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Hybrid Vector Perturbation Precoding: The Blessing

of Approximate Message Passing
Shanxiang Lyu and Cong Ling, Member, IEEE

Abstract—Vector perturbation (VP) precoding is a promising
technique for multiuser communication systems operating in
the downlink. In this work, we introduce a hybrid framework
to improve the performance of lattice reduction (LR) aided
precoding in VP. First, we perform a simple precoding using
zero forcing (ZF) or successive interference cancellation (SIC)
based on a reduced lattice basis. Since the signal space after
LR-ZF or LR-SIC precoding can be shown to be bounded
to a small range, then along with sufficient orthogonality of
the lattice basis guaranteed by LR, they collectively pave the
way for the subsequent application of an approximate message
passing (AMP) algorithm, which further boosts the performance
of any suboptimal precoder. Our work shows that the AMP
algorithm can be beneficial for a lattice decoding problem whose
data symbols lie in integers Z and entries of the lattice basis
may bot be i.i.d. Gaussian. Numerical results confirm the low-
complexity AMP algorithm can improve the symbol error rate
(SER) performance of LR aided precoding significantly. Lastly,
the hybrid scheme is also proved effective when solving the data
detection problem of massive MIMO systems without using LR.

Index Terms—Vector perturbation, lattice reduction, approxi-
mate message passing, massive MIMO

I. INTRODUCTION

T
HE broadband mobile internet of the next generation is

expected to deliver high volume data to a large number

of users simultaneously. To meet this demand in the multiuser

broadcast network, it is desirable to precode the transmit

symbols according to the channel state information (CSI) with

improved time-efficiency while retaining the reliability. It is

known that precoding by using plain channel inversion per-

forms poorly at all singal-to-noise ratios (SNRs), and further

regularization cannot improve the performance substantially.

To enhance the throughput, a precoding scheme called vector

perturbation (VP) was introduced in [1], [2]. The scheme

is based on Tomlinson-Harashima precoding which perturbs

the transmitted data by modulo-lattice operations, and it can

achieve near-sum-capacity of the system without using dirty-

paper techniques [1], [2]. The optimization target of VP

requires to solve the closest vector problem (CVP) in a lattice,

which has been proved NP-complete by a reduction from

the decision version of CVP [3]. Due to the NP-complete

nature of the problem, finding its exact solution using sphere

decoding [4] (referred to as sphere precoding in [1], [2]) incurs

a prohibitive computational complexity that grows exponen-

tially with the dimension of the problem. Therefore, reduced-

complexity alternatives providing near-optimal performance

must suffice.
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Several reduced-complexity precoding algorithms have been

proposed in the literature [5]–[11]. These algorithms are split

into two categories based on whether lattice reduction has

been used as pre-processing. In the first category [5]–[7],

[9], [11], decoding of CVP is solved on the original input

basis, and the advantages of low complexity is due to the

constraints imposed on the signal space (c.f. [6], [7]) or the

lattice basis (c.f. [5], [9]). There is however no theoretical

performance guarantee for these simplified methods, so we

have to resort to approaches in the second category [8], [12],

[13]. These approaches are referred to as lattice reduction

(LR) aided precoding (decoding), which consists of lattice

reduction as pre-processing and approximated decoding using

zero-forcing (ZF), successive interference cancellation (SIC)

or other variants. Thanks to the good properties of a reduced

basis, approximated decoding based on it has been shown to

achieve full diversity order [8], [13]. Compared to algorithms

in the first category, the pre-processing complexity of reducing

a lattice basis varies from being polynomial to exponential (cf.

[14], [15]). This cost is however not an issue [13] in slow-

fading channels where the lattice basis is fixed during a large

number of time slots, because the lattice basis is only reduced

once to serve all the CVP instances.

Focusing on the framework with LR, the aim of this paper

is to design a low-complexity message passing algorithm

after the phase of approximated decoding. The fundamental

principle of message passing algorithms is to decompose high-

dimensional problems into sets of smaller low-dimensional

problems. This decomposition is often interpreted in a bipartite

graph, where the problem variables and factors are represented

by graph vertices and dependencies between them represented

by edges. Exact message passing methods such as belief

propagation (BP) [16], [17] exploit this graphical structure

to perform optimization in an iterative manner. By simpli-

fying BP, a new class of low-complexity iterative algorithms

referred to as AMP was proposed in [18], [19], and rigorous

justification on their performance can be found in [20], [21].

Inspired by the applications [22]–[25] of approximate mes-

sage passing (AMP) [18], [19] in data detection of massive

multiple-input multiple-output (MIMO) systems, we investi-

gate a general issue of how to use AMP to solve CVP. By

saying general, we emphasize that the data symbols to be

estimated in message passing reside in integers Z which are

infinite. As Bayati and Montanari [20] had mentioned their

state evolution analysis of AMP can extend beyond com-

pressed sensing (to linear estimation and multi-user detection),

we may wonder why AMP cannot be adopted for CVP in

a straightforward manner. Actually, even assuming the data

http://arxiv.org/abs/1710.03791v2
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symbols are only taken from a finite discrete constellation

already complicates the problem of using AMP. For instance,

[22] showed that the channel matrix has to become extremely

tall as the size the the constellation grows, and [23] argued

that the calculation of the posterior mean function of AMP be-

comes numerically unstable for small values of noise variance.

We also noticed that the posterior mean function (denoted

as threshold function in [20]) is not Lipschitz continuous for

small values of noise variance, so the theoretical justification

of AMP does not hold in this scenario (c.f. [20, Section

2.3]). Although we may bypass these issues by using Gaussian

distributions as mismatched data distributions, as used in [23]–

[26], it is easily recognized that their performance is no better

than that of Linear Minimum Mean Square Error (LMMSE)

estimation. To embrace the low-complexity advantage of AMP

and to address the aforementioned issues, it motivates us to

design a new decoding architecture for CVP. The key results

and contributions of our work are summarized as follows.

1) We propose a hybrid precoding scheme, which uses

AMP in conjunction with a sub-optimal estimator after lattice

reduction. Considering the theoretical properties and practical

performance, we choose the sub-optimal estimator as ZF or

SIC, and set the lattice reduction methods as boosted versions

of Lenstra–Lenstra–Lovász (b-LLL) or Korkine-Zolotarev (b-

KZ) [14], [15], [27]. After that, we analyze the energy effi-

ciency of precoding with LR-ZF/LR-SIC. On the basis of the

proved upper bounds on the energy efficiency, we can deduce

upper bounds for the range of data symbols to be estimated

by AMP. Since these bounds are derived from a worst case

analysis, we also study their empirical distributions.

2) As a reduced lattice basis may not have uniform power

in all the columns, we use the approximation techniques in

[28], [29] to derive the corresponding AMP algorithm based

on simplifying BP. The underlying state evolution equation of

it is derived. Subsequently we propose to use ternary distri-

butions and Gaussian distributions for the threshold functions

in AMP, whose posterior mean and variance functions have

closed-form expressions. The impacts of a reduced basis and

parameters in the chosen prior distributions are studied based

on the state evolution equation. Simulation results reveal that

concatenating AMP to LR-ZF/LR-SIC can provide significant

performance improvements.

3) After solving the underlying CVP in VP, the correspond-

ing CVP in massive MIMO can also be solved in an easier

manner. Specifically, the lattice bases (channel matrices) in the

uplink data detection problem of massive MIMO systems are

naturally short and orthogonal, so it suggests we can apply the

hybrid scheme to this scenario without using lattice reduction.

Simulation results confirm the effectiveness of this extension.

The rest of this paper is organized as follows. We review

some basic concepts about lattices and VP in Section II. The

hybrid scheme is explained in Section III, which includes

demonstrations about why we have reached another problem

with a finite constellation size. Section IV presents our AMP

algorithm. Simulation results for VP are given in Section VI.

The extension to massive MIMO is presented in Section VII,

and the last section concludes this paper.

Notations: Matrices and column vectors are denoted by

uppercase and lowercase boldface letters. We use R and

Z to represent the field of real numbers and the ring of

rational integers, respectively. GLn (Z) refers to a general

linear group with entries in Z. ⌊·⌉, | · | and ‖·‖ respectively

refer to (element-wise) rounding, taking the absolute value,

and taking the Euclidean norm. Hi,j denotes the (i, j)th

entry of matrix H. H⊤ and H† =
(
H⊤H

)−1
H⊤ denote

the transpose and the Moore-Penrose pseudo-inverse of H,

respectively. span(S) denotes the vector space spanned by S.

πS(x) and π⊥
S
(x) denote the projection of x onto span(S)

and the orthogonal complement of span(S), respectively. ∝
stands for equality up to a normalization constant. [n] denotes

{1, . . . , n}, 〈x〉 = ∑n
j=1 xj/n. N(µ,Σ) represents a multi-

variate normal distribution with mean µ and covariance matrix

Σ. We use the standard asymptotic notation p(x) = O(q(x))
when lim supx→∞ |p(x)/q(x)| <∞.

II. PRELIMINARIES

A. Lattices

An n-dimensional lattice is a discrete additive subgroup in

R
n. A Z-lattice with basis H = [h1, . . . ,hn] ∈ R

m×n can be

represented by

L(H) =



v | v =

∑

i∈[n]

cihi, ci ∈ Z



 .

