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Alex Roschildt Pinto ·Kalinka Regina Lucas Jaquie Castelo Branco

Received: 15 December 2014 / Accepted: 14 February 2016 / Published online: 14 March 2016
© Springer Science+Business Media Dordrecht 2016

Abstract This paper presents HAMSTER, the
HeAlthy, Mobility and Security based data com-
munication archiTEctuRe. HAMSTER is designed
for Unmanned Vehicles and addresses mainly three
types of communications: machine-to-machine,
machine-to-infrastructure and internal machine com-
munications. It is divided into three main versions:
Flying HAMSTER (for aerial systems), Running
HAMSTER (for terrestrial systems) and Swimming
HAMSTER (for aquatic systems). Every version of
such architecture is also equipped with Sphere and
Nimble. Sphere deals with Safety & Security aspects
regarding communication, components “health” and
modules authentication. Nimble is aimed at increasing
the overall mobility in such scenarios, strongly actuat-
ing with inherent communications of each application
field. This paper details every aspect of HAMSTER
and presents, as a plus at the end, two case studies:
the first one consists of an evaluation of five com-
munications schemes for internal communications in
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airplanes; the second one is a cryptographic evaluation
of two Elliptic Curve Cryptography algorithms.
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1 Introduction

Recently, the development of Unmanned Vehicles
(UV) and Unmanned Systems1 has increased, which
allowed the existence of many different types of vehi-
cles e. g., aerial, terrestrial and aquatic vehicles. Such
vehicles should be integrated into the airspace, on pub-
lic roads and even on aquatic environments following
specific laws and requirements of each scenario. Thus,
it is essential that communications elements meet
healthy, mobility and security requirements, increas-
ing the system overall capabilities and, consequently,
allowing the vehicles to be certified and integrated
into their operation space, obeying the specific rules
determined by authorities.

1Unmanned Systems, in this paper, refers to everything present
in a limited environment that allows the execution of a mission,
e. g., the Unmanned Vehicle, the Ground Station etc.
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This paper presents HAMSTER, the HeAlthy,
Mobility and Security based data communication
archiTEctuRe. The main objective is to help develop-
ers of UV to efficiently implement communications in
their systems by considering the internal and external
communications. The architecture specification also
considers security, safety and mobility constraints.

Apart from the architecture specification, two case
studies will be presented at the end of this article.
Both are focused on the aerial segment, allowing us
to demonstrate how HAMSTER could be helpful for
developers. Although the case studies are focused
on aerial vehicles, one can apply several different
techniques permitting HAMSTER to be used with ter-
restrial and aquatic vehicles as well. The first case
study is related to the fly-by-wireless paradigm, which
is a trend for internal communications in aircraft sys-
tems and demonstrates how HAMSTER is flexible i. e.
not exclusively restricted to wired internal communi-
cations. The second case study consists on evaluating
the application of an Elliptic Curve Cryptography
algorithm for secure communications in unmanned
vehicles and systems, highlighting how HAMSTER is
aligned with modern cryptographic algorithms as part
of its security & safety platform.

This paper is organized as follow: Section 2
presents topics regarding communications in
Unmanned Systems and introduces specific ad hoc

networks for different application scenarios; Section 3
details HAMSTER data communication architecture,
its three versions and its two specialized modules:
Sphere, which deals with Security & Safety, and
Nimble, that concentrates mobility related advances;
Sections 4 and 5 are the case studies; and Section 6
presents the conclusions.

2 Communications in Unmanned Systems

Unmanned vehicles are better known as smart cars,
unmanned aerial vehicles, drones, water surface and
underwater vehicles, among others. In [39], such sys-
tems are called Mobile Intelligent Autonomous Sys-
tems (MIAS), which are meant to comprise theory and
practice of several closely related technologies that
have some elements of mobility, intelligence and/or
autonomy operating and envisaged not only for robots,
but also for other mobile vehicles.

Communication is one of the biggest challenges
in designing systems with multiple vehicles and also
a crucial aspect for cooperation and collaboration
[5, 8]. There are three main types of communi-
cations in the context of unmanned vehicles sys-
tems: (a) internal machine communications (IMC);
(b) machine-to-machine communications (M2M); and
(c) machine-to-infrastructure communications (M2I).

Fig. 1 Inherent
communications to the
scenario composed by
autonomous aerial, aquatic
and terrestrial vehicles,
including the interactivity
among different vehicles
types. Sections 3.1, 3.2 and
3.3 will show details on how
HAMSTER deals with the
specific differences among
the three vehicles types

A2I

A2I
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Figure 1 illustrates a scenario which includes the three
main types of vehicles and their respective commu-
nications types specifically adapted for their require-
ments. There are minimal characteristics that differen-
tiate each type of vehicle (aerial, aquatic or terrestrial)
regarding communication aspects, e. g., velocity and
degrees of freedom of each scenario.

Once all vehicles are directly connected to an
infrastructure, such as a control station or a satel-
lite, communication among vehicles can be performed
by using such infrastructure. However, infrastructure
based communication strongly restricts the capabil-
ities of an UV system. A viable solution to such
problem is to apply ad hoc networks connecting all
the vehicles. As the number of vehicles on a system
increases, the projection of efficient network architec-
tures emerges as a vital issue to be solved.

Besides direct communication among vehicles, in
an unmanned system it is possible and very com-
mon the existence of a communication link with a
central control station, which can be a direct com-
munication or mediated by a satellite [14]. In some
approaches, machine-to-machine communications can
be accomplished through the infrastructure, which
introduces several new problems. First, each vehicle
must be equipped with a more expensive and complex
hardware to enable communication with the control
station or satellite. Furthermore, the reliability of com-
munication is also a disadvantage of such network
structure. Due to changing environmental conditions,
movements by aerial, aquatic or ground vehicles and

different characteristics of relief terrain or obstacles,
vehicles may face problems to maintain communica-
tion with the infrastructure.

