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Abstract

Histology permits the observation of otherwise invisible structures of the internal topography of a specimen. Although invasive by
nature, it enables the investigation of tissues at a cellular level but breaks spatial arrangement due to slicing. Three-dimensional
(3D) reconstruction was thus introduced to overcome the limitations of single-section studies in a dimensional scope. It finds its
roots in embryology, where it enabled the visualisation of spatial relationships of developing systems and organs, and extended to
biomedicine, where the observation of individual, stained sections provided only partial understanding of normal and abnormal
tissues. However, despite bringing visual awareness, recovering realistic reconstructions is elusive without prior knowledge about the
tissue shape.

3D medical imaging made such structural ground truths available. In addition, combining non-invasive imaging with histology
unveiled invaluable opportunities to relate macroscopic information with the underlying microscopic properties of tissues through
the establishment of spatial correspondences; image registration is one technique that permits the automation of such a process
and we describe recontruction methods that rely on it. It is thereby possible to recover the original topology of histology and lost
relationships, gain insight into what affects the signals used to construct medical images (and characterising them), or build high
resolution anatomical atlases.

This paper reviews almost three decades of methods for 3D reconstruction from serial sections, used in the study of many different
types of tissue. We first summarise the process that produces digitised sections from a tissue specimen in order to understand the
peculiarity of the data, the associated artefacts and some possible ways to minimise them. We then successively describe methods for
3D histology recontruction without and with the help of 3D medical imaging. We finally attempt to identify the trends and challenges
that the field is facing, many of which are derived from the cross-disciplinary nature of the problem as it involves the collaboration
between physicists, histologists, computer scientists and physicians.
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1. Introduction

Histology is concerned with the various methods of micro-
scopic examination of a thin tissue section (Culling, 2013), most
commonly sampled from a specimen post mortem or from a
biopsy. Cutting through a specimen reveals its internal topogra-
phy and staining the sections permits the observation of complex
differentiated structures. Then, the digitisation of histological
sections (referred to as digital pathology) makes high-resolution
microscope sections available for image computing and machine
learning algorithms. These allow for disease detection, charac-
terisation and prediction so as to complement the opinion of the
pathologist (Madabhushi and Lee, 2016) and constitute the field
of histopathological image analysis (Gurcan et al., 2009).

When willing to extend such examinations to the third dimen-
sion, one faces the following problem: starting from (a series of)
2D samples, how to regain information of the structure in 3D?
Volume slicing breaks the spatial relations between structures
and creates discontinuities which hamper mental representations
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in 3D and thereby, a full understanding of the anatomy. In this
respect, Gagnier and Shipley (2013) described the complexity in
determining the progression of features into a volume by solely
relying on a single face.

In addition, structures are independently altered due to the
histology process itself (see Fig. 1). This may cause anatom-
ically different structures to look similar in microscope slides
and conversely, slicing may cause one same structure to have
different views if not consistent. Other changes have to do with
objects that may disappear or become highly salient from one
section to another due to staining variability.

Although humans can represent and mentally transform the
shapes of objects very well, this ability worsens when structures
are interconnected within a dense and complicated environment,
or subject to complex transformations (Atit et al., 2013; Frick
et al., 2014). Reconstructing histological volumes from serial
2D sections thus seems natural in order to (re)gain knowledge
about spatial environments in 3D, while accessing microscopic
information about tissues. In this regard, the Swiss anatomist
Wilhelm His Sr. (1831-1904) best explained that “just looking
through sections does not enable one to build three-dimensional
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Figure 1: Artefacts related to the preparation of tissue sections (wax-
embedded here). Those include (but are not limited to) intensity inho-
mogeneities, stain diffusion, tears, missing pieces, debris, air bubbles,
various orientations and locations on glass slides, and spatial distortions.

images in the mind and those who wish to grasp anatomical
structures must actively engage in working through a recon-
struction, reproducing the relationships they wish to understand”
(Hopwood, 1999).

