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Abstract
Stream mining systems have received a great deal of attention in recent years. These systems process incoming data 
streams from different sources and extract high-level semantic features from them. They do this by passing data streams 
through an ensemble of classifiers. Owing to dynamic changes in characteristics of the data streams, these classifiers 
need to be configured dynamically to maximize the performance of the system. As a challenge, different data streams 
from different sources have different specifications from each other. This causes treating all the incoming data streams 
identically by a common topology configuration to be not appropriate for an optimal stream mining. Hence, an approach 
is required which allows each data stream to be processed by consideration of its own specifications. In this paper, by 
implementing a buffer for each source and using a time-sharing solution, we propose a distributed approach to solve 
the aforementioned problem for cascaded classifier topologies. We first formally define a utility metric which captures 
both the performance and the delay of a binary filtering classifier system. We then propose our solution for a base case 
and evolve it step by step until reaching the most general case for cascaded topologies. We finally test and compare our 
approach with the state-of-the-art solution on a text detection scenario from the incoming video streams to the system.

Keywords Stream mining systems · Distributed systems · Real-time stream processing · Big data classification

1 Introduction

Every year globally an ever-increasing amount of data is 
being produced by different sources in various formats 
[1], including multimedia files [2], medical measurements 
[3], and information from satellites [4]. This high volume 
of data streams requires operations such as classification, 
filtering, aggregation, and correlation [5–7], in plethora of 
nowadays applications such as search engines [8], fraud 
detection systems [9], video surveillance systems [10], 
medical devices [11], sensor networks [12], and autono-
mous robots control systems [13]. These systems require 
high computational processing power to process incom-
ing continuous data streams from distributed sources [14]. 
Distributed stream mining systems have been recently 
developed in order to perform these tasks [5, 15–18]. They 

are constructed by using a topology of low-complexity 
binary classifiers, each performing feature extraction and 
classification specific to different tasks [14]. Indeed, they 
decompose applications as topologies of distributed pro-
cessing operators, which will highly increase reliability, 
scalability, and performance of the system [19–22].

One of the main issues in the real-time distributed stream 
mining system is how to handle system overload effectively 
while maintaining high performance under resource con-
straints [5]. A common approach is to use a chain of classi-
fiers for intelligent load shedding. In this approach, each 
classifier in the chain determines when, where, what, and 
how much of each stream data object (SDO) to discard and 
what to pass to the next classifier in the chain to reach the 
desired quality of service (QoS) and meet the delay con-
straints. This approach can cause a significant volume of 
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data streams to be shed prior to reaching the next classifiers 
in the chain, resulting in a much less computational burden 
on the successive classifiers [23–30]. However, optimizing 
each classifier individually without a joint consideration of 
misclassification error effects and resource constraints at 
possibly multiple downstream classifiers in the chain may 
lead to a high sub-optimality and cause the end-to-end 
processing delay for a chain of classifiers to become intol-
erable for real-time applications [1, 31, 32]. As a result, the 
optimal topology must be based on a joint optimization 
over the configuration of all classifiers operating points (i.e., 
ordered pair of the probability of false alarm and detection), 
while observing delay and resource constraints [1, 33–37]. 
This concept is similar to [5] where a utility metric for real-
time stream processing applications is introduced, which 
captures the trade-offs between classification accuracy 
and end-to-end delay of the filtered stream. The algorithm 
configures each classifier by choosing an operating point 
to control its performance and throughput to maximize the 
utility metric in each period. However, the approach in [5] 
considers a fixed configuration for the ensemble in each 
interval based upon the defined utility metric in the paper. 
Thus, the ensemble treats all the incoming data streams 
from different sources with a common ensemble configu-
ration in each interval. This issue, in applications where the 
importance and specifications of data streams are differ-
ent from each other, can lead to non-optimality because 
the set thresholds of classifiers may be aggressive for some 
sources and permissive for some others. Hence, many of the 
data streams may not receive the desired quality of service, 
which makes them useless in consequence, whereas an 
approach can be adopted such that the ensemble processes 
each data stream optimally by the topology configuration 
that is specifically set for that data stream. In this paper, 
we propose such an approach for cascaded topologies, an 
approach in which the ensemble treats each SDO by the 
required optimal topology configuration of the SDO.

In this paper, we first introduce a utility metric for the 
single-path–single-source case. We discuss a method for 
decomposing the utility function into a set of locally observ-
able metrics that can be calculated directly by each classifier 
(similar to what is proposed in [5]). Each classifier can then 
exchange these metrics with other classifiers to compute 
the utility of the entire system for any fixed configuration 
of classifiers, thereby configuring itself by choosing the 
proper operating point, which controls its performance and 
throughput in order to maximize the utility of the entire sys-
tem. Next, we extend our solution to the single-path–mul-
tiple-source case by implementing a buffer for each source 
at the ensemble side and using a time-sharing approach for 
serving accumulated SDOs in their buffers periodically. We 
then extend our approach to the most general case, which 
is multiple-path–multiple-source.

Note that in this paper we do not modify the underlying 
classification scheme, but rather focus on configuring oper-
ating points of individual classifiers in a fixed processing 
sequence. This allows the designed algorithms to be applicable 
to any available type of underlying classification algorithms 
(e.g., support vector machines, k-nearest neighbors, maximum 
likelihood, etc.). The paper is organized as follows: In Sect. 2 
we discuss our model for cascaded topologies of distributed 
stream processing systems. In this section we also derive a util-
ity function for capturing the performance of the ensemble 
in mining a single stream. Then we propose a framework for 
the single-path–single-source case in Sect. 3. In Sects. 4 and 5, 
we extend the framework to the single-path–multiple-source 
and the multiple-path–multiple-source cases, respectively. In 
Sect. 6 we provide and compare the implementation results 
of our approach and the state-of-the-art approach for a text 
detection scenario in incoming video streams from different 
sources. Finally, we conclude the paper in Sect. 7.

2  Distributed stream mining system model

2.1  Binary classification

In a binary cascaded classifier topology, as shown in Fig. 1, 
each classifier Ci classifies each incoming SDO as belonging 
to the class of interest, Hi (positive class), or not belonging 
to the class of interest, i.e., belonging to the negative class, 
Hi  . If an SDO is labeled as belonging to Hi by classifier Ci , it 
is forwarded to the next classifier in the chain; otherwise, it 
is dropped from the stream. As a result, SDOs which reach 
the last classifier in the chain are labeled as positive in all 
of the previous classifiers in the chain. If we denote the 
classification decision of classifier Ci by X̂i and the ground 
truth by Xi , then the probability of detection which deter-
mines the proportion of correctly forwarded samples is 
PD
i
= Pr

{
X̂i ∈ Hi

||Xi ∈ Hi

}
 , and the probability of false alarm 

which determines the proportion of incorrectly forwarded 
samples is PF

i
= Pr

{
X̂i ∈ Hi

||Xi ∉ Hi

}
 . Therefore, the proba-

bility of forwarding an SDO to the next classifier in the chain 
by classifier Ci , if the SDO has a priori probability (APP) �i of 
being positive, can be given by:

Also, the probability of correctly forwarding an SDO to the 
next classifier in the chain would be equal to:

If we assume that each classifier operates at a fixed com-
plexity level, �i and �i can become deterministic function 
of PF

i
 by using the APP �i , and the detection error trade-off 

(DET) curve of the classifier, which is concave and increas-
ing and relates PD

i
 to PF

i
 ( PD

i
= f

(
PF
i

)
 ) [30, 38, 39]. Therefore, 

(1)�i = �iP
D
i
+
(
1 − �i

)
PF
i
.