Moreover, one more problem is the restriction of
range between the vehicle and the control station. If
a vehicle is outside the coverage area of the con-
trol station, it is consequently disconnected from the
network. An alternative communication solution for
unmanned systems with multiple vehicles is the use
of ad hoc networks to connect vehicles, also known
as UANETs (underwater ad hoc networks, specifically
designed for aquatic vehicles), VANETs (vehicular
ad hoc networks, specifically designed for terrestrial
vehicles) [6, 15, 22, 23, 40, 47] and FANETs (flying
ad hoc networks, specifically designed for aerial vehi-
cles) [42, 47]. As long as some vehicles may be out
of the coverage range of the control station or satel-
lite, all vehicles compose an ad hoc network, which
enables every vehicle to communicate with the control
station through communications hops through other
vehicles. Although there may exist or not a connection
with the base station, vehicles in the air may form a
FANET in order to share information and even work
in cooperation.

Ad hoc networks are classified according to their
utilization, implementation, communication and mis-
sion objectives [4]. By definition, FANETs, UANETs
and VANETs share several characteristics and can be
observed as subsets among themselves. They are con-
sidered as special types of MANETs (mobile ad hoc
networks) [4], as illustrated in Fig. 2. However, each

Fig. 2 Relations among
mobile ad hoc networks
(MANET) and the
derivations: underwater ad
hoc networks (UANET),
vehicular ad hoc networks
(VANET) and flying ad hoc
networks (FANET). Figure
adapted from [4]

MANET

VANETUANET

FANET
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of them face different challenges e. g. the transmis-
sion medium in aquatic vehicles could be completely
underwater; the obstacles in roads could be extremely
unexpected and dangerous; the speeds achieved by
aircrafts could be highly challenging for communica-
tions; and so on.

The scenario of FANETs is specially more chal-
lenging than other ad hoc networks. Some reasons
may be pointed out:

– The degree of nodes mobility in FANETs is much
greater than in MANETs or VANETs. On the
one hand, in MANETs and VANETs nodes may
be carried by or embedded on people and cars,
respectively. On the other hand, the nodes in
FANETs are embedded on an aircraft in flight.

– Due to the high mobility of nodes in FANETs,
the topology changes more frequently than the
network topology in MANETs, VANETs and
UANETs.

– Existing ad hoc networks aim to establish peer-to-
peer connections. FANETs also need peer-to-peer
connections for the coordination and collabora-
tion of UAVs. Furthermore, most of the time,
these networks collect environmental data retrans-
mitted to the control station, similarly to wire-
less sensor networks [41]. Consequently, FANETs
need to support peer-to-peer communication and
manage traffic information for monitoring sta-
tions.

– Typical distances among nodes in FANETs are
much longer than in MANETs and VANETs [9].
Thus, the communication range in FANETs must
also be greater than other networks. This fact
directly impacts the radio links and hardware
elements.

– Multiple UAV systems may include different
types of sensors and each sensor may require
different strategies for data distribution.

An architecture that explores similarities among
different ad hoc networks and vehicles, and also deals
with their exclusive characteristics would be help-
ful for integrating different vehicles and scenarios
to increase cooperation. Furthermore, it would also
increase the overall security and safety, leading to
more chances of getting certification/authorizations
to operate. Next section introduces the HAMSTER
architecture, which aims to address the aforemen-
tioned features.

3 HAMSTER: Healthy, Mobility
and Security-Based Data Communication
Architecture

The Healthy, Mobility and Security-based Data Com-
munication Architecture is divided into three main
versions according to the most common types of
UV: aerial, aquatic and terrestrial. Two extra mod-
ules were also defined: one to deal with security
and safety aspects under all three versions of HAM-
STER, and another one for all the mobility aspects.
Figure 3 presents an overview of HAMSTER hierar-
chical organization and common abbreviations used in
this paper. Every module and architecture version will
be discussed in Sections 3.1 to 3.5.

Before focusing on each version of the architecture,
the very first step must be the identification of critical-
ity in general modules that compose an UV and a con-
trol station, allowing appropriate approaches for each
of these elements, ensuring the proper operation of the
UV and the entire system. Figure 4 shows the inter-
nal organization of a general UV and a general ground
station with inherent modules placed according to the
need for low latency, medium latency or no real-time
constraints. Three communication buses were defined:
real-time (red), where latency is expressed in millisec-
onds, is focused on the essential parts of the UV for
its safe operation (e.g. basic sensors); near real-time
(yellow), where latency is expressed in tens of mil-
liseconds, comprising modules less critical but still
sensitive to real-time (e.g. communication with other
vehicles); and no real-time (green) that allows the use
of services with non-deterministic time operations,
which are not essential to the basic aircraft operations.
In the case of the ground station, the organization fol-
lows the same idea, despite the fact that it operates
with only two buses, since its operations are not as
complex as the vehicle.

From such organization (which is a modern version
of the idea published in [32]), next subsections will
present HAMSTER more accurately.

3.1 Flying HAMSTER: the Aerial Systems
Architecture

Flying HAMSTER is the version of the architec-
ture which deals exclusively with the aerial seg-
ment. It was defined based on specific characteris-
tics and requirements of unmanned aerial vehicles
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HAMSTER
Architecture

Flying HAMSTER Running HAMSTER Swimming HAMSTER

Sphere Nimble

A2A A2I IAC V2V V2I IVC W2W W2I IWC

Sphere Nimble Sphere Nimble Sphere Nimble

M2M
M2I
IMC

Machine-to-machine communica ns
Machine-to-infrastructure communic ons
Internal machine communica ns

A2A
A2I
IAC

Airplane-to-airplane communic ons
Airplane-to-infrastructure communic ons
Internal airplane communic ons

V2V
V2I
IVC

Vehicle-to-vehicle communica ns
Vehicle-to-infrastructure communic ons
Internal vehicle communica ns

