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1. Abstract
During the injection molding cycle, molten material is injected at high pressure inside the mold and
cooled down to form a solid part. This creates thermomechanical stresses that are alleviated by the cor-
rect design of a cooling system. In conventional molds, the cooling system consists of straight-line cooling
channels, which can be manufactured using machining processes; however, they are thermally inefficient
and unable to cool the injected part uniformly. The emergence of metal-based additive manufacturing
techniques such as direct metal laser sintering (DMLS) allows the fabrication of molds with conformal
cooling channels. Conformal cooling molds cool down the part faster and more uniformly; however, they
face limitations. First, their fabrication cost is 10 to 20 times higher than the one of a conventional mold.
Second, the DMLS process, which is the most popular fabrication method of conformal cooling molds,
produces internal thermal stresses that distort the mold. The development of structural optimization
methods such as multiscale topology optimization offers the potential to create novel and complex cel-
lular structures that alleviate these current limitations. The objective of this research is to establish a
multiscale topology optimization method for the optimal design of non-periodic cellular structures sub-
jected to thermomechanical loads. The result is a hierarchically complex design that is thermally efficient,
mechanically stable, and suitable for additive manufacturing. The proposed method seeks to minimize
the mold mass at the macroscale, while satisfying the thermomechanical constraints at the mesoscale.
The thermomechanical properties of the mesoscale cellular unit cells are estimated using homogenization
theory. A gradient-based optimization algorithm is used for which macroscale and mesoscale sensitivity
coefficients are derived. The design and evaluation of a porous injection mold is presented to demonstrate
the proposed optimization method.
2. Keywords: 3D Multiscale topology optimization. Additive Manufacturing. Injection mold.

3. Introduction

Molds used in the plastic injection molding process must withstand extreme pressure loads and thermal
expansion while at the same time providing dimensional accuracy of the molded part. These molds are
required to efficiently and uniformly transfer heat flux from the molded part to cooling channels filled
with running coolant [1]. Conformal cooling channels can be designed to provide uniform surface cooling,
reduced injection mold cycle times and minimized part distortion. Additive Manufacturing (AM/3D
Printing) enables the design and production of intricate conformal cooling channels in molds and mold
inserts, offering significant cost savings, particularly in designs having high geometric complexity. These
AM technologies include Direct Metal Laser Sintering (DMLS), Electron Beam Melting (EBM) and Laser
Curing [2].

The unique capabilities of AM technologies allow an innovative design approach that challenges tradi-
tional guidelines of the plastics injection molding industry. Research has indicated significant advantages
of AM generated, highly-complex conformal cooling channels. However, AM-generated conformal cooling
channel face limitations. First, their fabrication cost is 10 to 20 times higher than the one of a con-
ventional mold. Second, the DMLS process, which is the most popular fabrication method of conformal
cooling molds, produces internal thermal stresses that distort the mold.

While much efforts aim to reduce the AM cost and improve the mold performance in manufacturing
process [3], the development of structural optimization methods such as topology optimization offers the
potential to create novel and complex injection mold designs with higher performance and reduced mate-
rial cost [4]. However, traditional topology optimization method does not take contemporary manufacture
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limitations of AM technologies into account. In the resulting optimal design, undesired geometries such
as small inclination, long overhangs, and thin bars may appear. To support these unstable structures,
additional material would be required during AM process. As a result, the actual material usage is
significantly increased.

Recently, many researches have investigated methods to bridging topology optimization and additive
manufacturing [5]. These methods includes combining additional filters as constraints to improve the
structure connectivity [6], and the utilization of topology optimization using functionally graded lattice
structure [7, 8]. The second method can be improved to a multiscale topology optimization methodology.
By using this method, macroscale structure and mesoscale unit cells are able to be simultaneously opti-
mized. Although this method has been an active research topic for many years [9, 10], few of them are
applied this method in 3D and addressed manufacture issues. In this paper, a novel multiscale thermome-
chanical topology optimization approach is proposed, By employing this approach, a 3D porous injection
mold is prototyped using self-supported unit cells with sufficient mechanical and thermal performance.
The paper is organized as following: homogenization method will be briefly reviewed in section 4; Pro-
posed multiscale thermomechanical topology optimization is presented in section 5; Section 6 provides
test examples of the proposed method, and in section 7, a porous injection mold using this method is
presented. Finally, conclusion is presented in section 8.

