
Implementation of Agent-based Ontology Mapping and Integration

Li Li, Yun Yang and Baolin Wu
Faculty of Information and Communication Technologies

Swinburne University of Technology
PO Box 218, Hawthorn, Melbourne, VIC 3122, Australia

{lli, yyang, bwu}@ict.swin.edu.au

Abstract

The achievement of some business goals requires more
than individual capabilities and knowledge. Hence, it is
necessary for different organisations to work together in or-
der to achieve the goals. In this paper, an innovative agent-
based architecture is developed to model ontology mapping
and integration in a distributed and dynamic business envi-
ronment where interactions among organisations may take
place at unpredictable times, for unpredictable reasons, and
between unpredictable organisations. Functionalities and
implementation of involved agents are discussed. In addi-
tion, a three-layer user ontologies are introduced. Finally,
demonstrations of ontology mapping and integration are
presented.

1 Introduction

Ontologies facilitate the interoperability between hetero-
geneous systems involved in commonly interested domain
applications by providing a shared understanding of do-
main problems and a formalisation that makes ontologies
machine-processable. The benefits of using ontologies have
been recognised in many areas such as knowledge and con-
tent management, and e-commerce. The proliferation of
Internet technology and globalisation of business environ-
ments has given rise to the advent of an ever-surprising
varieties of ontologies which are far beyond expectations,
whilst the changeable environment enforces underlying on-
tologies evolving over time. Moreover, interactions among
organisations may take place at unpredictable times, for un-
predictable reasons, between unpredictable organisations.
Agents in multi-agent systems (MAS) operate flexibly and
rationally in an environment which are dynamic and hetero-
geneous, given that agents have abilities to perceive changes
of environments and respond in a timely fashion.

Of the architectures of modelling ontology managements
(including ontology mapping and integration), most of the

existing work attempt to build systems by using specific
techniques to define similarity measurement, or to solve
problems such as matching in ontology mapping [5] rather
than focus on architectures. For instance, PROMPT [7] sug-
gests to designers which concepts may be related. Only lit-
tle of existing systems or tools claim that they have con-
sidered architectures and supporting techniques. In which
InfoSleuth [2], an agent-based system, is worth noting. It
is implemented in Java, and the agent communication lan-
guage is KQML [1]. However, as stated in its future work,
it lacks important capabilities such as managing agent sys-
tems as provided in some current agent software. Moreover,
it is not FIPA-compliant and has no intention to create map-
ping automatically in the proposed system.

Although the problem of specifying the architecture is at
the core of ontology mapping and integration on the Web,
it has not been thoroughly investigated yet. To achieve the
flexibility, agent technology finds its niche in operating over
heterogeneous ontologies in a dynamic and distributed envi-
ronment where substantial support for change is necessary.

This paper is organised as follows. Section 2 introduces
an overall agent-based architecture. Section 3 discusses on-
tologies in this work. Section 4 describes agent designs and
implementations. Section 5 demonstrates ontology map-
ping and integration. And finally, Section 6 is the conclu-
sion.

2 Agent-based Architecture

Agent technology presents an exciting prospect in a field
where high dynamics are required. It has the potential to
significantly extend the range of applications that can feasi-
bly be tackled [4].

2.1 Rationale

The emerging Web technology has made the environ-
ment of ontologies and ontology-based applications change

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 27, 2010 at 00:39 from IEEE Xplore. Restrictions apply.

user
agent

lib
ra

ry o
f c

o
m

m
o

n k
n

o
w

le
d

g
e

interface
agent

functionary agents

legend: OA- ontology agent NA- negotiation agent

query
agent

mapping
agent

checking
agent

integration
agent

refinement
agent

thesaurus
agent

wrapper

Frame-
based

wrapper

RDF

wrapper

OIL

wrapper

DAML+
OIL

wrapper

OWL

OA

NA

OA

NA

OA OA OA

NA NA NA

Figure 1. Agent-based framework

rapidly, which also has made ontology integration more dif-
ficult than ever before. The characteristics of the environ-
ment are as follows:

• Available ontologies are scattered on the Web which
make manually gathering of relevant information for a
particular problem nearly impossible;

• The number of organisations (with different ontolo-
gies) may change dynamically by organisations en-
tering or leaving the environment randomly. Further-
more, which ontology is available along with a partic-
ular organisation is uncertain;

• Ontologies are prone to adaptation and evolution;

• Processes of different organisations operate concur-
rently to modify the environment in ways that an or-
ganisation has no control over;

• Different organisations demand efficient interaction as
these interactions may occur at unpredictable times,
for unpredictable reasons, between unpredictable or-
ganisations. An organisation thus needs to consider
synchronising or coordinating its actions with those of
other processes in the environment.