W2W
W2I
IWC

Water vehicle-to-water vehicle commun ons
Water vehicle-to-infrastructure communic ons
Internal water vehicle communic ons

UAV

USV/UUV

UGV

UAS UVS UWS

Systems

Fig. 3 HAMSTER versions and the specific modules for
mobility (Nimble) and safety & security (Sphere). Flying HAM-
STER was designed for aerial systems (UAV and UAS), Run-
ning HAMSTER for terrestrial systems (UGV and UGS) and
Swimming HAMSTER for aquatic systems (USV, UUV and
UWS). Unmanned aircraft systems (UAS) are composed by
UAV and every other instance that communicates with the
system to perform a mission through A2A, A2I and IAC com-
munications; Unmanned vehicles systems (UVS) are composed

by UGV and every other instance that communicates with the
system to perform a mission through V2V, V2I and IVC com-
munications; Unmanned water vehicles systems (UWS) are
composed by USV/UUV and every other instance that commu-
nicates with the system to perform a mission through W2W,
W2I and IWC communications. Every established communica-
tion is derived from the general concepts represented by M2M,
M2I and IMC communications
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Fig. 4 Modules of an unmanned vehicle and a ground station with three buses defined according to communication criticality. This
figure was adapted from the proposal for unmanned aircraft systems, originally published in [32]

(UAV) and unmanned aircraft systems (UAS). Flying
HAMSTER deals specifically with internal airplane
communication (IAC), airplane-to-airplane communi-
cation (A2A) and airplane-to-infrastructure communi-
cation (A2I).

The main applications of UAVs are related to agri-
cultural and environmental monitoring, safety, mili-
tary and civil defense. The aircraft is usually able
to capture images for processing relevant informa-
tion about a specific field, which may contribute to
improve productivity. There are several cases where
they might be applied in environmental and borders
monitoring, or even applied as aerial sensors in net-
works for disaster management [36] and multiple UAV
applications [5, 22, 28, 29, 48].

FANETs are under A2A communication.

3.2 Running HAMSTER: the Terrestrial Systems
Architecture

Running HAMSTER deals specifically with vehicles
on terrestrial segment. It was defined based on spe-
cific characteristics and requirements of unmanned
ground vehicles (UGV) and unmanned ground sys-
tems (UGS). Running HAMSTER treats internal vehi-
cle communication (IVC), vehicle-to-vehicle commu-
nication (V2V) and vehicle-to-infrastructure commu-
nication (V2I).

The objective of ground vehicles may vary
from driver support in possible dangerous situa-
tions with the intention of preventing road accidents,
to autonomous driving with no human intervention,
which could be used in urban traffic, agriculture,
industry and safety applications [13]. The sensor
fusion technique is used for integration of multiple
sensors such as cameras, digital compasses, and GPS,
allowing the vehicle to become autonomous in both
urban and rural areas [46].

VANETs are under V2V communication.

3.3 Swimming HAMSTER: the Aquatic Systems
Architecture

Swimming HAMSTER was designed for vehicles
that operate on aquatic environments. It was defined
based on specific characteristics and requirements of
unmanned surface vehicles (UGV), unmanned under-
sea vehicles (UUV) and unmanned water vehicles sys-
tems (UWS). Swimming HAMSTER is composed by
internal water vehicle communication (IWC), water
vehicle-to-water vehicle communication (W2W) and
water vehicle-to-infrastructure communication (W2I).

The aquatic vehicles have been used for var-
ious tasks, especially those related to monitoring
of oil exploration and maintenance of hydropower.
The current challenges for these vehicles go beyond
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autonomy, integrating other areas with the distributed
and embedded systems, such as computer networks,
artificial intelligence, software engineering, electri-
cal, mechanical and mechatronics engineering, among
others. The multiple vehicles tasks are also challeng-
ing [1, 50].

UANETs are under W2W communication.

3.4 Sphere: Security & Safety Aspects on
HAMSTER Architecture

Sphere [34] is the HAMSTER module which will con-
centrate all the security & safety aspects of the main
architecture and all derivative versions. The aim is
to define patterns for assuring security & safety that
allow every unmanned vehicle derived from HAM-
STER to safely share information, even when differ-
ent scenarios are involved, e. g. to permit the safe
communication between an unmanned surface vehi-
cle and an unmanned aerial vehicle. It is also a goal
of Sphere to centralize the modules “health” check,
which guarantees a safer operation for the vehicle
and, consequently, the entire system. This subsec-
tion is divided into two parts. The first one addresses
a components usage policy and the second one an
authentication protocol which will also be responsible
by the components “health” checking.

3.4.1 Components Usage Policy

One of the first steps to ensure the safe operation of a
vehicle and to facilitate its integration into the space
of actuation (for instance, an UAV into the airspace)
must be the redefinition of its components usage pol-
icy. Only a few parts of an UV are properly treated
to ensure that all connected modules are authentic and
have not been replaced or tampered with by a third
party. The current policy adopted by most aircraft
manufacturers uses a concept of “Accept all” which
trusts in all components embedded in an aircraft. This
proposal suggests the assumption of an “Almost Deny
All” approach, which denies the authenticity of all
mechanical components and peripherals attached to
the vehicle until the opposite is proved, which may
result in safer vehicles.

The categorization of every module is therefore
crucial for such a new security model to be applied
to UV. There are various peripheral devices embed-

ded in an UV that require different levels of security,
which leads to the necessity of a module categoriza-
tion according to the criticality of their performed
functions. The Sphere proposal suggests the mod-
ules categorization into primary, secondary, and so
on, according to necessity. Bigger and more robust
vehicles may have their modules divided into more
than two categories, once there is a greater variety of
modules criticality to be considered.