It is necessary to know whether the basis vectors hi’s are

short and nearly orthogonal. This property can be measured

by the orthogonality defect (OD):

ξ(H) =

∏n
i=1 ‖hi‖√

det(H⊤H)
. (1)

We have ξ(H) ≥ 1 due to Hadamard’s inequality. Given

H, the denominator of (1) is fixed, while the ‖hi‖ in the

numerator can be reduced to get close to the ith successive

minimum of L(H), which is defined by the smallest real

number r such that L(H) contains i linearly independent

vectors of length at most r:

λi(H) = inf {r | dim(span((L ∩ B(0, r))) ≥ i} ,
in which B(0, r) denotes a ball centered at the origin with

radius r.

The goal of lattice reduction is to find, for a given lattice,

a basis matrix with favorable properties. There are many

well developed reduction algorithms. Here we review the

polynomial time LLL [14] reduction and the exponential time

KZ [27] reduction, followed by their boosted variants.

Definition 1 ([14]). A basis H is called LLL reduced if it

satisfies the size reduction conditions of |Ri,j/Ri,i| ≤ 1
2 for

1 ≤ i ≤ n, j > i, and Lovász’s conditions of δR2
i,i ≤ R2

i,i+1+
R2

i+1,i+1 for 1 ≤ i ≤ n− 1.

In the definition, Ri,j’s refer to elements of the R matrix

of the QR decomposition on H, and δ ∈ (1/4, 1) is called

Lovász’s constant. Define β = 1/
√
δ − 1/4 ∈ (2/

√
3,∞),

for an LLL reduced basis H we have [14]

ξ(H) ≤ βn(n−1)/2. (2)
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Definition 2 ([30]). A basis H is called KZ reduced if

it satisfies the size reduction conditions, and the projection

conditions of π⊥
[h1,... ,hi−1]

(hi) being the shortest vector of the

projected lattice π⊥
[h1,... ,hi−1]

([hi, . . . ,hn]) for 1 ≤ i ≤ n.

If H is KZ reduced, we have [30]

ξ(H) ≤
(

n∏

i=1

√
i+ 3

2

)(
2n

3

)n/2

. (3)

In this paper we will adopt the boosted version of LLL/KZ so

as to get shorter and more orthogonal basis vectors [15] .

Definition 3 ([15]). A basis H is called boosted LLL (b-LLL)

reduced if it satisfies diagonal reduction conditions of δR2
i,i ≤

(Ri,i+1 − ⌊Ri,i+1/Ri,i⌉Ri,i)
2 +R2

i+1,i+1 for 1 ≤ i ≤ n− 1,

and all hi for 2 ≤ i ≤ n are reduced by an approximate CVP

oracle with list size p along with a rejection operation.

Although the definition of b-LLL ensures that it performs no

worse than LLL in reducing the lengths of basis vectors, only

the same bound on OD has been proved: ξ(H) ≤ βn(n−1)/2

[15].

Definition 4 ([15]). A basis H is called boosted KZ

(b-KZ) reduced if it satisfies the projection conditions

as KZ, and the length reduction conditions of ‖hi‖ ≤∥∥hi −QL([h1,... ,hi−1])(π[h1,... ,hi−1](hi))
∥∥ for 2 ≤ i ≤ n,

where QL([h1,... ,hi−1]) (·) is the nearest neighbor quantizer

w.r.t. L([h1, . . . ,hi−1]).

If H is b-KZ reduced, we have

ξ(H) ≤
√
n

2

(
n−1∏

i=1

√
i+ 3

2

)(
2n

3

)n/2

. (4)

B. Vector Perturbation and CVP

Vector perturbation is a non-linear precoding technique that

aims to minimize the transmitted power that is associated with

the transmission of a certain data vector [1], [2]. Assume

the base station is equipped with m transmit antennas to

broadcast messages to n individual users, and each user has

only one antenna. The observed signals at users 1 to n can be

collectively expressed as as a vector:

t̄ = Bt+ w̄ (5)

where B ∈ R
n×m denotes a channel matrix whose entries

admit N(0, 1), t ∈ R
m is a transmitted signal, and w̄ ∼

N(0, σ2
wIn) denotes additive Gaussian noise.

With perfect channel knowledge at the base station, the

transmitted signal t is designed to be a truncation of the

channel inversion precoding B†s:

t = B†(s−Mx), (6)

where x ∈ Z
n is an integer vector to be optimized, s ∈ Mn

is the symbol vector. We set the constellation as M =
{0, . . . ,M − 1} where M > 1 is a positive integer. All

quadrature amplitude modulation (QAM) constellations can

be transformed to this format after adjusting (6).

Assume the transmitted signal has unit power, and let Et ,

‖t‖ be a normalization factor. Then the signal vector at users

is represented by

t̄ = (s −Mx)/Et + w̄. (7)

Let t̄′ = Ett̄, w̄′ = Etw̄, since Mx mod M = 0, the

above equation can be transformed to

⌊t̄′⌉ mod M = ⌊s+ w̄′⌉ mod M. (8)

From (8), we can see that if |w̄′
i| < 1

2 ∀ i, where w̄′ ∈
N(0, σ2

wEtIn), then s can be faithfully recovered.

To decrease the decoding error probability which is dom-

inated by Et, the transmitter has to address the following

optimization problem:

arg min
x∈Zn

∥∥B†(s −Mx)
∥∥2 . (9)

Define y = B†s ∈ R
m, H = MB† ∈ R

m×n, then (9)

represents a CVP instance of lattice decoding:

xcvp = arg min
x∈Zn

‖y −Hx‖2 . (10)

This CVP is different from the CVP in MIMO detection

because the distance distribution from y to lattice L(H) is not

known, the lattice basis is the inverse of the channel matrix

that has highly correlated entries, and the data symbols are

optimized over Zn rather than over a small finite constellation.

III. THE HYBRID PRECODING SCHEME

Our hybrid precoding scheme to solve the CVP in (10)

consists of two phases:

Fig. 1. Exploring the vicinity of a good candidate xzf ∈ R3, whose decision
parallelepiped is the cyan cube. After updating the target vector y← y −
Hxzf , to optimize min

x∈{−1,0,1}3 ‖y−Hx‖ enables locating all the blue

lattice points inside the white cubes.

Phase 1 (approximated decoding): Apply lattice reduction

to the input basis to get H ← HU, where U ∈ GLn(Z) is

induced by the reduction operation. Based on the reduced H,

use ZF or SIC to get a sub-optimal candidate: x̂ = xzf or

x̂ = xsic.
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Phase 2 (AMP decoding): Let y ← y − Hx̂ and define

a finite constraint B = {−B,−B + 1, . . . , B − 1, B}. After

that, use an AMP algorithm to solve:

xamp = arg min
x∈Bn

‖y −Hx‖2 . (11)

Lastly return x̂+ xamp.

The underlying rationale is demonstrated in Fig. 1. Regard-

ing the algorithmic routines in Phase 1, xzf = ⌊H†y⌉, and we

refer to [15], [31] for those of lattice reduction, to [32] for

that of xsic.

To ensure the hybrid decoding scheme is correct and effi-

cient, the following two issues are addressed in the paper.

• Regarding the transformation from (10) to (11), one has

to specify a minimum range for constraint Bn such that

arg min
x∈Bn

‖y −Hx̂−Hx‖2 = arg min
x∈Zn

‖y −Hx‖2 .

Generally speaking, problem (11) becomes easier if B is

smaller. In Section III-A, we will examine the theoretical

and empirical bounds of constraint Bn.

• The AMP algorithms in [18], [19] were assuming at

least the entries of H being sub-Gaussian with variance

O(1/n). Can we derive an AMP algorithm that is suitable

for problem (11), and possibly the routines are simple

and have closed-form expressions? We will first address

relevant prerequisites in Section III-B. Considering all the

constraints, Section IV will present an AMP algorithm

based on simplifying BP.

A. The bounds of constraint Bn

In the application to precoding, we show in this section that

the estimation range Bn is bounded after LR-ZF/LR-SIC. Now

we introduce a parameter called energy efficiency to describe

how far a suboptimal perturbation is from the optimal one.

Definition 5. The energy efficiency of an algorithm providing

x̂ is the smallest ηn in the constraint

‖y −Hx̂‖ ≤ ηn ‖y −Hxcvp‖ , (12)

where xcvp = argminx∈Zn ‖y −Hx‖, and we say this

algorithm solves ηn-CVP 1.

We first analyze the energy efficiency ηn of b-LLL/b-KZ

aided ZF/SIC, and then address the bound for Bn based on ηn .

The reasons for choosing b-LLL/b-KZ as the reduction method

are: i) b-LLL provides better practical performance than that

of LLL [15], and ii) b-KZ characterizes the theoretical limit

of strong (with exponential complexity) LR methods.

Theorem 1. For the SIC estimator, if the lattice basis is

reduced by b-LLL, then

ηn = βn/
√
β2 − 1, (13)

where β ∈ (2/
√
3,∞); and if the basis is reduced by b-KZ,

then

1In [8], ηn is referred to as proximity factor in the CVP context. To
avoid confusion with the proximity factor in [32], we simply call it “energy
efficiency”.

ηn = 1 +
8n

9
(n− 1)1+ln(n−1)/2 . (14)

Proof: The proof relies on upper bounding the diagonal

entries of R (the R matrix in the QR factorization of H).

Since boosted LLL/KZ has the same diagonal entries as those

of LLL/KZ, we can use results about energy efficiency from

classic LLL/KZ if they exist. Hence Eq. (13) is adapted from

LLL in [8]. As no such result is known for KZ, we prove a

sharp bound for both KZ and b-KZ in Appendix B, where the

skill involved is essentially due to [33].