4. Homogenization method

The material design is displayed as a structural optimization problem and be optimized using inverse
homogenization method [11]. The objective function of this method contains effective properties of
investigated material, which are found by numerical homogenization. Numerical homogenization can
be implemented in asymptotic method (AH), mutual energy approach and represent volume element
(RVE)-based approach . All of them can be used to derive homogenized elasticity tensor DH

c and thermal
conductivity tensor κHc of an a-priori defined unit cell. In this section, these methods are briefly reviewed
before presenting the proposed multiscale thermomechanical topology optimization approach.

4.1. Asymptotic homogenization

Asymptotic homogenization (AH) assumes each mesoscale unit cell in a macroscale structure follows
periodic boundary condition (PBC). The measurable quantity of a unit cell u is the superposition of
macroscale quantity u0(x, y) and a small periodically fluctuated mesoscale quantity u1(x, y), which can
be represented using first order asymptotic expansion:

uε = u0(x, y) + εu1(x, y) +O(ε2), y = x/ε, ε� 1. (1)

Asymptotic homogenization can be rewritten in an equivalent discretized form in terms of element mutual
energies:

DH
c =

1

|Vc|

ne∑
e=1

∫
Ve

[I−Beχe]
ᵀDe[I−Beχe]dVe, (2)

where ne are the number of finite elements of the discretized unit cell, |Vc| is the unit cell volume, I is the
identity matrix, Ve is the volume of the finite element e, Be is the element strain-displacement matrix,
De is the element elasticity tensor, and χe is the matrix containing the element displacement vectors χije
resulting from globally enforcing the unit test strain fields εij ([χ11

e ,χ
22
e ,χ

12
e ] for a 2D finite element).

The element displacement vectors χije are obtained from the global displacement vector of the unit cell
χijc , which is the solution of the equilibrium equation[

ne∑
e=1

∫
Ve

Bᵀ
eDeBedVe

]
χijc =

ne∑
e=1

∫
Ve

Bᵀ
eDeε

ijdVe. (3)

The first term in the left hand side of Eq. (3) is the stiffness matrix of the unit cell and the right hand
side is the nodal force vector of the unit cell.

In analogy to homogenization theory for elasticity tensor, homogenized thermal conductivity tensor
κHc of a discretized periodic unit cell is given by

κHc =
1

|Vc|

ne∑
e=1

∫
Ve

[I−Bt
eTe]

ᵀκe[I−Bt
eTe]dVe, (4)
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Figure 1: Comparison of Dofs setting between energy-based homogenization and asymptotic homoge-
nization.(a) The discretized unit cell. (b) Dofs used in energy-based homogenization.(c) Dofs used in
asymptotic homogenization.

where ne are the number of finite elements of the discretized unit cell, |Vc| is the unit cell volume, I is the
identity matrix, Ve is the volume of the finite element, Bt

e is the element “strain” (temperature gradient)-
temperature matrix, κe is the element thermal conductivity tensor, and Te is the matrix containing
the element nodal temperature vectors Tij

e resulting from globally enforcing the unit test temperature
gradient fields ([T1

e,T
2
e] for a 2D solid finite element). As before, the element temperature vectors Ti

e are
obtained from the global temperature vector of the unit cell Ti

c, which is the solution of the equilibrium
equation [

ne∑
e=1

∫
Ve

Bt
e
ᵀ
κeB

t
edVe

]
Ti
c =

ne∑
e=1

∫
Ve

Bt
e
ᵀ
κet

idVe. (5)

The first term in the left hand side of Eq. (5) is the “stiffness” thermal matrix of the unit cell and the
right hand side is the nodal heat flux vector of the unit cell.

4.2. Energy-based homogenization

Energy-based homogenization is an equivalent approach to asymptotic homogenization. In this
method, the mutual energy form (Eq. (2) or (4)) and PBC are adopted as well. The difference between
these two methods are the implementation of PBC and test strains. In energy-based homogenization,
nodal displacement constraints are imposed on each pair of opposites boundaries k− and k+ to satisfy
PBC:

χk+i − χ
k−
i = εij0 ∆y, (6)

where εij0 is a given strain and ∆y is the length of the unit cell [12]. In asymptotic homogenization, each
pair of opposite boundaries share same Dofs (Fig.1) [13], and the test strains are imposed on the whole
finite element.