Primary modules are those considered essential
components for the UV to operate, to be aware of
its location and to be able to perform an emergency
operation abort safely, even when the mission was
not entirely concluded. An autopilot, a GPS receiver,
and barometric/inertial units are examples of modules
classified as primary, since they might cause a big
lost if in failure state. In contrast, modules not con-
sidered as essential functions to the UV are classified
as secondary modules. Whether abnormal behaviors
are detected in any secondary module, the operation
of the primary components of the UV is not affected
and the secondary module that presented the abnor-
mality should be disabled or isolated. It implies that
all primary modules must be authenticated before the
operation begins. However, the secondary modules
do not necessarily need an authentication before the
mission execution.

In addition, to protect the UV against malicious
attacks, there is the possibility of identifying anoma-
lies due to usage time. For instance, pressure and colli-
sions suffered by an aircraft may cause natural degra-
dations in components integrity. Therefore, mecha-
nisms to identify the existence of unusual behaviors
should help to increase the UV safety, even with a
consequent abort of a mission for reasons of physi-
cal integrity of the UV. These concepts are strongly
connected to Sense & Avoidance area, which are con-
sidered as a feature to be integrated to HAMSTER as
a future work.

The creation of access profiles for modules is
another concept associated with the proposal of
authentication. As a mission is assigned to the UV,
it must go through an authentication process, which
assigns different access permissions to the UV mod-
ules. Such concept is similar to the one used in
modern operating systems where an administrator user
is allowed to install and uninstall software with no
restrictions, unlike a visitor user who has access to
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the programs, but is not allowed to install/uninstall
them. Applied to UV, such concept adds a layer of
security that allows blocking the use of selected mod-
ules by specific users. Such specification is intended
to prevent unauthorized access. Even if there is a sin-
gle effective user of an UV, no other user (an attacker
or not) will have privileged access to modules or their
information.

Figure 5 presents the Sphere main modules. Cen-
tral Security Unit (CSU) is responsible by modules
authentication and “health” verification. Based on
such results, CSU associates every module to a par-
ticular usage profile. The communication security is
also addressed by Sphere and directly impacts the
respective vehicle communications. The access policy
assigned to each user must use cryptographic algo-
rithms suitable for embedded or real-time sensitive
environments. Several experiments have been carried
out regarding security for critical embedded systems
[33, 44].

3.4.2 Protocol Structure

To protect the UV against attacks coming from mali-
cious components, Sphere implements strict security
policies. It is necessary to ensure that all modules

Unmanned Vehicle

Sphere

ModuleModule Module

Communica�on Security

M2M M2I IMC

CSU
(Central Security Unit)

Safety and

authentication

Security

Fig. 5 Generic composition of Sphere, the Safety & Security
aspects module on HAMSTER architecture. Each version of
HAMSTER may address several different concepts, according
to specific necessities. However, CSU will be able to equally
communicate among different HAMSTER versions, allowing
heterogeneous vehicles communications

are authentic, so if one of them fails or presents an
abnormal behavior, the others must not communicate
with it. Furthermore, such policies must be applica-
ble even during vehicle operations, considering that
external factors may affect the components behavior
e. g. climate or weather changes. In addition, each
component must contribute for overall UV safety.
In order to apply such methods and requirements, it
is assumed that at the system startup or after hard-
ware changes, CSU module remains in an unsafe state
and must be authenticated. It will be responsible for
storing a table of public keys of all vehicle compo-
nents, operating similarly to a Certification Authority
(CA), which has the goal of ensure that a public key
belongs to an entity (module). Each module (or com-
ponent) will store a hash table of the keys for integrity
checking.

During the vehicle start up, a mutual authentication
phase should occur with CSU. It checks the database
credentials of all modules, their criticality, and even
if there is any access restriction. There is also the
possibility of deciding whether a module should be
initialized or not during the verification stage. The fol-
lowing steps will be authentication and exchange of
encrypted messages to establish a secure channel for
communication among modules and CSU.

After such handshake, three situations are
expected:

– The module that is trying to authenticate and CSU
have not been tampered with;

– The module has been tampered with and therefore
has not been authenticated:

– If it is a module of primary type, the UV
must not operate;

– If it is a module of secondary type, com-
munication with it must be interrupted
and a notification be sent to a control
station.

– The module that is trying to authenticate may
notice that CSU is not authentic, and must notify
other components about it.

From the point of view of communication secu-
rity, an ideal situation would be if all modules could
authenticate with others. However, this method would
cause a system overload, since the increase of modules
in the aircraft would cause an exponential increase
in the number of exchanged messages. To solve such
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problem there exist the e-voting protocols [27]. In
case of non-authentic CSU, protocols such as those
presented in [21] might be used. Such model can be
further expanded according to the needs of the UV,
including a negotiation mediated by CSU to create a
secure channel of communication among modules. A
graphical representation of processes performed dur-
ing the authentication module with CSU can be seen
in Fig. 6.

3.5 Nimble: Mobility Aspects on HAMSTER
Architecture

Regarding mobility, HAMSTER architecture intro-
duces Nimble. The goal is to allow the creation of
a distributed architecture addressing all the elements
that compose an Unmanned System (e. g. vehicles,
control stations, support vehicles, sensor networks
etc.) and to assess every type of communication for
each scenario.

The concept of 3-D wireless networks is consid-
ered by Nimble. Such networks consider merging
the digital world with the physical world allowing
the exchange of information among individuals and
objects with data services. For instance, in military
scenarios modern 3-D wireless networks can be used
to connect aircraft, troops and fleets allowing greater
exchange of data among them, thus ensuring the secu-
rity of sensitive information that may be exchanged.
This new paradigm introduced by 3-D wireless net-
works meets the needs of scenarios where UV are
applied [26].

Nimble also considers the adoption of IPv6 instead
of IPv4, once HAMSTER aims to increase mobility

as much as possible. IPv6 naturally increases mobility
[31]. It is well known that the increasing number of
devices connected to networks nowadays is one of the
major reasons that boosted the use of IPv6. In avionics
there is an increase of researches that apply the con-
cept of ubiquity, once all the elements involved in a
modern Unmanned System often have a specific net-
work address, since every element is connected to the
network.