(2)�i = �iP
D
i
.
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each classifier can be configured by varying its false alarm 
constraint in order to maximize utility of the system.

2.2  Cascaded classifier model

In this paper, we model the ensemble of the classifiers as 
a D/G/1 queuing facility. Also each classifier Ci can itself be 
modeled as G/G/1 queuing facility followed by stream fil-
tering and splitting operations. Each SDO is forwarded by 
classifier Ci to the next classifier with the probability �i and 
is discarded with the probability 1 −�i . For classifier Ci, the 
total SDO input rate and the average output rate are 
denoted by �i and �i , respectively. Also the input and out-
put rate of the whole ensemble are denoted by � and � , 
respectively. The set of previous-hop and next-hop neigh-
bors of classifier Ci are, respectively, denoted by prev(i) and 
next(i) . The ancestors of classifier Ci are defined as the clas-
sifiers which have path to Ci and are denote by anc(i) . Simi-
larly, descendants of classifier Ci are defined as the set of 
classifiers which Ci have path to, and are denoted by des(i) . 
We denote arrival rate from Cy ∈ prev(i) to Ci by �i

y
 ; there-

fore, 
∑

y∈prev(i) �
i
y
= �i . If classifier Ci forwards an SDO, the 

probability of choosing Cx ∈ next(i) is denoted by �x
i
 , so ∑

x∈next(i) �
x
i
= 1 and therefore �i

y
= �x

i
�i�i.

2.3  Objective function for mining a stream

The objective of mining a stream data object is to mini-
mize misclassification cost, subject to an end-to-end 
delay constraint, which leads to an optimization prob-
lem. Misclassification cost consists of two types of errors 
in classification task, which are false alarms and misses. 
(Misses are those SDOs which are actually in the class 
of interest but not detected as belonging to the class of 
interest by the classifier.) Hence, misclassification cost 
of classifying an SDO by classifier Ci can be given by 

 , where �i and �i are specific 
to the data stream of the SDO. �i − �i and �i − �i specify 
the fractions of misses and false alarms, respectively, and 
� denotes the weight of false alarms to misses. Therefore, 

the end-to-end misclassification cost of classifying an SDO 
by a single-path chain of classifiers, labeled from 1 to n , 
can be given by:

where 
∏n

i=1
�i is the total fraction of forwarded SDOs and ∏n

i=1
�i is the total fraction of correctly forwarded SDOs. 

Because the parameter � in (3) depends just upon stream 
characteristics, it can be regarded as a constant and be 
omitted. Therefore, it is possible to produce a utility func-
tion for the system classification performance by removing 
� and inverting (3), which results in:

In real-time stream mining applications, there is also a 
delay penalty in SDOs classification process. This type of 
penalty captures the loss of utility due to the volume of 
SDOs which have not been processed in the specified hard 
deadline � . Hard deadline � is the time limit from where 
if the processing delay of an SDO (from capturing to com-
ing its final result out of the ensemble) cross, its result will 
not be useful anymore and it can be considered as a miss 
(considering a hard delay deadline is common in most of 
the embedded real-time systems [40–43]). Hence, a func-
tion �(�) must be defined to estimate the proportion of 
SDOs whose processing delays (from capturing) have 
not crossed the hard deadline [31, 32, 44]. Trivially, this 
function can be given by �(�) = Pr{� ≤ �} , which is the 
probability of the processing delay of a processed SDO 
(from capturing) that has not exceeded the hard deadline. 
Hence, it captures the fraction of data that is useful for 
the system. In practice, this probability can be obtained by 
time stamping the SDO packets and calculating the frac-
tion of processed SDOs which have crossed the deadline. 
Also, alternatively, it can be estimated analytically if an 
exact model (e.g., D/M/1) for the arrival and service times 

(3)

(4)U =
n∏
i=1

�i − �

�
n∏
i=1

�i −
n∏
i=1

�i

�

Fig. 1  A cascaded single-path topology [5]
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is used. By combination of system classification perfor-
mance utility and delay penalty, a single objective function 
U.�(�) can be achieved, which satisfies the concept of fair-
ness between accuracy and delay implemented by Nash 
product [5, 45]. Therefore, if we consider the general form 
for the ensemble of classifiers, i.e., multi-path topology, 
the objective function which the system must attempt to 
maximize by configuring each classifier false alarm prob-
ability will be as follows [5]:

where PF =
{
PF
1
,… , PF

N

}
 is the set of false alarm probabil-

ities of all classifiers, � is the set of all end-to-end path 
selection probabilities, �r is the probability of choosing 
the end-to-end path r , and �r is the expected end-to-end 
delay across the path r . Also i ∈ r means classifier Ci is a 
classifier along the path r.

In the following sections, we discuss what needs to be 
done to maximize �

(
PF ,�

)
 for cascaded topologies in dif-

ferent scenarios. We first propose a distributed framework 
for the single-path–single-source case (a case where the 
ensemble has just one end-to-end path and there is only 
one source which is sending data). Then we extend our 
approach step by step to reach the solution for the most 
general case, which is multiple-path–multiple-source 
(the case where there are several end-to-end paths in the 
ensemble and also there are multiple sources which are 
sending data to the ensemble).

3  Distributed approach for single‑path–
single‑source case

3.1  Fundamentals of the solution

In single-path–single-source case, there is only one path; 
hence, the objective function for this case is:

(5)

�
(
PF ,�

)
=
∑
r

�r�
(
�r
)
×

(∏
i∈r

�i − �

(∏
i∈r

�i −
∏
i∈r

�i

))

s.t 0 ≤ PF
i
≤ 1∑

r

�r = 1, �r ≥ 0

(6)
�
(
PF
)
= �(�) ×

(
n∏
i=1

�i − �

(
n∏
i=1

�i −

n∏
i=1

�i

))

s.t 0 ≤ PF
i
≤ 1

which is obtained from (5).
The specifications and characteristics of data streams 

change over time (e.g., getting day and night or getting 
more and less important). This causes APPs and � of the data 
stream to be changed dynamically. These dynamic changes 
also cause the current configuration of the ensemble to lose 
its optimality during the time and require to be updated 
dynamically. To cope effectively with this event, the time 
needs to be split into smaller intervals. Before each interval, 
APPs and � of the data stream should be updated. Then, a 
new configuration should be adopted in each new interval 
based upon the updated APPs and � , such that for each clas-
sifier Ci the following condition is met [5]:

where �t+1
(
PF
)
 means the achieved utility in t + 1 th inter-

val and PF
i
(t) is the configuration that is adopted by Ci at 

time t .