When using histology alone, reconstruction algorithms aim to
restore continuity and usually exploit the fact that the biological
specimen’s shape changes smoothly across sections. In other
words, a set of slices is assumed available, with appropriate
spacing (i.e., not too sparse) so that one can define a (recon-
structed) volume. Such algorithms provide a representation of
structures and their environment in three dimensions, although
one needs to bear in mind that the original shape is unattainable
without prior knowledge. For illustration purposes, Malandain
et al. (2004) pointed out that if a banana is sliced, an ellipsoid
will be reconstructed through pairwise alignment of adjacent
slices, rather than the original fruit. This is called the “banana
effect” or “z-shift”.

The most direct way of recovering volumes from sets of 2D
serial histological sections is by optimising the spatial alignment
of every pair of adjacent images using registration techniques.
Composing the transformations from every slice to a reference
slice completes the process—the reference slice being chosen
for its high contrast, its small amount of artefacts, and prefer-
ably but not necessarily its location in the middle of the stack.
A consequence is that any registration error impacts the final
reconstruction by propagation due to the sequential nature of the
process. Methods have therefore been developed to minimise
these effects by looking at neighbourhoods rather than single
slices in order to smooth those errors out; attention has also been
directed toward preprocessing the images of tissue slices owing
to their highly variable quality.

A remedy to the incorrectness of the histological reconstruc-
tion is the use of 3D medical images, such as magnetic resonance
imaging (MRI). By providing structural ground truth, they re-
fine the space of solutions—although registration itself remains
an ill-posed problem. Two cases happen: (i) only a single (or
too few) histological sections are available (like for biopsies),
whereby a volume reconstruction is meaningless and one solely
aims to identify the corresponding (resampled) MRI plane in
order to deform histology correctly. In that case, one cannot rely
on the greater supports that volumes offer, and such a situation
calls for careful initialisation and 2D-3D registration methods
(Ferrante and Paragios, 2017); (ii) a sufficent number of his-

tological sections is available (i.e., the set spans several MRI
slices) and one can thus manipulate volumes, globally bring
them into spatial alignment, and non-linearly register each slice
with its corresponding (resampled) MRI plane. In the process
of relating in vivo to post mortem, it is not uncommon to use
intermediate modalities (Fig. 2), such as blockface photographs
(pictures of the tissue face taken prior to cutting), so as to keep
track on the deformations that the tissue undergoes during its
changes of state; or take advantage of needles, which allow for
straightforward extraction and matching of landmarks in both
modalities.

Image registration permits the automation of the transforma-
tion process, and allows to redefine “visual closeness” as the
optimisation of a certain cost function. It also accounts for the
complex transformations that affect histological sections indi-
vidually and grants higher reproducibility with less or no human
effort. Careful use of registration techniques can produce histo-
logical reconstructions closer to reality, establish more accurate
correspondences between histology and 3D medical imaging,
and thereby contribute to more sound data analyses.

Besides providing structural ground truth, 3D medical imag-
ing constitutes an invaluable source for accurate, non-invasive
study of biological structures and their functions. Relative to
histology, Fischl (2013) listed three advantages: the possibil-
ity of (i) imaging the exact same tissue with multiple contrasts
(e.g., T1 or T2w MRI, MTR, etc.); (ii) imaging large samples
(e.g., whole-brain or whole-hemisphere) with much less effort
than e.g., whole-brain or prostate whole-mount histology; (iii)
preserving the geometry of the sample and avoiding irreversible
damage and distortions induced by processing, cutting, mount-
ing and staining during the histological preparation.

With respect to resolution, MR imaging is outperformed by
histology (<1µm). In addition, for many pathological disorders,
there is still no no sequence acquisition that allows imaging to
be a full substitute for histology. This is due to the poorly under-
stood relationships between histological and magnetic properties
of tissues. Directly predicting the imaging appearance of a his-
tological signature is therefore extremely complex. Practically,
this results in that different pathologies can share a common
imaging phenotype (Gore, 2015). For example, Filippi et al.
(2012) noted that in proton density, FLAIR and T2w MRI scans,
Multiple Sclerosis (MS) lesions appeared as non-specific focal
areas of signal increase and, therefore, resembled many other
types of pathology. This makes it difficult to differentiate them
with imaging only. Additionally, some cortical MS lesions can
still be missed with conventional MRI sequences (Seewann et al.,
2012). Direct comparisons with histology helps interpret im-
ages better and derive more information. They may also help
in correcting or adjusting existing imaging protocols in order
to optimally visualise pathological markers (e.g., lesions in the
grey matter of patients with MS).