3.6 Why HAMSTER Architecture?

Mainly, HAMSTER aims to provide a short way for
researchers and developers of Unmanned Vehicles to
achieve a flexible and secure solution for implement-
ing communications. It is able to cover both internal
and external communications, observing specific envi-
ronment characteristics and providing robust ways of
increasing security, safety and mobility.

Moreover, HAMSTER is aimed at providing an
integrated architecture allowing heterogeneous sys-
tems to fully communicate. Vehicles should be able
to interact with the environment and also other types
of vehicles, which would allow more complex and
complete missions to be executed. For that, a commu-
nication architecture that follows a main structure for
communications, mobility and also safety and security
will be a better choice. HAMSTER helps achiev-
ing such goals once it provides the main modules
adapted for each scenario, and still keeps possible the
interaction among different HAMSTER versions.

HAMSTER is a data communication architecture
that will be available soon. We will present two
case studies to demonstrate few of the possibilities

Fig. 6 Modules and CSU
authentication steps. The
“Ballot box” is used by
every other system modules
for authenticating CSU
through e-voting protocols

CSU
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Module 1

Module 4Module 3Module 2

1 4

Users/
modules 
database

2 3

5 5 5
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Requests access sending 
creden�als
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CSU requests informa�on 
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4 Access authoriza�on/denial
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provided by HAMSTER. The case studies (Sections
4 and 5) present results for the aerial segment only.
The Unmanned Aircraft Systems were chosen as
focus since there are several known challenges still
unsolved. Thus, the following sections are focused
completely on the aerial segment with Flying HAM-
STER (Section 3.1).

4 Case Study 1: Fly-by-Wireless with Flying
HAMSTER

This study case is focused on Unmanned Aircraft
Systems and aims to provide clues for the devel-
opment of Flying HAMSTER. Thus, it consists on
real experiments regarding efforts to the direction of
fly-by-wireless on Internal Airplane Communications
(IAC as stated in Fig. 3).

4.1 Background

There exists nowadays a huge eagerness by the indus-
try towards fly-by-wireless [11, 43], which includes
also NASA [45]. Due to that, the aerospace industry
and technology providers were motivated to establish:
(a) a new emphasis for system engineering approaches
to reduce cables and connectors, (b) provisions for
modularity and accessibility in the vehicle architec-
ture, (c) a set of technologies that support alternatives
to wired connectivity.

Leipold et al. [24] investigated Ultra WideBand
technology for in-cabin communication with opti-
mized resource allocation in high performance sys-
tems, and average communication latencies have
been achieved using simulation. Moreover, Yedavali
and Belapurkar [51] present a survey and sev-
eral recent works on using wireless sensor net-
works for aircraft control and health monitoring.
And in [30], the opportunities and challenges for
using wireless inter-connect for safety-critical avion-
ics are discussed. The benefits include weight reduc-
tion, increased flexibility and decreased costs and
maintenance. However, electromagnetic susceptibil-
ity and security still are the main challenges to
handle.

The goal of this case study is to present a per-
formance evaluation of five different communication
schemes applied to six sensor nodes and a master node
embedded on an UAV.

4.2 Problem Statement

The paradigm called fly-by-wireless is based on the
replacement of wired networks for aircraft control
by wireless networks. Thus, it is possible to sig-
nificantly reduce the weight, fuel consumption and
maintenance costs of the aircraft [30]. However, the
large number of wireless nodes required for the effec-
tive control of the aircraft present major challenges.
The protocols used in Wireless Sensor Networks
such as IEEE 802.15.4 [16] present a large drop
in communication efficiency (ratio between sent and
received messages) as the number of nodes increases
[35].

Accordingly, the performance of communication
protocols suitable for fly-by-wireless technologies
must be properly evaluated. Such type of analysis
is essential since controlling an aircraft is a criti-
cal operation. Therefore, if the control is replaced
by wireless nodes, it must have baselines to pre-
dict packet delivery efficiency. Thus, one of the main
contribution of this case study is to analyze the com-
munication efficiency of wireless nodes (based on
IEEE 802.15.4) using classical communication pro-
tocols (TDMA, Flurry and Periodic). Our tests were
performed on real prototypes.

4.3 Materials and Methods

The experiments were defined according to five devel-
oped communication schemes, which determine how
the sensors communicate with the master module
(central module). The sensors were distributed inside
and outside of an UAV prototype [7]. The goal of
this case study is to find out which communica-
tion scheme is more suitable for being applied in a
real UAV. The following subsections explain these
characteristics of our experiments and the statisti-
cal techniques used for evaluating and analysing the
results.

4.3.1 Communication Schemes

For implementing the communication algorithms,
three approaches were chosen: TDMA [2], Flurry and
Periodic [49].

Although the promising applications enabled by
wireless sensor networks are very attractive, there
are many system challengesto resolve. First of all,
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energy is an essential problem since sensors are usu-
ally battery-powered. Second, in some emergency
applications, a short time of data collection is also
required. Towards such a data gathering sensor net-
works, TDMA is a good choice to satisfy the above
requirements [2]. First, TDMA can save energy
by eliminating collisions, avoiding idle listening, or
entering inactive states until their allocated time slots.
Second, as a collision-free access method, TDMA can
bound the delays of packets and guarantee reliable
communication.

On the other hand, there are the Periodic proto-
cols. In this case, nodes in a network periodically
send messages to the master module. The advan-
tage of using this model is mainly the energy sav-
ing, once there is the possibility of deactivating
nodes when not communicating [49]. Apart from that,
there is also the Flurry protocol which operates in
a random way. Since its behaviour cannot be pre-
dicted, we opted to evaluate this communication pro-
tocol as a parameter for comparisons with the other
protocols.

Five communication schemes were imple-
mented based on above mentioned communication
approaches. They determine the behaviour of six
Arduino boards that were applied to simulate embed-
ded sensors in an UAV. The implemented algorithms
are detailed bellow:

1. TDMA without requests: the node sends a mes-
sage each 100 ms; and waits for a resynchroniza-
tion message each 1200 ms.

