cores is that of

creating a large parallel region which recruits them all. We call

this approach flat parallelism, as it does not take into account

the hierarchical structure of the cluster organization (intercon-

nect, memory). Figure 3 shows how this parallelization scheme

deploys threads onto available cores. The target directive

starts execution of the enclosed region onto a single core,

which orchestrates DMA transfers then jumps into the KER

function. Here the main loop is found, and it is parallelized

with a parallel for construct. By default, if no number of

threads is specified all the available threads are involved. Note

that since the master thread manages the DMA transfers with

no awareness of the clusters, the data used by all threads in the

parallel region is held in a single buffer (BUF0) that physically

reside in the TCDM of the cluster that hosts the master thread.

As a consequence, the threads that live in the same cluster

as the master will enjoy fast data access, whereas threads

belonging to other clusters will experience longer access times,

leading to unbalanced computation.

void KER(in, out) {
#pragma omp parallel for \

num_threads(16)
for(i = 0; i < … ; i++)

[A L G O R I T H M]
}

#pragma omp target teams \
map(in, out)

#pragma omp parallel \
num_threads(4)

for(stripe = 0;
stripe < N_STRIPES;
stripe++)

{
dma_in(in[stripe]);
KER (in[stripe], out[stripe]);
dma_out(out[stripe]);

}

#pragma omp target teams \
map(in, out)

#pragma omp parallel \
num_threads(4)

for(stripe = 0;
stripe < N_STRIPES;
stripe++)

{
dma_in(in[stripe]);
KER (in[stripe], out[stripe]);
dma_out(out[stripe]);

}

Fig. 5. Nested parallelization pattern.

Figure 4 shows the second parallelization approach, which

adds awareness of the clustered nature of the platform to

the code. Here the teams directive is used to create an

outer parallel team that recruits threads from different clusters.

These threads will become local masters of these clusters, and

will orchestrate DMA transfers to/from the local TCDM. The

distribute directive is used to partition the outermost loop

among local masters, and this will make each master have

its own data buffer in the local L1 memory. When a new

parallel construct is encountered, an inner thread team is

created, that shares high locality computation with the local

master.

A third parallelization approach is considered for the sake

of comparison: standard nested parallel regions. In principle is

possible to specify the creation of an outer parallel region with

as many threads as clusters, which will act as local master

to those regions. Additional parallelism can then recreated

when required by nesting a parallel construct within the

first. Note that however this scheme lacks a notion of the

cluster organization, and threads for the outer and inner regions

will be recruited in an unspecified order. In the STHORM

implementation this order is sequential, considering the list of

all the processors available. Thus, creating an outermost region

of four threads recruits the local masters from the same cluster.

As a consequence, the code for DMA management will create

four data buffers that reside in the same TCDM. Innermost

teams will be composed of threads that physically belong to

more than one cluster, which will create significantly higher

cost for their runtime management (in addition to poor data

locality). Figure 5 shows how this approach deploys threads

and computation to the platform.

V. EXPERIMENTS

In this section we describe the results collected by running

the various benchmarks on STHORM when the three deploy-

ment approaches are considered. The experiments rely on an

extended version of the multi-ISA toolchain for STHORM

proposed by Marongiu et al. [14]. The toolchain supports both

OpenMP teams and distribute directives and nested

parallelism. As a main metric of performance we consider

speedup of the parallel application versus the sequential.

Results for this experiment are shown in Figure 6.

A. Effectiveness of the teams distribute construct

The most notable finding is that the cluster-aware workload

deployment enabled by the distribute directive allows to

achieve very high speedups and thus to make an effective

use of many cores. Four out of seven benchmarks achieve

nearly ideal speedup (above 60×), considering the best result

for FAST speedup. As already explained, FAST leverages very

fine-grained parallelization, for which the overhead introduced

by runtime support for nested parallelism has a higher impact.

Thus, when the image size is very small (QVGA) the speedups

are limited (up to 60×) The corner density is also confirmed to

have a big impact on performance, as shown by the variance

among the three configurations (1.5%, 6%, 15%). Note that

already for moderately large images (VGA) the speedups get

as high as close to ideal.

The only application that achieves poor speedup in this

configuration is CT, thus it is worth a bit more of investigation.

Color-based tracking consists of a cascade of four functional

kernels. Color space conversion (CSC), threshold-based color

filter (cvTHR), motion vector calculation (cvMOM) and mo-

tion vector to reference frame addition (cvADD). Each of

these kernels contains little computation, thus to improve the

Fig. 6. Comparison of various approaches to nested parallelism support.

computation to communication ratio (CCR) we merge the

CSC, cvThresh and cvMOM kernels into a single kernel (i.e., a

single data stripe transfer is required to execute all the kernels

in sequence). The last kernel, cvADD can not be merged with

the previous kernels because it requires as an input the motion

vectors for the whole image. Figure 7 illustrates the described

parallelization scheme, with the first three kernels merged in a

single teams region, plus a second teams regions composed

of the sole last kernel. The figure also shows the breakdown of

the speedup for these two teams regions. The CCR for cvADD

is very small (only an addition is performed per pixel), and

this justifies the small speedup achieved for this kernel, which

overall impacts the total speedup for the application.

