
Vol.:(0123456789)

SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6

Research Article

A stream‑sensitive distributed approach for configuring cascaded
classifier topologies in real‑time large‑scale stream mining systems

Abtin Shahkarami1  · Hossein Bobarshad1  · Nader Bagherzadeh2 

© Springer Nature Switzerland AG 2019

Abstract
Stream mining systems have received a great deal of attention in recent years. These systems process incoming data
streams from different sources and extract high-level semantic features from them. They do this by passing data streams
through an ensemble of classifiers. Owing to dynamic changes in characteristics of the data streams, these classifiers
need to be configured dynamically to maximize the performance of the system. As a challenge, different data streams
from different sources have different specifications from each other. This causes treating all the incoming data streams
identically by a common topology configuration to be not appropriate for an optimal stream mining. Hence, an approach
is required which allows each data stream to be processed by consideration of its own specifications. In this paper, by
implementing a buffer for each source and using a time-sharing solution, we propose a distributed approach to solve
the aforementioned problem for cascaded classifier topologies. We first formally define a utility metric which captures
both the performance and the delay of a binary filtering classifier system. We then propose our solution for a base case
and evolve it step by step until reaching the most general case for cascaded topologies. We finally test and compare our
approach with the state-of-the-art solution on a text detection scenario from the incoming video streams to the system.

Keywords  Stream mining systems · Distributed systems · Real-time stream processing · Big data classification

1  Introduction

Every year globally an ever-increasing amount of data is
being produced by different sources in various formats
[1], including multimedia files [2], medical measurements
[3], and information from satellites [4]. This high volume
of data streams requires operations such as classification,
filtering, aggregation, and correlation [5–7], in plethora of
nowadays applications such as search engines [8], fraud
detection systems [9], video surveillance systems [10],
medical devices [11], sensor networks [12], and autono-
mous robots control systems [13]. These systems require
high computational processing power to process incom-
ing continuous data streams from distributed sources [14].
Distributed stream mining systems have been recently
developed in order to perform these tasks [5, 15–18]. They

are constructed by using a topology of low-complexity
binary classifiers, each performing feature extraction and
classification specific to different tasks [14]. Indeed, they
decompose applications as topologies of distributed pro-
cessing operators, which will highly increase reliability,
scalability, and performance of the system [19–22].

One of the main issues in the real-time distributed stream
mining system is how to handle system overload effectively
while maintaining high performance under resource con-
straints [5]. A common approach is to use a chain of classi-
fiers for intelligent load shedding. In this approach, each
classifier in the chain determines when, where, what, and
how much of each stream data object (SDO) to discard and
what to pass to the next classifier in the chain to reach the
desired quality of service (QoS) and meet the delay con-
straints. This approach can cause a significant volume of

Received: 21 January 2019 / Accepted: 6 May 2019 / Published online: 18 May 2019

 *  Abtin Shahkarami, abtinshahkarami@alumni.ut.ac.ir | 1Department of Network Science, Faculty of New Sciences and Technologies,
University of Tehran, Tehran, Iran. 2Henry Samueli School of Engineering, University of California, Irvine, Irvine, USA.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-019-0565-6&domain=pdf
http://orcid.org/0000-0001-6588-6015
http://orcid.org/0000-0001-5494-3926
http://orcid.org/0000-0001-7216-0546

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6

data streams to be shed prior to reaching the next classifiers
in the chain, resulting in a much less computational burden
on the successive classifiers [23–30]. However, optimizing
each classifier individually without a joint consideration of
misclassification error effects and resource constraints at
possibly multiple downstream classifiers in the chain may
lead to a high sub-optimality and cause the end-to-end
processing delay for a chain of classifiers to become intol-
erable for real-time applications [1, 31, 32]. As a result, the
optimal topology must be based on a joint optimization
over the configuration of all classifiers operating points (i.e.,
ordered pair of the probability of false alarm and detection),
while observing delay and resource constraints [1, 33–37].
This concept is similar to [5] where a utility metric for real-
time stream processing applications is introduced, which
captures the trade-offs between classification accuracy
and end-to-end delay of the filtered stream. The algorithm
configures each classifier by choosing an operating point
to control its performance and throughput to maximize the
utility metric in each period. However, the approach in [5]
considers a fixed configuration for the ensemble in each
interval based upon the defined utility metric in the paper.
Thus, the ensemble treats all the incoming data streams
from different sources with a common ensemble configu-
ration in each interval. This issue, in applications where the
importance and specifications of data streams are differ-
ent from each other, can lead to non-optimality because
the set thresholds of classifiers may be aggressive for some
sources and permissive for some others. Hence, many of the
data streams may not receive the desired quality of service,
which makes them useless in consequence, whereas an
approach can be adopted such that the ensemble processes
each data stream optimally by the topology configuration
that is specifically set for that data stream. In this paper,
we propose such an approach for cascaded topologies, an
approach in which the ensemble treats each SDO by the
required optimal topology configuration of the SDO.

In this paper, we first introduce a utility metric for the
single-path–single-source case. We discuss a method for
decomposing the utility function into a set of locally observ-
able metrics that can be calculated directly by each classifier
(similar to what is proposed in [5]). Each classifier can then
exchange these metrics with other classifiers to compute
the utility of the entire system for any fixed configuration
of classifiers, thereby configuring itself by choosing the
proper operating point, which controls its performance and
throughput in order to maximize the utility of the entire sys-
tem. Next, we extend our solution to the single-path–mul-
tiple-source case by implementing a buffer for each source
at the ensemble side and using a time-sharing approach for
serving accumulated SDOs in their buffers periodically. We
then extend our approach to the most general case, which
is multiple-path–multiple-source.

Note that in this paper we do not modify the underlying
classification scheme, but rather focus on configuring oper-
ating points of individual classifiers in a fixed processing
sequence. This allows the designed algorithms to be applicable
to any available type of underlying classification algorithms
(e.g., support vector machines, k-nearest neighbors, maximum
likelihood, etc.). The paper is organized as follows: In Sect. 2
we discuss our model for cascaded topologies of distributed
stream processing systems. In this section we also derive a util-
ity function for capturing the performance of the ensemble
in mining a single stream. Then we propose a framework for
the single-path–single-source case in Sect. 3. In Sects. 4 and 5,
we extend the framework to the single-path–multiple-source
and the multiple-path–multiple-source cases, respectively. In
Sect. 6 we provide and compare the implementation results
of our approach and the state-of-the-art approach for a text
detection scenario in incoming video streams from different
sources. Finally, we conclude the paper in Sect. 7.

2 � Distributed stream mining system model

2.1 � Binary classification

In a binary cascaded classifier topology, as shown in Fig. 1,
each classifier Ci classifies each incoming SDO as belonging
to the class of interest, Hi (positive class), or not belonging
to the class of interest, i.e., belonging to the negative class,
Hi  . If an SDO is labeled as belonging to Hi by classifier Ci , it
is forwarded to the next classifier in the chain; otherwise, it
is dropped from the stream. As a result, SDOs which reach
the last classifier in the chain are labeled as positive in all
of the previous classifiers in the chain. If we denote the
classification decision of classifier Ci by X̂i and the ground
truth by Xi , then the probability of detection which deter-
mines the proportion of correctly forwarded samples is
PD
i
= Pr

{
X̂i ∈ Hi

||Xi ∈ Hi

}
 , and the probability of false alarm

which determines the proportion of incorrectly forwarded
samples is PF

i
= Pr

{
X̂i ∈ Hi

||Xi ∉ Hi

}
 . Therefore, the proba-

bility of forwarding an SDO to the next classifier in the chain
by classifier Ci , if the SDO has a priori probability (APP) �i of
being positive, can be given by:

Also, the probability of correctly forwarding an SDO to the
next classifier in the chain would be equal to:

If we assume that each classifier operates at a fixed com-
plexity level, �i and �i can become deterministic function
of PF

i
 by using the APP �i , and the detection error trade-off

(DET) curve of the classifier, which is concave and increas-
ing and relates PD

i
 to PF

i
 ( PD

i
= f

(
PF
i

)
 ) [30, 38, 39]. Therefore,

(1)�i = �iP
D
i
+
(
1 − �i

)
PF
i
.

(2)�i = �iP
D
i
.

Vol.:(0123456789)

SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6	 Research Article

each classifier can be configured by varying its false alarm
constraint in order to maximize utility of the system.