2. TDMA with requests: the node sends a message
each 100 ms only if it receives a request of send
type; and waits for a resynchronization message
each 1200 ms.

3. Flurry: each node has a third of chance of being
activated. Once it is active, it sends 12 messages
with an interval of 100 ms among them. After that,
it waits for 1200 ms.

4. Periodic without requests: all nodes send simul-
taneously a message each 100 ms; and then, for
each batch of execution, they wait for a resynchro-
nization message.

5. Periodic with requests: all nodes send simulta-
neously a message each 100 ms; and then, for
each batch of execution, they wait for a request
message from the master module to start sending
messages again.

The schemes number 2 and 5 are dependent on
requests sent from the master module. This one is pro-
grammed to send a request message each 50 ms. It
is also important to point out that the IEEE 802.15.4
protocol was used on the radio modules.

4.3.2 Environmental Setup and Possible Interferences

The indoor experiments were performed with a proto-
type of an aircraft. This choice is due to the fact that
there is no need to perform such preliminary experi-
ments with an aircraft in flight, since the objective is to
evaluate the interference of six modules trying to com-
municate simultaneously with a central module (the
master one).

Therefore, the aircraft chosen was a prototype of
Tiriba [7]. The master module (M) and four slave
modules (Sn, where n represents a number identifi-
cation) were positioned inside the aircraft while the
other two slave modules were positioned above the
wings (one module per wing). The master module was
positioned in the central region of the aircraft, so the
distances between master and slave modules could be
as small as possible. For a better understanding of
modules distribution, see Fig. 7. Figure 8 shows a
photo with some modules positioned inside the UAV.

4.4 Results and Discussion

Modules were positioned inside the aircraft as it was
explained in Environmental setup section (see Fig. 7).

Fig. 7 The nodes distribution over the airplane: slave modules
(S1-S4) and Master module (M) are inside the airplane, while
slave modules S5 and S6 are above the airplane wings
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Fig. 8 Modules positioned inside the aircraft during the setup
stage

The experiments were performed 10 times. Figure 9
shows an inferior performance by TDMA implemen-
tations (with and without requests). This is due to the
algorithm operation, which is dependent on requests
for sending messages. It is also possible to see a
random behavior by Flurry communication scheme,
which is completely expected, once this implementa-
tion forces slave sensors to randomly send messages
to the master one. On the other hand, the Periodic
communication schemes showed the best overall per-
formance. The Periodic with requests is a bit better
than Periodic without requests.

There are some cases where it is possible to visu-
alize that external modules had a bit less success in
communication whether compared to internal ones.
It was expected due to the fact that external mod-
ules have more obstacles to overpass, once they are
positioned outside the airplane.

For evaluating the performance in a comparative
way, it was calculated the communication efficiency
by comparing the number of messages sent by each
communication scheme and the number of messages
that were in fact received by master module. For each
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Fig. 10 The communication efficiency of each communication
scheme

case it was calculated the percentage of delivered
messages as shown in Fig. 10.

Figure 10 shows a bad performance by Periodic
schemes. It is due to the fact that Periodic schemes
send messages with a specific time frequency, how-
ever most of them are lost. Comparing Periodic
schemes with TDMA schemes, it is important to point
out that the second one requests messages, so it is
expected that it will be able to receive the prompted
message.

On the other hand, Flurry and both TDMA schemes
had a great performance: 99,33 % of messages on
TDMA without requests have been successfully deliv-
ered; 99,71 % of messages on TDMA with requests
have been successfully delivered; and on Flurry
scheme, 97,81 % of messages have been successfully
delivered.

The results of Case study 1 are helpful for the
definition of HAMSTER architecture regarding fly-
by-wireless, which has been a field of intense research
lately. The internal aspects of Flying HAMSTER, the
HAMSTER version for avionics, will be more detailed

Fig. 9 Frequency of
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second
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within the official documentation of the architecture.
Although this case study was carried out specifically
for UAS, it could also provide clues for internal wire-
less communications in cars and aquatic vehicles with
further adaptations.

5 Case Study 2: Evaluation of Elliptic Curve
Cryptography for Providing Security

This study case is focused on Unmanned Aircraft Sys-
tems and aims to provide clues for the development
of Flying HAMSTER. Thus, it consists on real experi-
ments regarding efforts to the direction of security and
safety on all the communication types defined for the
aerial segment (A2A, A2I and IAC as stated in Fig. 3).

5.1 Background

Eissa et al. [10] focused on creating an authentication
mechanism in MANETs. For this, four different keys
are generated: an identity key, a public key, a private
key, and a symmetric key. The first step is to check the
level of confidence of every node. For this, neighbor-
ing nodes are consulted using the identification key.
If at least n nodes confirm the confidence level of the
others, the communication starts. Both nodes agree on
a session key using the public key and hold in their
databases of reliable keys. Thereafter, such nodes use
their private key to encrypt messages in communica-
tion. As a result, cryptanalysis attacks do not work as
it is necessary to have a public key.

Faughnan et al. [12] and Kashikar and Nimbhorkar
[20] have shown the possible attacks a UAV might
face during operations. Javaid et al. [18] aimed the
creation of secure channels for communication among
UAV systems, satellites and base stations. After a teste
with attacks, the system had some failed components,
especially after the denial of service attack.

Raj et al. [37] studied a protocol for nodes admis-
sion to a network in a decentralized manner. At the
start it was assumed that the network is composed
by trusted nodes only. This group of nodes owns a
shared secret key. To join the network, a node must
request and receive permission from all nodes in the
network using a secure communication channel. If a
node is approved, to establish a communication, the
other nodes create a new shared secret key that will be
used for communications between pairs of nodes.

