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Abstract
While molecular imaging with positron emission tomography or single-photon emission computed tomography already reports
on tumour molecular mechanisms on a macroscopic scale, there is increasing evidence that there are multiple additional features
within medical images that can further improve tumour characterization, treatment prediction and prognostication. Early reports
have already revealed the power of radiomics to personalize and improve patient management and outcomes. What remains
unclear is how these additional metrics relate to underlying molecular mechanisms of disease. Furthermore, the ability to deal
with increasingly large amounts of data from medical images and beyond in a rapid, reproducible and transparent manner is
essential for future clinical practice. Here, artificial intelligence (AI) may have an impact. AI encompasses a broad range of
‘intelligent’ functions performed by computers, including language processing, knowledge representation, problem solving and
planning. While rule-based algorithms, e.g. computer-aided diagnosis, have been in use for medical imaging since the 1990s, the
resurgent interest in AI is related to improvements in computing power and advances in machine learning (ML). In this reviewwe
consider why molecular and cellular processes are of interest and which processes have already been exposed to AI and ML
methods as reported in the literature. Non-small-cell lung cancer is used as an exemplar and the focus of this review as the most
common tumour type in which AI and ML approaches have been tested and to illustrate some of the concepts.
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Introduction

Positron emission tomography (PET) and single photon emis-
sion computed tomography (SPECT) already provide macro-
scopic information on aberrant molecular pathways and al-
tered cellular biology in several diseases. This is highly rele-
vant in cancer, since most of the hallmarks of cancer [1] can
now be imaged and quantified using PET and SPECT

radiopharmaceuticals. Examples include cellular processes that
have histopathological correlates such as proliferation, apopto-
sis and antigen or receptor expression, as well as altered mo-
lecular pathways, including the processes that contribute to
tumour metabolism, hypoxia and angiogenesis. Measurement
of these processes is crucial to the understanding of individual
tumour phenotypes, helping us understand how a tumour will
behave with regard to local invasion or metastatic potential,
understand the relationship and interaction of tumour cells with
the microenvironment, and predict and monitor response or
resistance to therapy. While the reference standard in clinical
practice remains histopathology and immunohistochemistry
(IHC), there are potential advantages of using in vivo imaging.

Molecular profiling is an increasingly common approach to
the stratification of patients for targeted therapy. Imaging can
augment histopathological and IHC measures based on tissue
biopsies in that a whole tumour and its microenvironment can
be noninvasively interrogated, so that heterogeneous tumours are
not subject to histopathological sampling error. Whole-body im-
aging also captures the heterogeneity of underlyingmolecular and
cellular processes between different tumours in the same patient.
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Radiomics is a developing area of imaging that involves
the extraction of multiple features from medical images that,
with bioinformatic approaches, can be used to provide addi-
tional information that may predict underlying tumour biology
and behaviour [2–4]. This relies on the hypothesis that indi-
vidual voxel values and their spatial distribution within a tu-
mour are influenced by, and may represent or correlate with,
underlying biological processes causing differences in attenu-
ation (CT), tissue relaxation (MRI) or tracer uptake (SPECT
and PET) [5–10]. Radiomic signatures can be used alone or
with other patient-specific data to improve tumour phenotyp-
ing, treatment response prediction and prognosis, noninva-
sively by recognizing patterns on a global or locoregional
scale [11].

While a radiologist or nuclear medicine physician relies on
the recognition of a handful of semantic features to detect and
describe tumours, thousands of agnostic features can poten-
tially be extracted from medical images. This complexity
within medical images extending beyond the scope of the
human brain is amenable to analysis by artificial intelligence
(AI), and in particular machine learning (ML), approaches,
that will reveal the additional information that the images
may hold. ML approaches enable computers to create predic-
tive algorithms and to learn without any explicit programmed
rules, i.e. learning through experience from new datasets.
Deep-learning approaches are a subset of ML based on artifi-
cial neural networks that mimic how the nervous system pro-
cesses information.