One of the many benefits of combining histology and medi-
cal imaging is to confirm non-invasive measures with baseline
information on the actual properties of tissues (Annese, 2012).
By combining 3D medical imaging with digital pathology, it is
possible to simultaneously obtain the rich structural information
of the former and the chemical and cellular information of the
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Figure 2: Modalities that may be involved in the registration pro-
cess. From left to right, a screenshot of a T2w ex vivo slice
(0.1×0.1×0.4mm3), a visually corresponding blockface photograph
(tissue surrounded by wax) and a Nissl-stained histological section.

latter, which may allow for more complete characterisation and
understanding of e.g., diseases (Mori, 2016). One can also derive
more accurate segmentations of architectonic boundaries to be
used in the creation of atlases (Ding et al., 2016; Oh et al., 2014;
Amunts et al., 2013; Hawrylycz et al., 2012; Yushkevich et al.,
2009) as well as brain mapping (Amunts and Zilles, 2015). Such
undertakings are intended to eventually bridge the gap between
in vivo and post mortem studies.

Currently, direct overall visual comparison is considered ac-
ceptable to assess the correlation between histopathological find-
ings and imaging observations. On that matter though, it was
recently mentioned in the context of prostate cancer assessment
that due to variations in imaging technologies, contouring proce-
dures and data analyses, available volume correlation studies had
yielded conflicting results (Priester et al., 2016). Such contra-
dictions were explained by the worrying observation that nearly
all prior attempts to define MRI/pathological relationships had
relied on imprecise techniques such as manual registration, vol-
ume approximation, and 2D measurements. Following the same
line of thought—two decades before—correlation was proved
to be optimised when the alignment between data had first been
carefully taken care of by use of a combination of linear and
non-linear transformations (Mazziotta et al., 1995). In other
words, ensuring the comparison of like with like is of utmost
importance (Madabhushi and Lee, 2016).

The objective of this paper is to survey the past 30 years of lit-
erature on 3D histology reconstruction. The paper is structured
according to the multidisciplinary nature of the problem. §2
and 3 explain the preparation of histological slices, list artefacts
associated with every step of the process and cover preprocess-
ing methods in order to best cope with image deteriorations. §4
proposes a classification of methods for histological reconstruc-
tion from 2D serial slices and §5 describes pipelines that aim to
combine histological and clinical imaging information by spa-
tially aligning them. §6 presents approaches used to validate the
correctness of reconstructions—with or without the help of ex-
ternal information—and §7 enumerates the clinical applications
of such techniques. Finally, §8 returns on a few methodological
points, discusses some of the remaining challenges in the field
and highlights the importance of cross-disciplinary knowledge
in solving a biological question.

2. From fresh tissue to digital pathology

A pathologist receiving fresh tissue has three options: keeping
it fresh, stabilising it in a fixative, or freezing it. Biological tissue
is too soft for direct sectioning (although a vibrating blade might
work), so it is most commonly either embedded in a hardening
material and sectioned using a microtome, or frozen and sec-
tioned in a cryostat (a microtome inside a freezer). Sections are
then mounted on glass slides and stained before being observed
under the microscope by the histopathologist, and/or digitised
using flatbed scanners (Dubois et al., 2007) for image processing
and analysis.

We first briefly describe the two most common processes to ob-
tain sections, namely formalin-fixed paraffin-embedded (FFPE)
sections (§2.1)—henceforth referred to as paraffin sections—
and frozen sections (§2.2). Further details can be found in the
thorough presentation of histological techniques by Bancroft
and Gamble (2008). Then, we briefly present several types of
microscopy examinations and the process of digitisation (§2.3).
Finally, we highlight the most common artefacts for both types
of sections (§2.4).