4.3. Representative volume element method

Compared to above two methods, Representative volume element (RVE)-based method is straight-
forward. It is derived based on the assumption of constant strain fields are uniformly distributed over
a RVE, thus homogenized elasticity tensor can be computed by average stress and strain using Hooke’s
law:

〈σ〉 = 〈E〉〈ε〉, (7)

where 〈σ〉 is average stress, and 〈ε〉 is average strain of a RVE. In finite element analysis, by applying a
group of prescribed unit test strain on the RVE’s boundaries, the homogenized properties can be obtained
through computation of average stress of the whole element. Using the strain and displacement relations
(for 2D problem):

εx =
∂u

∂x
, εy =

∂u

∂y
, γxy = 0.5× (

∂u

∂y
+
∂v

∂x
), (8)

applying prescribed displacement [u = x v = 0] on RVE’s boundary yields an average stresses equal to
E1111 and E2211, applying prescribed displacement [u = 0 v = y] yields average stresses equal to E2222

and E1122, and applying prescribed displacement [u = 0.5× y v = 0.5× x] yields E1212.
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Figure 2: A comparison between RVE-based method and asymptotic homogenization method.

In analogy to this, homogenized thermal conductvity tensor can be computed by average heat flux
and temperature gradient using Fourier’s law:

〈q〉 = 〈κ〉〈∇T 〉, (9)

where 〈q〉 is average heat flux. It can be obtained by applying prescribed temperature T1 = x and T2 = y
on boundaries.

To compare RVE and AH methods, a test using a group of 3D cubes with rectangular holes are im-
plemented as Fig.2 shown. The resulting values from RVE-based method are slightly higher than those
derived from AH method and the equivalent energy-based approach, which implies using RVE-based ap-
proach may over-evaluate stiffness of the structure. However, RVE-based method has several advantages
over AH method. First, this method is appropriate to evaluate properties of non-periodic mesoscale
material, because assumption of periodic boundary condition is not required, Second, Since prescribed
displacements on the boundaries are linear functions of geometry coordinate, symmetry condition can be
used for finite element analysis, if RVE’s center located on the (0, 0, 0). The computation cost will then
be saved. Besides, this method can be conveniently implemented in many commercial softwares, which
facilitate to homogenize a unit cell having complicate geometries.

5. Multiscale thermomechanical topology optimization

In this section, proposed multiscale thermomechanical topology optimization is presented. A flow
chart (Fig. 3) is shown to describe this approach. First, a conceptual design is generated using macroscale
topology optimization with a linear material interpolation. elemental strains and relative densities of this
conceptual design are evaluated. Based on these information, each unit cell is optimized through RVE-
based inverse homogenization. Then, homogenized tensor and local stiffness matrix of each optimal unit
cells are computed through asymptotic homogenization (AH). With assembled global stiffness matrix, the
macroscale thermomechanical finite element analysis is performed to re-evaluated the objective. After
these steps, the first iteration of multiscale optimization is finished.

The resulting porous structure from the first iteration has a weaker global stiffness than the conceptual
design, because in conceptual design, the linear material interpolation represents a stiffer property than
actual material with same densities. This leads to the re-evaluated objective worse than the value of
conceptual design. Hence, design variables are updated by loosen the constraint functions and next
iteration is performed. The approach contains three key concepts, namely macroscale structural design,
mesoscale material design, and updating criteria, which will be described in following section.

5.1. Macroscale structure design

The purpose of marcoscale optimization is to use given mass, minimize the compliance arising from
external load and thermal expansion, while remaining the molding and cooling qualities. The quality
measurements include heat conduction and deformation of the molding part. Here, thermal compliance
is adopted as a measurement of heat conduction, and displacements on surfaces of the molding part are
used to evaluate the injected part deformation. These two measurements are employed as constraints.
Additionally, In the optimization process, Hooke’s and Fourier’s law are served as physics constraints.
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Figure 3: Flow chart of multiscale thermomechanical topology optimization.