Theorem 2. For the ZF estimator, if the lattice basis is

reduced by b-LLL, then

ηn = 2n

n∏

j=1

βj−1 + 1; (15)

and if the basis is reduced by b-KZ, then

ηn = 2n

n∏

j=1

j2+ln(j)/2 + 1. (16)

Proof: See Appendix C.

Notice that the maximal range of B is maxi∈n |x̂i − xcvp
i |.

Here, we upper bound it by a function about the energy effi-

ciency ηn. Denote ̺(H) as the covering radius of lattice L(H),
it follows from the triangle inequality and ‖y −Hxcvp‖ ≤
̺(H) that

‖H (x̂− xcvp)‖ ≤ ‖y −Hx̂‖+ ‖y −Hxcvp‖
≤ (ηn + 1)̺(H).

With unitary transform, we have ‖H (x̂− xcvp)‖ =
‖R (x̂− xcvp)‖. To get the upper bound for each |x̂i−xcvp

i |,
we can expand the quadratic form in the l.h.s. of

‖R (x̂− xcvp)‖2 ≤ (ηn + 1)2 ̺2(H)

to get

R2
n,n (x̂n − xcvp

n )2 + · · ·+ (R1,1 (x̂n − xcvp
n ) +R1,n (x̂n − xcvp

n ))2

≤ (ηn + 1)
2
̺2(H).

For a reduced basis, we know that all the column vectors are

short and the diagonal entries are not very small w.r.t. the

successive minima: ‖hi‖ ≤ ωiλi(H), |Ri,i| ≥ λ1(H)/̟i,

where the values of ωi and ̟i can be found in [15].

Now regarding the bound of |x̂n − xcvp
n |, it follows from

R2
n,n (x̂n − xcvp

n )
2 ≤ (ηn + 1)

2
̺2(H) that

|x̂n − xcvp
n | ≤ (ηn + 1) ̺(H)/|Rn,n|
≤ (ηn + 1) ̺(H)̟n/λ1(H).

Similarly for |x̂n−1 − xcvp
n−1|, one has

|x̂n−1 − xcvp
n−1| ≤

∥∥R:,1:n−1

(
x̂1:n−1 − x

cvp
1:n−1

)∥∥ /|Rn−1,n−1|
≤ ((ηn + 1)̺(H) + ωnλn(H)|x̂n − xcvp

n |)̟n−1/λ1(H)

≤ (ηn + 1)̟n−1̺(H)/λ1(H)

+ ωn (ηn + 1)̟n̟n−1λn(H)̺(H)/λ2
1(H).
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By induction, we can obtain the upper bounds of |x̂n−2 −
xcvp
n−2|, . . . , |x̂1 − xcvp

1 |. The concrete values of these bounds

can be evaluated by using the values of ηi, ωi and ̟i based

on the chosen LR aided ZF/SIC algorithms. In summary, the

maximal error distance maxi∈n |x̂i−xcvp
i | is a function about

ηn which is finite.

To complement the theoretical analysis above, we further

conduct an empirical study to understand the actual distribu-

tions of x̂i−xcvp
i . We enumerate the possible values of errors

and their probabilities using lattice reduction (using boosted

LLL) aided ZF/SIC estimators in Table I. Note that these errors

are not the decoding error of VP, but they affect the decoding

error of VP through resulted SNR. Generally, more evident

differences have smaller SNRs. In the setup of the simulation,

the probabilities are averaged from 104 Monte Carlo runs,

the size of constellations is set as M = 32, and the size of

systems are set as m = n = 8, 12, 16, 20, respectively. Since

our simulations show that choosing other values of M still

yields similar error distributions as in Table I, we don’t present

them in this paper.

Table I shows the values of error distance of both LR-ZF

and LR-SIC concentrate around 0. It is clear that the range

of x̂i − xcvp
i slowly grows w.r.t. the dimension of the system;

however, these values are much smaller than their theoretical

upper bounds. The statistical information provided by this

empirical study can be taken into account when designing

threshold functions for AMP.

B. Prerequisites for AMP

Regarding the constellation of x, we have demonstrated that

the error of ZF/SIC estimator is bounded to a function about

system dimension n and some inherent lattice metrics. This

means we are not facing an infinite lattice decoding problem

with Z constellations in Eq. (11), whence the application of

AMP becomes possible. Moreover, the bound of Bn can be

made very small when designing our AMP algorithm.

Regarding the distribution of noise wamp = y − Hx, it

is not known a priori. We can equip wamp with a Gaussian

distribution N(0, σ2Im) with 0 < σ2 < ‖y −Hx̂‖2 /m, based

on which we obtain the non-informative likelihood function of

x:

p(x) ∼ N(H−1y, σ2(H⊤H)−1).

Lastly, as for the channel matrix H, if the basis now has

i.i.d. entries satisfying EHi,j = 0 and EH2
i,j = 1/n and

admitting sub-Gaussian tail conditions [20], [21], which we

refer to as sub-Gaussian conditions, then one can adopt the

well developed AMP [18], [28] or GAMP [34] algorithms to

solve our problem in Eq. (11) rigorously. On the contrary, if

a reduced basis is far from having sub-Gaussian entries, then

using AMP cannot provide any performance gain. Fortunately,

it is known that a basis is short and nearly orthogonal after

lattice reduction, which means its column-wise dependency

is small. Moreover, a reduced basis in VP often has “small”

entries (in the sense of [35]) such that the approximations

in AMP are valid. We further justified the two arguments

above in Appendix A. As a result, we propose to describe

a reduced basis with Gaussian distributions and implement

AMP on it, and the plausibility of this method will be

confirmed by simulations. Without loss of generality, suppose

Hi,j ∼ N(0, σ2
j /m) for i ∈ [m], then one can use the values of

basis entries to obtain the maximum likelihood estimation for

each σ2
j . To see this, note that the likelihood function w.r.t. σ2

j

and m samples H1,j , . . . , Hm,j is L
(
H1,j , . . . , Hm,j , σ

2
j

)
=

1
(
2πσ2

j /m
)n/2 exp


− 1

2σ2
j /m

∑

i∈[m]

H2
i,j


 , (17)

then it follows from solving ∂L
(
H1,j , . . . , Hm,j , σ

2
j

)
/∂σ2

j =
0 that σ2

j =
∑

i∈[m]H
2
i,j . Based on the above, we will modify

the AMP algorithm in [18], [28] and analyze its performance

in the next section.

IV. AMP ALGORITHM FOR EQ. (11)

Combing the non-informative likelihood function with the

prior function pX(xi), it yields a Maximum-a-Posteriori

(MAP) function for Bayesian estimation:

p(x|y,H) ∝
∏

a∈[m]

pa(x, ya)
∏

i∈[n]

pX(xi), (18)

where pa(x, ya) = exp(− 1
2σ2 (ya − Ha,1:nx)

2), and pX(xi)
will be designed in Section V. The factorized structure in (18)

can be conveniently described by a factor graph [36], [37]. It

includes a variable node for each xi, a factor node for each

pX(xi), and a factor node for each pa(x, ya), where i ∈ [n],
a ∈ [m]. If xi appears in pX(xi) or pa(x, ya), then they are

connected by an edge. Clearly, xi and pa(x, ya) are connected

if and only if and only if Ha,i 6= 0. Such a factor graph is

reproduced in Fig. 2.

In the sequel, we first show how to simplify BP to reach

an AMP algorithm by using the approximation techniques in

[18], [28], [29]. After that, we will characterize the symbol-

wise estimation errors in Theorem 3 and present the threshold

functions of certain prior distributions.

r r r r r

bc bcbc bc bcbc bc
rrrrrrr

1 a m

1 i n

Fig. 2. The factor graph associated to the probability distribution (18). Empty
circles corresponds to variables, lines correspond to edges, and solid squares
correspond to factors.

A. Simplified BP

Each factor graph naturally induces a BP algorithm [19]

that involves two types of messages: messages from variable

nodes to factor nodes denoted by Ji→a(xi), and messages
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TABLE I
THE VALUES x̂i − xcvp

i WITH i ∈ [n] AND THEIR PROBABILITIES AFTER “PHASE 1” IN HYBRID PRECODING.

error distance −4 −3 −2 −1 0 1 2 3 4
n = 8 LR-ZF 0 0 0 0.0666 0.8670 0.0664 0 0 0

LR-SIC 0 0 0.0001 0.0505 0.8973 0.0518 0.0001 0 0
n = 12 LR-ZF 0 0 0.0001 0.0891 0.8233 0.0875 0.0001 0 0

LR-SIC 0 0 0.0013 0.0817 0.8348 0.0808 0.0013 0 0
n = 16 LR-ZF 0 0 0.0006 0.1123 0.7752 0.1112 0.0008 0 0

LR-SIC 0 0.0001 0.0040 0.1113 0.7715 0.1090 0.0039 0.0001 0
n = 20 LR-ZF 0 0.0001 0.0022 0.1342 0.7284 0.1327 0.0024 0.0001 0

LR-SIC 0.0001 0.0007 0.0082 0.1348 0.7119 0.1352 0.0086 0.0005 0

from factor nodes to variable nodes, denoted by Ĵa→i(xi).
Here, messages refer to probability distribution functions,

which are recursively updated to compute marginal posterior

density functions for the variables. At the tth iteration, they

are updated as follows

Ĵ t
a→i(xi) =

∫

x\xi

{pa(x, ya)
∏

j∈[n]\i

J t
j→a(xj)}dx, (19)