2.1. Paraffin sections

FFPE tissue sections stained with hematoxylin and eosin
(H&E) are the gold standard (Buesa, 2007) as they provide with
generic information in very little time and cost (Rosai, 2007).
Their widespread use also relates to the familiarity histopathol-
ogists have with the method: the artefact it produces at any
stage during tissue handling and processing is recognisable and
well-documented. In contrast, observing new patterns with other
dyes requires time and training (Bancroft and Gamble, 2008).
The above-mentioned artefact is to be taken in the sense that it
refers to an altered state of the tissue and its structures (relatively
to its living state) i.e., the structures it exhibits are not naturally
present in the living state of the tissue but are rather the product
of a series of preparation steps (Hardy, 1899); throughout the
rest of the paper, the definition of artefact is narrowed down to
(image) degradations. Knowledge of the steps relative to tissue
preparation and diverse staining patterns is not only essential for
diagnosis and risk assessment—and this is still an active area of
research (Kakar et al., 2015)—but also for all subsequent image
analysis steps. In the following, we briefly describe the different
stages of FFPE sections preparation.

Fixation. It is the most important step when performing histo-
logical specimen preparation (Rolls, 2012). Fixation is critical
for several reasons: (i) it prevents the tissue from autolysis;
(ii) it keeps the tissue close to its living state, without loss of
arrangement; (iii) it minimises changes in shape or volume in
subsequent procedures and (iv) it yields clear staining of sec-
tions. Formaldehydes, such as formalin—which is the most
common of all—are routinely used for chemical fixation, such
as in Yang et al. (2013); Chen et al. (2003); Bürgel et al. (1999);
Weninger et al. (1998); Schormann and Zilles (1998); Streicher
et al. (1997). Among others, glutaraldehydes may be used (Ba-
heerathan et al., 1998).
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Tissue processing. Since most fixatives are water-based and
thus not miscible with wax, the tissue must be processed to
enable impregnation. This process follows three steps: (i) dehy-
dration: it removes water by immersion in gradients of alcohol;
(ii) clearing: it replaces the dehydrating fluid with a wax solvent
(the wax solvent has the effect of raising the refractive index of
the tissue, making it appear clear, hence the name). Note that
long-term clearing creates distortions. Xylene is routinely used
for short schedules and blocks less than 4mm thick. Among
others, toluene is also used and has similar properties; (iii) im-
pregnation: it replaces the clearing agent with the embedding
medium.

Embedding. The specimen infiltrated with wax is put in a mould
covered with liquefied wax and topped with a cassette. The spec-
imen should lay flat at the bottom of the mould as its orientation
conditions the plane of sectioning (an important consideration
when flatness is assumed for the comparison with clinical imag-
ing). The ensemble then cools on a cold plate and makes a
solid block for microtomy (blocks may also be stored at room
temperature for decades, which forms an important archive in
retrospective analyses). Paraffin was used for example, in Axer
et al. (2011); Alic et al. (2011); Bajcsy et al. (2006); Breen et al.
(2005b); Schormann et al. (1995). Celloidin, more difficult to
remove, was used in Li et al. (2009); Gefen et al. (2008); Beare
et al. (2008).

Cutting (or microtomy). It is performed with a microtome,
to which the cassette with the wax-embedded tissue block is
clamped. It begins with “trimming”, which consists of removing
the surplus of wax until a full section of tissue is available. It
requires great care since tissue of diagnostic importance may
be removed or the block surface damaged. Cutting is then pro-
cessed at a certain thickness and the quality of the resulting
sections depends upon several factors such as the knife angle,
blade quality, speed of sectioning etc., as well as all the previous
preparation steps. Thin sections (1-20µm) were cut in Samavati
et al. (2011); Zhan et al. (2007); Burton et al. (2006). Thick
sections (>20µm) were cut in Jiang et al. (2013); Osechinskiy
and Kruggel (2010); Mazaheri et al. (2010); Singh et al. (2008).

Floating, drying. The thin sections are picked up from the mi-
crotome and put in a flotation bath, filled with warm water in
order to flatten. Then, they are collected on a glass slide and
dried.