Finally, macroscale thermomechanical topology optimization is stated as

given m(θ)

minimize fᵀu(θ) + ft(T)
ᵀ
u(θ)

subject to m(θmin) ≤ m(θ) ≤ m(θ0)

qᵀT(θ) ≤ CQqᵀT(θ0)

Uj(θ) = 1ᵀ
ju(θ) ≤ CU1ᵀ

ju
max(θ0), j ∈ ΓW

θmin ≤ θ ≤ 1

satisfying u(θ) = K(θ)−1f

T(θ) = (Kt(θ) + Kh)−1q,

(10)

where θ represents relative density distribution and θ0 is the initial design; m is mass of macroscale
structure; f is mechanical load and ft is thermal expansion load; u is nodal displacement vector; q
represents nodal heat flux and T nodal temperature. Uj is the sum of nodal displacement, which equal to
a vector 1j multiplies nodal displacement. 1j has value 1 at the location of molding part surface’s degree
of freedoms (ΓW ), and 0 elsewhere. K is global stiffness matrix for mechanical; Kt is global stiffness for
heat conduction, and Kh is constant global stiffness for heat convection. CQ,CU are factors used to relax
constraints.

The sensitivity analysis of this problem is described in [7]. Note that in design of an injection mold, the
thermal expansion effect can be included in the injected pressure as a constant imposed on the molding
part surface , therefore sensitivity of θ with respect to ft is 0 in the optimization. In proposed multiscale
approach, marcoscale topology optimization is only called once to generate a conceptual design. The
design is generated using linear material interpolation, MMA solver and without filters.

5.2. Material design using inverse homogenization

By using the information provided by marcoscale conceptual design, extremed homogenized mechan-
ical and thermal properties for each unit cell are found through inverse homogenization method. These
properties mainly contain maximum bulk modulus K, maximum shear modulus G, and minimum Pois-
son ratio ν. The first two properties are related to injection mold design. In addition, unit cell with
maximum heat conduction requires to be investigated. In practice, the homogenized properties maxi-
mization problem can be rewritten as minimum compliance problem [14] and solved with PBC. Here,
the compliance minimum problem is solved using RVE-based method. By applying elemental relative
density m(θne), strain ε(θne) and temperature gradient ∇T(θne) derived from marcoscale conceptual
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optimization, inverse homogenization is written as a minimum compliance problem. It is stated as a
displacement based multiple load cases topology optimization:

given m(θne), ε(θne),∇T(θne)

minimize

n1∑
i=1

fi(u)
ᵀ
ui(m(θne), ε(θne))

subject to m(θmin) ≤ m(θ) ≤ m(θne)
n2∑
i=1

qi(∇T)
ᵀ
Ti(m(θne),∇T(θne)) ≤ CQqᵀT(θne)

θmin ≤ θ ≤ θmax

satisfying u(θne) = K(θne)
−1f

T(θne) = (Kt(θne) + Kh)−1q,

(11)

where mechanical compliance (extreme elasticity property) is stated in the objective, thermal compliance
(extreme heat conduction) is stated in the constraints. The prescribed displacement (or temperature
gradient) and supports for each of them is defined in Fig. 4.
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Figure 4: Prescribed displacement (or temperature gradient) and supports (or insulated boundary) for
the purpose of maximizing extreme properties.

The problem is solved using SIMP method, MMA solver and density based filter with m(θne)=0.19,
0.5 and 0.81, prescribed strain ε(θne) = (1, 1, 1), and prescribed temperature gradient ∇κ(θne) = (1, 1)
(Fig. 5). Each unit cell is composed of 80 × 80 elements, but only a quarter of the structure (40 × 40
elements) is required to be analyzed. The results are consistent with reference ([15],[16]), where PBC are
assumed. With PBCs, an initial guess of uniform relative densities would result in fail of design variable
updating. This can be avoided by using RVE method. In addition, as authors have tested, this method
has better compatibility with a variety of initial guesses and filters.