FrameworkFramework 1 Distributed framework for single-path-single-
source case

InitializeInitialize the configuration for each classifier and 
exchange initial APPs across all classifiers 

Repeat at the beginning of each interval
1. Make each classifier update its APP based upon
extrapolating from actual values of input data in previous
intervals or by using a model (e.g., multivariate Gaussian
model)
2. Update by using observed end-to-end delays of the 
processed SDOs in the previous intervals 
3. Update
4. Make each classifier exchange its and of the 
interval , with other classifiers to obtain an
approximation of ( ).
5. Make each classifier configure its operating point based 
upon theoretical analysis, empirical analysis, modeling, etc., 
such that . 

Initialize

RepeatRepeat

Framework

3.2  Framework for single‑path–single‑source case

Because classifiers are distributed, none of them has 
enough information on its own to configure its oper-
ating point to maximize (6), due to the need of other 
classifier APPs and operating points. But each classifier 
can estimate its own APP and knows its own current 
operating point. As a result, for every parameter in (6), 
there exists a classifier which has access to it and knows 

(7)PF
i
(t) = argmax

PF
i

E
[
�t+1

(
PF
)]
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its value. Therefore, by exchanging these parameters 
across all the classifiers and using updated � and �(�) , 
each classifier can determine its own configuration for 
the upcoming interval to maximize the defined objec-
tive function. Therefore, based on the foregoing, we 
can propose Framework 1 as our approach for single-
path–single-source case.

In the following section, we will extend Framework 1 
to a framework which can support the case where several 
sources are sending data streams (these streams can have 
different importance and characteristics from each other) 
simultaneously to the ensemble. We will then provide the 
implementation results of the approach in Sect. 6.

4  Distributed approach for single‑path–
multiple‑source case

In most stream mining applications, there is more than 
one source which sends data stream to the ensemble 
(e.g., video surveillance system of a city). In some of these 
systems, different sources have different specifications 
and importance from each other. For example, in a city 
video surveillance system, the importance of a data stream 
from a camera in an important square is not identical to a 
camera in an ordinary alley. Furthermore, the importance 
of the data stream from a camera in a location may be 
increased greatly in some periods of time. Also, character-
istics of data streams from different sources can be differ-
ent from each other (e.g., some are captured at dark and 
some others in light scenes). These differences cause each 
data stream to have its own APPs, weight of false alarm to 

misses ( � ), and required thresholds for classification tasks. 
Even, different classification algorithms may be required 
to be applied for some sources. Hence, it is not optimal to 
mine all the incoming data streams from different sources 
identically by a common topology configuration.

In order to preserve QoS, each data stream should be 
mined by its own specific required configuration. In this 
section, we propose a time-sharing approach for solving 
this issue, such that a specific queue is implemented for 
each source (in this paper we assume that these queues 
are implemented at the ensemble side) at where the SDOs 
are buffered. Then the ensemble dedicates an amount of 
time periodically to each queue to discharge and mine 
SDOs inside it. We define a cycle as a repeating time inter-
val during which all the queues get service once from the 
ensemble. We also call the part of a cycle when a queue 
is getting service, as the queue’s turn in the cycle. In a 
queue’s turn, the SDOs inside the queue are discharged 
and processed by consideration of their source’s specific 
�i , Ωi , � , APPs and �(�) . That is to say, they are processed by 
their specific needed topology configuration. (An illustra-
tion of this approach is shown in Fig. 2.)

We model each buffer as a queue with FIFO discipline 
where the input rate is constant and deterministic. Also 
during the emptying periods, the queue obeys D/D/1 
model. (Note that we have modeled the ensemble of clas-
sifiers as a D/G/1 queue facility which allows the SDOs to 
enter the ensemble deterministically.) In this approach, 
choosing the optimal amount of time ( T ∗), dedicated to 
each queue in order to process accumulated SDOs inside 
it, is the most important concept that we must investigate. 
In order to solve this problem, we first consider the case 

Fig. 2  An illustration of our proposed approach. In this approach, SDOs sent from a source are buffered in their specific queue, first. Then 
they are discharged periodically and processed by the corresponding optimal topology configuration of their source
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where source acquisition rates and the required classifica-
tion algorithms are fixed and identical for all the sources. 
Then, we solve the problem for the case where sources can 
have adaptive acquisition rates or different classification 
algorithms can be applied on their streams. Table 1 lists 
new parameters that we will use in this section.

4.1  Fix and identical source acquisition rates case

When acquisition rates of all the sources are equal to each 
other, there would be an identical number of accumulated 
SDOs in each queue at the beginning of their turn. There-
fore, the amounts of time that the system should dedicate 
to each queue would be identical to each other. Hence, 
T1 = T2 = T3 = ⋯ = TN = T .

The time a queue has to wait for getting its turn only 
just after the end of its passed turn is:

where � is the expected amount of time that the result of 
the last SDO in the queue comes out from the ensemble 
after entering to it. Also c is the required amount of time 
for switching to servicing the next queue and adopting a 
new configuration for it. Note that because we assumed 
the queues are placed at the ensemble side, the transmis-
sion rate from queue to the ensemble can be neglected.

We define � = (� + c) and � = � + T . Therefore, if we ded-
icate time T to each queue, the number of received SDOs by 
the queue from end of a turn until the end of its next turn 
would approximately be equal to:

Trivially, all the accumulated SDOs inside a queue must 
be discharged from the queue in its turn. Otherwise, the 
queue will overflow after some cycles. Hence, the follow-
ing condition must be met:

(8)QWT ≅ (� + c) + (N − 1)(T + � + c)

(9)NAS ≅ [� + (N − 1)� + T ]�.

where � is equal to the queue discharge rate. Hence,

Because all the parameters in (11) are greater than zero, 
we would have N𝜂 𝛼

𝜆
> 0 . Hence,

Therefore, in the design process of the stream mining sys-
tems, the condition in (12) has to be considered and met. 
Also note that, when adjusting � , the condition � ≥ � must 
hold in order for the average delay to be finite; otherwise, 
the utility is always 0 [5]. Hence, if the condition in (12) is 
satisfied, by (11) we get:

Therefore, (13) determines the lower bound of the domain 
of T, which is the minimum value T can have. Also, it must 
be considered that the chosen T should not cause the 
end-to-end delay of any SDOs to exceed the deadline 
Δ , in theory. (It is obvious that Δ is equal to � minus the 
expected value of the time that an SDO arrives at its queue 
after capturing.) For satisfying this condition, we split the 
incoming SDOs into the two following groups:

• SDOs which arrive at their queues when it is not their 
queues’ turn;

• SDOs which arrive at their queues when it is their queues’ 
turn.

(10)T ≥
[� + (N − 1)� + T ]�

�
= N�

�

�
= N�

�

�
+ NT

�

�

(11)T − TN
�

�
≥ N�

�

�
⇒ T

(
1 − N

�

�

)
≥ N�

�

�
.

(12)1 − N
𝛼

𝜆
> 0 ⇒ N𝛼 < 𝜆 ⇒ N <

𝜆

𝛼
.

(13)T ≥
(N��∕�)(
1 − N

�

�

) =
N��

� − N�
.