Staining, cover-slipping. It is the process of colouring and dif-
ferentiating certain structures in the tissue. H&E stain is the
most common stain in histopathology laboratories. It was used
for instance in Le Nobin et al. (2015); Nir et al. (2014); Gibson
et al. (2012); Ward et al. (2012); Arganda-Carreras et al. (2010);
Ou and Davatzikos (2009); Meyer et al. (2006). H&E method
shows a wide range of normal and abnormal cell and tissue com-
ponents and is easy to perform using either paraffin or frozen
sections. Other popular stains include Cresyl violet (Nissl stain-
ing), as used in Adler et al. (2014); Yang et al. (2012); Mailly
et al. (2010); Johnson et al. (2010); Chakravarty et al. (2006); Ali

and Cohen (1998), and methylene blue (Annese et al., 2006) for
nervous tissue sections, silver and gold methods to demonstrate
e.g., cell processes in neurones, toluidine blue (Handschuh et al.,
2010) to stain acidic components, Masson’s trichrome (Song
et al., 2013) to stain connective tissue and Alcian blue (Magee
et al., 2015) to stain certain types of mucin. If immunohisto-
chemical staining is to be performed, it requires antigen retrieval
(heat- or enzyme-enduced) due to loss of antigenicity during
fixation (Shi et al., 1991). Immunohistochemistry (IHC) was
performed in Capek et al. (2009); Groen et al. (2010).
After the slice has been stained, it is cover-slipped: a smaller
sheet of glass covers the tissue mounted on the glass slide. This
creates even thickness for viewing and prevents the microscope
lens from touching the tissue. The slide can then be observed
under the microscope and/or digitised.

2.2. Frozen sections

Frozen sections are quicker to produce than paraffin sections
but it is a very demanding process: good section quality (in
terms of preservation of tissue morphology) is achieved through
great care and expertise (Peters, 2003). Although there are
conflicting reports about how much freezing may degrade cell
morphology and reduce the readability of histological specimens,
rapid freezing is known for limiting ice crystal formation and
minimising morphological damage. Among disadvantages, it
is harder to make the tissue lay flat; frozen sections are also
more difficult to cut than paraffin sections and inconvenient to
store. The main advantages of using them are the shortcuts in
the process (e.g., no dehydration is needed), and their better
preservation of antigens for immunohistochemistry. They were
used in Annese et al. (2014); Stille et al. (2013); Annese (2012);
Choe et al. (2011); Palm et al. (2010, 2008); Dauguet et al.
(2007c). The different stages of frozen sections preparation
consist of:

Cryo-protection/embedding. The limiting factor involved in
cryosectioning is the cutting consistency of the block and the
freezing damages from ice crystals. Thus, the tissue may require
cryoprotection to make it less brittle (Barthel and Raymond,
1990). Cryoprotecting the tissue is not necessary and consists
of fixation (formaldehyde), rinsing and infiltration in increasing
series of sucrose solutions. The addition of sucrose provides
a smoother cutting block and minimises freezing artefacts. It
also happens that sections are prepared from fresh, rapid-frozen
tissue but cutting can be incredibly hard without any fixation.
Then, optimal cutting temperature (OCT) compound is used to
embed the tissue prior to frozen sectioning. OCT helps conduct
heat away from the specimen during freezing, protects the tis-
sue from drying during storage, and supports the tissue during
sectioning.

Rapid freezing (or flash/snap freezing). Once embedded in a
particular orientation e.g., face-up, the tissue sample needs to be
rapidly frozen to minimise freezing artefacts resulting from ice
crystal formation as water freezes in the tissue (Peters, 2010).
One method is to use dry ice (-70◦ Celsius) on its own. It is
simple and safe but creates freezing artefacts that break cell
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membranes. An alternative is the immersion of the sample
in a freezing medium, like a mixture of dry ice and 2-methyl
butane (isopentane), which achieves very rapid freezing. Note
that direct freezing would cause the tissues or blocks to crack,
which would make them very difficult to cut. Tissues with fat
often produce poor quality sections since fat freezes at lower
temperatures and thus remains too soft to cut; further decreasing
temperature may weaken the sample and cause cracks. Tissues
with substantial water content, like the brain, often yield ice
crystals during the freezing in the cryostat and result in e.g., non-
representative architecture of tumour growth or inflammatory
infiltrate (Taxy, 2009). Snap freezing with liquid nitrogen is
often employed to mitigate these artefacts. The frozen tissue can
then be stored in a -80◦ Celsius freezer for future cutting.