J t+1
i→a(xi) = pX(xi)

∏

b∈[m]\a

Ĵ t
b→i(xi). (20)

These messages are impractical to evaluate in the Lebesgue

measure space, and thus often simplified by approximation

techniques. We make the approximation from an expectation

propagation [38] perspective hereby. Suppose the message

in Eq. (19) is estimated by a Gaussian function with mean

αt
a→i/β

t
a→i and variance 1/βt

a→i, then

Ĵ t
a→i(xi) = N(Ha,ixi;α

t
a→i/β

t
a→i, 1/β

t
a→i). (21)

By substituting Eq. (21) into Eq. (20), we have

J t+1
i→a(xi) ∝ pX(xi) exp((

∑

b∈[m]\a

Hb,iα
t
b→i)xi

− 1/2(
∑

b∈[m]\a

H2
b,iβ

t
b→i)x

2
i +O(nH3

a,ix
3
i ))

∝ pX(xi)N(xi;ui→a, vi→a), (22)

where

ut
i→a =

∑
b∈[m]\a Hb,iα

t
b→i∑

b∈[m]\a H
2
b,iβ

t
b→i

, (23)

vti→a =
1∑

b∈[m]\aH
2
b,iβ

t
b→i

. (24)

In the other direction, we work out messages J t+1
i→a(xi) with

Gaussian functions through matching their first and second

order moments by the following constraints:

J t+1
i→a(xi) = N(xi; η(u

t
i→a, v

t
i→a), κ(u

t
i→a, v

t
i→a)), (25)

η(ut
i→a, v

t
i→a) =

∫

x

xpX(x)N(x; ut
i→a, v

t
i→a)dx, (26)

κ(ut
i→a, v

t
i→a) =

∫

x

x2pX(x)N(x; ut
i→a, v

t
i→a)dx

− η2(ut
i→a, v

t
i→a), (27)

where η(ut
i→a, v

t
i→a) and κ(ut

i→a, v
t
i→a) are posterior mean

and variance functions, respectively. We will refer to them

as threshold functions. From Eq. (25), inferring xt+1
i→a and

its variance ςt+1
i→a from J t+1

i→a(xi) by using the MAP principle

yields:

xt+1
i→a = η(ut

i→a, v
t
i→a), (28)

ςt+1
i→a = κ(ut

i→a, v
t
i→a). (29)

By substituting the approximation of Eq. (25) into Eq.

(19), which becomes a multidimensional Gaussian func-

tion expectation E(pa(x, ya)) w.r.t. probability measure∏
j∈[n]\i J

t
j→a(xj), the integration over Gaussian functions

becomes Ĵ t
a→i(xi) ∝

N(Ha,ixi; ya −
∑

j∈[n]\i

Ha,jx
t−1
j→a, σ

2 +
∑

j∈[n]\i

|Ha,j |2ςt−1
j→a).

(30)

Compare Eq. (30) with the previously defined mean

αt
a→i/β

t
a→i and variance 1/βt

a→i, we have

αt
a→i = (ya −

∑

j∈[n]\i

Ha,jx
t−1
j→a)/(σ

2 +
∑

j∈[n]\i

|Ha,j |2ςt−1
j→a),

(31)

βt
a→i = 1/(σ2 +

∑

j∈[n]\i

|Ha,j |2ςt−1
j→a). (32)

Thus far, Eqs . (23) (24) (28) (29) (31) (32) define a

simplified version of BP, where the tracking of 2mn functions

in Eqs. (20) and (19) has been replaced by the tracking of 6mn
scalars.

Remark 1. Our derivation is to equip Ĵ t
a→i(xi) with a density

function that can be fully described by its first and second

moments, then one obtains their moment equations when

passing J t
j→a(xj) back. In [29, Lem. 5.3.1], Maleki had

applied the Berry–Esseen theorem to prove that approximating

Ĵ t
a→i(xi) with a Gaussian is tight. Although our variance

1/βt
a→i of Ĵ t

a→i(xi) looks different from his, they are indeed

equivalent if we set the variance ςti→a of J t
i→a(xi) as σ2ςti→a.

Moreover, [29, Lem. 5.5.4] also justifies the correctness on the

other side of our approximation.

B. Reaching O(m+ n) scalars

For a reduced lattice basis H, recall that we have set σ2
1 =

‖h1‖2 , . . . , σ2
n = ‖hn‖2, and the statistical variance for each

entry of H is V(Hb,i) = σ2
i /m. Then we can employ this
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knowledge to further simplify the algorithm in Section IV-A.

Here we define

rta→i = αt
a→i/β

t
a→i = ya −

∑

j∈[n]\i

Ha,jx
t−1
j→a. (33)

By equipping all the βt
b→i with equal magnitude, referred to

as βt
b̄→i

, as well as using
∑

b∈[m]\aH
2
b,i ≈ σ2

i due to the law

of large numbers, it yields

xt
i→a = η(

1

σ2
i

∑

b∈[m]\a

Hb,ir
t
b→i,

1

σ2
i β

t
b̄→i

), (34)

ςti→a = κ(
1

σ2
i

∑

b∈[m]\a

Hb,ir
t
b→i,

1

σ2
i β

t
b̄→i

). (35)

For the moment, we can expand the local estimations about

rta→i and xt
i→a as rta→i = rta + δrta→i, x

t
i→a = xt

i + δxt
i→a,

so the techniques in [19], [28] can be employed. The crux of

these transformation is to neglect elements whose amplitudes

are no larger than O(1/n). Subsequently, Eqs. (33) and (34)

become

rta+δrta→i = ya−
∑

j∈[n]

Ha,j(x
t−1
j +δxt−1

j→a)+Ha,ix
t−1
i , (36)

xt
i+δxt

i→a = η(
1

σ2
i

∑

b∈[m]

Hb,i(r
t
b+δrtb→i)−

1

σ2
i

Ha,ir
t
a,

1

σ2
i β

t
b̄→i

).

(37)

In (36), terms with common {i} indexes are mutually related

while others are not, so that

rta = ya −
∑

j∈[n]

Ha,j(x
t−1
j + δxt−1

j→a), (38)

δrta→i = Ha,ix
t−1
i . (39)

Further expand the r.h.s. of (37) with the first order Taylor

expression of η(u, v) at u, in which

∂η(u, v)

∂u
|u= 1

σ2
i

∑
b∈[m]\a Hb,irtb→i

,v= 1

σ2
i
βt
b̄→i

=

σ2
i β

t
b̄→iκ(

1

σ2
i

∑

b∈[m]\a

Hb,ir
t
b→i,

1

σ2
i β

t
b̄→i

), (40)

then it yields

xt
i + δxt

i→a = η(
1

σ2
i

∑

b∈[m]

Hb,i(r
t
b + δrtb→i),

1

σ2
i β

t
b̄→i

)

−βt
b̄→iκ(

1

σ2
i

∑

b∈[m]

Hb,i(r
t
b + δrtb→i),

1

σ2
i β

t
b̄→i

)Ha,ir
t
a.

Distinguishing terms that are dependent on indexes {a} leads

to

xt
i = η(

1

σ2
i

∑

b∈[m]

Hb,i(r
t
b + δrtb→i),

1

σ2
i β

t
b̄→i

), (41)

δxt
i→a = −βt

b̄→iκ(
1

σ2
i

∑

b∈[m]

Hb,i(r
t
b+δrtb→i),

1

σ2
i β

t
b̄→i

)Ha,ir
t
a.

(42)

Then we substitute (39) into (41), and (42) into (38), to obtain

xt
i = η(

1

σ2
i

∑

b∈[m]

Hb,ir
t
b + xt−1

i ,
1

σ2
i β

t
b̄→i

), (43)

rta = ya −
∑

j∈[n]

Ha,jx
t−1
j + φrt−1

a , (44)

where

φ =
∑

j∈[n]

H2
a,jβ

t−1
b̄→j

κ(
1

σ2
i

∑

b∈[m]

Hb,i(r
t
b + δrtb→i),

1

σ2
i β

t
b̄→i

).

(45)

C. Further simplification

From (43), the estimated variance for each xt
i now becomes

ςti = κ(
1

σ2
i

∑

b∈[m]

Hb,ir
t
b + xt−1

i ,
1

σ2
i β

t
b̄→i

), (46)

As ςti ≈ ςti→b, ∀ b, (32) tells

βt
b̄→i = 1/(σ2 +

∑
j∈[n] σ

2
j ς

t−1
j

m
). (47)

According to (47), we denote βt
b̄→i

as 1/τ2t , then the whole

algorithm can be described by the following four steps:

xt
i = η(1/σ2

i

∑

b∈[m]

Hb,ir
t
b + xt−1

i , τ2t /σ
2
i ), (48)

ςti = κ(1/σ2
i

∑

b∈[m]

Hb,ir
t
b + xt−1

i , τ2t /σ
2
i ), (49)

rt+1
a = ya −

∑

j∈[n]

Ha,jx
t
j +

∑
j∈[n] σ

2
j ς

t
j

mτ2t
rta, (50)

τ2t+1 = σ2 +

∑
j∈[n] σ

2
j ς

t
j

m
. (51)

Denote τ̄2t = 1/n
∑

j∈[n] σ
2
j ς

t
j , then iterations in (48) to (51)

can be compactly represented by matrix-vector products.

Further incorporate some implementation details, our AMP

algorithm is summarized in Algorithm 1.