3D extension of this method is developed based on Top3d program [17]. Similarly, the problem is
solved using SIMP method, MMA solver and density based filter with m(θne)=0.259, 0.5 and 0.74,
prescribed strain ε(θne) = (1, 1, 1, 1, 1, 1), and prescribed temperature gradient ∇κ(θne) = (1, 1, 1) (Fig.
6). The results are shown as a distribution of 2× 2× 2 unit cells to illustrate the connectivity. Each unit
cell is composed of (40 × 40 × 40) elements, but only 1/8 of the structure (20 × 20 × 20) is required to
be analyzed. To facilitate the removal of extra material cost in AM process, open channels are defined
as passive elements, making m(θmax)=0.8.

By observation of results of extreme mechanical properties, it shows the result of maximum shear
modulus is preferable for AM compared to max bulk modulus for its diamond-like self supporting struc-
ture. Therefore, it is selected as the mechanical objective for material design. Though this selection may
not guarantee the overall material’s properties, those properties can be achieved through design updating.

5.3. Updating criteria
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Figure 5: 2D results from RVE-based inverse homogenization.
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Figure 6: 3D results from RVE-based inverse homogenization.

After macroscale topology optimization and mesoscale material design for each unit cell, one iteration
is finished. Next, the homogenized properties of each unit cell are evaluated through asymptotic homog-
enization. Then global stiffness matrices are assembled and a new objective value can be evaluated by
calling thermomechanical finite element analysis. This value often worse than conceptual design, because
in conceptual design a stiffer material interpolation scheme is used. To make a decision for updating, the
convergence criteria is defined as:

ηi =‖ Ji − J0 ‖ /J0 ≤ η, (12)

where Ji is the objective evaluation of ith iteration, J0 is objective of conceptual design, η is a small num-
ber. The following principle is employed to update elemental design variable xi or its Moore neighborhood
NM:

if Ji,ne ≥ J0,ne and xi,ne ≤ xmax, xi+1,ne = xi,ne + δ

elseif Ji,ne ≤ J0,ne and xi,ne ≥ xmin, xi+1,ne = xi,ne − δ
elseif Ji,ne ≥ J0,ne and xi,ne = xmax, xi+1,NM = xi,NM + δ

elseif Ji,ne ≤ J0,ne and xi,ne = xmin, xi+1,NM = xi,NM − δ

(13)

Test examples are shown in following section to illustrate the performance presented method.

6. Testing Examples

This section presents 2D testing examples focusing on illustrating performance of proposed multiscale
design approach. For the reader’s convenience to compare the result with existing literature, two famous
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test examples, namely MBB and heat sink problem are used to optimize normalized mechanical and
thermal compliance C individually (Fig. 7 and 8). relative density m(θne) in macroscale is the design
variable required to reflectively update. In mesoscale, max shear modulus is selected as the objective for
mechanical problem, and max heat conduction for thermal problem. In addition, the examples use AH
in mesoscale inverse homogenization with same initial guess are given for comparison (Fig. 9 and 10).

Coarse meshes are used in the examples, namely 15× 5 for the MBB beam and 20× 20 for the heat
sink. Traditional topology optimization can neither use these coarse meshes to generate optimal black
and white structures, nor prove to generate an optimal structure without undesired geometries for AM,
which makes proposed multiscale approach effective.
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of MATLAB is far from optimally utilized. Efficient use of
MATLAB implies loop vectorization and memory preallo-
cation (The MathWorks 2010). Loop vectorization is the use
of vector and matrix operations in order to avoid for and
while loops. Memory preallocation means that the max-
imum amount of memory required for an array is reserved
a priori, hence avoiding the costly operation of reallocating
memory and moving data as elements are added to the array.
Loop vectorization and memory preallocation are used in
combination with a number of more advanced performance
improving techniques in the MILAMIN code, a MATLAB
program capable of solving two-dimensional finite element
problems with one million unknowns in one minute on a
desktop computer (Dabrowski et al. 2008).

In the 99 line topology optimization code, the perfor-
mance of several operations (such as the filtering proce-
dure and the assembly of the finite element matrices) can
be increased dramatically. Partly by properly exploiting
the strengths of MATLAB (using loop vectorization and
memory preallocation), partly by restructuring the program
(moving portions of code out of the optimization loop so
that they are only executed once), a substantial increase
in efficiency has been achieved: for an example problem
with 7,500 elements, the total computation time has been
reduced by a factor 100. In addition, the original code has
been extended by the inclusion of density filtering, while
reducing the length of the code to only 88 lines.