Table 1  Descriptions of some of the parameters in the paper

Parameter Description Unit

�
i

Acquisition rate of source i SDOs/s
� Queue discharge rate SDOs/s
� Output rate of the ensemble SDOs/s
� Expected value of end-to-end processing delay of the ensemble s
Δ Maximum acceptable end-to-end delay (deadline) for an SDO from entering the queue to coming its result 

out of the ensemble
s

N Number of sources N/A
T
i

Dedicated amount of time to the queue of source i  to serve its SDOs s
c Time needed for switching from serving one queue to the next one and setting new configuration s
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We find upper bound of T for each of these groups.

1. SDOs which arrive at their queues when it is not their 
queues’ turn:

In this case, the total delay (from entering to the queue to 
coming its result out of the ensemble) of the first SDO which 
arrives at its queue after the queue’s passed turn is:

where 1∕� is the time taken for discharging the SDO from 
the queue, � is expected value of the ensemble end-to-
end processing delay for the SDO, and 1∕� is the approxi-
mated amount of time that the SDO arrives after the end 
of the passed queue’s turn. Also, � , as defined earlier, is the 
time it takes from end of the just past queue’s turn to the 
beginning of the next queue’s turn. Now, if we consider 
i  th arrived SDO, there exist i − 1 SDOs in front of it in the 
queue, which require (i − 1)∕� seconds to be discharged. 
Also, ith SDO is approximately arrived at i∕� seconds after 
the end of its queue’s turn. Therefore, the total delay of ith 
SDO from entering to the queue to coming its result out 
of the ensemble is:

Because for each i  , it must be D(i) ≤ Δ , the following con-
dition must be satisfied:

Hence, it must be T ≤ minU(i) . For finding minU(i) , we dif-
ferentiate U with respect to i  . We have

Because 𝛼 < 𝜆 (otherwise, overflow will happen), it would 
be 𝜕U∕𝜕i > 0 . Hence, U is strictly increasing and meets 
its minimum at the lower bound of its domain, i.e., i = 1 . 
Hence,

By (13) and (18) we have:

(14)D(1) ≅ � + (N − 1)� −
1

�
+

1

�
+ �

(15)
D(i) ≅ � + (N − 1)� −

i

�
+

i − 1

�
+

1

�
+ �

= � + (N − 1)� − i

(
1

�
−

1

�

)
+ �.

(16)T ≤ U(i) =
[
Δ + i

(
1

�
−

1

�

)
− � − N�

]
×

1

N−1
.

(17)
�U

�i
=

1

N−1

(
1

�
−

1

�

)
.

(18)T ≤

[
Δ +

(
1

�
−

1

�

)
− � − N�

]
×

1

N−1
.

(19)
N��

�−N�
≤

[
Δ +

(
1

�
−

1

�

)
− � − N�

]
×

1

N−1

which results in:

Therefore, the condition in (20) must be considered to be 
satisfied all the time.

Note that, if we denote the left-hand side of (20) by 
M, it is trivial that M will increase by increasing Δ . Also 
𝜕M∕𝜕𝛼 = (−1)∕𝛼2 − N𝜂𝜆(N − 1)∕(𝜆 − N𝛼)2 < 0 . Hence, M 
will increase by decreasing �.

2. SDOs which arrive at their queues when it is their 
queues’ turn:

When an SDO arrives at its queue after t  seconds from 
the beginning of its current queue’s turn, t� SDOs will 
have been discharged since the beginning of the turn. 
Also, t� new SDOs will have arrived at the queue. Hence, 
the number of accumulated SDOs in the queue after t  
seconds would be equal to:

where [(N − 1)� + �]� is the number of SDOs inside the 
queue at t = 0.

If we differentiate function A with respect to t  , we 
would have 𝜕A∕𝜕t = −(𝜆 − 𝛼) < 0 . Therefore, function A 
is strictly decreasing. Hence, it meets its maximum at 
the lower bound of its domain, which is t = 0 . Therefore, 
the maximum possible number of SDOs in front of an 
incoming SDO during a turn is A(0).

The system should be designed such that the total 
delay of the SDO coming at t = 0 (from entering the 
queue to coming its result out of the ensemble) does 
not exceed the deadline. Hence, the following condition 
must be satisfied:

which results in:

By (13) and (23), the following condition must be satisfied:

Therefore, stream mining systems should be designed 
such that the following condition is met:

(20)Δ +
1

�
+ c − (N + 1)� −

N��(N−1)

�−N�
≥ 0.

(21)
A(t) = [(N − 1)� + �]� − t� + t� = [(N − 1)� + �]� − t(� − �)

(22)
[(N−1)�+�]�

�
+

1

�
+ � ≤ Δ

(23)T ≤
(Δ−�)�−N��−1

(N−1)�
.

(24)
N��

�−N�
≤

(Δ−�)�−N��−1

(N−1)�
.

(25)
(Δ−�)�−N��−1

(N−1)�
−

N��

�−N�
≥ 0.
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Note that, if we denote the left-hand side of (25) by M and 
differentiate it with the respect to � , we have:

Hence, M will increase by decreasing � . Also, we have 
𝜕M∕𝜕Δ = 𝜆∕(N − 1)𝛼 > 0 . Hence, M will increase by 
increasing Δ.

Therefore, by (13), (18), and (23), the range of T is 
derived as follows:

Various objectives can be considered for choosing the 
best T in its range, which are ultimately the designer’s 
choice. But to highlight possible approaches, in this paper, 
we assume that the best T is the one which minimizes the 
expected value of the total delay of an SDO from enter-
ing its queue to coming its result out of the ensemble. For 
this purpose, once more, we consider the two groups of 
SDOs we discussed earlier, and find the solution for each 
of them. Then we will achieve the general optimal T by 
combining the results.

1. SDOs which arrive at their queue when it is not their 
queues’ turn:

For this group of SDOs, if we denote the total delay of 
ith arrived SDO, from entering the queue to coming its 
result out of the ensemble, by D(i) , the optimal T is the one 
that maximizes D(E[i]).

Because the number of arrived SDOs at a queue during 
the end of its just past turn and the beginning of its next turn 
is [� + (N − 1)�]� , the expected value of i is:

By (15), we have:

(26)
𝜕M

𝜕𝛼
=

−[(Δ−𝜎)𝜆−1](N−1)

((N−1)𝛼)2
−

N𝜂(𝜆−N𝛼)−N𝜂𝛼(−N)

(𝜆−N𝛼)2
< 0.

(27)

T ∈

[
N��

� − N�
, min

([
Δ +

(
1

�
−

1

�

)
− � − N�

]

×
1

N − 1
,
(Δ − �)� − N�� − 1

(N − 1)�

)]
.

(28)
E[i] =

∑
iPr(i) =

�(N�+(N−1)T )∑
i=1

i
1

�(N� + (N − 1)T )

=
�(N� + (N − 1)T ) + 1

2
.

(29)

D(E[i]) ≅ � + (N − 1)� −
�(N� + (N − 1)T ) + 1

2

(
1

�
−

1

�

)
+

1

�

=
(N� + (N − 1)T )

2
−

1

2�
+

1

�

[
�(N� + (N − 1)T ) + 1

2

]
+

1

�
.