B. Comparison with flat parallel for construct

The comparison with the flat parallel for construct

shows a much lower efficiency (speedup is always below 16×).

As explained in Section IV this is due to the poor locality of

computation generated by a deployment scheme which only

envisions a global master for the entire many-core platform.

This master will manage data stripes transfers into the local

TCDM, but several threads from the same logical team reside

on remote clusters. Such threads will have to traverse the

NoC and compete with several other transactions, both for

data requests coming from other threads and for instruction

cache refills. It has to be pointed out that it is not only

the actual parallel computation that encounters such remote

communication issues. The implementation of the OpenMP

runtime support also relies on data structures that are hosted

in the TCDM of the cluster that hosts the master thread. Thus,

every time that the parallel code requires explicit or implicit

thread synchronization (e.g., barriers, end of parallelization

constructs, dynamic loop scheduling, locks, etc.), additional

remote transactions are generated. These results are even

more important in the light of the fact that the non-expert

programmer will always tend to use the flat parallel for
approach as a default.

C. Comparison with nested parallel for construct

Probably the most surprising result is that achieved with

the nested parallel for construct. Due to the above

mentioned reasons regarding poor data locality and remote

team management it was expected that the speedups would be

limited. The extent to which this would impact performance

could not entirely be expected. Nested parallel regions have

traditionally been used in large HPC systems to improve

the performance, however this was achieved: i) on top of

multi-level cache hierarchies, that in part mitigate NUMA

effects compared to scratchpad-based systems (where every

access to a remote data structure can be seen as a miss in

a cache-based system); ii) in combination with language or

runtime constructs to control thread-to-core binding. Thus,

while logically nested parallel regions and distributed teams

are equivalent – in terms of how the work is split at the out-

ermost level among local masters, and how innermost teams

work in strict collaboration with these masters – physically

the lack of control of where such masters and their slaves are

mapped in the platform leads to extremely poor results. Note

that, compared to the flat parallel for construct, in this

case the impact of runtime library overhead is much more

pronounced, as managing and synchronizing nested parallel

teams generates much higher communication volumes [23].

VI. RELATED WORK

The latest OpenMP 4.0 specifications introduce relevant

features for accelerator exploitation, but not many devices

are currently 4.0-enabled. Among commercial devices Texas

Instrument Keystone II [24] and Intel Xeon Phi [25] are

#pragma omp target teams
num_teams(4)
#pragma omp distribute
for(stripe = 0;

stripe < N_STRIPES;
++stripe)

{
dma_in(in[stripe]);

CSC (in[stripe], tmp1[stripe]);
cvTHR (tmp1[stripe], tmp2[stripe]);
cvMOM (tmp2[stripe], xy[stripe]);

}

#pragma omp barrier

#pragma omp distribute
for(stripe = 0;

stripe < N_STRIPES;
++stripe)

{
dma_in(in[stripe]);
dma_in(track[stripe]);

cvADD (in[stripe], track[stripe], out[stripe]);

dma_out(out[stripe]);
}

}

void CSC(in, tmp1) {
#pragma omp for
for(i = 0; i < … ; i++){

[A L G O R I T H M]
}

}

void cvTHR(tmp1, tmp2) {
#pragma omp for
for(i = 0; i < … ; i++){

[A L G O R I T H M]
}

}

void cvMOM(tmp2, xy) {
#pragma omp for
for(i = 0; i < … ; i++){

[A L G O R I T H M]
}

}

void cvADD(in1, in2, out) {
#pragma omp parallel for
for(i = 0; i < … ; i++){

[A L G O R I T H M]
}

}
distributed nested team

0
10
20
30
40
50
60

teams
region 1

teams
region 2

overall

SPEEDUP

Fig. 7. Breakdown of Color-Tracking kernels speedup.

probably the most representative examples. Stotzer [26] and

Schmidl [27] present a performance assessment of flat paral-

lelism for these architecture. These architecture, different from

the embedded manycores considered in our work, rely on a

coherent shared memory system and on multi-level data-cache

hierarchy.

Bertolli et al. [28] propose a method to coordinate GPGPU

threads mimicing the OpenMP 4.0 specification for Nvidia

CUDA GPGPUs. [28] explores the utilization of the new team
and distribute pragmas to implement efficiently dynamic

parallelism on GPGPU accelerators. The focus of this work is

however more on presenting a compiler implementation rather

than assessing the effectiveness of the language constructs.