Cutting. This is similar to paraffin-embedded sections except
it is performed in a cryostat. It also starts with trimming of the
block. Frozen sections are usually cut between 3-10µm thick
(5µm thick sections provide adequate morphology). Ultra-thin
sections (<1µm) were cut in Yushkevich et al. (2006) (0.25µm).
Thin sections (1-20µm) were cut in Dubois et al. (2007); Humm
et al. (2003). Thick sections (>20µm) were cut in Palm et al.
(2010); Malandain et al. (2004).

Retrieving, drying. Retrieving is the process of picking up the
cut frozen section and putting it on a glass microscope slide.
Tissue sections can be either picked up from the cryostat stage or
from the block directly. From the time the tissue section touches
a warm slide, it starts to develop a drying artefact. Air drying
frozen section slides will however allow the sections to better
adhere to the slide as complex staining procedures cause greater
tendency for the tissue to come off the slide during staining.

Fixation. Sections of fresh frozen tissue should be fixed im-
mediately unless they are going to be stored for future study.
A standard histology fixative: 4% neutral buffered formalin, is
the most suitable fixative for frozen sections. Sections of fresh
frozen tissue will rapidly dry if exposed to warm air, and this
will result in cellular artefact.

Staining. Slides prepared by frozen section technique can be
successfully stained by many of the staining procedures used for
routine paraffin embedded tissues. For example Nissl-stained
sections were used in Yushkevich et al. (2006); Yelnik et al.
(2007); Dubois et al. (2007) and H&E stained sections were used
in Humm et al. (2003). Frozen sections are usually preferred
for immunohistochemical staining due preserved antigenicity.
This a specific type of stain, in which a primary antibody is used
to bind specifically to a particular protein for the purpose of
detecting and measuring it. Then, a secondary antibody (which
carries a colorimetric or fluorescent detection tag) is used to
bind to the primary antibody and reveal its bounding location.
IHC was performed in Seeley et al. (2014); Stille et al. (2013);
Lockwood-Estrin et al. (2012); Lebenberg et al. (2010).

2.3. Microscopy and digitisation
Major types of light (or optical) microscopy include bright-

field (Wang et al., 2014), phase contrast, fluorescence (Dauguet

et al., 2007c) and confocal (Wang et al., 2015). Electron mi-
croscopy encompasses transmission electron microscopy (Dau-
guet et al., 2007a) and scanning electron microscopy, the latter
being mainly used in the context of serial blockface imaging
(Mikula and Denk, 2015; Denk and Horstmann, 2004). The
preparation of tissue specimens for light microscopy follows the
steps from §2.1 and 2.2. The preparation of tissues for transmis-
sion electron microscopy is described in Graham and Orenstein
(2007).

As for immunocytochemistry and immunohistochemistry
(Yelnik et al., 2007), the reaction of antibody with antigen in
can be examined and photographed with a fluorescence micro-
scope. Histochemical and cytochemical procedures (based on
e.g., specific binding of a dye, a fluorescent dye-labeled antibody
or enzymatic activity), can be used with both light microscopic
and electron microscopic preparations. Light and electron mi-
croscopes produce high resolution micrographs (orders of mag-
nitude of 0.1µm and 1nm respectively).

Autoradiography—or to be rigorous, radioautography (Be-
langer and LeBlond, 1946), can be observed with both light and
transmission electron microscopes and reflects the rate of the
energy consumption required to support cellular activity. It is
quantified using tracers of glucose metabolism incorporated by
living cells and tissues. They generate a labelled product allow-
ing for example, to measure circulating glucose in the blood or
radioactivity concentrations. The specimen is then killed and a
sample is processed for histology and sectioned. Sections are
placed against an X-ray film to produce autoradiographs. The ex-
act 3D localisation of the radiation source is however unknown
and thus requires the reconstruction of autoradiographic volumes
(Schubert et al., 2016). Reconstruction is also a pre-requisite for
comparison against other three-dimensional modalities such as
functional imaging.