MAS’s abilities of providing robustness and efficiency
and solving problems in which data or control is distributed,
make the MAS perfectly suitable for dynamic, distributed
environments. Agent technology is thus ideally suited to
model ontology mapping and integration on the Web.

2.2 Agent-based Architecture Overview

The overall framework of the agent-based ontology man-
agement is shown in Figure 1 [6]. The functionalities of
each agents in this environment are briefly described below
with details are given in Section 4.
User Agent (UA): This agent interacts with a particular
GUI. It includes getting the business scenario from GUI,

passing it on to the interface agent (IA) and presenting ex-
pected results.
Interface Agent (IA): This agent interacts with the UA. It
is in charge of assigning a particular task to one or several
agent(s) of a virtual community1.
Ontology Agent (OA): This agent acts on behalf of a certain
ontology. It behaves properly in a specified agent platform.
It is equipped with functionalities of a certain ontology (e.g.
it operates over the ontology structure and a particular inter-
mediate result structure). The main purpose of the OA is to
perform ontology related tasks which are isolated from ex-
ternal functionary agents. The presence of OA allows flexi-
ble system organisation.
Negotiation Agent (NA): This agent takes part in negotia-
tion setting in an attempt to obtain ontology evolving infor-
mation for corresponding OA.
Functionary Agent: It consists of agents providing func-
tionalities of thesaurus similarity, ontology mapping, ontol-
ogy integration and consistency checking.

• Thesaurus Similarity Agent (SA): This is in charge
of maintaining thesaurus similarity within a suitable
structure. The major tasks of the SA are to: (1) append
new concepts to the specified structure; and (2) search
a particular concept in the structure.

• Mapping Agent (MA): This is shaped to provide link-
ages to pave the way for the interoperability of het-
erogeneity of various ontologies on the Web. It is the
foundation of further ontology integration. The major
task of the MA is to estimate whether two given con-
cepts mapping each other according to its knowledge.

• Integration Agent (InA): It is responsible for ontology
integration based on a certain business scenario. The
major tasks of an InA are to: (1) count the appearance
of each specified concept; and (2) filter the unexpected
items before sending them to the OA.

• Refinement Agent (RA): This maintains ontology co-
herence and integrity in an environment of dynamic
changes of ontologies that may take place frequently.
The major tasks of a RA are to: (1) obtain up-to-date
information for a specified concept; and (2) locate any
differences between a previous description and the cur-
rent one.

• Consistency Checking Agent (CA): This checks the
consistency of an ontology. The major tasks of a CA
are to: (1) check if a particular concept is the subclass
of two disjoint concepts; and (2) warn the UA if incon-
sistency exists.

1A group of partners commonly interested in a certain business sce-
nario.

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 27, 2010 at 00:39 from IEEE Xplore. Restrictions apply.

• Query Agent (QA): This is in charge of a query based
on created ontology mappings between pairs of ontolo-
gies. It maintains the query module in a distributed
environment.

Library of Common Knowledge: This library includes
atomic roles and primitive concepts which comprise the
baseline of knowledge in a particular domain. It may ini-
tially be created or become created during run time through
agent communications.

Wrapper programs, attached to each ontology sources,
handle ontology formatting transformations between the
local representation model and the internal representation
model of the proposed system.

2.3 Agent Communication Languages

Agent communication language is FIPA ACL. In
essence, an agent communication language provides a
set of communication acts for agents in a MAS to per-
form. The purpose of agent communication is to con-
vey information about an agent’s own mental state with
the objective of affecting the mental state of the com-
munication partner. A three-layer model of FIPA ACL
(http://www.fipa.org/repository/aclspecs.html) includes the
content (layer) of the message; the message (layer) of par-
ticular attitude towards the content in forms of performa-
tives of ACL [9]; and the communication (layer) of me-
chanics of communication. The concrete syntax for FIPA
ACL messages closely resembles that of KQML [1], but
the ACL language has greatly enhanced the semantics of
passing messages.