Also Liao et al. [29] present an OpenMP 4.0 source to source

compiler for Nvidia GPU. The compiler is based on the ROSE

Compiler Infrastructure [30] and supports the OpenMP 4.0

team and distribute directives to deploy threads among

CUDA cores. A more recent work from Yang et al. [31]

presents a directive-based APIs la OpenMP that extends the

CUDA language to enable dynamic nested parallelism and task

level parallelism within a kernel. Ozen et al. [32] evaluate

how different parallel programming interfaces, like OpenMP

and other patterns for heterogeneous system can influence the

deployment and the efficiency of kernel execution on GPGPUs

in OmpSs. Unlike what is presented here, the focus for all

these works in on GPGPU-like accelerator.

VII. CONCLUSION

Many-core embedded heterogeneous SoCs are getting closer

and closer to their HPC counterparts, in terms of computation

capabilities, but efficiently programming them is a cumber-

some task. OpenMP has always provided a user-friendly inter-

face to application development, based on compiler directives

that abstractly highlight parallelism in a sequential program.

The latest OpenMP specifications introduce new constructs for

computation offloading, as well as directives to deploy parallel

computation with high data locality. This paper explored

the capabilities of OpenMP v4.0 at exploiting the massive

parallelism available in embedded heterogeneous SoCs. In

particular, our experiments demonstrate that the new teams
and distribute constructs allow to abstractly expose the

clustered organization of most many-cores, thus achieving very

efficient resource usage. Compared to standard parallel loops

(the most widely used by inexperienced programmers) with

no awareness of the hierarchical interconnect and memory

organization, these new construct enable major improvements

in terms of speedup. Nested parallel loops, that logically

provide a similar abstraction to the teams and distribute
constructs, in absence of architectural awareness surprisingly

perform very poorly, in virtually every considered case.

ACKNOWLEDGMENT

This work was supported by EU project FP7 P-SOCRATES

(g.a. 611016) and EU H2020 project HERCULES (g.a.

688860).

REFERENCES

[1] Pete Decher. Embedding HPC: A rocket in your pocket.
[Online]. Available: http://www.embedded.com/design/prototyping-and-
development/4230994/A-rocket-in-your-pocket

[2] A. Borghesi, C. Conficoni, M. Lombardi, and A. Bartolini, “Ms3: A
mediterranean-stile job scheduler for supercomputers-do less when it’s
too hot!” in High Performance Computing & Simulation (HPCS), 2015
International Conference on. IEEE, 2015, pp. 88–95.

[3] A. Bartolini, M. Ruggiero, and L. Benini, “Hvs-dbs: human visual
system-aware dynamic luminance backlight scaling for video streaming
applications,” in Proceedings of the seventh ACM international confer-
ence on Embedded software. ACM, 2009, pp. 21–28.

[4] A. Munir, S. Ranka, and A. Gordon-Ross, “High-performance energy-
efficient multicore embedded computing,” Parallel and Distributed Sys-
tems, IEEE Transactions on, vol. 23, no. 4, pp. 684–700, 2012.

[5] J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel program-
ming models and tools in the multi and many-core era,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 23, no. 8, pp. 1369–
1386, 2012.

[6] Nvidia Inc. (2014) Nvidia Tegra X1 - NVIDIA’S New Mobile
Superchip. [Online]. Available: http://international.download.nvidia.
com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf

[7] Kalray S.A., “Kalray MPPA Manycore 256.” [Online]. Available:
http://www.kalrayinc.com/kalray/products/#processors

[8] PEZY Computing. (2014) PEZY-SC Many Core Processor. [Online].
Available: http://www.pezy.co.jp/en/products/pezy-sc.html

[9] D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou,
F. Clermidy, and D. Dutoit, “Platform 2012, a many-core computing
accelerator for embedded SoCs: performance evaluation of visual analyt-
ics applications,” in Proceedings of the 49th Annual Design Automation
Conference. ACM, 2012, pp. 1137–1142.

[10] H. Xu, J. Tanabe, H. Usui, S. Hosoda, T. Sano, K. Yamamoto, T. Kodaka,
N. Nonogaki, N. Ozaki, and T. Miyamori, “A low power many-core SoC
with two 32-core clusters connected by tree based NoC for multimedia
applications,” in VLSI Circuits (VLSIC), 2012 Symposium on, 2012, pp.
150–151.