D. Performance and Discussions

One advantage of using AMP is that we can exactly analyze

the mean square errors of the estimation, as shown in the

following theorem. Its proof is given in Appendix D.

Theorem 3. Let the reduced lattice basis be modeled as

Hb,i ∼ N(0, σ2
i /m), with b ∈ [m], i ∈ [n], and denote

x̄ = xcvp− x̂ as the desired estimation. For each xt provided

by Algorithm 1, as n goes to infinity and m grows in the same

order as n, we have almost surely for all i that:
∥∥xt

i − x̄i

∥∥2 = E|η(X + τt,iZ, τ
2
t,i)−X |2,

where τt,i admits the following iteration relation:

τ2t,i =
1

mσ2
i

∑

j∈[n]

σ2
jE|η(X + τ(t−1),jZ, τ

2
(t−1),j)−X |2 + σ2

σ2
i

,

(52)
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Algorithm 1: The AMP algorithm.

Input: Lattice basis H = [h1, . . . ,hn], target y, number

of iterations T , threshold functions η and κ,

variance parameter σ2.

Output: estimated coefficient vector xamp.

1 x0 = 0, f0 = ‖y‖2, r1 = y, τ21 = 104;

2 for i = 1, . . . , n do

3 σ2
i = ‖hi‖2

4 Θ = diag
(
1/σ2

1, . . . , 1/σ
2
n

)
;

5 for t = 1, . . . , T do

6 xt = η(ΘH⊤rt + xt−1,Θτ2t 1);
7 τ̄2t = 〈Θ−1κ(ΘH⊤rt + xt−1,Θτ2t 1)〉;
8 rt+1 = y −Hxt + n

m
τ̄2
t

τ2
t

rt;

9 τ2t+1 = σ2 + n
m τ̄2t ;

10 fi = ‖y −H⌊xt⌉‖2 ; ⊲ Record the fitness values;

11 i′ = argmini fi;

12 xamp = ⌊xi′⌉.

and the expectation is taken over two independent random

variables Z ∼ N(0, 1) and X ∼ pX .

By defining τ̃2t , τ2t,jσ
2
j = τ2t,iσ

2
i , Eq. (52) becomes

τ̃2t =
1

m

∑

j∈[n]

σ2
jE|η(X + τ̃t−1/σjZ, τ̃

2
t−1/σ

2
j )−X |2 + σ2.

(53)

The above equation is referred to as the state evolution

equation for our AMP. Based on this equation, we will study

the impact of parameters in the threshold functions.

Although one may recognize that the AMP/GAMP algo-

rithms in [18], [22], [39] may also be employed for our

“Phase 2” estimation after further regularizing the channels

(i.e., let H← HΘ1/2 and consider x← Θ−1/2x), the derived

AMP can provide the following valuable insights: i) We can

explicitly study the impact of channel powers σ2
i ’s on the state

evolution equation based on our derivation (e.g., Proposition

1). All the σ2
i ’s are obtained by using the maximum likelihood

estimator (17). ii) The estimated data symbols in Algorithm 1

is reflecting the MAP estimation without the need of further

regularization.

V. DESIGNING THRESHOLD FUNCTIONS

The AMP algorithm needs to work with certain threshold

functions which are designed according to specific, definite

information about coefficient vector x. It is noteworthy that

the theoretical bounds of Bn are derived from a worst case

analysis which are often very large. However, we don’t need

to adopt these bounds for designing threshold functions due

to the following two reasons. First, LR aided ZF/SIC are in

practice quite close to sphere decoding in small dimensions

and there also exist certain probabilities that the error distance

is small in large dimensions, so it suffices to impose a

ternary distribution for these scenarios. Second, although we

recognize that maxi |x̂i − xcvp
i | would increase as the system

dimension grows, where x̂i − xcvp
i admits a distribution in

the shape of a discrete Gaussian, a threshold function based

on this distribution is not only numerically unstable [23, P.

182] but also requires the basis matrix to be extremely tall

[22]. Therefore, an efficient way to use such discrete prior

knowledge is to use linear estimation based on continuous

Gaussian distributions [23], [26].

In this section, we present threshold functions for a ternary

distribution and a discrete Gaussian distribution.

A. Ternary Distribution

According to the empirical study above, a dominant portion

of “errors” could be corrected by only imposing a ternary dis-

tribution {−1, 0, 1} for pX(xi). Here, we present its threshold

functions ηε(u, v) and κε(u, v) in the following lemma.

Lemma 1. Let Y = X+W , with X ∼ pX(x) = (1−ε)δ(x)+
ε/2δ(x−1)+ε/2δ(x+1), W ∼ N(0, v). Then the conditional

mean and conditional variance of X on Y are:

ηε(u, v) , E(X |Y = u) =
sinh(u/v)

(1− ε)/εe1/(2v) + cosh(u/v)
,

(54)

κε(u, v) , V(X |Y = u) =
(1− ε)/εe1/(2v) cosh(u/v) + 1

((1 − ε)/εe1/(2v) + cosh(u/v))2
.

(55)

Proof: Since the posterior probability is proportional to

the likelihood multiplied by the prior probability, we have

PX|Y=u (x)

∝ PX (x)PY=u|X (y)

∝
[
(1− ε)δ(x) +

ε

2
δ(x− 1) +

ε

2
δ(x+ 1)

]
exp

(
− (x− u)

2

2v

)

=






(1 − ε)
(
−u2

2v

)
/S, x = 0,

ε
2

(
− (u−1)2

2v

)
/S, x = 1,

ε
2

(
− (u+1)2

2v

)
/S, x = −1,

where S = (1 − ε)
(
−u2

2v

)
+ ε

2

(
− (u−1)2

2v

)
+ ε

2

(
− (u+1)2

2v

)
.

Therefore, the conditional mean is

∑

x

xPX|Y =u (x) =
sinh(u/v)

(1− ε)/εe1/(2v) + cosh(u/v)
,

and the conditional variance is

∑

x

(x− E(X |Y = u))
2
PX|Y =u (x)

=
(1− ε)/εe1/(2v) cosh(u/v) + 1

((1− ε)/εe1/(2v) + cosh(u/v))2
.

These threshold functions have closed forms and are easy

to compute. The AMP algorithm using (54) (55) from a

ternary distribution is referred to as AMPT. In Fig. 3, we

have plotted function ηε(u, v) by setting v = 1 and ε ∈
{0.1, 0.3, 0.5, 0.7, 0.9}.
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Fig. 3. The threshold function ηε(u, v).

B. Gaussian Distribution

The aim of this section is to explain how to obtain a closed-

form expression for threshold functions targeting discrete

Gaussian distributions. A discrete Gaussian distribution over

Z with zero mean and width σg is defined as

ρσg
(z) =

1

S
e−z2/(2σ2

g),

where S =
∑∞

k=−∞ e−k2/(2σ2
g). According to a tail bound on

discrete Gaussian [40, Lem. 4.4], we have

Prz∼ρσg (z)
(|z| > kσg) ≤ 2e−k2/2

for any k > 0. This implies that ρσg
(z) can be calculated

from a finite range. E.g., we have Prz∼ρσg (z)
(|z| > 10σg) ≤

3.86× 10−22. If σg = 0.1, then ρσg
(z) becomes equivalent to

the ternary distribution with ε ≤ 0.5.

Assume that we have observed Y = u from model Y =
X +W , with X ∼ pX(x) = ρσg

(x), W ∼ N(0, v). Then the

threshold functions are given by

ηd(u, v) =
1

Sk

k∑

l=−k

le
− l2

2σ2
g
− (l−u)2

2v
,

κd(u, v) =
1

Sk

k∑

l=−k

(l− ηg(u, v))
2
e
− l2

2σ2
g
−

(l−u)2

2v
,

where Sk =
∑k

l=−k e
−l2/2σ2

g−(l−u)2/(2v). Recall that we

have mentioned evaluating ηd(u, v) and κd(u, v) is generally

computationally intensive, and the fixed points of their state

evolution equation are unfathomable. Fortunately, the sum of a

discrete Gaussian and a continuous Gaussian resembles a con-

tinuous Gaussian if the discrete Gaussian is smooth [41, Lem.

9], so we can replace ρσg
(x) with N(x; 0, σ2

g) with properly

chosen σ2
g . Let the signal distribution be pX(x) = N(x; 0, σ2

g),

then it corresponds to another pair of threshold functions that

have closed-forms:

ηg(u, v) =
uσ2

g

σ2
g + v

, (56)

κg(u, v) =
vσ2

g

σ2
g + v

. (57)

The AMP algorithm using (56) (57) due to Gaussian distribu-

tions is referred to as AMPG.

C. Parameters in Threshold Functions

In this section, we will inspect the effect of chosen param-

eters on the AMP algorithm, where the technique involved is

about analyzing fixed points (see [42] for more backgrounds).

First, the state evolution equation without the iteration sub-

script reads

Ψ(τ̃2) ,
1

m

∑

j∈[n]

σ2
jE|η(X+τ̃ /σjZ, τ̃

2/σ2
j )−X |2+σ2. (58)

We refer to τ̃2 as a fixed point of Ψ(τ̃2) if Ψ(τ̃2) = τ̃2.

A fixed point is called stable if there exists ǫ → 0+, such

that Ψ(τ̃2 + ǫ) < τ̃2 and Ψ(τ̃2 − ǫ) > τ̃2. When Ψ(0) =
0, the stability condition is relaxed to Ψ(τ̃2 + ǫ) < τ̃2. A

fixed point is called unstable if it fails the stability condition.