2.2 � Cascaded classifier model

In this paper, we model the ensemble of the classifiers as
a D/G/1 queuing facility. Also each classifier Ci can itself be
modeled as G/G/1 queuing facility followed by stream fil-
tering and splitting operations. Each SDO is forwarded by
classifier Ci to the next classifier with the probability �i and
is discarded with the probability 1 −�i . For classifier Ci, the
total SDO input rate and the average output rate are
denoted by �i and �i , respectively. Also the input and out-
put rate of the whole ensemble are denoted by � and � ,
respectively. The set of previous-hop and next-hop neigh-
bors of classifier Ci are, respectively, denoted by prev(i) and
next(i) . The ancestors of classifier Ci are defined as the clas-
sifiers which have path to Ci and are denote by anc(i) . Simi-
larly, descendants of classifier Ci are defined as the set of
classifiers which Ci have path to, and are denoted by des(i) .
We denote arrival rate from Cy ∈ prev(i) to Ci by �i

y
 ; there-

fore,
∑

y∈prev(i) �
i
y
= �i . If classifier Ci forwards an SDO, the

probability of choosing Cx ∈ next(i) is denoted by �x
i
 , so ∑

x∈next(i) �
x
i
= 1 and therefore �i

y
= �x

i
�i�i.

2.3 � Objective function for mining a stream

The objective of mining a stream data object is to mini-
mize misclassification cost, subject to an end-to-end
delay constraint, which leads to an optimization prob-
lem. Misclassification cost consists of two types of errors
in classification task, which are false alarms and misses.
(Misses are those SDOs which are actually in the class
of interest but not detected as belonging to the class of
interest by the classifier.) Hence, misclassification cost
of classifying an SDO by classifier Ci can be given by

 , where �i and �i are specific
to the data stream of the SDO. �i − �i and �i − �i specify
the fractions of misses and false alarms, respectively, and
� denotes the weight of false alarms to misses. Therefore,

the end-to-end misclassification cost of classifying an SDO
by a single-path chain of classifiers, labeled from 1 to n ,
can be given by:

where
∏n

i=1
�i is the total fraction of forwarded SDOs and ∏n

i=1
�i is the total fraction of correctly forwarded SDOs.

Because the parameter � in (3) depends just upon stream
characteristics, it can be regarded as a constant and be
omitted. Therefore, it is possible to produce a utility func-
tion for the system classification performance by removing
� and inverting (3), which results in:

In real-time stream mining applications, there is also a
delay penalty in SDOs classification process. This type of
penalty captures the loss of utility due to the volume of
SDOs which have not been processed in the specified hard
deadline � . Hard deadline � is the time limit from where
if the processing delay of an SDO (from capturing to com-
ing its final result out of the ensemble) cross, its result will
not be useful anymore and it can be considered as a miss
(considering a hard delay deadline is common in most of
the embedded real-time systems [40–43]). Hence, a func-
tion �(�) must be defined to estimate the proportion of
SDOs whose processing delays (from capturing) have
not crossed the hard deadline [31, 32, 44]. Trivially, this
function can be given by �(�) = Pr{� ≤ �} , which is the
probability of the processing delay of a processed SDO
(from capturing) that has not exceeded the hard deadline.
Hence, it captures the fraction of data that is useful for
the system. In practice, this probability can be obtained by
time stamping the SDO packets and calculating the frac-
tion of processed SDOs which have crossed the deadline.
Also, alternatively, it can be estimated analytically if an
exact model (e.g., D/M/1) for the arrival and service times

(3)

(4)U =
n∏
i=1

�i − �

�
n∏
i=1

�i −
n∏
i=1

�i

�

Fig. 1   A cascaded single-path topology [5]

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6

is used. By combination of system classification perfor-
mance utility and delay penalty, a single objective function
U.�(�) can be achieved, which satisfies the concept of fair-
ness between accuracy and delay implemented by Nash
product [5, 45]. Therefore, if we consider the general form
for the ensemble of classifiers, i.e., multi-path topology,
the objective function which the system must attempt to
maximize by configuring each classifier false alarm prob-
ability will be as follows [5]:

where PF =
{
PF
1
,… , PF

N

}
 is the set of false alarm probabil-

ities of all classifiers, � is the set of all end-to-end path
selection probabilities, �r is the probability of choosing
the end-to-end path r , and �r is the expected end-to-end
delay across the path r . Also i ∈ r means classifier Ci is a
classifier along the path r.

In the following sections, we discuss what needs to be
done to maximize �

(
PF ,�

)
 for cascaded topologies in dif-

ferent scenarios. We first propose a distributed framework
for the single-path–single-source case (a case where the
ensemble has just one end-to-end path and there is only
one source which is sending data). Then we extend our
approach step by step to reach the solution for the most
general case, which is multiple-path–multiple-source
(the case where there are several end-to-end paths in the
ensemble and also there are multiple sources which are
sending data to the ensemble).

3 � Distributed approach for single‑path–
single‑source case

3.1 � Fundamentals of the solution

In single-path–single-source case, there is only one path;
hence, the objective function for this case is:

(5)

�
(
PF ,�

)
=
∑
r

�r�
(
�r
)
×

(∏
i∈r

�i − �

(∏
i∈r

�i −
∏
i∈r

�i

))

s.t 0 ≤ PF
i
≤ 1∑

r

�r = 1, �r ≥ 0

(6)
�
(
PF
)
= �(�) ×

(
n∏
i=1

�i − �

(
n∏
i=1

�i −

n∏
i=1

�i

))

s.t 0 ≤ PF
i
≤ 1

which is obtained from (5).
The specifications and characteristics of data streams

change over time (e.g., getting day and night or getting
more and less important). This causes APPs and � of the data
stream to be changed dynamically. These dynamic changes
also cause the current configuration of the ensemble to lose
its optimality during the time and require to be updated
dynamically. To cope effectively with this event, the time
needs to be split into smaller intervals. Before each interval,
APPs and � of the data stream should be updated. Then, a
new configuration should be adopted in each new interval
based upon the updated APPs and � , such that for each clas-
sifier Ci the following condition is met [5]:

where �t+1
(
PF
)
 means the achieved utility in t + 1 th inter-

val and PF
i
(t) is the configuration that is adopted by Ci at

time t .

FrameworkFramework 1 Distributed framework for single-path-single-
source case

InitializeInitialize the configuration for each classifier and
exchange initial APPs across all classifiers

Repeat at the beginning of each interval
1. Make each classifier update its APP based upon
extrapolating from actual values of input data in previous
intervals or by using a model (e.g., multivariate Gaussian
model)
2. Update by using observed end-to-end delays of the
processed SDOs in the previous intervals
3. Update
4. Make each classifier exchange its and of the
interval , with other classifiers to obtain an
approximation of ().
5. Make each classifier configure its operating point based
upon theoretical analysis, empirical analysis, modeling, etc.,
such that .

Initialize

RepeatRepeat

Framework

3.2 � Framework for single‑path–single‑source case

Because classifiers are distributed, none of them has
enough information on its own to configure its oper-
ating point to maximize (6), due to the need of other
classifier APPs and operating points. But each classifier
can estimate its own APP and knows its own current
operating point. As a result, for every parameter in (6),
there exists a classifier which has access to it and knows

(7)PF
i
(t) = argmax

PF
i

E
[
�t+1

(
PF
)]

Vol.:(0123456789)

SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6	 Research Article

its value. Therefore, by exchanging these parameters
across all the classifiers and using updated � and �(�) ,
each classifier can determine its own configuration for
the upcoming interval to maximize the defined objec-
tive function. Therefore, based on the foregoing, we
can propose Framework 1 as our approach for single-
path–single-source case.

In the following section, we will extend Framework 1
to a framework which can support the case where several
sources are sending data streams (these streams can have
different importance and characteristics from each other)
simultaneously to the ensemble. We will then provide the
implementation results of the approach in Sect. 6.

4 � Distributed approach for single‑path–
multiple‑source case

In most stream mining applications, there is more than
one source which sends data stream to the ensemble
(e.g., video surveillance system of a city). In some of these
systems, different sources have different specifications
and importance from each other. For example, in a city
video surveillance system, the importance of a data stream
from a camera in an important square is not identical to a
camera in an ordinary alley. Furthermore, the importance
of the data stream from a camera in a location may be
increased greatly in some periods of time. Also, character-
istics of data streams from different sources can be differ-
ent from each other (e.g., some are captured at dark and
some others in light scenes). These differences cause each
data stream to have its own APPs, weight of false alarm to

misses ( � ), and required thresholds for classification tasks.
Even, different classification algorithms may be required
to be applied for some sources. Hence, it is not optimal to
mine all the incoming data streams from different sources
identically by a common topology configuration.

In order to preserve QoS, each data stream should be
mined by its own specific required configuration. In this
section, we propose a time-sharing approach for solving
this issue, such that a specific queue is implemented for
each source (in this paper we assume that these queues
are implemented at the ensemble side) at where the SDOs
are buffered. Then the ensemble dedicates an amount of
time periodically to each queue to discharge and mine
SDOs inside it. We define a cycle as a repeating time inter-
val during which all the queues get service once from the
ensemble. We also call the part of a cycle when a queue
is getting service, as the queue’s turn in the cycle. In a
queue’s turn, the SDOs inside the queue are discharged
and processed by consideration of their source’s specific
�i , Ωi , � , APPs and �(�) . That is to say, they are processed by
their specific needed topology configuration. (An illustra-
tion of this approach is shown in Fig. 2.)