The aim of this paper is to present the 88 line code. It
should be considered as a successor to the 99 line code, and
it is published with the same objective: to provide an edu-
cational instrument for newcomers to the field of topology
optimization. The main improvements with respect to the
original code are the increased speed and the inclusion of
a density filter. These are relevant improvements, as the 99
line code has been downloaded by more than 8,000 unique
users since 1999 and is still used as a basis for new devel-
opments in the field of topology optimization. The density
filter is a useful addition as it paves the way for the imple-
mentation of more modern filters such as the Heaviside
filters proposed by Guest et al. (2004) and Sigmund (2007).

The present text is conceived as an extension of the paper
by Sigmund (2001). Large parts of the 88 line code are
identical to the original 99 line code, and the same nota-
tion is adopted. This approach is followed in an attempt
to minimize the effort required to upgrade to the new
implementation.

The paper is organized as follows. The topology opti-
mization problem is formulated in Section 2. As in the
original paper, the focus is restricted to minimum compli-
ance problems with a constraint on the amount of material
available. The 88 line code is explained in Section 3. Spe-
cial attention is paid to the portions of the code that have
changed with respect to the original 99 line code. These

two sections constitute the core of the paper. The remain-
ing sections have a supplementary character, addressing
variants of and extensions of the 88 line code and dis-
cussing its performance. Section 4 presents two alternative
implementations of the filtering operation. The first alterna-
tive is based on the built-in MATLAB convolution operator
function conv2. This modification implies a further reduc-
tion of the code to 71 lines and leads to a reduction of
the memory footprint, but this comes at the expense of
the code’s readability for those unfamiliar with the conv2
function. The second alternative is based on the application
of a Helmholtz type partial differential equation to the den-
sity or sensitivity field (Lazarov and Sigmund 2010). This
approach allows for the use of a finite element solver to per-
form the filtering operation, which reduces the complexity
of the implementation for serial and parallel machines, as
well as the computation time for large problems and com-
plex geometries. Section 5 shows how to extend the 88 line
code to problems involving different boundary conditions,
multiple load cases, and passive elements. Furthermore, the
inclusion of a Heaviside filter in order to obtain black-and-
white solutions is elaborated. In Section 6, the performance
of the 88 line code and its variants is examined. The compu-
tation time is analyzed for three benchmark examples solved
with both the original 99-line code and the new versions
of the code. The memory usage of the new code is also
briefly discussed.

2 Problem formulation

The MBB beam is a classical problem in topology opti-
mization. In accordance with the original paper (Sigmund
2001), the MBB beam is used here as an example. The
design domain, the boundary conditions, and the external
load for the MBB beam are shown in Fig. 1. The aim of the
optimization problem is to find the optimal material distri-
bution, in terms of minimum compliance, with a constraint
on the total amount of material.

Fig. 1 The design domain, boundary conditions, and external load for
the optimization of a symmetric MBB beam

(a) The design domain, boundary
conditions, and external load.

(b) Relative density distribution
generated from conceptual design.

(c) Unit cell distribution after first
iteration.

(d) Unit cell distribution after 10th
iteration.

(f) Unit cell distribution after 28th
iteration.

(e) Unit cell distribution after 20th
iteration.

(h) Change of normalized
compliance

Figure 7: Minimize compliance of a MBB using proposed multiscale optimization. RVE method is
implemented for material design.

30 iteration are performed for each example. All of these four examples show a convergence trend of
η and m(θ) with

δ = 0.05× ηi, (14)

though some fluctuation of η appears in the optimization process of heat sink problem. From the results
shown in above figures and Table 1, it is found that using RVE-based method for mesoscale material design
is about two to three times faster than using AM method. In addition, it improves the connectivity of
marcostructure and convergence.

Table 1: Key result evaluations of presented examples.

Example C0 C m(θ) Element number Computation time (s)
1 (Fig. 7) 1.000 1.047 0.655 30000 741.9
2 (Fig. 8) 1.000 1.146 0.581 80000 2543.9
3 (Fig. 9) 1.000 1.069 0.651 120000 1377.3
4 (Fig. 10) 1.000 1.093 0.582 320000 6748.3
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(a) The design domain, insulated
boundaries, and heat sink.