Agent interaction will be demonstrated in AUML [8]
throughout this paper. In the following sections, AUML
diagrams will be introduced to describe interactions among
agents for a particular task.

3 Ontologies

In this paper, agents perform ontology mapping and in-
tegration related work rather than just consume ontologies
as usual. We develop a three-layer model (Figure 2) to rep-
resent ontologies in this system. This model accommodates
different ontology languages and representations when in-
stantiating various ontologies. The three layers are: E-R
model, object, and ontology.

The top level E-R model is a general model in modeling
the reality at an abstract level. It is in accordance with Gru-
ber’s best known ontology definition [3] where an ontology
is an explicit specification of a conceptualisation. An on-
tology is a specification, namely a pair of < Σ,Ψ > to de-
scribe that Σ satisfies the axioms Ψ derived from a domain
model, where a conceptualisation Σ is a pair of < C,R >

Object
Layer

Ontology
Layer

id

entity entity

 type
label

attribute

E-R
model
Layer

R

conceptconcept is-a

 ontology

Figure 2. Three-layer ontology model

with C representing a set of concepts, and R standing for a
set of relations over these concepts. Below the E-R model
layer is the object layer where “id”, “label”, “attribute”, and
“type” are defined. Objects in this layer are instances of
E-R model layer classes. The bottom layer is the ontology
layer. Various ontologies of the system are instantiations of
objects in the object layer.

A prominent feature of the ontology in this system is the
“attribute” of an “entity” or a “slot”. It is defined to take
both simple and complex data type such as af class type.

When an ontology is imported to the system, an OA is au-
tomatically generated to act on behalf of this ontology and
to perform ontology related operations such as ontology ac-
cess and ontology update. Other agents, such as functionary
agents, can not access individual ontologies.

4 Agent Design and Implementation

In this section, the interrelated processes and function-
ality together with the implementation of each agent in the
JADE agent platform2(http://jade.tilab.com/) are presented.
JADE is claimed to comply to FIPA (http://www.fipa.org)
specifications.

4.1 User Agent

The UA assists the user in formulating its requests post-
ing queries (e.g. tasks) to the proposed system via the IA,
and in visualising the results of required tasks according
to the user’s requirements. It seperates complex internal
system designs and implementations from the user. During
initialisation, the UA waits for information from the user
interface. The UA must engage in “communications”
with the IA in fulfilling its role because the internal struc-
ture is invisible to it yet. The UA only knows the IA.

The UA knows nothing about other agents created in
our multi-agent system environment. The agent interactions
only take place between the UA and IA.

2Refer to the website (http://exp.telecomitalialab.com/) for more de-
tails of why JADE is a suitable technical platform for modelling
distributed and heterogeneous environments. Refer to the website
(http://www.agentlink.org/) for available agent software.

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 27, 2010 at 00:39 from IEEE Xplore. Restrictions apply.

The UA waits for actions from the user interface
and then sends an ACLMessage to the IA when it has re-
ceived a user action. For example, if a user in the mapping
interface chooses two agents and then clicks OK to execute
the mapping module, the user interface passes
the agents to the start mapping method in the UA. The
UA does not know how to map but it creates an ACLMes-
sage and adds the two ontology agents as parameters in the
ACLMessage and sends this ACLMessage off to the IA.
When information is to be displayed to users, the IA passes
a message back to the UA which will show necessary results
on the user interface.

4.2 Interface Agent

The IA acts as an interface between agents in our created
MASs and the UA. Upon initialisation, every agent knows
about the IA. So if any other functionary agent, for example,
the MA, wants to show mapping results to the user, it can
send a message to the IA which will pass it on to the UA to
display. On the other hand, when new agents, for example,
OAs, are added in, the IA will let all other agents know. So
existing agents may refer to newly added agents.

The IA facilitates the modularity of the MAS environ-
ment. It is involved in all sorts of tasks when communi-
cations between created agents (e.g. a multi-agent system)
and the user interface are required.