We model each buffer as a queue with FIFO discipline
where the input rate is constant and deterministic. Also
during the emptying periods, the queue obeys D/D/1
model. (Note that we have modeled the ensemble of clas-
sifiers as a D/G/1 queue facility which allows the SDOs to
enter the ensemble deterministically.) In this approach,
choosing the optimal amount of time ( T ∗), dedicated to
each queue in order to process accumulated SDOs inside
it, is the most important concept that we must investigate.
In order to solve this problem, we first consider the case

Fig. 2   An illustration of our proposed approach. In this approach, SDOs sent from a source are buffered in their specific queue, first. Then
they are discharged periodically and processed by the corresponding optimal topology configuration of their source

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6

where source acquisition rates and the required classifica-
tion algorithms are fixed and identical for all the sources.
Then, we solve the problem for the case where sources can
have adaptive acquisition rates or different classification
algorithms can be applied on their streams. Table 1 lists
new parameters that we will use in this section.

4.1 � Fix and identical source acquisition rates case

When acquisition rates of all the sources are equal to each
other, there would be an identical number of accumulated
SDOs in each queue at the beginning of their turn. There-
fore, the amounts of time that the system should dedicate
to each queue would be identical to each other. Hence,
T1 = T2 = T3 = ⋯ = TN = T .

The time a queue has to wait for getting its turn only
just after the end of its passed turn is:

where � is the expected amount of time that the result of
the last SDO in the queue comes out from the ensemble
after entering to it. Also c is the required amount of time
for switching to servicing the next queue and adopting a
new configuration for it. Note that because we assumed
the queues are placed at the ensemble side, the transmis-
sion rate from queue to the ensemble can be neglected.

We define � = (� + c) and � = � + T . Therefore, if we ded-
icate time T to each queue, the number of received SDOs by
the queue from end of a turn until the end of its next turn
would approximately be equal to:

Trivially, all the accumulated SDOs inside a queue must
be discharged from the queue in its turn. Otherwise, the
queue will overflow after some cycles. Hence, the follow-
ing condition must be met:

(8)QWT ≅ (� + c) + (N − 1)(T + � + c)

(9)NAS ≅ [� + (N − 1)� + T]�.

where � is equal to the queue discharge rate. Hence,

Because all the parameters in (11) are greater than zero,
we would have N𝜂 𝛼

𝜆
> 0 . Hence,

Therefore, in the design process of the stream mining sys-
tems, the condition in (12) has to be considered and met.
Also note that, when adjusting � , the condition � ≥ � must
hold in order for the average delay to be finite; otherwise,
the utility is always 0 [5]. Hence, if the condition in (12) is
satisfied, by (11) we get:

Therefore, (13) determines the lower bound of the domain
of T, which is the minimum value T can have. Also, it must
be considered that the chosen T should not cause the
end-to-end delay of any SDOs to exceed the deadline
Δ , in theory. (It is obvious that Δ is equal to � minus the
expected value of the time that an SDO arrives at its queue
after capturing.) For satisfying this condition, we split the
incoming SDOs into the two following groups:

•	 SDOs which arrive at their queues when it is not their
queues’ turn;

•	 SDOs which arrive at their queues when it is their queues’
turn.

(10)T ≥
[� + (N − 1)� + T]�

�
= N�

�

�
= N�

�

�
+ NT

�

�

(11)T − TN
�

�
≥ N�

�

�
⇒ T

(
1 − N

�

�

)
≥ N�

�

�
.

(12)1 − N
𝛼

𝜆
> 0 ⇒ N𝛼 < 𝜆 ⇒ N <

𝜆

𝛼
.

(13)T ≥
(N��∕�)(
1 − N

�

�

) =
N��

� − N�
.

Table 1   Descriptions of some of the parameters in the paper

Parameter Description Unit

�
i

Acquisition rate of source i SDOs/s
� Queue discharge rate SDOs/s
� Output rate of the ensemble SDOs/s
� Expected value of end-to-end processing delay of the ensemble s
Δ Maximum acceptable end-to-end delay (deadline) for an SDO from entering the queue to coming its result

out of the ensemble
s

N Number of sources N/A
T
i

Dedicated amount of time to the queue of source i to serve its SDOs s
c Time needed for switching from serving one queue to the next one and setting new configuration s

Vol.:(0123456789)

SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6	 Research Article

We find upper bound of T for each of these groups.

1.	 SDOs which arrive at their queues when it is not their
queues’ turn:

In this case, the total delay (from entering to the queue to
coming its result out of the ensemble) of the first SDO which
arrives at its queue after the queue’s passed turn is:

where 1∕� is the time taken for discharging the SDO from
the queue, � is expected value of the ensemble end-to-
end processing delay for the SDO, and 1∕� is the approxi-
mated amount of time that the SDO arrives after the end
of the passed queue’s turn. Also, � , as defined earlier, is the
time it takes from end of the just past queue’s turn to the
beginning of the next queue’s turn. Now, if we consider
i  th arrived SDO, there exist i − 1 SDOs in front of it in the
queue, which require (i − 1)∕� seconds to be discharged.
Also, ith SDO is approximately arrived at i∕� seconds after
the end of its queue’s turn. Therefore, the total delay of ith
SDO from entering to the queue to coming its result out
of the ensemble is:

Because for each i  , it must be D(i) ≤ Δ , the following con-
dition must be satisfied:

Hence, it must be T ≤ minU(i) . For finding minU(i) , we dif-
ferentiate U with respect to i  . We have

Because 𝛼 < 𝜆 (otherwise, overflow will happen), it would
be 𝜕U∕𝜕i > 0 . Hence, U is strictly increasing and meets
its minimum at the lower bound of its domain, i.e., i = 1 .
Hence,

By (13) and (18) we have:

(14)D(1) ≅ � + (N − 1)� −
1

�
+

1

�
+ �

(15)
D(i) ≅ � + (N − 1)� −

i

�
+

i − 1

�
+

1

�
+ �

= � + (N − 1)� − i

(
1

�
−

1

�

)
+ �.

(16)T ≤ U(i) =
[
Δ + i

(
1

�
−

1

�

)
− � − N�

]
×

1

N−1
.

(17)
�U

�i
=

1

N−1

(
1

�
−

1

�

)
.

(18)T ≤

[
Δ +

(
1

�
−

1

�

)
− � − N�

]
×

1

N−1
.

(19)
N��

�−N�
≤

[
Δ +

(
1

�
−

1

�

)
− � − N�

]
×

1

N−1

which results in:

Therefore, the condition in (20) must be considered to be
satisfied all the time.

Note that, if we denote the left-hand side of (20) by
M, it is trivial that M will increase by increasing Δ . Also
𝜕M∕𝜕𝛼 = (−1)∕𝛼2 − N𝜂𝜆(N − 1)∕(𝜆 − N𝛼)2 < 0 . Hence, M
will increase by decreasing �.

2.	 SDOs which arrive at their queues when it is their
queues’ turn:

When an SDO arrives at its queue after t seconds from
the beginning of its current queue’s turn, t� SDOs will
have been discharged since the beginning of the turn.
Also, t� new SDOs will have arrived at the queue. Hence,
the number of accumulated SDOs in the queue after t
seconds would be equal to:

where [(N − 1)� + �]� is the number of SDOs inside the
queue at t = 0.

If we differentiate function A with respect to t  , we
would have 𝜕A∕𝜕t = −(𝜆 − 𝛼) < 0 . Therefore, function A
is strictly decreasing. Hence, it meets its maximum at
the lower bound of its domain, which is t = 0 . Therefore,
the maximum possible number of SDOs in front of an
incoming SDO during a turn is A(0).

The system should be designed such that the total
delay of the SDO coming at t = 0 (from entering the
queue to coming its result out of the ensemble) does
not exceed the deadline. Hence, the following condition
must be satisfied:

which results in:

By (13) and (23), the following condition must be satisfied:

Therefore, stream mining systems should be designed
such that the following condition is met:

(20)Δ +
1

�
+ c − (N + 1)� −

N��(N−1)

�−N�
≥ 0.

(21)
A(t) = [(N − 1)� + �]� − t� + t� = [(N − 1)� + �]� − t(� − �)

(22)
[(N−1)�+�]�

�
+

1

�
+ � ≤ Δ

(23)T ≤
(Δ−�)�−N��−1

(N−1)�
.

(24)
N��

�−N�
≤

(Δ−�)�−N��−1

(N−1)�
.

(25)
(Δ−�)�−N��−1

(N−1)�
−

N��

�−N�
≥ 0.

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6

Note that, if we denote the left-hand side of (25) by M and
differentiate it with the respect to � , we have:

Hence, M will increase by decreasing � . Also, we have
𝜕M∕𝜕Δ = 𝜆∕(N − 1)𝛼 > 0 . Hence, M will increase by
increasing Δ.