Now, we have:

Hence, D is strictly increasing with respect to T and meets 
its minimum at the lower bound of the domain of T. There-
fore, the optimal T for this group of SDOs is:

2. SDOs which arrive at their queues when it is their 
queues’ turn

If an SDO arrives at second t after starting its queue’s turn 
( t ≤ T  ), the total delay of the SDO from entering the queue 
to coming its result out of the ensemble, by (21), would be:

The optimal T is the one that minimizes K (E[t]) . Because 
SDOs are captured at a specific rate (i.e., every 1∕� sec-
onds), the incoming arrival time of SDOs obeys a uniform 
distribution, so E[t] = T∕2 . Hence, we have

If [(N − 1)T + N�]� − (T∕2)(� − �) ≥ 0 , then the differen-
tiation of (33) with respect to the parameter T would be 
as follows:

As a result:

hence, K (E[t]) would be increasing with respect to T, if 
�∕� ≤ 2N − 1 . Therefore, K (E[t]) would meet its minimum 
at lower bound of domain of T which is N��

�−N�
 , by (13). Also,

hence, K (E[t]) will be strictly decreasing with respect to 
T, if 𝜆∕𝛼 > 2N − 1 . Therefore, K (E[t]) would meet its mini-
mum at the upper bound of the domain of T, and inversely, 
upper bound of T is the value which minimizes K (E[t]) . The 
minimum of K (E[t]) occurs when

(30)
𝜕D(E[i])

𝜕T
=

N−1

2
+

𝛼(N−1)

2𝜆
> 0.

(31)T ∗ =
N��

�−N�
.

(32)K (t) = max
(

[(N−1)T+N�]�−t(�−�)

�
, 0
)
+ �.

(33)K (E[t]) = max

(
[(N−1)T+N�]�−

(
T

2

)
(�−�)

�
, 0

)
+ �.

(34)
�K (E[t])

�T
=

(N−1)�

�
−

1

2

(
1 −

�

�

)
=

�

�

(
N −

1

2

)
−

1

2
.

(35)
�

�
≤ 2N − 1 ⇒

�K (E[t])

�T
≥ 0 ;

(36)
𝜆

𝛼
> 2N − 1 ⇒

𝜕K (E[t])

𝜕T
< 0 ;

(37)[(N − 1)T + N�]� −
(

T

2

)
(� − �) = 0
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which results in T = 2N��∕(� − (2N − 1)�) . Therefore, 
when 𝜆∕𝛼 > 2N − 1 , for the group of SDOs which arrive 
during the beginning and end of their queues’ turn, the 
optimal T is 2N��∕(� − (2N − 1)�).

Also if [(N − 1)T + N𝜂]𝛼 − (T∕2)(𝜆 − 𝛼) < 0 , then the 
function becomes constant. As a result, the output of the 
all values in the domain of T is optimal. Hence, we can 
again consider if �∕� ≤ 2N − 1 the optimal T is N��

�−N�
 and if 

𝜆∕𝛼 > 2N − 1 the optimal T is 2N��∕(� − (2N − 1)�).
Now the question is, What is the optimal T, when 

𝜆∕𝛼 > 2N − 1 , since, for the group of SDOs which arrive 
at their queues’ turn, the optimal T is N��∕(� − N�) , and 
for the group of SDOs which arrive during the begin-
ning and end of their queues’ turn, the optimal T is 
2N��∕(� − (2N − 1)�) ? To solve this question a bargain-
ing problem is formed where the wealth of the first group 
is �Pr times more than the wealth of the second group ( �Pr 
is the ratio of the probability that an arrived SDO belongs 
to the first group, to the probability of belonging to the 
second group). The two parties should finally agree on a 
common T which we call Taggred and is equal to:

where

Function P is a cost function which determines the cost of 
deviation from choosing the optimal T for an SDO. By the 
Nash bargaining problem [45], T ∗ = Taggred.

In a cycle, the proportion of the times at when if an 
SDO arrives it is placed in the first group, to the times at 
when if an SDO arrives it is placed in the second group, is 

(38)Taggred = argmin
T∈

[
N��

�−N�
,

2N��

�−(2N−1)�

] (T )

(39)

(T ) = �Pr × P

(
T −

N��

� − N�

)
+ P

(
T −

2N��

� − (2N − 1)�

)
.

N − 1 to one. Therefore, in a modest approach, it can be 
assumed that �Pr = N − 1. (Note that this is not an accu-
rate approach at all.) Also, in almost all of non-extraordi-
nary conditions, because there is no distinction between 
SDOs, the cost of any deviation from the interest would be 
equal for all the SDOs. Hence, if we take one step closer to 
one SDO’s interest in the second group, we will get one 
step farther from N − 1 SDOs’ interest in the first group. 
Therefore, although we achieve 1 point we will lose N − 1 
points. Thus, in almost all of non-extraordinary conditions, 
Taggred =

N��

�−N�
.

In conclusion, in this subsection, we discussed how 
to extend the approach for single-path–single-source 
case to a single-path–multiple-source case where source 
acquisition rates are fixed and identical. We also discussed 
the conditions that must be considered to be satisfied in 
designing process of stream mining systems. We can sum-
marize our discussion in this subsection as Framework 2. 
Indeed, this framework proposes our approach for a sin-
gle-path–multiple-source case where source acquisition 
rates are fixed and identical.

In the following subsection, we will extend Framework 
2 to an approach for the case where sources can have 
adaptive acquisition rates, in order to cope with the stream 
importance and specification dynamics. We will then rep-
resent the implementation results of the approach in 
Sect. 6.

4.2  Adaptive source acquisition rates case

In the previous subsection, we proposed an approach 
for fixed and identical source acquisition rates, but as we 
mentioned earlier, the importance and characteristics of 
different data streams change dynamically during the 
time.
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FrameworkFrameworkFrameworkFramework 2222 Distributed framework for the single-path-
multiple-source case 

SatisfySatisfySatisfySatisfy all the following conditions regularly: 

- 

-

-

InitializeInitializeInitializelize , and the configuration of each source
for each classifier  and exchange initial APPs of all sources
across all the classifiers 

RepeatRepeatRepeatRepeat at the beginning of each iteration  (time is
split into smaller intervals called iteration)

1. Make each classifier updates its APPs, based upon extra-
polating from actual values of the input data in the previous
intervals or by using a model (e.g., multivariate Gaussian
model)
2. Update and of each source by using the observed 
end-to-end delays of the processed SDOs in the previous
intervals 
3. Update of each source 
4. Update by the following function:

5. Make each classifier exchange corresponding and 
of each source in the interval , with other 

classifiers to obtain an approximation of ( ) for each
source. 
6. Make each classifier configure its operating point (based
upon theoretical analysis, empirical analysis, modeling, 
etc.), at the beginning of each source’s turns, such that

, where all the parameters
are specific to the source. 