(c) Unit cell distribution after first
iteration.

(d) Unit cell distribution after 10th
iteration.

(f) Unit cell distribution after 28th
iteration.

(b) Relative density distribution
generated from conceptual design.

(e) Unit cell distribution after 20th
iteration.

(h) Change of normalized
compliance

Distributed
heatingT=0

Figure 8: Minimize thermal compliance of a heat think using proposed multiscale optimization. RVE
method is implemented for material design.
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of MATLAB is far from optimally utilized. Efficient use of
MATLAB implies loop vectorization and memory preallo-
cation (The MathWorks 2010). Loop vectorization is the use
of vector and matrix operations in order to avoid for and
while loops. Memory preallocation means that the max-
imum amount of memory required for an array is reserved
a priori, hence avoiding the costly operation of reallocating
memory and moving data as elements are added to the array.
Loop vectorization and memory preallocation are used in
combination with a number of more advanced performance
improving techniques in the MILAMIN code, a MATLAB
program capable of solving two-dimensional finite element
problems with one million unknowns in one minute on a
desktop computer (Dabrowski et al. 2008).

In the 99 line topology optimization code, the perfor-
mance of several operations (such as the filtering proce-
dure and the assembly of the finite element matrices) can
be increased dramatically. Partly by properly exploiting
the strengths of MATLAB (using loop vectorization and
memory preallocation), partly by restructuring the program
(moving portions of code out of the optimization loop so
that they are only executed once), a substantial increase
in efficiency has been achieved: for an example problem
with 7,500 elements, the total computation time has been
reduced by a factor 100. In addition, the original code has
been extended by the inclusion of density filtering, while
reducing the length of the code to only 88 lines.

The aim of this paper is to present the 88 line code. It
should be considered as a successor to the 99 line code, and
it is published with the same objective: to provide an edu-
cational instrument for newcomers to the field of topology
optimization. The main improvements with respect to the
original code are the increased speed and the inclusion of
a density filter. These are relevant improvements, as the 99
line code has been downloaded by more than 8,000 unique
users since 1999 and is still used as a basis for new devel-
opments in the field of topology optimization. The density
filter is a useful addition as it paves the way for the imple-
mentation of more modern filters such as the Heaviside
filters proposed by Guest et al. (2004) and Sigmund (2007).

The present text is conceived as an extension of the paper
by Sigmund (2001). Large parts of the 88 line code are
identical to the original 99 line code, and the same nota-
tion is adopted. This approach is followed in an attempt
to minimize the effort required to upgrade to the new
implementation.

The paper is organized as follows. The topology opti-
mization problem is formulated in Section 2. As in the
original paper, the focus is restricted to minimum compli-
ance problems with a constraint on the amount of material
available. The 88 line code is explained in Section 3. Spe-
cial attention is paid to the portions of the code that have
changed with respect to the original 99 line code. These

two sections constitute the core of the paper. The remain-
ing sections have a supplementary character, addressing
variants of and extensions of the 88 line code and dis-
cussing its performance. Section 4 presents two alternative
implementations of the filtering operation. The first alterna-
tive is based on the built-in MATLAB convolution operator
function conv2. This modification implies a further reduc-
tion of the code to 71 lines and leads to a reduction of
the memory footprint, but this comes at the expense of
the code’s readability for those unfamiliar with the conv2
function. The second alternative is based on the application
of a Helmholtz type partial differential equation to the den-
sity or sensitivity field (Lazarov and Sigmund 2010). This
approach allows for the use of a finite element solver to per-
form the filtering operation, which reduces the complexity
of the implementation for serial and parallel machines, as
well as the computation time for large problems and com-
plex geometries. Section 5 shows how to extend the 88 line
code to problems involving different boundary conditions,
multiple load cases, and passive elements. Furthermore, the
inclusion of a Heaviside filter in order to obtain black-and-
white solutions is elaborated. In Section 6, the performance
of the 88 line code and its variants is examined. The compu-
tation time is analyzed for three benchmark examples solved
with both the original 99-line code and the new versions
of the code. The memory usage of the new code is also
briefly discussed.