Therefore, by (13), (18), and (23), the range of T is
derived as follows:

Various objectives can be considered for choosing the
best T in its range, which are ultimately the designer’s
choice. But to highlight possible approaches, in this paper,
we assume that the best T is the one which minimizes the
expected value of the total delay of an SDO from enter-
ing its queue to coming its result out of the ensemble. For
this purpose, once more, we consider the two groups of
SDOs we discussed earlier, and find the solution for each
of them. Then we will achieve the general optimal T by
combining the results.

1.	 SDOs which arrive at their queue when it is not their
queues’ turn:

For this group of SDOs, if we denote the total delay of
ith arrived SDO, from entering the queue to coming its
result out of the ensemble, by D(i) , the optimal T is the one
that maximizes D(E[i]).

Because the number of arrived SDOs at a queue during
the end of its just past turn and the beginning of its next turn
is [� + (N − 1)�]� , the expected value of i is:

By (15), we have:

(26)
𝜕M

𝜕𝛼
=

−[(Δ−𝜎)𝜆−1](N−1)

((N−1)𝛼)2
−

N𝜂(𝜆−N𝛼)−N𝜂𝛼(−N)

(𝜆−N𝛼)2
< 0.

(27)

T ∈

[
N��

� − N�
, min

([
Δ +

(
1

�
−

1

�

)
− � − N�

]

×
1

N − 1
,
(Δ − �)� − N�� − 1

(N − 1)�

)]
.

(28)
E[i] =

∑
iPr(i) =

�(N�+(N−1)T)∑
i=1

i
1

�(N� + (N − 1)T)

=
�(N� + (N − 1)T) + 1

2
.

(29)

D(E[i]) ≅ � + (N − 1)� −
�(N� + (N − 1)T) + 1

2

(
1

�
−

1

�

)
+

1

�

=
(N� + (N − 1)T)

2
−

1

2�
+

1

�

[
�(N� + (N − 1)T) + 1

2

]
+

1

�
.

Now, we have:

Hence, D is strictly increasing with respect to T and meets
its minimum at the lower bound of the domain of T. There-
fore, the optimal T for this group of SDOs is:

2.	 SDOs which arrive at their queues when it is their
queues’ turn

If an SDO arrives at second t after starting its queue’s turn
( t ≤ T  ), the total delay of the SDO from entering the queue
to coming its result out of the ensemble, by (21), would be:

The optimal T is the one that minimizes K (E[t]) . Because
SDOs are captured at a specific rate (i.e., every 1∕� sec-
onds), the incoming arrival time of SDOs obeys a uniform
distribution, so E[t] = T∕2 . Hence, we have

If [(N − 1)T + N�]� − (T∕2)(� − �) ≥ 0 , then the differen-
tiation of (33) with respect to the parameter T would be
as follows:

As a result:

hence, K (E[t]) would be increasing with respect to T, if
�∕� ≤ 2N − 1 . Therefore, K (E[t]) would meet its minimum
at lower bound of domain of T which is N��

�−N�
 , by (13). Also,

hence, K (E[t]) will be strictly decreasing with respect to
T, if 𝜆∕𝛼 > 2N − 1 . Therefore, K (E[t]) would meet its mini-
mum at the upper bound of the domain of T, and inversely,
upper bound of T is the value which minimizes K (E[t]) . The
minimum of K (E[t]) occurs when

(30)
𝜕D(E[i])

𝜕T
=

N−1

2
+

𝛼(N−1)

2𝜆
> 0.

(31)T ∗ =
N��

�−N�
.

(32)K (t) = max
(

[(N−1)T+N�]�−t(�−�)

�
, 0
)
+ �.

(33)K (E[t]) = max

(
[(N−1)T+N�]�−

(
T

2

)
(�−�)

�
, 0

)
+ �.

(34)
�K (E[t])

�T
=

(N−1)�

�
−

1

2

(
1 −

�

�

)
=

�

�

(
N −

1

2

)
−

1

2
.

(35)
�

�
≤ 2N − 1 ⇒

�K (E[t])

�T
≥ 0 ;

(36)
𝜆

𝛼
> 2N − 1 ⇒

𝜕K (E[t])

𝜕T
< 0 ;

(37)[(N − 1)T + N�]� −
(

T

2

)
(� − �) = 0

Vol.:(0123456789)

SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6	 Research Article

which results in T = 2N��∕(� − (2N − 1)�) . Therefore,
when 𝜆∕𝛼 > 2N − 1 , for the group of SDOs which arrive
during the beginning and end of their queues’ turn, the
optimal T is 2N��∕(� − (2N − 1)�).

Also if [(N − 1)T + N𝜂]𝛼 − (T∕2)(𝜆 − 𝛼) < 0 , then the
function becomes constant. As a result, the output of the
all values in the domain of T is optimal. Hence, we can
again consider if �∕� ≤ 2N − 1 the optimal T is N��

�−N�
 and if

𝜆∕𝛼 > 2N − 1 the optimal T is 2N��∕(� − (2N − 1)�).
Now the question is, What is the optimal T, when

𝜆∕𝛼 > 2N − 1 , since, for the group of SDOs which arrive
at their queues’ turn, the optimal T is N��∕(� − N�) , and
for the group of SDOs which arrive during the begin-
ning and end of their queues’ turn, the optimal T is
2N��∕(� − (2N − 1)�) ? To solve this question a bargain-
ing problem is formed where the wealth of the first group
is �Pr times more than the wealth of the second group ( �Pr
is the ratio of the probability that an arrived SDO belongs
to the first group, to the probability of belonging to the
second group). The two parties should finally agree on a
common T which we call Taggred and is equal to:

where

Function P is a cost function which determines the cost of
deviation from choosing the optimal T for an SDO. By the
Nash bargaining problem [45], T ∗ = Taggred.

In a cycle, the proportion of the times at when if an
SDO arrives it is placed in the first group, to the times at
when if an SDO arrives it is placed in the second group, is

(38)Taggred = argmin
T∈

[
N��

�−N�
,

2N��

�−(2N−1)�

] (T)

(39)

(T) = �Pr × P

(
T −

N��

� − N�

)
+ P

(
T −

2N��

� − (2N − 1)�

)
.

N − 1 to one. Therefore, in a modest approach, it can be
assumed that �Pr = N − 1. (Note that this is not an accu-
rate approach at all.) Also, in almost all of non-extraordi-
nary conditions, because there is no distinction between
SDOs, the cost of any deviation from the interest would be
equal for all the SDOs. Hence, if we take one step closer to
one SDO’s interest in the second group, we will get one
step farther from N − 1 SDOs’ interest in the first group.
Therefore, although we achieve 1 point we will lose N − 1
points. Thus, in almost all of non-extraordinary conditions,
Taggred =

N��

�−N�
.

In conclusion, in this subsection, we discussed how
to extend the approach for single-path–single-source
case to a single-path–multiple-source case where source
acquisition rates are fixed and identical. We also discussed
the conditions that must be considered to be satisfied in
designing process of stream mining systems. We can sum-
marize our discussion in this subsection as Framework 2.
Indeed, this framework proposes our approach for a sin-
gle-path–multiple-source case where source acquisition
rates are fixed and identical.

In the following subsection, we will extend Framework
2 to an approach for the case where sources can have
adaptive acquisition rates, in order to cope with the stream
importance and specification dynamics. We will then rep-
resent the implementation results of the approach in
Sect. 6.

4.2 � Adaptive source acquisition rates case

In the previous subsection, we proposed an approach
for fixed and identical source acquisition rates, but as we
mentioned earlier, the importance and characteristics of
different data streams change dynamically during the
time.

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6

FrameworkFrameworkFrameworkFramework 2222 Distributed framework for the single-path-
multiple-source case

SatisfySatisfySatisfySatisfy all the following conditions regularly:

-

-

-

InitializeInitializeInitializelize , and the configuration of each source
for each classifier and exchange initial APPs of all sources
across all the classifiers

RepeatRepeatRepeatRepeat at the beginning of each iteration (time is
split into smaller intervals called iteration)

1. Make each classifier updates its APPs, based upon extra-
polating from actual values of the input data in the previous
intervals or by using a model (e.g., multivariate Gaussian
model)
2. Update and of each source by using the observed
end-to-end delays of the processed SDOs in the previous
intervals
3. Update of each source
4. Update by the following function:

5. Make each classifier exchange corresponding and
of each source in the interval , with other

classifiers to obtain an approximation of () for each
source.
6. Make each classifier configure its operating point (based
upon theoretical analysis, empirical analysis, modeling,
etc.), at the beginning of each source’s turns, such that

, where all the parameters
are specific to the source.

These changes may cause the required acquisition
rates for some sources to be increased. Even, it is prob-
able that the classification algorithms for data streams
coming from them need to be replaced. In this case, the
aforementioned dedicated amount of time for serving
accumulated SDOs inside these source queues would
not be sufficient, and it needs to be increased. We denote
the amount of time that is needed to be increased for
source i by ΔTi . For example, if the acquisition rate
of source i was to increase m times, we would have
ΔTi =

N�m�

�−Nm�
−

N��

�−N�
 . This leads the total required amount

of time which must be dedicated to other sources for
serving their accumulated SDOs to be decreased by
ΔT  , to preserve the overall sustainability of the system.
Hence, the main challenge is how to reduce this amount
from dedicated times to other sources in an optimal
way. This time reduction can be done by either chang-
ing the classification algorithms, or by reducing source

acquisition rates. However, changing the classification
algorithms (if it is possible) is not reasonable and has a
significant cost, due to spoiling the previous learnings.
Therefore, in the following, we will focus on reducing the
acquisition rates of the sources in an optimal way.