These changes may cause the required acquisition 
rates for some sources to be increased. Even, it is prob-
able that the classification algorithms for data streams 
coming from them need to be replaced. In this case, the 
aforementioned dedicated amount of time for serving 
accumulated SDOs inside these source queues would 
not be sufficient, and it needs to be increased. We denote 
the amount of time that is needed to be increased for 
source i  by ΔTi . For example, if the acquisition rate 
of source i  was to increase m times, we would have 
ΔTi =

N�m�

�−Nm�
−

N��

�−N�
 . This leads the total required amount 

of time which must be dedicated to other sources for 
serving their accumulated SDOs to be decreased by 
ΔT  , to preserve the overall sustainability of the system. 
Hence, the main challenge is how to reduce this amount 
from dedicated times to other sources in an optimal 
way. This time reduction can be done by either chang-
ing the classification algorithms, or by reducing source 

acquisition rates. However, changing the classification 
algorithms (if it is possible) is not reasonable and has a 
significant cost, due to spoiling the previous learnings. 
Therefore, in the following, we will focus on reducing the 
acquisition rates of the sources in an optimal way.

If we increase dedicated amount of time to a source, 
two types of penalties will be incurred by other sources: 
(1) loss of details penalty and (2) additional delay penalty.

1. Loss of details penalty

If we decrease the acquisition rate of a source to com-
pensate an increase in the dedicated amount of time 
to another source, some details at the location of the 
source would not be captured and sent by the source, 
which causes a penalty. For capturing this penalty we 
first define the details loss function and denote it by 
� ∶ ℝ → ℝ . This function determines what will be the 
amount of details loss by m% decrease in source acqui-
sition rate. Because the natures of data streams are 
the same (e.g., video of a location), this function is the 
same for all of the sources and gives output regardless 
of the source. But sources have different importance, 
so a certain decrease in source acquisition rate for dif-
ferent sources would not bring about equal costs. We 
denote the function that determines the importance of a 
source by  ∶ ℕ → ℝ . Therefore, the cost function of m% 
decrease in acquisition rate of source i  can be given by

2. Extra delay penalty

If dedicated amount of time to a source is increased 
by ΔT  , the SDOs inside the queues of the other sources 
would wait more, as well. This has a cost and causes the 
function �(�) to output a smaller value for all or some of 
the sources. We define 𝜓 c

(
𝜏i
)
= 1 − 𝜓

(
𝜏i
)
= Pr{𝜏i > 𝛬} , 

where �i indicates the specific � for source i  . Therefore, 
the larger the Δ� c(�) , the more the information in the 
data streams of source i  will be lost ( Δ� c

(
�i
)
 means the 

difference between � c
(
�i
)
 of the source i  , before and 

after dedicating an additional time to the other source). 
Hence, Δ� c(�) can be considered as a metric for cost of 
incurred additional delays.

Therefore, the cost of decreasing the acquisition rate 
of source i  by m% , to compensate the increase in dedi-
cated amount of time to another source, can be given by 
�(i,m).

∑N

i=1
((i)Δ� c

�
�i
�
)2 . Also, if the acquisition rates 

of a number of sources are changed, the cost function 
can be given by the following:

(40)�(i,m) = (i)�(m).
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where M = ⟨m1,m2,… ,mN⟩ is the vector of the amounts 
of decrease (by percentage) in acquisition rates of the 
sources. For example, when we just decrease the acquisi-
tion rate of source i  by mi% , it is M = ⟨0, 0,… ,mi ,… , 0⟩ . 
Hence, if the dedicated amount of time to a source is 
required to be increased by ΔT  , we must find and apply 
the optimal M , which can be expressed as:

where

Intuitively, (M) determines how much of ΔT  is compen-
sated by the chosen M.

Note that the case of non-equal acquisition rates for 
the sources from the beginning can easily be modeled by 
assuming that changes occur at t = 0.

Therefore, by what we proposed in this subsection, we 
can extend our approach in the previous subsection to the 
adaptive source acquisition rate case and complete our 
approach for single-path–single-source cases.

5  Distributed approach for multiple‑path–
multiple‑source case

In the previous section, we proposed our approaches for 
single-path cases. But, in most of the stream mining sys-
tems, there are several replicated classifiers in the ensem-
ble for each classification task, to increase the system 
robustness, consistency, reliability, speed, etc. [46–49]. 
This causes several end-to-end paths to be created in the 
ensemble. In this section, we will discuss how to extend 
the approach in the previous section to multiple-path 
topologies.

5.1  Discussion on extending the previous approach 
to multiple‑path case

As we discussed in Sect. 4, multiple-source case requires 
a time-sharing approach for entering captured and buff-
ered SDOs into the ensemble. Our proposed time-sharing 
approach in the previous section would not be changed 

(41)(M) =

(
N∏
i=1

�
(
i,mi

))
×

N∑
i=1

((i)Δ� c
(
�i
)
)2

(42)M∗ = argmin
M

(M) s.t R(M∗) = 0

(43)(M) =
(N�)

�
MT ⟨�⟩�

� − N
�
MT ⟨�⟩� − ΔT .

for multiple-path case, because multiple-path concept 
is an in-ensemble issue, and we consider the ensemble 
as a whole and only consider end-to-end parameters of 
the ensemble (e.g., � , which is the expected end-to-end 
processing delay of the ensemble). Hence, the only thing 
that needs to be changed is the way of determining the 
configuration of classifiers for each turn at the begin-
ning of iteration. Therefore, if the approach in Sect. 3 is 
extended to multiple-path case, the approach in IV can 
easily be extended to multiple-path case, as well. This 
is done by changing the method of steps 5 and 6 in the 
repeat section of Framework 2, to the method in the fol-
lowing subsection.

5.2  Ensemble configuration mechanism 
in multiple‑path case

By extending (5), we have

Now, if we consider an arbitrary classifier Ci in the ensem-
ble, we can rewrite (44) based on Ci as follows [5]:

where sib(i) is the set of classifiers that perform the same 
classification task as Ci , in the ensemble,

(44)

�
�
PF ,�

�
=
�
r

�r�(�) ×

��
i∈r

�i − �

��
i∈r

�i −
�
i∈r

�i

��

=
∑
r

�r�(�) ×

�
(1 + �)

∏
i∈r

�i − �
∏
i∈r

�i

�
.

(45)�
�
PF ,�

�
= �(�).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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and

Hence, if local parameters and path selection probabilities 
of each classifier are exchanged with all the other classi-
fiers, each classifier can adjust its operating point to maxi-
mize the objective function. However, there is no need of 
exchanging parameters with all the other classifiers, which 
has an information exchange overhead of O

(
N2

)
 , because 

each classifier only needs the product of the parameters 
of its ancestors and descendants. Therefore, by using for-
ward propagation of products with the following recursive 
formula:

and backward propagation of products with the following 
recursive formula:

information exchange overhead can be reduced to O(dN) , 
where d is the average of out-degree/in-degree of the clas-
sifier nodes.

(47)

�N
y

(
PF
j,N
,�N

y

)
=
(
�y
) ∑
vdes(y)

�vdes(y)

(
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�z

)

�N
y

(
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y,N

,�N
y

)
=
(
�y
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vdes(y)

�vdes(y)

(
n∏

z∈des(y)

�z

)
.