The IA receives messages from the UA and then based
on the conversation id of the ACLMessage, it passes it on
to the appropriate agent in our created multi-agent system
to deal with. For example, the IA may receive a message
from the UA with the conversation id of “start-mapping”.
The IA does not know anything about mapping but knows
when it gets this message to pass it on to the mapping agent
to handle. The mapping agent will then extract the content
of the message and perform mapping on these two OAs.

4.3 Ontology Agent

The OA provides an ontology related information and op-
erations to other agents. The OAs isolate details of exter-
nal ontologies (e.g. different ontologies) from functionary
agents.

Upon initialisation, it waits for information from other
agents. It engages in “communication” with these agents
with respect to the required information. This process may
loop until the module runs out of concept candidates of a
specified ontology. The OA may return a result to the user
via the IA and UA.

The OA provides as much information of the ontology
it acts on as possible by interacting with other agents
(Figure 3). The OA operates over two structures: (1) the
ontology structure (e.g. the ontology it acts on behalf of);

IAUA Ontology agentsFunctionary agents

OAi OAj
request for a

certain
functionality

request

request

request

request
inform

inform

send a request
to a particular
OA

Figure 3. Interactions of ontology agent
(OA) in AUML

and (2) the mapping results (i.e. mapping.txt). The
major operations on these two structures are as followings.

• operations over the ontology structure

- Insert, namely insert a new concept into the on-
tology structure, the UA may specify where to at-
tach the concept (for ontology integration phase);

- Traverse, namely traverse the structure, return
the requested concepts or “True/False” of a given
proposition.

• operations over the mapping results

- Append, namely append the mapping results into
the mapping result;

- Search, namely search mapping.txt.

Besides, OAs act properly when triggered by different
sources of driving forces. For example, in a query mod-
ule, an OA will dispatch a particular query request to other
known OAs if it is unable to answer the query. Next, we
focus on ontology mapping related interactions, by taking
into account the interactions between the OA and MA, and
the OA and QA as well.

An OA’s main responsibility is to look after an ontology,
either the one imported from a RDF(s) file or the one cre-
ated in an object oriented way. OAs are all equipped to be
able to perform some functions to reify agent behaviours
responding to certain coming ACLMessages.

The OAs are not added to JADE at start up. They
are added to our current running container when the user
presses the run button in the user interface. As-
suming that the user wants the system to add two OAs, for
example, beer1Agent and beer2Agent. When these
agents first enter our system, they register themselves with
the IA. All agents will have a reference to these two added
OAs via the IA.

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 27, 2010 at 00:39 from IEEE Xplore. Restrictions apply.

SAIA MA

request mapping

request syn_search

append to
syn.file

search
syn.file

inform synonymscheck

request (append to
syn.file)

agree (append to
syn.file)

no

yes

Figure 4. Interactions of thesaurus
similarity agent (SA) in AUML

4.4 Thesaurus Similarity Agent

The SA maintains a thesaurus for the purpose of similar-
ity. Upon initialisiation, it waits for information from either
a functionary agent or the UA with respect to query or up-
date the contents in the thesaurus. It then returns the result
to the corresponding requesters.

The SA may work in two cases by interacting with other
agents (Figure 4). One is in the mapping module when the
MA is looking for synonyms of a given term from one on-
tology if the MA has not found such a concept in another
ontology. Another case is when a user asks to update the
thesaurus list.

The SA holds a list of common words and synonyms of
words. For example, during the mapping process, if the MA
is trying to perform mapping on two ontologies, and gets
the concept suds from one ontology, and wants to map it to
another ontology, but that ontology has no concept called
suds, then the MA sends an ACLMessage to the IA. The IA
reads the conversation id of this message and passes
it on to the SA. The SA then looks in its list and gathers a list
of synonyms for the particular term. The SA then sends this
list back in an ACLMessage to the IA, which passes it back
to the MA. The MA will then use this list for mapping.

4.5 Mapping Agent

Dynamic mapping is thought as on the right track to pave
the way for further ontology operations. The MA takes ef-
fect on receiving a mapping request from the UA via the IA.
It engages in “communication” with OAs and the SA to ex-
ecute mapping until the process completes. OAs will have a
reference to the mapping results.