If we increase dedicated amount of time to a source,
two types of penalties will be incurred by other sources:
(1) loss of details penalty and (2) additional delay penalty.

1.	 Loss of details penalty

If we decrease the acquisition rate of a source to com-
pensate an increase in the dedicated amount of time
to another source, some details at the location of the
source would not be captured and sent by the source,
which causes a penalty. For capturing this penalty we
first define the details loss function and denote it by
� ∶ ℝ → ℝ . This function determines what will be the
amount of details loss by m% decrease in source acqui-
sition rate. Because the natures of data streams are
the same (e.g., video of a location), this function is the
same for all of the sources and gives output regardless
of the source. But sources have different importance,
so a certain decrease in source acquisition rate for dif-
ferent sources would not bring about equal costs. We
denote the function that determines the importance of a
source by  ∶ ℕ → ℝ . Therefore, the cost function of m%
decrease in acquisition rate of source i can be given by

2.	 Extra delay penalty

If dedicated amount of time to a source is increased
by ΔT  , the SDOs inside the queues of the other sources
would wait more, as well. This has a cost and causes the
function �(�) to output a smaller value for all or some of
the sources. We define 𝜓 c

(
𝜏i
)
= 1 − 𝜓

(
𝜏i
)
= Pr{𝜏i > 𝛬} ,

where �i indicates the specific � for source i  . Therefore,
the larger the Δ� c(�) , the more the information in the
data streams of source i will be lost ( Δ� c

(
�i
)
 means the

difference between � c
(
�i
)
 of the source i  , before and

after dedicating an additional time to the other source).
Hence, Δ� c(�) can be considered as a metric for cost of
incurred additional delays.

Therefore, the cost of decreasing the acquisition rate
of source i by m% , to compensate the increase in dedi-
cated amount of time to another source, can be given by
�(i,m).

∑N

i=1
((i)Δ� c

�
�i
�
)2 . Also, if the acquisition rates

of a number of sources are changed, the cost function
can be given by the following:

(40)�(i,m) = (i)�(m).

Vol.:(0123456789)

SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6	 Research Article

where M = ⟨m1,m2,… ,mN⟩ is the vector of the amounts
of decrease (by percentage) in acquisition rates of the
sources. For example, when we just decrease the acquisi-
tion rate of source i by mi% , it is M = ⟨0, 0,… ,mi ,… , 0⟩ .
Hence, if the dedicated amount of time to a source is
required to be increased by ΔT  , we must find and apply
the optimal M , which can be expressed as:

where

Intuitively, (M) determines how much of ΔT is compen-
sated by the chosen M.

Note that the case of non-equal acquisition rates for
the sources from the beginning can easily be modeled by
assuming that changes occur at t = 0.

Therefore, by what we proposed in this subsection, we
can extend our approach in the previous subsection to the
adaptive source acquisition rate case and complete our
approach for single-path–single-source cases.

5 � Distributed approach for multiple‑path–
multiple‑source case

In the previous section, we proposed our approaches for
single-path cases. But, in most of the stream mining sys-
tems, there are several replicated classifiers in the ensem-
ble for each classification task, to increase the system
robustness, consistency, reliability, speed, etc. [46–49].
This causes several end-to-end paths to be created in the
ensemble. In this section, we will discuss how to extend
the approach in the previous section to multiple-path
topologies.

5.1 � Discussion on extending the previous approach
to multiple‑path case

As we discussed in Sect. 4, multiple-source case requires
a time-sharing approach for entering captured and buff-
ered SDOs into the ensemble. Our proposed time-sharing
approach in the previous section would not be changed

(41)(M) =

(
N∏
i=1

�
(
i,mi

))
×

N∑
i=1

((i)Δ� c
(
�i
)
)2

(42)M∗ = argmin
M

(M) s.t R(M∗) = 0

(43)(M) =
(N�)

�
MT ⟨�⟩�

� − N
�
MT ⟨�⟩� − ΔT .

for multiple-path case, because multiple-path concept
is an in-ensemble issue, and we consider the ensemble
as a whole and only consider end-to-end parameters of
the ensemble (e.g., � , which is the expected end-to-end
processing delay of the ensemble). Hence, the only thing
that needs to be changed is the way of determining the
configuration of classifiers for each turn at the begin-
ning of iteration. Therefore, if the approach in Sect. 3 is
extended to multiple-path case, the approach in IV can
easily be extended to multiple-path case, as well. This
is done by changing the method of steps 5 and 6 in the
repeat section of Framework 2, to the method in the fol-
lowing subsection.

5.2 � Ensemble configuration mechanism
in multiple‑path case

By extending (5), we have

Now, if we consider an arbitrary classifier Ci in the ensem-
ble, we can rewrite (44) based on Ci as follows [5]:

where sib(i) is the set of classifiers that perform the same
classification task as Ci , in the ensemble,

(44)

�
�
PF ,�

�
=
�
r

�r�(�) ×

��
i∈r

�i − �

��
i∈r

�i −
�
i∈r

�i

��

=
∑
r

�r�(�) ×

�
(1 + �)

∏
i∈r

�i − �
∏
i∈r

�i

�
.

(45)�
�
PF ,�

�
= �(�).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + �)
∑

j∈sib(i)∪{i}

�
j

0

�
PF
0,j
,�

j

0

�

×
∑

y∈next(j)

�
y

j
�N

y

�
PF
y,N

,�N
y

�

−�
∑

j∈sib(i)∪{i}

�
j

0

�
PF
0,j
,�

j

0

�

×
∑

y∈next(j)

�
y

j
�N

y

�
PF
y,N

,�N
y

�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

�
j

0

(
PF
0,j
,�

j

0

)
=
(
�j
) ∑
vanc(j)

�vanc(j)

(
n∏

x∈anc(j)

�x

)

�
j

0

(
PF
0,j
,�

j

0

)
=
(
�j

) ∑
vanc(j)

�vanc(j)

(
n∏

x∈anc(j)

�x

)

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6

and

Hence, if local parameters and path selection probabilities
of each classifier are exchanged with all the other classi-
fiers, each classifier can adjust its operating point to maxi-
mize the objective function. However, there is no need of
exchanging parameters with all the other classifiers, which
has an information exchange overhead of O

(
N2

)
 , because

each classifier only needs the product of the parameters
of its ancestors and descendants. Therefore, by using for-
ward propagation of products with the following recursive
formula:

and backward propagation of products with the following
recursive formula:

information exchange overhead can be reduced to O(dN) ,
where d is the average of out-degree/in-degree of the clas-
sifier nodes.

(47)

�N
y

(
PF
j,N
,�N

y

)
=
(
�y
) ∑
vdes(y)

�vdes(y)

(
n∏

z∈des(y)

�z

)

�N
y

(
PF
y,N

,�N
y

)
=
(
�y

) ∑
vdes(y)

�vdes(y)

(
n∏

z∈des(y)

�z

)
.

(48)

�
j

0

(
PF
0,j
,�

j

0

)
=
(
�j
) ∑
x∈prev(j)

�j
x
�x

0

(
PF
0,x
,�x

0

)

�
j

0

(
PF
0,j
,�

j

0

)
=
(
�j

) ∑
x∈prev(j)

�j
x
�x

0

(
PF
0,x
,�x

0

)

(49)

�N
i

(
PF
i,N
,�N

i

)
=
(
�j
) ∑
y∈next(i)

�
y

i
�N

y

(
PF
y,N

,�N
y

)

�N
i

(
PF
i,N
,�N

i

)
=
(
�j

) ∑
y∈next(i)

�
y

i
�N

y

(
PF
y,N

,�N
y

)
.

6 � Experiments and results

We tested our approach on a text detection scenario in
a large volume of incoming video streams from a num-
ber of sources which had adaptive acquisition rates. We
implemented a multiple-path topology to extract differ-
ent semantic features from the incoming frames. On this
scenario, we also tested the state-of-the-art approach
proposed in [5], which can be also called a fundamen-
tal approach in the field of SMAs as it is mathemati-
cally proven, and almost all the succeeding proposed
approaches have been built on top of that and assumed
it as a principal true approach1 [1]. Also, this approach has
been awarded the prize of the National Science Founda-
tion of USA [50] and many patents have been registered
on that [51].

In this section, we will describe the aforementioned
scenario in detail, and by discussing the results of the
implementations, we will show how our approach out-
performed the state-of-the-art in the considered scenario.