[11] Khronos Group. (2014) The OpenCL Specification. [Online]. Available:
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

[12] OpenACC, “The OpenACC Application Programming Interface.” [On-
line]. Available: http://www.openacc.org/sites/default/files/OpenACC.2.
0a 1.pdf

[13] OpenMP ARB. (2013) OpenMP 4.0 Application Program Interface.
[Online]. Available: http://www.openmp.org/mp-documents/OpenMP4.
0.0.pdf

[14] A. Marongiu, A. Capotondi, G. Tagliavini, and L. Benini, “Simplifying
Many-Core-Based Heterogeneous SoC Programming With Offload Di-
rectives,” Industrial Informatics, IEEE Transactions on, vol. 11, no. 4,
pp. 957–967, Aug 2015.

[15] E. Ayguadé, R. M. Badia, P. Bellens, D. Cabrera, A. Duran, R. Ferrer,
M. González, F. Igual, D. Jiménez-González, J. Labarta et al., “Extend-
ing OpenMP to survive the heterogeneous multi-core era,” International
Journal of Parallel Programming, vol. 38, no. 5-6, pp. 440–459, 2010.

[16] R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A hybrid multi-core
parallel programming environment,” in Workshop on General Purpose
Processing on Graphics Processing Units (GPGPU 2007), 2007.

[17] S. Lee and R. Eigenmann, “OpenMPC: extended OpenMP for efficient
programming and tuning on GPUs,” International Journal of Computa-
tional Science and Engineering, vol. 8, no. 1, pp. 4–20, 2013.

[18] R. Reyes, I. López-Rodrı́guez, J. J. Fumero, and F. de Sande, “accULL:
an OpenACC implementation with CUDA and OpenCL support,” in
Euro-Par 2012 Parallel Processing. Springer, 2012, pp. 871–882.

[19] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel,
and L. Smith, “Introducing OpenSHMEM: SHMEM for the PGAS
community,” in Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model. ACM, 2010, p. 2.

[20] Adapteva, “Epiphany III 16-core Chip Product.” [Online]. Available:
http://adapteva.com/docs/e16g301 datasheet.pdf

[21] A. Heinecke, M. Klemm, and H.-J. Bungartz, “From GPGPU to many-
core: Nvidia Fermi and Intel Many Integrated Core architecture,” Com-
puting in Science & Engineering, vol. 14, no. 2, pp. 78–83, 2012.

[22] E. Rosten, R. Porter, and T. Drummond, “Faster and better: a machine
learning approach to corner detection.” IEEE transactions on pattern
analysis and machine intelligence, vol. 32, pp. 105–19, 2010.

[23] A. Marongiu, P. Burgio, and L. Benini, “Fast and lightweight support for
nested parallelism on cluster-based embedded many-cores,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2012, 2012,
pp. 105 –110.

[24] Texas Instruments Inc. KeyStone II System-on-Chip 66AK2Hx.
[Online]. Available: http://www.ti.com/lit/ds/symlink/66ak2h12.pdf

[25] C. George, “Knights Corner, Intel’s first many integrated core (MIC)
architecture product,” in Hot Chips, 2012.

[26] E. Stotzer, A. Jayaraj, M. Ali, A. Friedmann, G. Mitra, A. P. Rendell, and
I. Lintault, “Openmp on the low-power ti keystone ii arm/dsp system-on-
chip,” in OpenMP in the Era of Low Power Devices and Accelerators.
Springer, 2013, pp. 114–127.

[27] D. Schmidl, T. Cramer, S. Wienke, C. Terboven, and M. S. Müller,
“Assessing the performance of OpenMP programs on the Intel Xeon
Phi,” in Euro-Par 2013 Parallel Processing. Springer, 2013, pp. 547–
558.

[28] C. Bertolli, S. F. Antao, A. E. Eichenberger, K. O’Brien, Z. Sura,
A. C. Jacob, T. Chen, and O. Sallenave, “Coordinating GPU Threads
for OpenMP 4.0 in LLVM,” in Proceedings of the 2014 LLVM Compiler
Infrastructure in HPC, ser. LLVM-HPC ’14, 2014, pp. 12–21.

[29] C. Liao, Y. Yan, B. R. de Supinski, D. J. Quinlan, and B. Chapman,
“Early experiences with the openMP accelerator model,” in OpenMP in
the Era of Low Power Devices and Accelerators. Springer, 2013, pp.
84–98.

[30] Lawrence Livermore National Laboratory, “ROSE Compiler
Infrastructure.” [Online]. Available: http://rosecompiler.org/

[31] Y. Yang and H. Zhou, “CUDA-NP: Realizing nested thread-level par-
allelism in GPGPU applications,” in ACM SIGPLAN Notices, vol. 49,
no. 8. ACM, 2014, pp. 93–106.

[32] G. Ozen, E. Ayguadé, and J. Labarta, “On the roles of the programmer,
the compiler and the runtime system when programming accelerators
in OpenMP,” in Using and Improving OpenMP for Devices, Tasks, and
More. Springer, 2014, pp. 215–229.