Indeed, radiomics has progressed from direct selection of
predefined features that can be used alone or in combination
as inputs into ML classifiers, to obtaining indirect learned
features without a priori definition using deep-learning data-
driven methodology. The latter methods may be more gener-
alizable, as they do not require preprocessing, for example
segmentation [12–14], complex patterns may be ‘discovered’
in an objective and automated way, and multimodality and
multiparametric scales may therefore be more easily accom-
modated. They may also overcome statistical issues of
overfitting, collinearity and redundancy of features, although
these advantages need to be more clearly determined in mo-
lecular imaging techniques and are dependent on the size of
the training dataset, molecular imaging datasets usually being
relatively small [15, 16].

The scale of data required for ML approaches is generally
large. For retrospective analysis, the use of pre-existing data
can bring challenges, especially if the data were acquired
using different imaging protocols that may have introduced
additional variability between the datasets. Data sharing, data
protection, ethical and patient consent issues are common
public concerns; data curation can also be problematic. For
the practising clinician, there are also issues related to the
‘black box’ nature of many deep-learning approaches. With
the lack of regulation and standards, such approaches can be

opaque. Furthermore, it may not be possible to understand
how patterns are discovered because of our limited or absent
theoretical understanding of what ML ‘sees’.

The question we try to address in this review is whether the
use of AI, with a focus on PET and SPECT, can provide
incremental insights into cellular and molecular mechanisms
in cancer. We consider why molecular and cellular processes
are of interest and which processes have already been exposed
to AI and ML methods as reported in the literature. We use
non-small-cell lung cancer (NSCLC) as an exemplar since it is
the most common tumour type and is the tumour type in
which AI and ML approaches have been tested.

Why is knowledge of underlying biological
and molecular mechanisms of interest?

Biological and molecular mechanisms provide insight into the
tumour phenotype and predicted behaviour. On a simple level,
it is recognized that malignant tumours show heterogeneity of
molecular and cellular features, including cellular density and
proliferation, necrosis, fibrosis, metabolism, hypoxia, angio-
genesis and receptor expression, factors that have been inde-
pendently associated with a poor treatment response and more
aggressive tumour behaviour [1]. This variation, defined by
histopathological appearance, may in turn reflect the degree of
genetic clonal variation. These biological processes can be
crudely determined using functional and molecular imaging
methods on a global scale, and there is some evidence that
several of these adverse biological features may be reflected in
medical images. However, it is likely that measurement of
their heterogeneous expression will require more sophisticat-
ed analysis to which radiomic and AI methodology could
contribute [6, 11–13].

The interest in radiomics and the use of AI to extract addi-
tional information from medical images has been accelerated
by the knowledge that there is intra- and intertumoral genetic
heterogeneity within and between patients and that the genetic
profile may change with time and treatment. Genetic hetero-
geneity within a tumour is not only associated with morpho-
logical heterogeneity of the tumour cell nuclei, but also with a
poorer prognosis [17]. As a consequence of therapy, hetero-
geneous tumours are able to more readily adapt to anticancer
treatment, leading to resistance and worse treatment outcomes
[18–20]. Clonal expansion may not only confer resistance to
treatment but may increase drug target heterogeneity and other
adverse factors such as metastatic potential.

Increasingly, molecular profiling of individual tumours is
used to direct treatment decisions. A common example of this
approach is the measurement of EGFR gene mutations to di-
rect certain tyrosine kinase inhibitor (TKI) therapeutics that
show improved efficacy in mutated tumours [21]. Again, if
imaging methods could predict mutational status on a

Eur J Nucl Med Mol Imaging



locoregional basis and between different metastatic sites, they
could complement standard tissue molecular profiling or re-
place it in some circumstances, particularly when serial mea-
surements during treatment are required.