Unlike the OA or other agents, the MA does not operate
directly over existing structures. It takes effect via the IA
in the module (Figure 5) in deciding whether existing on-
tologies come from the same domain or not; or in the mod-
ule of ontology mapping (Figure 6) through the OA and SA
to acquire relevant information. The former module paves

MAUA IA

request mapping

request mapping

inform-ref ask for the
value of “domain”

inform-ref ask for the
value of “domain”

yes
refuse

no

Figure 5. Module of deciding domain in AUML

MA

request get_current_node

traverse the ontology structure
to get the current node

inform current_node

R1

request synonyms

inform synonyms R2

request attr

R4

SA

traverse the ontology structure to
get the attributes of the current
node

R3

request insert to map.file

insert mapping result into
map.file

insert mapping result into
map.filerequest insert to

map.file

request insert to
map.file

insert mapping rules into
map.file

request insert to
map.file

insert mapping result into map.file

OA
OA j

inform attr

OA i

Figure 6. Interactions of mapping agent
(MA) in AUML

the way for deployment of predefined rules (actually, these
rules are the required little prior knowledge)

In reality, the process of deployment of rules may loop
until it runs out of sub-concepts of a specified ontology.
Mapping is conducted from a particular OA’s perspective.
In other words, mapping has directions.

The MA performs mapping on pairs of ontologies and
writes the mapping results out to a mapping file. To il-
lustrate the entire process, assume that the user inputs two
ontologies. The user interface then sends these two
ontology names to the UA which wraps them up in an
ACLMessage and passes it on to the IA. The IA will pass
the message on (based on conversation id) to the ap-
propriate agents to handle.

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 27, 2010 at 00:39 from IEEE Xplore. Restrictions apply.

4.6 Integration Agent

Ontology integration is based on the results of ontology
mapping. It is from a particular agent’s perspective. In other
words, the system has no intention to be engaged in con-
ceptual modelling issues (e.g. how to build an ontology),
instead, it uses the existing conceptual models by choosing
one (by the user) of them. The purpose of integration is to
extend, enlarge, or refine a certain ontology from a global
view.

Upon initialisation, the InA waits for the action of per-
forming integration over specified ontologies. The InA then
engages in “communications” with proper OAs until the in-
tegration task has been solved. Integration module executes
integration from a given start point of an ontology. It then
requests corresponding OAs to traverse sub-concepts of the
ontology. Briefly speaking, the InA counts the appearance
of each concept of existing ontologies, and then filters un-
expected concepts with a given threshold. By saying this,
we do not mean that we attempt to change the conceptual
modelling of the ontology. Instead, ontology integration is
based on a specified ontology. The process (shown in Fig-
ure 7) looks like:
(1) obtain ontology related information via OAs (e.g. access
mapping files);
(2) keep the numbers of occurrences of each concept in the
specified ontology;

Three cases may take place according to the mapping re-
sults. They are:

• Case 1: semantic equivalence for the current two con-
cepts (for example, “beer” is the same as “suds”):

In this case, increase the number of occurrences of the
concept by 1 for each equivalence;

• Case 2: inclusive relation for the current two concepts
(for example, “stout” is a kind of “ale”):

In this case, insert sub-concepts of the counterpart into
the specified ontology structure but keep the original
relations;

• Case 3: no semantic equivalence for the current two
concepts but their corresponding direct ancestors are
semantically equivalent:

In this case, insert the counterpart into the specified
ontology but without conflict with existing sub-
concepts of the same ancestor;

(3) filter unexpected concepts by a given threshold.
The InA performs integration of the ontology agents. To

illustrate the entire process, we take the example below.
When the user wants to integrate the ontologies they pro-
vide the dominating ontology, and a threshold. The user

OAInA

request start_node
traverse the ontology
structure to get the
current nodes

inform current_node

search map.file,
if they are the

same, then
increase the
counter by 1

IA

request sub_concept

inform sub_concept

request is_sub

inform [Y|N]

search map.file,
if they are the
same, then
increase the
counter by 1

request UA a threshold

inform threshold request insert_concept

OA i
OA j

OA new

create a
new
ontology

visualisation

UA

Figure 7. Interactions of integration
agent(InA) in AUML

interface passes this information on to the UA which
wraps it up in an ACLMessage and sends it to the IA. The IA
looks at conversation id of this message then passes
it on to the InA. The InA will request the ontologies from
available OAs (this is done again by ACLMessages). When
the integration module has all the ontologies (by contacting
OAs), it performs integration module based on the domi-
nating ontology, the threshold, and of course the mapping
results. When the integration has been done, the first thing
is that an OA is created on the fly which will look after the
newly integrated ontology. Then the InA sends the new on-
tology to the IA in an ACLMessage. The IA then passes it
on to the UA which will display the new ontology to the user
in a tree view. The user can later exports this new ontology
to a RDF(s) format.