(48)

�
j

0

(
PF
0,j
,�

j

0

)
=
(
�j
) ∑
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6  Experiments and results

We tested our approach on a text detection scenario in 
a large volume of incoming video streams from a num-
ber of sources which had adaptive acquisition rates. We 
implemented a multiple-path topology to extract differ-
ent semantic features from the incoming frames. On this 
scenario, we also tested the state-of-the-art approach 
proposed in [5], which can be also called a fundamen-
tal approach in the field of SMAs as it is mathemati-
cally proven, and almost all the succeeding proposed 
approaches have been built on top of that and assumed 
it as a principal true approach1 [1]. Also, this approach has 
been awarded the prize of the National Science Founda-
tion of USA [50] and many patents have been registered 
on that [51].

In this section, we will describe the aforementioned 
scenario in detail, and by discussing the results of the 
implementations, we will show how our approach out-
performed the state-of-the-art in the considered scenario.

6.1  Description of the application

To test our approach, we considered a scenario where four 
video lectures were playing from different sources. Some 
of the scenes in the videos were showing the slides that 
were being taught and presented in the lectures. The slides 
in each video had different templates and styles from the 
slides in other videos. We decided to construct a chain of 
classifiers intended to detect scenes of the videos in where 
a slide was showing, and the slide contained a snippet of 
programming code. We considered the end-to-end delay 

Fig. 3  Diagram of the implementation scenario

1 As a matter of fact, in this paper also, we do not intend to cast 
aspersions on [5], but we have brought up a scenario from the real 
world in which we showed [5] alone is not responsive and it needs 
an extension to become effective, a scenario which we could not 
find a paper debating about; otherwise, we would definitely com-
pare our approach with that as well.
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Fig. 4  DET curves of the classifiers in the chain

Table 2  Node specifications

Node Implemented on Programming languages Avg. 
processing 
delay

C
1

Sony Xperia Z with Android 5.1, Quad-core 1.5 GHz Krait, and 2 GB RAM JavaScript 0.13 s
C
2

Sony Xperia Z1 with Android 5.1, Quad-core 2.2 GHz Krait 400, and 2 GB RAM JavaScript & Java 0.37 s
C
3
 (1) Sony Xperia Z2 with Android 5.1, Quad-core 2.3 GHz Krait 400, and 3 GB RAM JavaScript & Java 4.67 s

C
3
 (2) Samsung Galaxy S7 edge with Android 7.0, Quad-core 2 × 2.15 GHz Kryo & 

2x1.6 GHz Kryo, and 4 GB RAM
JavaScript & Java 4.44 s

C
4

Samsung Galaxy Note 10.1 N8000, with Android 4.4.2, Quad-core 1.4 GHz Cortex-
A9, and 2 GB RAM

JavaScript 0.52 s

Queues Lenovo Z570, Windows 7 PC, Intel-core i5-2410 M 2.3 GHz, 6 GB RAM JavaScript N/A
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deadline of � = 13 s, for processing an SDO (from captur-
ing to coming its result out of the ensemble).

Regarding dataset, we collected a video dataset con-
sisting of more than 3 million frames (see [52] for access), 
from the video lectures of Google I/O conferences [53], 
MIT OpenCourseWare [54], Stanford Online [55], and NE 
Scala Symposium conferences [56], to test our approach 
and the state-of-the-art, which is without any time-sharing 
solution and buffer, on them.

6.2  Implementation details

We created a cascaded topology of 4 classifiers to reach 
the goal of our scenario. The task of first classifier ( C1 ) was 
to determine whether or not there was enough differ-
ence between the frame which C1 was processing, and 

its previous frame. (If there is no noticeable difference 
between the frames, it means no significant changes 
happened, so no new information is received. Therefore, 
there is no need to process the current frame.) The task 
of second classifier ( C2 ) was to determine if a scene was 
showing a slide or not. The aim of third classifier ( C3 ) was to 
detect if there was any text on the slide or not. (We imple-
mented two replicated nodes for this time-consuming 
task to increase scalability and reliability.) Also the fourth 
classifier ( C4 ) was for detecting whether or not the text 
on the slide contained any snippets of code. All classifiers 
were devised and trained based on SVM algorithm. The 
classifiers C1 and C2 were doing their analysis directly on 
RGB images, while the classifiers C3 and C4 were preceded 
by an OCR neural network which converted an image to a 
Unicode text file containing some characters which could 

Fig. 5  Illustrative view of the achieved utilities in our proposed approach experimentations

Table 3  Details of the overall implementation results of the approaches

Approach Average of the gained 
utilities (100 ×)

Average of the 
variances

Number of negative 
achieved utilities

Average of negative 
achieved utilities (100 ×)

Number of maxi-
mum achieved 
utilities

Ours 4.007 1.582 4 − 0.688 150
State-of-the-art 3.532 3.932 56 − 0.380 252



Vol.:(0123456789)

SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6 Research Article

be meaningful or meaningless. Therefore, the classifiers 
C3 and C4 were performing their task on text files. Indeed, 
the task of C3 was to detect a set of meaningful sentences 
or words in a bunch of Unicode characters and the task of 
C4 was to detect whether or not there is a set of computer 
code among those meaningful characters. The diagram of 
the scenario is illustrated in Fig. 3, The DET curve of each 
classifier is shown in Fig. 4, and the specifications of the 
nodes are listed in Table 2. The bandwidths of the links 
between the sources and queues were set to 1024 Kb/s, 
and the bandwidths of links between queues and the 
ensemble were set to 150 Mb/s as well as the bandwidths 
of intra-ensemble links. Also, the frames were sent in HD 
quality mode.

We set the initial weight of false alarm to misses on 
� = 0.5 . We also considered when a slide in the concept of 
interest was detected from a sent SDO by a source, then 
it would be more likely that another slide in the concept 
of interest appeared again in that source’s stream, so the 
sensitivity of detection would be better to be increased a 
bit. Hence, we set a plan to decrease the weight of false 
alarms to misses of a source by 0.004, when an SDO in 
the concept of interest was detected in the streams of 
the source. We also assumed that the importance of a 
source was increased when an SDO in the concept of 
interest was detected; because when in a video lecture 
there exist several slides, then more probably the lec-
ture has more important information than a lecture with 
fewer slides. (Note that this assumption is only applicable 
to this scenario, and in most of the other scenarios, the 
situation is totally inverse, i.e., more quantity leads to less 
quality.) Hence, in light of these assumptions, we decided 
to set a mechanism to increase the acquisition rate of a 
source by 8%, for every 10 positive detected SDOs from 
the streams of it, in order to capture more details by the 
source. (Note that we knew the acquisition rates would 
not cross a limit because as the acquisition rate of a source 
would be increased in some moments, it also would be 
decreased in some other times due to an increase in the 
acquisition rate of another source.) Also, based on speci-
fications of the classifiers and our prediction about APPs, 
we estimated the initial � and � of the ensemble as 0.72 s 
and 2.12 SDO/s, respectively. To satisfy the proposed con-
ditions in Framework 2, by solving the optimization prob-
lem of the trade-off between increasing Δ and decreasing 
� , we chose � = 2.09 SDO/s, � = 0.42 SDO/s, and Δ = 11.92 
s, which made initial T ∗ be 0.41 s. We also set the initial PF 
as PF(0) = {0.04, 0.06, 0.15, 0.11}.