As an example, the recent advances in the control of advanced
and metastatic cancers, such as NSCLC and melanoma that pre-
viously had a dismal prognosis, with immune checkpoint inhib-
itors is another area in which measurement of underlying molec-
ular and cellular characteristics by imaging techniques could
contribute to treatment decisions. Currently drugs that target pro-
grammed cell death-1 and its ligand (PD-1, PD-L1) are often
selected on the basis of IHC measurement of PD-L1 expression
in biopsy material. It is recognized that some patients respond
well despite negative PD-L1 expression measured on IHC, and
that PD-L1 expression is heterogeneous, suggesting inaccuracies
and sampling errors in measurement [22, 23]. Imaging has the
potential to reveal global, locoregional and metastatic character-
istics associated with PD-L1 expression either directly or by
radiomic analysis [24, 25].

With the increasing number of novel PET and SPECT
tracers for exploring different aspects of tumour biology, and
the more routine use of hybrid multimodality imaging provid-
ing multiparametric measurements, increasingly sophisticated
methods of analysis, such as ML and AI, will be required to
cope with the increasingly large amounts of data and to un-
cover the radiomic information ‘hidden’ within. In addition, it
is possible that integrating radiomic data with genomic and
pathological data may further enhance tumour characteriza-
tion but will also require methods that can interrogate very
large datasets [2, 11, 18, 26].

What molecular and cellular biological data
can be measured or inferred from imaging?

How does molecular imaging contribute currently to the path-
ological characterization and grading of tumours, as well as
other standard histopathological features such as cellular den-
sity? In a preclinical context, the spatial distribution of 18F-
fluorodeoxyglucose (FDG) has been shown to reflect the spa-
tial distribution of cellular density, stromal tissue and necrosis
in a head and neck cancer murine model [9]. In hepatoma and
pancreatic murine tumour models, FDG spatial heterogeneity
has been reported to be associated with the distribution of
glucose transporters and hexokinase [7, 8]. In orthotopic
breast cancer models, a correlation was found between various
radiomic texture features describing the spatial distribution of
FDG activity in autoradiographic images and the spatial dis-
tribution or density of cells determined on histopathological
staining [5]. However, PET images of lower spatial resolution
than autoradiography only coarsely captured tumour cellular
heterogeneity.

Radiomic signatures from FDG PET images in humans
have been reported to differentiate NSCLC subtypes [27],
breast cancer IHC factors, including HER2 expression [28]
and triple-negative status [29], and benign from malignant
peripheral nerve sheath tumours in patients with
neurofibromatosis-1 [30], as well as other varieties of bone
and soft tissue lesions [31]. Cellular proliferation, as measured
by 18F-fluorothymidine PET, has been linked to gene expres-
sion patterns in a murine pancreatic tumour model [7] and
heterogeneity of uptake has been reported to be a potential
predictive and response marker in patients with breast cancer
treated with chemotherapy [32]. Radiomic approaches have
also been used to explore the relationships between regional
FDG PET and MRI features from combined PET/MRI show-
ing correlations with microvascular density and expression of
vascular endothelial growth factor in renal cell carcinoma,
with the highest correlations when combining PET and MRI
radiomic features [10].

Intratumoral heterogeneity of a therapeutic target can deter-
mine the treatment response to radionuclide therapy where the
bystander effect is required to kill neighbouring cells that do not
express the target. It has been shown in preclinical colon tumour
models that express carcinoembryonic antigen (CEA) that treat-
ment response to 131I-labelled anti-CEA antibody depends on the
vascular supply and CEA distribution [33]. Heterogeneity of
CEA expression has been determined microscopically in differ-
ent tumour models using multifluorescence, but differences be-
tween tumour models can also be determined on a more macro-
scopic scale using texture analysis of 125I-A5B7 anti-CEA
SPECT imaging [34].