6.1 � Description of the application

To test our approach, we considered a scenario where four
video lectures were playing from different sources. Some
of the scenes in the videos were showing the slides that
were being taught and presented in the lectures. The slides
in each video had different templates and styles from the
slides in other videos. We decided to construct a chain of
classifiers intended to detect scenes of the videos in where
a slide was showing, and the slide contained a snippet of
programming code. We considered the end-to-end delay

Fig. 3   Diagram of the implementation scenario

1  As a matter of fact, in this paper also, we do not intend to cast
aspersions on [5], but we have brought up a scenario from the real
world in which we showed [5] alone is not responsive and it needs
an extension to become effective, a scenario which we could not
find a paper debating about; otherwise, we would definitely com-
pare our approach with that as well.

Vol.:(0123456789)

SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6	 Research Article

Fig. 4   DET curves of the classifiers in the chain

Table 2   Node specifications

Node Implemented on Programming languages Avg.
processing
delay

C
1

Sony Xperia Z with Android 5.1, Quad-core 1.5 GHz Krait, and 2 GB RAM JavaScript 0.13 s
C
2

Sony Xperia Z1 with Android 5.1, Quad-core 2.2 GHz Krait 400, and 2 GB RAM JavaScript & Java 0.37 s
C
3
 (1) Sony Xperia Z2 with Android 5.1, Quad-core 2.3 GHz Krait 400, and 3 GB RAM JavaScript & Java 4.67 s

C
3
 (2) Samsung Galaxy S7 edge with Android 7.0, Quad-core 2 × 2.15 GHz Kryo &

2x1.6 GHz Kryo, and 4 GB RAM
JavaScript & Java 4.44 s

C
4

Samsung Galaxy Note 10.1 N8000, with Android 4.4.2, Quad-core 1.4 GHz Cortex-
A9, and 2 GB RAM

JavaScript 0.52 s

Queues Lenovo Z570, Windows 7 PC, Intel-core i5-2410 M 2.3 GHz, 6 GB RAM JavaScript N/A

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6

deadline of � = 13 s, for processing an SDO (from captur-
ing to coming its result out of the ensemble).

Regarding dataset, we collected a video dataset con-
sisting of more than 3 million frames (see [52] for access),
from the video lectures of Google I/O conferences [53],
MIT OpenCourseWare [54], Stanford Online [55], and NE
Scala Symposium conferences [56], to test our approach
and the state-of-the-art, which is without any time-sharing
solution and buffer, on them.

6.2 � Implementation details

We created a cascaded topology of 4 classifiers to reach
the goal of our scenario. The task of first classifier ( C1 ) was
to determine whether or not there was enough differ-
ence between the frame which C1 was processing, and

its previous frame. (If there is no noticeable difference
between the frames, it means no significant changes
happened, so no new information is received. Therefore,
there is no need to process the current frame.) The task
of second classifier ( C2 ) was to determine if a scene was
showing a slide or not. The aim of third classifier ( C3 ) was to
detect if there was any text on the slide or not. (We imple-
mented two replicated nodes for this time-consuming
task to increase scalability and reliability.) Also the fourth
classifier ( C4 ) was for detecting whether or not the text
on the slide contained any snippets of code. All classifiers
were devised and trained based on SVM algorithm. The
classifiers C1 and C2 were doing their analysis directly on
RGB images, while the classifiers C3 and C4 were preceded
by an OCR neural network which converted an image to a
Unicode text file containing some characters which could

Fig. 5   Illustrative view of the achieved utilities in our proposed approach experimentations

Table 3   Details of the overall implementation results of the approaches

Approach Average of the gained
utilities (100 ×)

Average of the
variances

Number of negative
achieved utilities

Average of negative
achieved utilities (100 ×)

Number of maxi-
mum achieved
utilities

Ours 4.007 1.582 4 − 0.688 150
State-of-the-art 3.532 3.932 56 − 0.380 252

Vol.:(0123456789)

SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6	 Research Article

be meaningful or meaningless. Therefore, the classifiers
C3 and C4 were performing their task on text files. Indeed,
the task of C3 was to detect a set of meaningful sentences
or words in a bunch of Unicode characters and the task of
C4 was to detect whether or not there is a set of computer
code among those meaningful characters. The diagram of
the scenario is illustrated in Fig. 3, The DET curve of each
classifier is shown in Fig. 4, and the specifications of the
nodes are listed in Table 2. The bandwidths of the links
between the sources and queues were set to 1024 Kb/s,
and the bandwidths of links between queues and the
ensemble were set to 150 Mb/s as well as the bandwidths
of intra-ensemble links. Also, the frames were sent in HD
quality mode.

We set the initial weight of false alarm to misses on
� = 0.5 . We also considered when a slide in the concept of
interest was detected from a sent SDO by a source, then
it would be more likely that another slide in the concept
of interest appeared again in that source’s stream, so the
sensitivity of detection would be better to be increased a
bit. Hence, we set a plan to decrease the weight of false
alarms to misses of a source by 0.004, when an SDO in
the concept of interest was detected in the streams of
the source. We also assumed that the importance of a
source was increased when an SDO in the concept of
interest was detected; because when in a video lecture
there exist several slides, then more probably the lec-
ture has more important information than a lecture with
fewer slides. (Note that this assumption is only applicable
to this scenario, and in most of the other scenarios, the
situation is totally inverse, i.e., more quantity leads to less
quality.) Hence, in light of these assumptions, we decided
to set a mechanism to increase the acquisition rate of a
source by 8%, for every 10 positive detected SDOs from
the streams of it, in order to capture more details by the
source. (Note that we knew the acquisition rates would
not cross a limit because as the acquisition rate of a source
would be increased in some moments, it also would be
decreased in some other times due to an increase in the
acquisition rate of another source.) Also, based on speci-
fications of the classifiers and our prediction about APPs,
we estimated the initial � and � of the ensemble as 0.72 s
and 2.12 SDO/s, respectively. To satisfy the proposed con-
ditions in Framework 2, by solving the optimization prob-
lem of the trade-off between increasing Δ and decreasing
� , we chose � = 2.09 SDO/s, � = 0.42 SDO/s, and Δ = 11.92
s, which made initial T ∗ be 0.41 s. We also set the initial PF
as PF(0) = {0.04, 0.06, 0.15, 0.11}.

We used open-source projects: ML-Optimization [57] for
the optimization tasks, Gauss project [58] for data analysis
and predicting values, Tesseract [59] for OCR, and WebRTC
[60] for data transmission between nodes.

6.3 � Experimentation results and comparison

We performed 15 experiments based on the aforemen-
tioned scenario using different video lectures of the data-
set to evaluate our approach. In all of these experiments,
each iteration was set as 30 complete cycles. The utilities
achieved in each iteration during the experimentations
are shown in Fig. 5. Also, the details of the results are pro-
vided in the first row of Table 3. As Fig. 5 shows, almost all
of the iterations achieved positive utility and an upward
trend in gained utilities at iterations is clear in each experi-
ment. Also, no crashes and overflows occurred during all
the experiments. These were likely because significant
amounts of data were shedding prior to reaching C3 by C2
and C1 (because they were quickly detected as “not new
scene” or “not slide”), which was also causing expected
processing delay of the ensemble (σ) to be reduced signifi-
cantly (for each of the sources). In consequence, the acqui-
sition rates of sources were able to be increased, which
resulted in capturing more details. More importantly, this
was also accompanied by classifying SDOs by their own
desired ensemble configuration, which made their clas-
sification utility be very close to the maximum.

We also carried out exactly the same experimentations
on the state-of-the-art approach [5], which is without any
time-sharing solution and buffers. Given our scenario and
the specifications of the nodes, we encountered several
problems. The first problem was about the classifier C1 .
It did not have any memory, so it could not store pixel
values of any source SDOs, in order to use them for com-
paring the next SDO of the source with it, to see if there
is an enough difference or not. (Note that sources were
sending SDOs simultaneously; therefore, in the state-of-
the-art approach, after processing an SDO from a source,
the next SDO that must be processed might not come
from the same source.) Naturally, this led C1 to be not
practical for our scenario and made us get it out of the
ensemble,2 which caused a higher processing burden to
be incurred by the subsequent classifiers in the ensem-
ble. Furthermore, since in the sate-of-the-art approach,
a general algorithm for detecting slides had to be used,

2  This issue also demonstrated; if we implement some mechanism
to compress data at the source and decompress it at the ensem-
ble by using a data differencing method, the mechanism will not
be applicable for the sate-of-the-art approach, because it cannot
decompress SDOs due to no access to the value of their previous
SDO. Even if a software solution for temporary storing values is
implemented, retrieving the associated previous SDO’s value from
the stored values has an overhead, which can cause problems in
large-scale systems. Therefore, in the sate-of-the-art approach
compressing data can poorly be implemented, which cause SDOs
to arrive at the ensemble with a higher delay.