2 Problem formulation

The MBB beam is a classical problem in topology opti-
mization. In accordance with the original paper (Sigmund
2001), the MBB beam is used here as an example. The
design domain, the boundary conditions, and the external
load for the MBB beam are shown in Fig. 1. The aim of the
optimization problem is to find the optimal material distri-
bution, in terms of minimum compliance, with a constraint
on the total amount of material.

Fig. 1 The design domain, boundary conditions, and external load for
the optimization of a symmetric MBB beam

(a) The design domain, boundary
conditions, and external load.

(b) Relative density distribution
generated from conceptual design.

(c) Unit cell distribution after first
iteration.

(d) Unit cell distribution after 10th
iteration.

(f) Unit cell distribution after 30th
iteration.

(e) Unit cell distribution after 20th
iteration.

(h) Change of normalized
compliance

Figure 9: Minimize compliance of a MBB using proposed multiscale optimization. AH method is imple-
mented for material design.
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(a) The design domain, insulated
boundaries, and heat sink.

(c) Unit cell distribution after first
iteration.

(d) Unit cell distribution after 10th
iteration.

(f) Unit cell distribution after 28th
iteration.

(b) Relative density distribution
generated from conceptual design.

(e) Unit cell distribution after 20th
iteration.

(h) Change of normalized
compliance

Distributed
heatingT=0

Figure 10: Minimize thermal compliance of a heat think using proposed multiscale optimization. AH
method is implemented for material design.

7. Application to porous injection mold

A 3D porous injection mold design is presented in this section. The mold is a 3 in × 3 in × 1.25
in core insert. Based on the geometry of the mold, a quarter of mold section is investigated. Besides,
the top core of the mold is reserved as solid structure for conformal cooling design (Fig. 11). Injection
load located at the injected part surface, clamping pressure at imposed on bottom, and press-fit load on
lateral sides are served as mechanical force. For heat conduction, a heat flux imposed on the injected
part surface, and the temperature of cooling pipe is assumed as a constant value. All physics values are
normalized in this problem.

Injection Load (100 MPa)

Supports used 
for symmetric 
conditionClamping pressure on 

bottom face  (35 MPa)

Press-fit pressure on 
lateral face (20 MPa) 

Heat flux (200 W)

Constant temperature (25℃)

(a) Original design 

(b) Mechanical boundary condition (c) Thermal boundary condition

(d) Conceptual optimization (e) Multiscale topology optimization

Figure 11: Multisclae thermomechanical topology optimization of a porous injection mold.
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In the problem statement, define given macroscale mass fraction m(θ)=0.5, CQ=1.1, CU=1.1, η=0.2,
δ = 0.05×ηi. A 6×6×5 cubic mesh is applied to the macroscale problem, while a 20×20×20 cubic mesh
is used for each of mesoscale voxel. However, in mesoscale, only 1/8 of each cubic is required to analyze.
The convergence is satisfied after 15 iteration with m(θ)=0.71. The optimal structure is approximated to
an iso-surface and meshed to a STL file. The file size is 125.7Mb, composed of 2511164 triangles. After
modification in Netfabb, the triangle number is reduced to 374558, with a limit of deformation 0.01 in.

After mirroring the resulting section and performing boolean operations to assemble the top core and
conformal cooling channel, the porous injection mold is prototyped using SLA printer FORMLAB 2+,
with a scaled factor 0.4 (Fig. 12). It shows, only 10 % more additional material is needed to support
the structure. No support structure is required to change the orientation of the mold, and no internal
structure is needed.

Figure 12: Assemble and prototyping process of the injection mold.

8. Conclusion

In this work, a practical multiscale topology optimization approach is presented. By considering both
mechanical load and thermal conduction problem and extending the algorithm in 3D, the method is
suitable for injection mold optimization in industries. The using of RVE-based inverse homogenization in
mesoscale significantly saves computational cost and improves the result. Limited by prevalent technol-
ogy, the assembling operation capability in CAD would be strongly narrowed if the size and complexity
of unit cell are increased. In the future work, a more efficient method for CAD post processing is worth
to investigate.
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