The estimation error of AMP is the smallest (resp. largest) if

its Ψ(τ̃2) converges to the lowest (resp. highest) stable fixed

points [42].

For AMPT, we can demonstrate the impact of channel

power
{
σ2
j

}
and sparsity (1− ε) through the following propo-

sition. Its proof is shown in Appendix E.

Proposition 1. There exists a minimum ǫ′ > 0, such that

∀σ2 > ǫ′, the highest stable fixed point of Eq. (71) is

Ψ(ε/m
∑

j∈[n] σ
2
j + σ2) = ε/m

∑
j∈[n] σ

2
j + σ2.

In the proposition, the highest fixed point is unique if

∂Ψ(τ̃2)/∂τ̃2 < 1 ∀τ̃2 > 0, which means the increment of

Ψ(τ̃2) is never larger than that of f(τ̃2) = τ̃2. One implication

of the proposition is, a stronger lattice reduction method can

help to make the fixed point smaller. E.g., with b-KZ, one has

∑

j∈[n]

σ2
j ≤

∑

j∈[n]

√
j + 3

2
λj(H)

for n ≥ 2. Another implication is, the performance of AMP

should be better if the real spark ε is small. There is however

no genie granting which ε fits the actual a priori knowledge.

According to our simulations, ε = 0.5 is a good trade-off.

For AMPG, similar analysis on fixed points can reveal the

impact of
{
σ2
j

}
and prior variance σ2

g . By substituting Eq.

(56) to (58), the fixed point function becomes

Ψ(τ̃2) = σ2 +
1

m

∑

j∈[n]

τ̃2σ2
jσ

2
g

τ̃2 + σ2
jσ

2
g

. (59)

Let σ2
min , minj σ

2
j and σ2

max , maxj σ
2
j , we have

nτ̃2σ2
minσ

2
g

m
(
τ̃2 + σ2

minσ
2
g

) ≤ Ψ(τ̃2)− σ2 ≤
nτ̃2σ2

maxσ
2
g

m
(
τ̃2 + σ2

maxσ
2
g

) .
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As a consequence, one can easily prove that Eq. (59) has a

unique stable fixed point that satisfies τ̃2 ∈ [τ̃2min, τ̃
2
max], where

τ̃2min =
1

2

(
σ2 +

( n

m
− 1
)
σ2
minσ

2
g

)

+
1

2

√(
σ2 +

( n

m
− 1
)
σ2
minσ

2
g

)2
+ 4σ2σ2

minσ
2
g , (60)

and τ̃2max is defined by replacing σ2
min with σ2

max in (60). In

order to make the fixed point small, one should also make

the lattice basis short. The setting of σ2
g is also a trade-

off: it should be set smaller to yield a lower fixed point,

but there should be a minimum for it so that the imposed

signal distribution still reflects discrete Gaussian information.

A general principle for finding the trade-off value is left as an

open question.

D. Complexity of AMP

The complexity is assessed by counting the number of

floating-point operations (flops). For the threshold functions

(54) (55) of AMPT, we can use sinh
(
u
v

)
≈ u

v , cosh
(
u
v

)
≈

1 + u2

2v2 for small u/v since sinhx =
∑∞

k=0
x2k

(2k)! , coshx =
∑∞

k=0
x2k+1

(2k+1)! . Outer bounding (54) (55) is also possible for

large u/v, so we can approximate (54) (55) by O(1) flops.

The O(1) complexity also holds for (56) (57) of AMPG. In

conclusion, the complexity of our AMP algorithm is O(mnT ).
On the contrary, a full enumeration with a ternary constraint

already requires at least O(3n) flops, and ZF/SIC requires

O(mn2) flops.

VI. SIMULATIONS

In this section, the symbol error rate (SER) and complexity

performance of the proposed hybrid precoding scheme are

examined through Monte Carlo simulations. The impacts of

chosen parameters in the threshold functions are also studied.

For comparison, the sphere precoding method [1], [2] and LR

aided precoding methods based on ZF/SIC are also tested.

Throughout this section, b-LLL with list size 1 is adopted

as the default LR option, and we refer to [15] for a full

comparison of different reduction algorithms. In all the AMP

algorithms, we set σ2 = ‖y −Hx̂‖2 /m1.5 (so as to approxi-

mate ‖y −Hxcvp‖2 /m), and T = 20.

First, Fig. 4 illustrates the SNR versus SER performance

of different algorithms using a modulation size M = 32 for

antenna configurations m = n = 8 and m = n = 14. We set

ε = 0.5 in AMPT and σ2
g = 2 in AMPG. As shown in the

figure, both AMPT and AMPG can improve the performance

of LR-ZF/SIC towards that of sphere precoding. These gains

become more evident as the size of the system grows from

m = n = 8 to m = n = 14, in which AMPT improves

LR-ZF by 3dB and LR-SIC by 0.8dB.

Next, we examine the effect of choosing different spark

values in AMPT, with M = 32, 64 and m = n = 14. The

AMPT algorithm using the real spark (by comparing to sphere

precoding) to noted as AMPT-ε′. Two other references are

ε = 0.5 and ε = 1. According to Fig. 5, the idealised AMPT-

ε′ performs 1dB better than AMPT-1, but is within 0.2dB

23 25 27 29 31
SNR/dB

10-4
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10-2

10-1

100

S
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R

Fig. 4. The symbol error rate of different algorithms.
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Fig. 5. The impact of spark values in AMPT with m = n = 14.

distance to AMPT-.5. This suggests that in practice we can

adopt ε = 0.5 as a reasonable configuration.

Similarly, the effect of chosen variance σ2
g in AMPG is

studied in Fig. 6. The suffixes after AMPG refer to setting σ2
g

as σ2
g′ = ‖xcvp − x̂‖2 /n, and 2, 20, 200, respectively. Other

configurations are identical to those in Fig. 5. An observation

from Fig. 6 is that the AMPG-σ2
g′ algorithm is not better than

those with manually chosen variances; this refeclts the fact

that σ2
g can not be too small so as to reflect discrete Gaussian

information (c.f. Section V-C). In addition, the trade-offs σ2
g =

2, 20 work better than the too large value σ2
g = 200 and the

too small value (σ2
g = σ2

g′ ).

In the last example, we examine the complexity of our AMP

algorithms. We use estimations in Section V-D to measure the

complexity of ZF/SIC and AMP. As for the sphere decoding

algorithm, it is implemented after b-LLL so as to decrease its

complexity. All algorithms can take the benefits of b-LLL, and

the complexity costed by lattice reduction is not counted for all

of them. The actual complexity of sphere precoding depends

on the inputs, so we count the number of nodes it visited, and
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Fig. 6. The impact of variance σ2
g in AMPG with m = n = 14.
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Fig. 7. The complexity of different algorithms.

assign 2k + 7 flops to a visited node in layer k [15]. From

Fig. 7, we can see that AMP with a constant iteration number,

e.g., T = 10 or T = 20, is adding little complexity budget to

that of ZF/SIC. On the contrary, the exponential complexity of

sphere decoding makes it at least 200 times more complicated

than our ZF/SIC+AMP scheme in dimension n = 22.

VII. EXTENSION TO DATA DETECTION IN MASSIVE

MIMO

The developed hybrid precoding (decoding) scheme for VP

can be directly extended to address the data detection problem

in small-scaled MIMO systems whose underlying CVP has

more constraints. We omit the presentation of similar results.

The more interesting extension that we will pursuit in this

section is to data detection in massive MIMO systems, where

the base stations are equipped with hundreds of antennas to

simultaneously serve tens of users [43]. In the classical i.i.d.

frequency-flat Rayleigh fading MIMO channels, the set-up of

massive MIMO implies that channel matrix is extremely tall

in the corresponding CVP. As a result, we can regard these

lattice bases (channel matrices) that are short and orthogonal

as naturally reduced. This suggests we can apply our hybrid

scheme to massive MIMO without using lattice reduction.

A. System Model and the Reduced Basis

With a slight abuse of notation, we write the system model

in the uplink of massive MIMO as

y = Hx+w, (61)

where y ∈ R
m is the received signal vector at the base station,

H ∈ R
m×n denotes the channel matrix whose entries follow

the distribution of N(0, 1), w ∈ R
m is the additive noise

vector whose entries admit N(0, σ2), and x ∈ Mn is the

transmitted signal vector that contains the data symbols from

all the user terminals. For ease of presentation, we set the

constellation as M = {−M,−M + 1, . . . ,M − 1,M}. The

special constraint in massive MIMO is that m≫ n, based on

which the simple LMMSE detection suffices to provide near-

optimal performance. Let σ2
s denote the averaged power of x,

by using LMMSE equalization we have

xlmmse = ⌊
(
H⊤H+ σ2/σ2

sIn
)−1

H⊤y⌉.

It is well known that LMMSE is a variant of ZF and they be-

come equivalent as σ2 → 0, and its computational complexity

is O
(
n3 +mn2

)
.

Here, we notice that channel matrices in massive MIMO

represent extremely good lattice bases. For instance, a tall

channel matrix with dimension 2n × n already represents

a lattice basis that often outcompetes boosted KZ (to our

knowledge, this is almost the strongest lattice reduction). To

support this argument, we show the symbol-wise error distance

in decoding (61) by using LR (boosted KZ) aided ZF and ZF.