The traditional cryptographic algorithms are usu-
ally enough for most of the computing applications.
The asymmetric RSA, for instance, is well tested and
sometimes considered a synonym of public-key cryp-
tography. However, critical embedded systems with
strict limitations would work at better conditions if
smaller cryptographic keys were used, still provid-
ing high reliability to the result. Our investigation
with Case study 2 is the chance of using a different
public-key algorithm to replace RSA.

5.2 Problem Statement

This case study was carried out to identify the viabil-
ity of using ECC instead of RSA, since the first one
might present several advantages for computational
systems with restricted resources. Critical embed-
ded systems are usually implemented with limited
resources, which are shared among all the modules
that compose the whole system. Thus, a security pro-
posal that considers such limitations would be feasible
to be implemented in embedded systems. Next sec-
tions present the ECC developed algorithms, results
and discussions.

5.3 Materials and Methods

5.3.1 Elliptic Curve Cryptography (ECC)

The three accepted encryption schemes are based
on three mathematical problems [19]: Integer factor-
ization problem (IFP), Discrete logarithm problem
(DLP), and Elliptic curve discrete logarithm problem
(ECDLP). The latter offers a higher level of security,
since it operates with smaller key sizes in compari-
son to RSA and DSA (Digital Signature Algorithm).
To achieve an appropriate level of security, RSA and
DSA should use 1024-bit key size based on the time
needed to break these figures, while the ECC needs to
operate with 160-bit keys.

Besides the much smaller key size, ECC algorithm
has specific advantages, such as only exponential-time
attacks may be applied if the curve is carefully chosen.
Even if factoring and multiplicative group discrete
logarithms are broken, the ECDL can still be difficult
to compute [19]. Establishing a comparison, the secu-
rity level of an implementation of elliptic curves with
160-bit key is equivalent to RSA 1024-bit key size
[25].
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5.3.2 Developed Algorithms

Two algorithms were developed in this case study
[33]. The method chosen for the implementation of
ECC is El-Gamal, which combines the properties
of the El-Gamal elliptic curve encryption method of
exchanging messages. Its operation is given as fol-
lows: two users must share the same elliptic curve and
a point P. Each one must choose a random number
that acts as its private key, and multiply the known
point, obtaining aP, which becomes its public key. At
the beginning of the communication, the public key is
transmitted to the other user, which has bP as public
key and thus the private key b. For the exchange of
messages the user needs to multiply his/her own pri-
vate key by the public key of the other user, obtaining
b(aP), and then add this result to the message encoded
in an M number. Therefore, the message will be M +
b (aP). When the message is delivered to the receiver,
he/she will be able to decode it by multiplying his/her
private key by the public key of the other user, (a(bP)),
and subtracting the total content, M + b (AP) - (bP) =
M.

In the implementation two libraries were used
as tools to perform mathematical operations: MIR-
ACL (Multiprecision Integer and Rational Arithmetic
C/C++ Library) due to its application in other papers
[38], and RELIC 0.2.3 (Library for Efficient Cryptog-
raphy) [3]. The MIRACL library produced by Shamus
Software is proprietary, but free for educational use.
It is intended to behave as a tool for developers of
encryption systems and offers the necessary opera-
tions to handle large numbers and a full support for
elliptic curves. RELIC, on the other hand, has been
developed by researchers at UNICAMP in order to
provide cryptographic tools based on flexibility and
efficiency. It has implementations of arithmetic of
large integers, arithmetic in binary and prime fields,
elliptic curves over prime fields, among others.

The algorithm developed with the MIRACL library
operates on blocks of fixed size of 18 characters and
the algorithm that uses the RELIC library operates
on blocks of 40 characters. Parameters that define the
elliptic curve and the point used in common by the
users are fixed. These definitions have been estab-
lished according to some experiments that have proven
their efficiency while operating with these block sizes.
They have been performed by the authors as a simple
comparison between possible block sizes.

The algorithms were developed in C language
and run through three actions that must be informed
as parameters: key creation, encryption and decryp-
tion. The latter two also require the names of input
and output files. The implementations of the two
algorithms have similar structures with four main
functions responsible for creating keys, encrypting,
decrypting and calling other functions. In addition,
both algorithms have defined structures for the public
and private keys.

The function responsible for creating the keys first
creates a random integer as the private key and then
multiplies a known point of the curve by that number
to generate the public key. After being generated, keys
are stored in two different files to be exchanged over
the network, if necessary.

The function that encrypts a block of text starts
transforming the message in a point on the curve. This
is the main difference between the developed algo-
rithms in this research. The MIRACL library maps
a number of bytes, but it does not work when there
is a NULL byte. It is therefore necessary to treat the
block previously and indicate the places where this
byte is present. After all of these actions, it is nec-
essary to map the sequence of bytes in a number.
From this number it is possible to find the point that
is part of the curve where the x-axis is closer to that
number.

With RELIC library, it is necessary to map the
sequence of bytes, with no previous treatment for
numbers. Through transactions between the number
and the structure of a known point of the curve, the
sequence of bytes is transformed into a point.

Using the messages mapped at points, the encryp-
tion is performed by multiplying the private key by
the receiver’s public key and add to the point of the
message. In contrast, the function that decrypts the
encrypted block subtracts the multiplication of the pri-
vate key by the sender’s public key, obtaining the
message encoded at a point. After the reverse opera-
tion, it is possible to obtain the original sequence of
bytes.

The function that calls other functions reads the
parameters of the execution and operations are defined
according to the action. When the action is to generate
keys, an appropriate function is executed. However,
for encryption and decryption, input and output opera-
tions must be performed. In encryption, it is necessary
to read the bytes from the original file and write the
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encrypted blocks at points in an output file. In decryp-
tion, the program reads the points of the encrypted
file and writes the byte sequences in the output file,
restoring the original file.

In the MIRACL library scenario, functions to read
and write points are already implemented, but in the
case of RELIC it was necessary to create them. The
structure of a point was studied to determine the
basic data type of each component of the structure
and encode functions of writing and reading for each
structure.