We used open-source projects: ML-Optimization [57] for 
the optimization tasks, Gauss project [58] for data analysis 
and predicting values, Tesseract [59] for OCR, and WebRTC 
[60] for data transmission between nodes.

6.3  Experimentation results and comparison

We performed 15 experiments based on the aforemen-
tioned scenario using different video lectures of the data-
set to evaluate our approach. In all of these experiments, 
each iteration was set as 30 complete cycles. The utilities 
achieved in each iteration during the experimentations 
are shown in Fig. 5. Also, the details of the results are pro-
vided in the first row of Table 3. As Fig. 5 shows, almost all 
of the iterations achieved positive utility and an upward 
trend in gained utilities at iterations is clear in each experi-
ment. Also, no crashes and overflows occurred during all 
the experiments. These were likely because significant 
amounts of data were shedding prior to reaching C3 by C2 
and C1 (because they were quickly detected as “not new 
scene” or “not slide”), which was also causing expected 
processing delay of the ensemble (σ) to be reduced signifi-
cantly (for each of the sources). In consequence, the acqui-
sition rates of sources were able to be increased, which 
resulted in capturing more details. More importantly, this 
was also accompanied by classifying SDOs by their own 
desired ensemble configuration, which made their clas-
sification utility be very close to the maximum.

We also carried out exactly the same experimentations 
on the state-of-the-art approach [5], which is without any 
time-sharing solution and buffers. Given our scenario and 
the specifications of the nodes, we encountered several 
problems. The first problem was about the classifier C1 . 
It did not have any memory, so it could not store pixel 
values of any source SDOs, in order to use them for com-
paring the next SDO of the source with it, to see if there 
is an enough difference or not. (Note that sources were 
sending SDOs simultaneously; therefore, in the state-of-
the-art approach, after processing an SDO from a source, 
the next SDO that must be processed might not come 
from the same source.) Naturally, this led C1 to be not 
practical for our scenario and made us get it out of the 
ensemble,2 which caused a higher processing burden to 
be incurred by the subsequent classifiers in the ensem-
ble. Furthermore, since in the sate-of-the-art approach, 
a general algorithm for detecting slides had to be used, 

2 This issue also demonstrated; if we implement some mechanism 
to compress data at the source and decompress it at the ensem-
ble by using a data differencing method, the mechanism will not 
be applicable for the sate-of-the-art approach, because it cannot 
decompress SDOs due to no access to the value of their previous 
SDO. Even if a software solution for temporary storing values is 
implemented, retrieving the associated previous SDO’s value from 
the stored values has an overhead, which can cause problems in 
large-scale systems. Therefore, in the sate-of-the-art approach 
compressing data can poorly be implemented, which cause SDOs 
to arrive at the ensemble with a higher delay.
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the average processing delay of C2 was increased about 
0.98 s, which caused the expected value of the end-to-end 
processing delay of the ensemble to be increased about 
1 s, and the ensemble output rate to be decreased to 1.48 
SDO/s. These issues caused several intolerable system 
failures during the experimentations. All of these failures 
occurred when some videos with a high number of con-
tinuous scenes of slides were playing. We noticed that the 
reason for the failures was because, when the number of 
detected SDOs of a source in the concept of interest was 
highly increased, the source acquisition rates of all the 
other sources were increased as well. This led the num-
ber of incoming SDOs to the ensemble to be increased 
significantly, which was together with more delayed 

classification methods. As a result, the capacity of the sys-
tem would become full rapidly and lead to system failure.

This problem made us remove the method of increasing 
source acquisition rates when positive SDOs are detected 
and perform the experimentations again (although we 
knew that it would cause a loss of details). In the new 
experimentations, we also implemented a queue for each 
classifier with enough capacity to avoid any failure and set 
the fixed and identical acquisition rates of � = 0.09 SDO/s 
for all the sources. The achieved utilities in each experi-
ment are shown in Fig. 6, and the details of the results are 
provided in the second row of Table 3. As it is illustrated, in 
these experimentations, a considerable number of itera-
tions achieved near-zero utility in each experiment. After 
investigation, we detected that the chief reason for this 

Fig. 6  Illustrative view of the achieved utilities in the state-of-the-art approach experimentations

Table 4  Comparison of the implementation results

Factors Values

Number of the iterations where our approach gained higher average utility 267
Number of the iterations where the state-of-the-art approach gained higher average utility 270
Number of the experiments where the overall gained utility in our approach is higher 15
Number of the experiments where the overall gained utility in the state-of-the-art approach is higher 0
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problem in most of the iterations was a decrease in �(�) 
due to an increase in the SDOs wait time in the embedded 
queues before the classifiers. Also, besides this, erroneous 
learning and predicting values owing to fusion of SDOs 
were not something negligible.

The overall comparison between the implementation 
results of the two approaches is provided in Table 4. As this 
table explicates, the average of the gained utilities in each 
of the state-of-the-art approach experiments is less than 
the corresponding average in the results of our approach 
experiments. Moreover, according to Table 3, based on the 
average of the gained utilities during the whole experi-
mentations, our approach has achieved a 13.45% superi-
ority over the state-of-the-art approach, which along with 
the other statistics proves that our approach has outper-
formed the state-of-the-art in the implemented scenario.

7  Conclusion

In this paper, we proposed a distributed and adaptive 
approach for configuration of cascaded classifier topolo-
gies, in such a way that when several numbers of sources 
are sending data to the ensemble simultaneously, the 
system serves each stream data object (SDO) by the cor-
responding SDO optimal topology configuration. We 
defined a utility metric for the system performance, sub-
ject to delay constraints, on mining an SDO, given the SDO 
source. We showed that by adjusting acquisition rates of 
sources and implementing a queue for each source, in 
which the SDOs sent by the source are buffered, we can 
take advantage of a time-sharing solution to extend the 
approach for single-source cases to the cases where mul-
tiple sources are sending data. We also provided the con-
ditions that must be satisfied prior to applying the time-
sharing solution. By defining a term called stable cycle and 
investigating the conditions for fulfilling its requirements, 
we also succeeded in extending our approach to the 
adaptive source acquisition rate case. More importantly, 
we showed that our proposed time-sharing approach is 
roughly topology-free, which means it is applicable to all 
types of topologies (e.g., tree, directed acyclic graphs, etc.). 
Hence, it can be used in most of the multimedia process-
ing applications and also other informationally distributed 
or restricted stream mining systems.

There are several directions for future research. One of 
the important directions involves detecting and solving 
synchronization issues among the classifiers. Another nota-
ble research area is to integrate the proposed time-sharing 
approach in this paper with other types of topologies such 
as trees and acyclic directed graphs model. Also, besides 
these, modeling and involving data privacy challenges in 
the optimization problem for stream mining systems would 

be a very interesting and important extension to explore in 
future.
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