Table II reveals this result using M = 14, (m,n) = (16, 8),
(m,n) = (8, 8), SNR = 10dB and SNR = 30dB. We have

the following observations from the table: For a square channel

matrix with m = n, LR-ZF indeed has smaller error ratios

than those of ZF. But as the channel matrix becomes tall with

m = 2n, ZF performs close to LR-ZF (SNR = 30dB) or even

outperforms LR-ZF (SNR = 10dB). Similar observations can

also be made for other sizes of constellations, SNRs and sizes

of the system.

This phenomenon is however not a surprise: as m/n grows

larger, the vectors h1, . . . ,hn in the basis become almost

mutually orthogonal. Since any linear combination of these

vectors can only be longer, h1, . . . ,hn would become the

shortest n independent vectors of L(H) and we have ‖hi‖ =
λi(H) for i ∈ [n]. Compared to boosted KZ which only

upper bounds ‖hi‖ to O(
√
i)λi(H), these shortest independent

vectors are much more desirable.

B. Simulations

To see the advantage of using hybrid decoding in massive

MIMO, we run simulations to obtain SERs for different

algorithms. With a relatively large constellation size, the AMP

algorithm using exact a priori knowledge no longer suits our

problem as it is slow, unstable and divergent [22], [23]. It
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TABLE II
THE VALUES x̂i − xcvp

i WITH i ∈ [n] AND THEIR PROBABILITIES IN DATA DETECTION.

error distance −4 −3 −2 −1 0 1 2 3 4
m = 16, n = 8 ZF 0 0 0.0003 0.0796 0.8458 0.0744 0 0 0
SNR = 10dB LR-ZF 0 0 0.0021 0.0825 0.8285 0.0854 0.0015 0 0
m = 8, n = 8 ZF 0.0090 0.0174 0.0401 0.1594 0.5035 0.1544 0.0409 0.0163 0.0077
SNR = 10dB LR-ZF 0.0086 0.0166 0.0369 0.1090 0.6105 0.1087 0.0334 0.0160 0.0103
m = 16, n = 8 ZF 0 0 0 0.0003 0.9995 0.0002 0 0 0
SNR = 30dB LR-ZF 0 0 0 0.0001 0.9999 0 0 0 0
m = 8, n = 8 ZF 0.0057 0.0077 0.0195 0.1074 0.6937 0.1046 0.0176 0.0079 0.0043
SNR = 30dB LR-ZF 0.0018 0.0027 0.0037 0.0181 0.9299 0.0170 0.0056 0.0032 0.0022
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Fig. 8. The symbol error rate of different algorithms with m = 128, n = 48.

is therefore reasonable to adopt AMPG [20], [25], [26] as

a benchmark, because it has the best convergence behavior

among all AMP-based algorithms without using hybrid de-

coding. Another benchmark is the LMMSE estimator, and we

will use AMPG or AMPT (both have complexity O(mnT ))
as the algorithm in “Phase 2” based on it.

The SERs of these algorithms are shown in Figs. 8 and

9, with constellation size M = 14, 22 and system dimension

(m,n) = (128, 48), (128, 64). As revealed in the figures, both

AMPG and AMPT can improve the performance of LMMSE

to a certain degree, but the improvement of AMPT is more

evident as its threshold functions are non-linear. Note that

the hybrid scheme can also employ AMPG as the first-round

algorithm to make the total complexity of hybrid decoding as

O(mnT ), but the bad performance of AMPG at high SNR

dictates the overall performance.

VIII. CONCLUSIONS

In this work, we have presented a hybrid precoding scheme

for VP. The precoding problem in VP is about solving CVP in

a lattice, and this problem is quite general because the signal

space lies in integers Z. After performing LR aided ZF/SIC,

we indicated that the signal space had been significantly

reduced, and this information paved the way for the application

of the celebrated AMP algorithm. Considering ternary distribu-

tions and Gaussian distributions, we have designed threshold

functions that have closed-form expressions. Our simulations
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Fig. 9. The symbol error rate of different algorithms with m = 128, n = 64.

showed that attaching AMP to LR-ZF or LR-SIC can provide

around 0.5dB to 2.5dB gain in SER for VP, where the AMP

algorithm only incurred complexity in the order of O(mnT ).
Lastly, we have also demonstrated that the hybrid scheme can

be extended to data detection in massive MIMO without using

lattice reduction.

APPENDIX A

ON USING REDUCED BASES FOR AMP

In our precoding problem, the mixing matrix H comes from

lattice reduction rather than naturally having i.i.d. Gaussian

entries. Although H is known to be short and nearly orthog-

onal after lattice reduction, its statistical information cannot

be exactly analyzed by only using the theory of lattices. To

provide some complements to our simulation results that have

confirmed the feasibility of using reduced bases for AMP, our

aim in this section is to explain why the reduce bases can

work in principle.

The first reason is that all the edges on the bipartite graph

are weak for a reduced basis. It was suggested by Rangan et

al. [35] that the AMP-style approximations are effective if the

messages are propagating on weak edges. In their definition

[35, P. 4578], the entries of a mixing matrix H are called

“small” if no individual component can have a significant

effect on the row-sum or column-sum of H. Here we define
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a “small” factor to measure this effect:

µs (H) , max
i∈[m],j∈[n]

(
max

(
|Hi,j |∑
i |Hi,j |

,
|Hi,j |∑
j |Hi,j |

))
.

In Fig. 10, we plot the averaged “small” factors Eµs (H)
produced by different methods. The lattice reduction methods,

noted as “LLL”, “b-LLL”, “KZ” and “b-KZ” , are applied

on the inverse of Gaussian random matrices of rank n. The

“small” factors of Gaussian random matrices with N(0, 1)
entries, noted as “Gaussian”, and those before lattice reduction,

noted as “Before LR”, are also included for comparison.

One thing we can observe from the figure is that the lattice

reduction methods behave as good as Gaussian entries. We also

note the figure shows the bases before lattice reduction already

exhibit rather weak edges, but this does not suggest they corre-

spond to more efficient AMP methods. We notice that a small

µs (H) is only a necessary condition for AMP. Specifically,

for a matrix with Hi,j = 1, ∀i, j, we have µs (H) = 1/n that

is arbitrarily small while H is ill-conditioned.
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Fig. 10. The averaged “small” factors of different algorithms for H ∈ Rn×n.

The second reason is that a reduced basis has a small

coherence parameter [44] defined by

µc (H) , max
1≤i6=j≤n

|h⊤
i hj |/ ‖hi‖ ‖hj‖ ,

where H = [h1, . . . ,hn]. This metric can reflect the column-

wise independence. In Fig. 11, we plot the expected coherence

parameter Eµc (H) of different lattice reduction algorithms

from dimensions 5 to 20, and include Gaussian bases and

the bases before LR for comparison. Other settings are the

same as those in Fig. 10. As shown in Fig. 11, the coherence

parameters can be significantly reduced after using lattice

reduction. Most importantly, Fig. 11 suggests that a coherence

parameter of µc (H) = 0.5 that corresponds to a Gaussian

random matrix of dimension n = 40 is equivalent to those of

lattice reduction with much smaller dimensions, e.g., n = 15
with LLL and n = 20 with boosted LLL.

APPENDIX B
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Fig. 11. The coherence parameters of different algorithms for H ∈ R
n×n.

PROOF OF EQ. (14) IN THEOREM 1

When proving the energy efficiency of b-KZ aided SIC/ZF,

the following lemma would be needed. Remind that H = QR

is the QR factorization.

Lemma 2 ([15]). Suppose a basis H is b-KZ reduced, then

this basis conforms to

λ1(H)2 ≤ 8i

9
(i − 1)ln(i−1)/2R2

i,i, (62)

‖hi‖2 ≤
(
1 +

2i

9
(i− 1)1+ln(i−1)/2

)
R2

i,i (63)

for 1 ≤ i ≤ n, and

R2
k−j+1,k−j+1 ≤

8j

9
(j − 1)ln(j−1)/2R2

k,k (64)

for 2 ≤ k ≤ n, j ≤ k.

Under the unitary transform Q⊤, we aim to prove an

equivalence of (12) as

‖ȳ −Rx̂‖ ≤ ηn min
x∈Zn

‖ȳ −Rx‖ , (65)

with ȳ = Q⊤y. Let vcvp = Rxcvp be the closest vector

to ȳ, and vsic = Rxsic be the vector founded by SIC.

As the SIC parallelepiped generally mismatches the Voronoi

region, we need to investigate the relation of xcvp
n and

xsic
n = ⌊ȳn/Rn,n⌉ as in that in [33]. If xcvp

n = xsic
n , we

only need to investigate ηn−1 in another n − 1 dimensional

CVP by setting ȳ ← ȳ − rnx
sic
n :

∥∥ȳ −R1:n,1:n−1x
sic
1:n−1

∥∥ ≤
ηn−1 minx∈Zn−1 ‖ȳ −R1:n,1:n−1x‖. When this situation con-

tinues till the first layer, one clearly has η1 = 1. Generally,

we can assume that this mismatch first happens in the kth

layer, i.e., assume xcvp
k 6= xsic

k , k ∈ {2, . . . , n}, then

|ȳk/Rk,k − xcvp
k | ≥ 1

2 , and

‖ȳ − vcvp‖2 ≥ r2k,k(ȳk/Rk,k − xcvp
k )2 ≥ R2

k,k/4. (66)
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According to (64) of b-KZ, we have R2
k−j+1,k−j+1 ≤ 8j

9 (j−
1)ln(j−1)/2R2

k,k , then the SIC solution R1:n,1:kx
sic
1:k satisfies

∥∥ȳ −R1:n,1:kx
sic
1:k

∥∥2 ≤ 1

4

k∑

i=1

R2
i,i

≤
(
1

4
+

2k

9
(k − 1)1+ln(k−1)/2

)
R2

k,k.