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6

the average processing delay of C2 was increased about
0.98 s, which caused the expected value of the end-to-end
processing delay of the ensemble to be increased about
1 s, and the ensemble output rate to be decreased to 1.48
SDO/s. These issues caused several intolerable system
failures during the experimentations. All of these failures
occurred when some videos with a high number of con-
tinuous scenes of slides were playing. We noticed that the
reason for the failures was because, when the number of
detected SDOs of a source in the concept of interest was
highly increased, the source acquisition rates of all the
other sources were increased as well. This led the num-
ber of incoming SDOs to the ensemble to be increased
significantly, which was together with more delayed

classification methods. As a result, the capacity of the sys-
tem would become full rapidly and lead to system failure.

This problem made us remove the method of increasing
source acquisition rates when positive SDOs are detected
and perform the experimentations again (although we
knew that it would cause a loss of details). In the new
experimentations, we also implemented a queue for each
classifier with enough capacity to avoid any failure and set
the fixed and identical acquisition rates of � = 0.09 SDO/s
for all the sources. The achieved utilities in each experi-
ment are shown in Fig. 6, and the details of the results are
provided in the second row of Table 3. As it is illustrated, in
these experimentations, a considerable number of itera-
tions achieved near-zero utility in each experiment. After
investigation, we detected that the chief reason for this

Fig. 6   Illustrative view of the achieved utilities in the state-of-the-art approach experimentations

Table 4   Comparison of the implementation results

Factors Values

Number of the iterations where our approach gained higher average utility 267
Number of the iterations where the state-of-the-art approach gained higher average utility 270
Number of the experiments where the overall gained utility in our approach is higher 15
Number of the experiments where the overall gained utility in the state-of-the-art approach is higher 0

Vol.:(0123456789)

SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6	 Research Article

problem in most of the iterations was a decrease in �(�)
due to an increase in the SDOs wait time in the embedded
queues before the classifiers. Also, besides this, erroneous
learning and predicting values owing to fusion of SDOs
were not something negligible.

The overall comparison between the implementation
results of the two approaches is provided in Table 4. As this
table explicates, the average of the gained utilities in each
of the state-of-the-art approach experiments is less than
the corresponding average in the results of our approach
experiments. Moreover, according to Table 3, based on the
average of the gained utilities during the whole experi-
mentations, our approach has achieved a 13.45% superi-
ority over the state-of-the-art approach, which along with
the other statistics proves that our approach has outper-
formed the state-of-the-art in the implemented scenario.

7 � Conclusion

In this paper, we proposed a distributed and adaptive
approach for configuration of cascaded classifier topolo-
gies, in such a way that when several numbers of sources
are sending data to the ensemble simultaneously, the
system serves each stream data object (SDO) by the cor-
responding SDO optimal topology configuration. We
defined a utility metric for the system performance, sub-
ject to delay constraints, on mining an SDO, given the SDO
source. We showed that by adjusting acquisition rates of
sources and implementing a queue for each source, in
which the SDOs sent by the source are buffered, we can
take advantage of a time-sharing solution to extend the
approach for single-source cases to the cases where mul-
tiple sources are sending data. We also provided the con-
ditions that must be satisfied prior to applying the time-
sharing solution. By defining a term called stable cycle and
investigating the conditions for fulfilling its requirements,
we also succeeded in extending our approach to the
adaptive source acquisition rate case. More importantly,
we showed that our proposed time-sharing approach is
roughly topology-free, which means it is applicable to all
types of topologies (e.g., tree, directed acyclic graphs, etc.).
Hence, it can be used in most of the multimedia process-
ing applications and also other informationally distributed
or restricted stream mining systems.

There are several directions for future research. One of
the important directions involves detecting and solving
synchronization issues among the classifiers. Another nota-
ble research area is to integrate the proposed time-sharing
approach in this paper with other types of topologies such
as trees and acyclic directed graphs model. Also, besides
these, modeling and involving data privacy challenges in
the optimization problem for stream mining systems would

be a very interesting and important extension to explore in
future.

Acknowledgements  We would like to express our immense gratitude
to Prof. Mihaela van der Schaar for her constructive and precious
comments toward reviewing this paper.

Compliance with ethical standards 

Conflict of interest  On behalf of all authors, the corresponding au-
thor states that there is no conflict of interest.

References

	 1.	 Canzian L, Schaar MVD (2015) Real-time stream mining: online
knowledge extraction using classifier networks. IEEE Netw
29(5):10–16

	 2.	 Zhou P, Zhou Y, Wu D, Jin H (2016) Differentially private
online learning for cloud-based video recommendation with
multimedia big data in social networks. IEEE Trans Multim
18(6):1217–1229

	 3.	 Muller H, Unay D (2017) Retrieval from and understanding of
large-scale multi-modal medical datasets: a review. IEEE Trans
Multimed 19(9):2093–2104

	 4.	 Berriel RF, Lopes AT, Souza AFD, Oliveira-Santos T (2017) Deep
learning-based large-scale automatic satellite crosswalk clas-
sification. IEEE Geosci Remote Sens Lett 14(9):1513–1517

	 5.	 Foo B, Schaar MVD (2010) A distributed approach for optimiz-
ing cascaded classifier topologies in real-time stream mining
systems. IEEE Trans Image Process 19(11):3035–3048

	 6.	 Shah M, Hellerstein J, Franklin M (2003) Flux: an adaptive par-
titioning operator for continuous query systems. In: Proceed-
ings of 19th international conference on data engineering, pp
25–36

	 7.	 Schapire Y (1999) A brief introduction to boosting. In: Pro-
ceedings of 16th international joint conference on artificial
intelligence, pp 1401–1406

	 8.	 Catena M, Tonellotto N (2017) Energy-efficient query pro-
cessing in web search engines. IEEE Trans Knowl Data Eng
29(7):1412–1425

	 9.	 Zanetti M, Jamhour E, Pellenz M, Penna M, Zambenedetti
V, Chueiri I (2019) A tunable fraud detection system for
advanced metering infrastructure using short-lived patterns.
IEEE Trans Smart Grid 10(1):830–840

	10.	 Lienhart R, Liang L, Kuranov A (2003) A detector tree for
boosted classifiers for real-time object detection and track-
ing. In: Proceedings of ICME, pp 277–280

	11.	 Kiourti A, Nikita KS (2017) A review of in-body biotelemetry
devices: implantables, ingestibles, and injectables. IEEE Trans
Biomed Eng 64(7):1422–1430

	12.	 Ding X, Tian Y, Yu Y (2016) A real-time big data gathering algo-
rithm based on indoor wireless sensor networks for risk analy-
sis of industrial operations. IEEE Trans Ind Inf 12(3):1232–1242

	13.	 Lee S-H, Chung CC (2017) Robust multirate on-road vehicle
localization for autonomous highway driving vehicles. IEEE
Trans Control Syst Technol 25(2):577–589

	14.	 Foo B, Turaga DS, Verscheure O, Schaar MVD, Amini L (2011)
Configuring trees of classifiers in distributed multimedia
stream mining systems. IEEE Trans Circuits Syst Video Technol
21(3):245–258

Vol:.(1234567890)

Research Article	 SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6

	15.	 Olston C, Jiang J, Widom J (2003) Adaptive filters for continu-
ous queries over distributed data streams. In: Proceedings of
international conference on management data, pp 563–574

	16.	 Amini L, Andrade H, Eskesen F, King R, Park Y, Selo P, Ven-
katramani C (2005) The stream processing core. Technical
Report, RSC 23798

	17.	 Xing Y, Zdonik S, Hwang J-H (2005) Dynamic load distribu-
tion in the borealis stream processor. In: Proceedings of 21st
international conference on data engineering, Tokyo, Japan,
pp 791–802

	18.	 Cherniack M, Balakrishnan H, Balazinska M, Carney D, Cetint-
emel U, Xing Y, Zdonik S (2003) Scalable distributed stream
processing. In: Proceedings of conference innovative data
system research, Asilomar, CA, pp 257–268

	19.	 Cherniack M, Balakrishnan H, Balazinska M, Carney D, Cetint-
emel U, Xing Y, Zdonik SB (2003) Scalable distributed stream
processing. In: Proceedings of 2nd Biennial CIDR

	20.	 Schapire RE (1999) A brief introduction to boosting. In: Pro-
ceedings of 16th international joint conference on artificial
intelligence, vol 2, pp 1401–1406

	21.	 Garg A, Pavlovic V, Huang TS (2002) Bayesian networks as
ensemble of classifiers. In: Proceedings of 16th ICPR, pp
779–784

	22.	 Balazinska M, Balakrishnan H, Madden S, Stonebraker M (2005)
Fault tolerance in the borealis distributed stream processing sys-
tem. In: Proceedings of international conference management
data (SIGMOD), pp 13–24

	23.	 Babcock B, Babu S, Datar M, Motwani R (2003) Chain: operator
scheduling for memory minimization in data stream systems.
In: Proceedings of international conference management data,
pp 253–264

	24.	 Tatbul N, Cetintemel U, Zdonik S, Cherniack M, Stonebraker M
(2003) Load shedding in a data stream manager. In: Proceedings
of 29th international conference on very large databases, pp
309–320