5.4 Results and Discussion

The experiments were set up according to rules to
evaluate the performance of computing systems [17].
A variety of terms, such as response variable, fac-
tors, and interaction levels is used during the stages
of design and analysis of experiments. Response vari-
able represents the result (output) of an experiment
and is often the variable selected to measure the sys-
tems performance. Factors are the variables that affect
the system response; levels are the values that a factor
may assume; and interaction indicates the dependency
between the factors evaluated [17].

The first steps were the definitions of a response
variable to be evaluated, the amount of replication
required for the experiments and the testing envi-
ronment. The environment used to run the tests is a
Pentium Dual-Core CPU T4300 2.10 GHz with 2 GB
of RAM and Linux Ubuntu 11.04 operating system.
To evaluate the efficiency of encryption and compare
the results of the developed algorithms, the response
variable selected was the average response time. The
whole process performed in the experiments is the
encryption and decryption of each input file, that is,
the average response time refers to the sum of the aver-
age response times of each of these two steps. Each
experiment was performed 15 times, ensuring a sta-
tistical validation since there was no large standard
deviation among the results.

There are a few ways to accomplish the design of
experiments. In this work we have used the full fac-
torial design (Jain, 1991). In this type of planning,
all combinations are used considering all factors and
levels. Thus, it is possible to evaluate all factors, deter-
mine the effect of each factor on the experiments and
verify the interactions between them. Table 1 shows
the possible combinations of the experiments. The

Table 1 Combinations of experiments

Exp. Library Key size (bits) Message size (KB)

1 MIRACL 160 50

2 MIRACL 160 100

3 MIRACL 256 50

4 MIRACL 256 100

5 RELIC 160 50

6 RELIC 160 100

7 RELIC 256 50

8 RELIC 256 100

first factor is the library used, which has two levels:
MIRACL and RELIC. The second factor is the size of
the message, which may vary between 50 and 100 KB.
Finally, the third factor assumed is the key size, also
with two variations: 160-bit and 256-bit. Therefore, it
is possible to generate eight different combinations for
the experiments.

Figure 11 shows the comparison between the aver-
age response times achieved by each of the algorithms
run in the first message size (smaller), considering
the two key sizes. The algorithm based on MIRACL
library has a considerably higher time than the one
based on RELIC, in both cases. The times obtained
are approximately 9 seconds (MIRACL) and 3.3 sec-
onds (RELIC), in which the key size is 160-bit. When
using 256-bit key size, the times are 20.9 seconds
(MIRACL) and 10.6 seconds (RELIC).

Figure 12 shows the second comparison chart with
the performance of algorithms to encrypt and decrypt
the second message size (larger). There was a natural
elevation in the response time due to increased data to
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Fig. 12 Comparison between MIRACL and RELIC libraries
with the second message size (100 KB)

be processed while maintaining the same characteris-
tics of the previous comparison. The times obtained
are approximately 18.1 seconds (MIRACL) and 6.6
seconds (RELIC), in which the key size is 160-bit.
When using 256-bit key size, the times are 41.7 sec-
onds (MIRACL) and 21.1 seconds (RELIC).

The charts show a better performance of the algo-
rithm based on RELIC in both cases (Figs. 11 and 12).
We have calculated the percentage of influence of each
factor of the performance evaluation, as well as the
influence of the associated factors over the response
time. The chart in Fig. 13 shows that factor A (algo-
rithm) exerted a 28 % influence on the results, which
is relevant to the comparison presented. Factor B (key
length) exerted a greater influence on the response
variable, with a total of 40 %. Factor C (message size)
influenced the results in 23 %. The associated factors
exerted small influences: BC influenced 4 %, AC only
3 %, AB only 2 %, and ABC associated exerted no
influence.
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Fig. 13 Influences of each factor on the response time (A -
Algorithm; B - Key Size, C - Size of message)

These results have shown that the message size
influences the outcome of the application due to the
difference in the amount of data to be encrypted. How-
ever, the aim of this article was to show that the influ-
ence of the algorithm used is quite considerable. It is
also important to point out that the adopted key size
of 160-bit was recommended by NIST [25]. As the
response time is crucial for critical embedded systems
that often work with real-time tasks, RELIC is more
suitable for the implementation of the ECC algorithm,
considering the conditions of the environment used for
the experiments. It was also possible to identify sev-
eral variations when the experiments were conducted
in an environment with similar characteristics to a
critical embedded system.

It is important to notice that, initially, the time
obtained may be classified as long. However, consid-
ering that the assumed key size is relatively large and
critical embedded systems require the application of
cryptography in most cases to send short commands,
such as changing routes or missions, the performance
presented has met the expectations, obtaining very
short response times, which may be considered a solu-
tion for real-time systems, the focus of this work. It
is also important to point out that these algorithms
should be applied in association with symmetric key
algorithms to significantly reduce the response times.

6 Conclusions

This paper presented HAMSTER, the HeAlthy,
Mobility and Security based data communication
archiTEctuRe. It was designed for Unmanned Vehi-
cles and addresses mainly three types of communica-
tions (machine-to-machine, machine-to-infrastructure
and internal machine communications). The three
main versions of HAMSTER were presented in this
paper: Flying HAMSTER (for aerial systems), Run-
ning HAMSTER (for terrestrial systems) and Swim-
ming HAMSTER (for aquatic systems). Every ver-
sion of HAMSTER architecture is also equipped with
Sphere and Nimble, two special modules that deal
with special situations. Sphere covers Safety & Secu-
rity aspects regarding communication, components
“health” and modules authentication. Nimble is aimed
at increasing the overall mobility in such scenarios,
strongly actuating with inherent communications of
each application field.
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It was also presented an evaluation of five com-
munications schemes for internal communications in
airplanes and a cryptographic evaluation of two Ellip-
tic Curve Cryptography algorithms. Results should
help Researchers & Developers to choose the best
option for implementing IMC communications and
Security into their Unmanned Systems.
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