4.7 Consistency Checking Agent

The CA is developed to check the consistency of inte-
grated ontology (assuming all provided ontologies are con-
sistent). Upon initialisation, the CA) waits for actions from
the user interface to perform consistency checking
task upon a generated ontology. The CA then executes
checking module by engaging in “communications” with
a particular OA. This process may loop until no candidate
concept from the ontology left.

When the CA initialises, the CA waits for a request to
perform checking task over a specified ontology. It then en-
gages in “communications” with a particular OA to operate
the checking module. It returns the user either (a given on-
tology) consistent or not. If the ontology is inconsistent,
the problem part of the ontology is highlighted in the user
interface. The whole process is shown in Figure 8.

When the checking button (to check the consistency

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 27, 2010 at 00:39 from IEEE Xplore. Restrictions apply.

OAIA CA

request checking

traverse
ontology

UA

request
information

consistent

inconsistentvisualise

execute
checking
module

return
result

Figure 8. Interactions of consistency
checking agent (CA) in AUML

of integrated ontology) of user interface is clicked,
the user interface passes this information on to the
UA. The message is wrapped up in an ACLMessage and
sends to the IA. The CA gets a ACLMessage from the IA
to check the consistency of an ontology. It sends a mes-
sage back stating that inconsistency or no inconsistency is
found, which will eventually be passed back to the user
interface.

4.8 Query Agent

The QA is designed to govern query execution around
available OAs over the mapping results. The query aims
to provide an equivalent description of queried term if the
agent knows it. If not, the agent then passes the query to
other available OAs. The query dispatching module contin-
ues until either the query is answered or the process has
queried all existing OAs with respect to the term. The
result (e.g. a query routing) is displayed on the user
interface.

Upon initialisation, the QA waits for actions from the
user interface to perform the query. The QA then ex-
ecutes the query module by engaging in “communications”
with OAs with reference to mapping results. This process
completes when the queried terms are interpreted.

The query agent acts like a planning agent for a reachable
path in a decentralised ontology network. It is responsible
for tasks such as keeping tracks of OAs in case of backtrack-
ing is required (Figure 9).

The QA gets a ACLMessage from the IA to query an
ontology of a specified term. For example, when the
user inputs the query term and the ontology to query, the
user interface will pass the query term and the on-
tology to the UA which will wrap up this information in
an ACLMessage and send it to the IA. The IA will look
at conversation id of the message and realise that it
needs to send it to an OA itself. So the IA will unwrap the
message to determine which agent it needs to send to. The
IA then sends the ACLMessage to that OA. Each OA has
been programmed to handle this kind of message. So when

QA

search
map.file

OA
OA jOA i

inform result

request term search
map.file

search
map.file

request term

inform result

request the term
inform result

OA k

draw edges
to link
reachable
ontologies inform where

[Y]

[N]
[N]

[Y]

[N]

[N]

inform where

inform where

[N]
[N]

[Y]

Figure 9. Interactions of query agent (QA) in
AUML

an OA receives this message, it searches through its own
ontology for the query term. If it is unsuccessful, it then
searches through appropriate mapping files. It will then pass
a result message back to the IA, which will pass it on to the
UA. Then the user will see a message posted on screen ei-
ther something like “suds = agent1.beer” or “no semantic
equivalence”.

4.9 Important Notes

All our agents make use of JADE Message Templates in
order to perform certain tasks based on certain attributes of
the message. For example, an OA can send concepts. When
the OA receives a message, it needs to determine which of
these behaviours to execute. The way we do this is by using
Message Templates. Message Templates allow us to filter
messages based on attributes like performative type,
conversation id, and sender, etc.

5 Prototyping

The JADE agent platform is used to build the MAS sys-
tem. To meet the main tasks of the work, different classes
(e.g. concept class, ontology class and agent class) are de-
fined for ontology and agent generation on the fly.