Several studies using FDG PET have shown relationships
between radiomic signatures and treatment response and/or prog-
nosis in a variety of tumours including oesophageal, head and
neck and cervical cancers, amongst others. These studies have
been well reviewed elsewhere [35, 36], and we summarize the
literature on lung cancer below. These studies usually showed
incremental benefit over the use of standard parameters, such as
standardized uptake values (SUVs), but generally used a wide
variety of radiomic features and methodologies, but uncommon-
ly advanced ML or AI techniques. More sophisticated ap-
proaches have been reported for predicting treatment response
or failure. For example, Vallières et al. used 1,615 radiomic fea-
tures from FDG PET and CT images to predict treatment failure
in head and neck cancer [37]. Prediction models combining
radiomic and clinical variables were constructed using random
forests (RF) and imbalance adjustment methods and tested on
validation datasets. We have reported a comparison of an ap-
proach using several statistical and texture parameters with a
convolutional neural network (CNN)method on FDGPETscans
in patients with oesophageal cancer before treatment. The CNN
method outperformed other methods and predicted histopatho-
logical nonresponders to neoadjuvant chemotherapy with 81%
sensitivity and 82% specificity (Fig. 1) [38].
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Whilst there are several reports of associations between
mutational status and FDG PET radiomics in lung cancer
(see below), some associations have also been reported in
colorectal cancer [39–41]. KRAS, TP53 and APC mutations
were associated with FDG PET SUV parameters and specific
radiomic features in these studies. KRAS mutation, in particu-
lar, is of clinical importance in predicting a poor response to
EGFR-targeting therapies.

NSCLC: defining molecular mechanisms
from imaging

Attempts have been made to correlate the underlying histo-
logical and biological features of NSCLC with radiomic fea-
tures from FDG PET imaging. Correlations have been ob-
served between histopathological mean cell density and
lacunarity (large gaps between clusters of cells) and standard
FDG parameters, including SUVmean and total lesion glycol-
ysis, first-order statistical features, including kurtosis and
skewness, and FDG lacunarity [42]. Another study has shown
associations between a number of texture parameters and
NSCLC clinical stage and Ki67 IHC analysis of proliferation
using k-nearest neighbours and support vector machine
(SVM) methods [43]. Differentiation of histopathological tu-
mour subtypes (squamous cell carcinoma and adenocarcino-
ma) using texture and colour features derived from FDG PET
images using a SVM algorithm have also been reported with
an area under the receiver operating characteristic curve of
0.89 [27].

Rather than analysing primary tumour FDG PET data,
some benefit has been found in analysing lymph node data.
Radiomic descriptors derived from metastatic lymph nodes
from FDG PET images in patients with NSCLC using a least
absolute shrinkage and selection operator (LASSO) method

have been found to be more strongly associated with overall
survival than when extracted from primary tumour data [44].
Another study employed deep learning (CNN) and ML (RF,
SVM, adaptive boosting and artificial neural network). The
four ML methods separately used 13 standard diagnostic fea-
tures (e.g. SUV, tumour size) and 82 textural features to clas-
sify mediastinal lymph nodes on FDG PET images in patients
with NSCLC [45]. The accuracy of CNN was 86% and was
not significantly different from those of the best ML methods
that used standard diagnostic features or the combination of
diagnostic and textural features. CNN was more accurate than
ML methods that used textural features alone, possibly be-
cause the lymph nodes were relatively small, which may be
a limitation in the calculation of textural features. The sensi-
tivity achieved by radiologists was inferior (73% vs. 84%) but
the specificity was better (90% vs. 88%) than those obtained
with the CNN method. The advantages of the CNN method,
including no need for segmentation or feature definition, were
highlighted.

Genetic mutations, including EGFR mutations and ana-
plastic lymphoma kinase (ALK) gene rearrangements, that
are associated with improved response to certain TKIs, are
associated with image features derived from FDG PET in
NSCLC [46]. With EGFR, findings are conflicting, with some
studies predominantly showing high FDG uptake in EGFR-
mutated tumours, reflecting increased glycolysis through
AKT signalling [47], and others showing lower uptake [48].
As well as standard features, such as SUVmax, heterogeneity
parameters also show associations with EGFRmutation status
[49, 50] and value in predicting response and survival follow-
ing treatment with TKIs [51, 52]. Less specific associations
between FDG PET radiomics and genetic heterogeneity, but
not tumour mutational burden, have been shown in SCLC but
not in NSCLC [53]. Other radiogenomic associations between
FDG PET parameters and NSCLC genomics have been