	25.	 Babcock B, Datar M, Motwani R (2003) Cost-efficient mining
techniques for data streams. In: Proceedings of 2nd workshop
Australasian information security, data mining, web intelligence,
and software international, vol 32, pp 109–114

	26.	 Tatbul N, Zdonik S (2006) Dealing with overload in distributed
stream processing systems. In: Proceedings of IEEE international
workshop network meets databases, Atlanta, GA, p 24

	27.	 Tatbul N (2002) QoS-driven load shedding on data streams. In:
Proceedings of EDBT Ph.D. Workshop, Prague, Czech Republic,
pp 566–576

	28.	 Eide V, Eliassen F, Granmo O, Lysne O (2003) Supporting timeli-
ness and accuracy in distributed real-time content-based video
analysis. In: Proceedings 11th ACM international conference on
multimedia, pp 21–32

	29.	 Turaga D, Verscheure O, Chaudhari U, Amini L (2006) Resource
management for networked classifiers in distributed stream
mining systems. In: Proceedings of 6th IEEE international con-
ference on data mining, pp 1102–1107

	30.	 Fu F, Turaga D, Verscheure O, van der Schaar M, Amini L (2007)
Configuring competing classifier chains in distributed stream
mining systems. IEEE J Sel Topics Signal Process 1(4):548–563

	31.	 Kumar V, Cooper B, Schwan K (2005) Distributed stream man-
agement using utility-driven self-adaptive middleware. In: Pro-
ceedings of 2nd international conference on autonomic com-
puting, pp 3–14

	32.	 Horvitz E, Rutledge G (1991) Time-dependent utility and action
under uncertainty. In: Proceedings of 7th conference on uncer-
tainty artificial intelligence, pp 151–158

	33.	 Fong S, Wong R, Vasilakos A (2015) Accelerated PSO swarm
search feature selection for data stream mining big data. IEEE
Trans Serv Comput 9:33–45

	34.	 Rutkowski L, Jaworski M, Pietruczuk L, Duda P (2015) A new
method for data stream mining based on the misclassification
error. IEEE Trans Neural Netw Learn Syst 26(5):1048–1059

	35.	 Mencagli G, Torquati M, Danelutto M, Matteis TD (2017) Paral-
lel continuous preference queries over out-of-order and bursty
data streams. IEEE Trans Parallel Distrib Syst 28(9):2608–2624

	36.	 Kolomvatsos K, Anagnostopoulos C, Hadjiefthymiades S (2017)
Data fusion and type-2 fuzzy inference in contextual data stream
monitoring. IEEE Trans Syst Man Cybern Syst 47(8):1839–1853

	37.	 Canzian L, Zhang Y, Schaar MVD (2015) Ensemble of distributed
learners for online classification of dynamic data streams. IEEE
Trans Signal Inf Process Netw 1(3):180–194

	38.	 Poh N, Chan CH (2015) Generalizing DET curves across applica-
tion scenarios. IEEE Trans Inf Forensics Secur 10(10):2171–2181

	39.	 Narasimhan H, Agarwal S (2017) Support vector algorithms for
optimizing the partial area under the ROC curve. Neural Comput
29(7):1919–1963

	40.	 Makki B, Fang C, Svensson T, Nasiri-Kenari M, Zorzi M (2017)
Delay-sensitive area spectral efficiency: a performance met-
ric for delay-constrained green networks. IEEE Trans Commun
65(6):2467–2480

	41.	 Argibay-Losada PJ, Yoshida Y, Maruta A, Kitayama K-I (2016)
Optical versus electronic packet switching in delay-sensitive
5G networks: myths versus advantages. J Opt Commun Netw
8(11):B43–B54

	42.	 Alinia B, Hajiesmaili MH, Khonsari A, Crespi N (2017) Maximum-
quality tree construction for deadline-constrained aggregation
in WSNs. IEEE Sens J 17(12):3930–3943

	43.	 Li X, Wang C-C, Lin X (2017) Inter-session network coding
schemes for 1-to-2 downlink access-point networks with
sequential hard deadline constraints. IEEE/ACM Trans Netw
25(1):624–638

	44.	 Ren S, Deligiannis N, Andreopoulos Y, Islam MA, Schaar
MVD (2014) Dynamic scheduling for energy minimization
in delay-sensitive stream mining. IEEE Trans Signal Process
62(20):5439–5448

	45.	 Nash J (1950) The bargaining problem. Econometrica
18(2):155–162

	46.	 Savage D, Zhang X, Chou P, Yu X, Wang Q (2017) Distributed
mining of contrast patterns. IEEE Trans Parallel Distrib Syst
28(7):1881–1890

	47.	 Boem F, Ferrari RMG, Keliris C, Parisini T, Polycarpou MM (2017)
A distributed networked approach for fault detection of large-
scale systems. IEEE Trans Autom Control 62(1):18–33

	48.	 Hespanha JP, Naghshtabrizi P, Xu Y (2007) A survey of recent
results in networked control systems. Proc IEEE 95(1):138–162

	49.	 Mosaddegh A, Canizares CA, Bhattacharya K, Fan H (2017)
Distributed computing architecture for optimal control of
distribution feeders with smart loads. IEEE Trans Smart Grid
8(3):1469–1478

	50.	 National Science Foundation of United States, Awards Database.
https​://www.nsf.gov/award​searc​h/showA​ward?AWD_ID=10160​
81. Accessed 5 Jan 2017

	51.	 United States Patent and Trademark Office. Patent Full-Text
Databases, Patents Nos. 8990134, 8856051, 8819024, 8533134.
http://patft​.uspto​.gov/netah​tml/PTO/index​.html. Accessed 5
Jan 2017

	52.	 Shahkarami A, Bobarshad H, Bagherzadeh N. A stream-sensitive
distributed approach for configuring cascaded classifier topol-
ogies in real-time large-scale stream mining systems. https​://
www.ravan​nevis​.org/paper​/2018/sma.html/. Accessed 15 Feb
2018

	53.	 Google, Google I/O. https​://event​s.googl​e.com/io/. Accessed 28
Apr 2017

	54.	 Massachusetts Institute of Technology, MIT OpenCourseWare.
https​://ocw.mit.edu/. Accessed 28 Apr 2017

https://www.nsf.gov/awardsearch/showAward%3fAWD_ID%3d1016081
https://www.nsf.gov/awardsearch/showAward%3fAWD_ID%3d1016081
http://patft.uspto.gov/netahtml/PTO/index.html
https://www.ravannevis.org/paper/2018/sma.html/
https://www.ravannevis.org/paper/2018/sma.html/
https://events.google.com/io/
https://ocw.mit.edu/

Vol.:(0123456789)

SN Applied Sciences (2019) 1:594 | https://doi.org/10.1007/s42452-019-0565-6	 Research Article

	55.	 Standford University, Stanford Online. http://onlin​e.stanf​ord.
edu/. Accessed 28 Apr 2017

	56.	 Northeast Scala Symposium, NE Scala. http://www.nesca​la.org/.
Accessed 28 Apr 2017

	57.	 Zasso MCAB, Hernández JJ, Castillo A, Asencio MA. “mljs/optimi-
zation,” GitHub. https​://githu​b.com/mljs/optim​izati​on. Accessed
05 May 2017

	58.	 Galoso F, Tellis P, Fitzgerald B, Sam. “Gauss,” GitHub, 01-Nov-2015.
https​://githu​b.com/fredr​ick/gauss​. Accessed 06 May 2017

	59.	 Webster G, Kwok K, Hadley M, Zarco H, Suarez R. “tesseract.js,”
GitHub. https​://githu​b.com/napth​a/tesse​ract.js. Accessed 05
May 2017

	60.	 “WebRTC.” https​://webrt​c.org/. Accessed 06 May 2017

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://online.stanford.edu/
http://online.stanford.edu/
http://www.nescala.org/
https://github.com/mljs/optimization
https://github.com/fredrick/gauss
https://github.com/naptha/tesseract.js
https://webrtc.org/

	A stream-sensitive distributed approach for configuring cascaded classifier topologies in real-time large-scale stream mining systems
	Abstract
	1 Introduction
	2 Distributed stream mining system model
	2.1 Binary classification
	2.2 Cascaded classifier model
	2.3 Objective function for mining a stream

	3 Distributed approach for single-path–single-source case
	3.1 Fundamentals of the solution
	3.2 Framework for single-path–single-source case

	4 Distributed approach for single-path–multiple-source case
	4.1 Fix and identical source acquisition rates case
	4.2 Adaptive source acquisition rates case

	5 Distributed approach for multiple-path–multiple-source case
	5.1 Discussion on extending the previous approach to multiple-path case
	5.2 Ensemble configuration mechanism in multiple-path case

	6 Experiments and results
	6.1 Description of the application
	6.2 Implementation details
	6.3 Experimentation results and comparison

	7 Conclusion
	Acknowledgements
	References