In the prototype, different ontologies, for example RDFs
ontologies, are created for demonstration. Correspond-
ingly, different kinds of agents are generated. Among them,
there are user agent (UA), interface agent (IA),
ontology agent (OA), and functionary agents. In the
following, two major operations will be demonstrated in de-
tail.
(1) Ontology Mapping

In the work, mapping attempts to provide mapping re-
sults for any further ontology operations, for example on-
tology integration. Mapping is operated from a source on-
tology to a target ontology (e.g pairs of ontologies), so
the mapping results are stored locally associated with the

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 27, 2010 at 00:39 from IEEE Xplore. Restrictions apply.

source ontology agent. In other words, only this OA can
access and update the result.

Figure 10. Screen shot of ontology mapping

(2) Ontology Integration
Figure 10 shows the screen shots of ontology mapping.

The screen shot at the back is an overall prototype when the
“mapping” button is clicked. The lower left screen shot is
a mapping screen where the mapping direction is specified
in addition to two given ontologies. The mapping result in
plain text is shown at the lower right of Figure 10. Ontology
integration is based on ontology mapping results in order to
provide a global view of existing ontologies in the environ-
ment. Since ontology conceptualisation is out of the scope
of this work, we will not extend this topic any more but in-
stead to choose one available ontology to perform ontology
integration.

Figure 11 shows the screen shots of ontology integration
framework and integration results. The upper part is the
overall prototype when “integration” button is clicked. The
lower left part is the integrated ontology in RDF(s) format,
while the lower right part is the integrated ontology in the
hierarchical structure.

6 Conclusions

In this paper, an agent-based architecture is realised by
using the JADE agent platform. Each kind of agent has been
detailed and implemented in the proposed framework. We
also provide a three-layer user ontology model. We have
demonstrated how ontology mapping and integration func-
tion in the prototype based on the proposed ontology model.

References

[1] Finin, T., McKay, D., Fritzson, R., and McEntire, R.,
KQML: An Information and Knowledge Exchange Proto-

Figure 11. Screen shot of ontology integra-
tion

col, Knowledge Building and Knowledge Sharing, Kazuhiro
Fuchi and Toshio Yokoi (Eds.), Ohmsha and IOS Press,
1994.

[2] Fowler, J., Nodine, M., Perry, B., and Bargmeyer, B., Agent
Based Semantic Interoperability in InfoSleuth, SIGMOD
Record, 28(1), pp. 60–67, 1999.

[3] Gruber, T. R., Toward Principles for the Design of On-
tologies Used for Knowledge Sharing, KSL-93-04, Knowl-
edge Systems Laboratory, Stanford University, http://ksl-
web.stanford.edu/, 1993.

[4] Jennings, N., and Wooldridge, M., Agent-Oriented Software
Engineering, in: J. Bradshaw (Eds.), Handbook of Agent
Technology, AAAI/MIT Press, 2001.

[5] Li, L., Wu, B., and Yang, Y., Semantic Mapping with Multi-
Agent Systems, Proc. of the IEEE International Confer-
ence on e-Technology, e-Commerce and e-Service (EEE’05),
pp. 54-57, Hong Kong, March 2005.

[6] Li, L., Agent-based Ontology Management To-
wards Interoperability, PhD thesis, Swinburne
University of Technology, Australia, 2006.
http://www.it.swin.edu.au/personal/lli/thesis.pdf.

[7] Noy, F. N., and Musen, M. A., The PROMPT Suite: Inter-
active Tools for Ontology Merging and Mapping, Interna-
tional Journal of Human-Computer Studies, 59(6), pp. 983-
1024, 2003.

[8] Odell, J., Parunak, H. V. D., Bauer, B., Extending UML for
Agents, Proc. of the Agent Oriented Information Systems
Workshop (AOIS) at the 17th National Conference on Ar-
tificial Intelligence, in G. Wagner, Y. Lesperance, and E. Yu,
editors, Austin, Texas, pp. 3-17, 2000.

[9] Wooldridge, M., An Introduction to MultiAgent Systems,
John Wiley & Sons, 2002.

IEEE International Conference on e-Business Engineering (ICEBE'06)
0-7695-2645-4/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 27, 2010 at 00:39 from IEEE Xplore. Restrictions apply.