Fig. 1 Convolutional neural network architecture for oesophageal cancer
18F-FDG PET data in a vector composed from four convolutional (U) and
four max-pooling (V) layers. Differently coloured arrows in the first
convolutional layer represent different learnable weight matrices.
Coloured squares in the feature maps represent elements that include

local spatial information from the previous layer. In the max-pooling
layers, 2 × 2 element windows represent non-overlapping grids from
which the maximum element to down-sample the feature maps are
chosen (h hidden layer, yI responder, yk nonresponder). From Ypsilantis
et al. [38]
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described. In a radiogenomic study a prognostic metagene
signature derived from 25 patients with NSCLC was associ-
ated with a multivariate FDG uptake feature derived from
principal components analysis, both of which were associated
with survival in external and validation cohorts [54]. The
radiogenomic profile was associated with altered cell cycle,
proliferation, death and self-recognition pathways, and recog-
nized NF-κB protein as a central node within the metagene. A
further study by the same group specifically showed that
NF-κB protein expression is associated with high FDG uptake
with both being related to advanced tumour stage, grade and
invasion [55].

Several studies have shown relationships between NSCLC
FDG PET radiomic features and treatment response and sur-
vival, and have been reviewed elsewhere [56, 57]. They have
predominantly shown incremental benefit over using standard
parameters, such as SUV, but most did not use more advanced
AI methodology to determine radiomic signatures. In one
study, using 201 datasets and 43 textural features, the
LASSO method was used and identified a single textural fea-
ture (SumMean) as an independent predictor of overall sur-
vival in large tumours treated with chemoradiotherapy [58]. In
a further study of 358 datasets and 665 radiomic features, a
similar LASSO methodology was used to derive predictive
feature vectors that were tested on an independent validation
set and predicted a 14-month survival difference [59].

Future perspectives and conclusions

There is no doubt that molecular imaging already provides
clinically useful data regarding tumour molecular and biolog-
ical phenotypes. To date, this has been in a relatively crude
manner with measurement of standard global imaging param-
eters from whole-tumour data, e.g. SUVs. Early reports of
more sophisticated methods that extract multiple ‘unseen’ fea-
tures from images indicate that it is often possible to provide
additional information that allows better characterization and
treatment stratification, prediction and prognostication. Data
on how these techniques relate to the tumour molecular and
biological phenotype remains in evolution. Despite a varied
approach between laboratories in the early years of radiomics,
there is now a more concerted effort to standardize approaches
[60].

The resurgent interest in AImethods for medical imaging is
related to the increasing complexity of medical imaging data
that requires intelligent solutions, and the major advances in
graphics processing units and parallel computing approaches
has led to ML, and more recently deep learning, approaches
being considered for medical purposes. ML, unlike previous
rule-based methods, is a powerful and flexible tool that has
wide medical imaging applications beyond the assessment of
tumour heterogeneity and biology. The use of AI for

automated tumour detection, tumour segmentation, tumour
biological assessment, automated interpretation of findings
and clinical decision support through an integrated pathway
may not be so far away from clinical reality. However, AI
should not stop us from being clinicians or from thinking
critically.

In conclusion, the combination of imaging and clinical and
other -omic data will most likely deliver the diagnostic support
required for personalized oncology. AI has the ability to ex-
tract imaging data rapidly and quantitatively at scale. As well
as offering a better understanding of underlying molecular
mechanisms of disease, AI has potential to contribute in other
areas of imaging and medicine. It is also likely that transfer
learning, an approach in which models based on deep learning
(that have already been developed for another application and
can then be used in a separate or related task, and in which less
data are required to build the first layers of a CNN) will ac-
celerate and improve the application of AI to imaging by sav-
ing time on training and building of neural networks.
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