(67)

Combining (67) and (66), and choose k = n in the worst case,

we have

∥∥ȳ − vsic
∥∥2 ≤

(
1 +

8n

9
(n− 1)1+ln(n−1)/2

)
‖ȳ − vcvp‖2 .

APPENDIX C

PROOF OF THEOREM 2

The energy efficiency of b-LLL/b-KZ aided ZF precoding

is non-trivial to prove because we cannot employ the size

reduction conditions to claim an upper bound for (Ai)−1
1,1 as

that in [32, Eq. (65)], in which Ai = R⊤
i:n,i:nRi:n,i:n. This

condition is crucial as one already has

sin2 θi =
1

‖hi‖2 (Ai)−1
1,1

according to [32, Appx. I], where θi is the angle between hi

and span(h1, . . . , hi−1,hi+1, . . . , hn). The following lemma

proves a lower bound for sin2 θi by only invoking the relation

between ‖hi‖2 and R2
i,i.

Lemma 3. Let H be a b-KZ reduced basis, then it satisfies

sin2 θi ≥
(∏n

k=i k
2+ln(k)/2

)−1
.

Proof: Define Mk = R−1
i:k,i:k along with Mi = R−1

i,i ,

then

Mk =

[
Mk−1 R−1

k,kM
k−1Ri:k−1,k

0 R−1
k,k

]
.

By using Cauchy–Schwarz inequality on Mk−1
1,: Ri:k−1,k, we

also have

∥∥Mk
1,:

∥∥2 =
∥∥Mk−1

1,:

∥∥2 +
(
R−1

k,kM
k−1
1,: Ri:k−1,k

)2

≤
∥∥Mk−1

1,:

∥∥2
(
1 +R−2

k,k ‖Ri:k−1,k‖2
)
. (68)

It is evident that ‖Ri:k−1,k‖2 ≤ ‖hk‖2−R2
k,k

(a)

≤
(
1+ 2k

9 (k−
1)1+ln(k−1)/2

)
R2

k,k−R2
k,k, where (a) is due to inequality (63),

so that R−2
k,k ‖Ri:k−1,k‖2 ≤ 2k

9 (k − 1)1+ln(k−1)/2. Substitute

this into (68), then

∥∥Mk
1,:

∥∥2 ≤
∥∥Mk−1

1,:

∥∥2
(
1 +

2k

9
(k − 1)1+ln(k−1)/2

)

≤
∥∥Mk−1

1,:

∥∥2 k2+ln(k)/2.

By induction, one has

(Ai)−1
1,1 =

∥∥Mn
1,:

∥∥2 ≤ R−2
i,i

n∏

k=i+1

k2+ln(k)/2.

and thus

sin2 θi ≥
R2

i,i

‖hi‖2
∏n

k=i+1 k
2+ln(k)/2

≥
(

n∏

k=i

k2+ln(k)/2

)−1

,

where the second inequality is due to Lem. 2.

With the same technique as above, we can bound sin2 θi
for b-LLL.

Lemma 4. Let H be a b-LLL reduced basis, then it satisfies

sin2 θi ≥
(∏n

k=i β
k−1
)−1

.

We proceed to investigate inequality (65). Let vcvp =
Rxcvp be the closest vector to ȳ, and vzf = Rxzf be the

vector found by ZF. Define vcvp − vzf =
∑n

i=1 φihi with

φi ∈ Z. If vcvp = vzf , then the energy efficiency ηn = 1. If

vcvp 6= vzf , then

∥∥vcvp − vzf
∥∥ ≤

n∑

j=1

‖φjhj‖ .

At the same time, we have

vcvp − ȳ = vcvp − vzf + vzf − ȳ

= (φk + φzf
k )hk +m′,

where m′ ∈ span(h1, . . . , hk−1,hk+1, . . . , hn), vzf −
ȳ =

∑n
i=1 φ

zf
i hi satisfies |φzf

i | ≤ 1/2 ∀i, and k ,

argmaxi ‖φihi‖. From Lem. 3,
∥∥(φk + φzf

k )hk +m′
∥∥ ≥

|φk + φzf
k |
(∏n

j=k j
2+ln(j)/2

)−1

‖hk‖, so that

‖vcvp − ȳ‖ ≥ |φk|


2

n∏

j=k

j2+ln(j)/2




−1

‖hk‖

as |φk + φzf
k | ≥ |φk|/2. According to the triangle inequality,

one has for b-KZ that
∥∥vzf − ȳ

∥∥ ≤
∥∥vzf − vcvp

∥∥+ ‖vcvp − ȳ‖

≤


2n

n∏

j=1

j2+ln(j)/2 + 1


 ‖vcvp − ȳ‖ .

One can similarly prove for b-LLL that

∥∥vzf − ȳ
∥∥ ≤



2n

n∏

j=1

βj−1 + 1



 ‖vcvp − ȳ‖ .

APPENDIX D

PROOF OF THEOREM 3

Proof: We follow [20, Sec. 1.3] to analysis the state

evolution equation (52). Let the observation equation be

yt = Htx̄ + w, where the distribution of x̄ is denoted by

pX , Hb,i ∼ N(0, σ2
i /m), and wi ∈ N(0, σ2). Without the

Onsager term, the residual equation becomes:

rt = yt −Htxt. (69)

Along with with independently generated {Ht}, the estimation

equation becomes:
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xt+1 = η(ΘHt⊤rt + xt,Θτ2t 1). (70)

Then we evaluate the first input for the threshold function η:

ΘHt⊤rt + xt =

ΘHt⊤(Htx̄+w −Htxt) + xt

= x̄+ (ΘHt⊤Ht − I)(x̄− xt)︸ ︷︷ ︸
,u

+ΘHt⊤w︸ ︷︷ ︸ .
,v

Regarding term v, it satisfies V(vi) =
σ2
i

m × 1
σ4
i

×m×σ2, which

means vi ∼ N(0, σ2/σ2
i ). As for the statistics of term u, we

need the following basic algebra to measure term ΘHt⊤Ht−I:
Suppose that we have two independent Gaussian columns

hi and hj whose entries are generated from N(c, σ2
i /m) and

N(c, σ2
j /m) respectively. Then ∀i 6= j, we have E(h⊤

i hj) =

mc2 and V(h⊤
i hj) = σ2

i σ
2
j /m + c2(σ2

i + σ2
j ). For i = j,

we have E(‖hi‖2) = mc2 + σ2
i and V(‖hi‖2) = 2σ4

i /m
2 +

4c2σ2
i /m.

Further denote the covariance matrix of x̄ − xt as

diag(τ̂2t,1, ... , τ̂
2
t,n), where τ̂2t,i = E|η(X + τt,iZ, τ

2
t,i) − X |2,

X ∼ pX , Z ∼ N(0, 1). Then {ui} are i.i.d. with zeros mean

and variance
τ̂2t,i
m

+
1

mσ2
i

∑

j∈[n]

σ2
j τ̂

2
t,j ,

in which
τ̂2
t,i

m ≪ 1
mσ2

i

∑
j∈[n] σ

2
j τ̂

2
t,j and thus negligible. The

entry of ΘHt⊤rt +xt can be written as x̄i+ τ tt,iZ , where the

variance of τt,iZ = ui + vi satisfies

τ2t,i =
1

mσ2
i

∑

j∈[n]

σ2
j τ̂

2
t,j +

σ2

σ2
i

(a)
=

1

mσ2
i

∑

j∈[n]

σ2
jE|η(X + τ(t−1),jZ, τ

2
(t−1),j)−X |2 + σ2

σ2
i

,

where (a) comes from evaluating the covariance of x̄−xt.

APPENDIX E

PROOF OF PROPOSITION 1

Proof: Substitute the threshold functions in Lemma 1 to

Eq. (58), it yields

Ψ(τ̃2) =
1

m

∑

j∈[n]

σ2
jE
(
(1− ε)g1(Z, τ̃

2) + εg2(Z, τ̃
2)
)
+ σ2,

(71)

where

g1(Z, τ̃
2) =

(1− ε)/εeσ
2
j/(2τ̃

2) cosh(Zσj/τ̃) + 1
(
(1− ε)/εeσ

2
j
/(2τ̃2) + cosh(Zσj/τ̃)

)2 ,

g2(Z, τ̃
2) =

(1 − ε)/εeσ
2
j /(2τ̃

2) cosh(Zσj/τ̃ + σ2
j /τ̃

2) + 1
(
(1 − ε)/εe

σ2
j
/(2τ̃2)

+ cosh(Zσj/τ̃ + σ2
j /τ̃

2)
)2

.

Since we have

lim
τ̃2→∞

Ψ(τ̃2) =
1

m

∑

j∈[n]

σ2
j

(
1− ε

(1− ε) /ε+ 1
+

ε

(1− ε) /ε+ 1

)
+ σ2

=
ε

m

∑

j∈[n]

σ2
j + σ2,

one can always tune σ2 such that Ψ(τ̃2) intersects with

f(τ̃2) = τ̃2 and the point of intersection becomes stable.

This point is the highest one as ∂Ψ(τ̃2)/∂τ̃2 = 0 for all

τ̃2 > ε/m
∑

j∈[n] σ
2
j + σ2, which means Ψ(τ̃2) < τ̃2 in this

region.
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