Although in the context of multimodal image registration,
computer scientists usually work with histological images at
low resolution, similar to that of a clinical image—most high-
resolution details in histology are biological noise for the
purpose of registration—digital pathology should allow the
histopathologist to scroll through any level of details of a “virtual”
microscopic slide for its examination at any time and anywhere
(i.e., not under a microscope), should it be on its own, against
another histological section or a 3D medical image plane. This
process of digitisation is fundamental (Ghaznavi et al., 2013) and
brings together the fields of virtual microscopy, digital whole
slide imaging and telepathology (Weinstein et al., 2009).

2.4. Artefacts

In histology, an artefact is the result of the alteration of a
tissue from its living state, caused by the very process of dy-
ing and the histological preparation. Artefacts affect different
structures from one same tissue section independently, and one
same structure in adjacent tissue sections differently. Artefacts
may compromise both image analysis for accurate diagnosis
and image registration for precise alignment. One challenge
is to be able to identify artefacts and not confuse them with
normal tissue components or pathological changes. This means
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understanding the causes of such deteriorations as well as their
expression in order to provide relevant corrections.

Whether paraffin or frozen sections are used, some artefacts
have similar characteristics despite having different causes. This
makes some preprocessing methods applicable to both types of
sections. An exhaustive list of artefacts encountered in paraffin
sections, along with ways to minimise them is available in Rolls
et al. (2008) and the most common ones are:

Loss of detail. In paraffin sections, delayed fixation may cause
poorly defined nuclei and imprecise cytoplasmic details. Im-
proper draining of sections before drying may lead to out-of-
focus areas, and imperfect dehydration before clearing, which
leaves small water droplets in the tissue, may cause opaque areas.
Similarly to frozen sections, drying (which starts as soon as the
tissue is in contact with a warm glass slide) may blur nuclear
details and cytoplasmic borders (due to the leakage of fluids
from the cytoplasm), and a loss of contrast. Drying artefacts are
described as cells melting and spreading on the slide by Peters
(2010).

Changes in morphology. In paraffin sections, the use of an
overheated forceps (beyond the melting point of wax) can cause
local heat damage and changes in morphology of structures in
the area surrounding the contact point. In frozen sections, drying
may cause enlargement of cells and nuclei.

Uneven staining. In paraffin sections, it may come from incom-
plete fixation of the specimen (which leads to zonal fixation),
incomplete slide dewaxing (which results in slides containing
patches of residual wax and produces unstained, or unevenly
stained areas) and excessive heat in the slide drier. Approxi-
mate timing as well as different storage conditions also produce
inconsistent results across sections. Poor quality formalin re-
sults in a “formalin pigment” formation in sections by reaction
with haemoglobin, leading to unwanted colouration. As for
frozen sections, issues may arise due to over-agitation of loosely
adherent tissue in the staining solution.

Folds and wrinkles. In paraffin sections, they may be due to
poor fixation and/or processing, too large a clearance angle
of the microtome, too thin sections, low temperature of the
flotation bath (which may not allow sections to flatten properly)
or mechanical damages (when attempting to remove a fold in
the section with a brush). As for frozen sections, the tissue can
fold, stretch or tear if one is too rough during retrieving.

Cracks and holes. In paraffin sections, they may happen due
to over-processing (which makes the tissue very brittle), under-
processing (which makes the tissue poorly supported and there-
fore fragmented), flotation on a water bath that is too warm,
prolonged drying at too high a temperature, too quick sectioning,
insufficient clearance angle or a damaged cutting blade during
microtomy. As for frozen sections, freezing blocks (instead
of cooling them down) can make them crack during cutting.
Another challenge is faced with large blocks of tissue, such as
whole organs: liquid nitrogen will freeze faster and create a shell
around the exterior of the tissue. Then, the organ is likely to
crack when the interior expands due to slower freezing.

Contaminants. In paraffin sections, this may happen when the
water from the flotation bath is not replaced regularly, which
favours contaminants that may end up on the slide under the
section. Dust, organisms and other contaminants on the glass
slide can also spoil otherwise good sections.

Compression and distortion. In paraffin sections, they may
be due to under-processing (which results in the shrinkage of
the specimen); inappropriate size of the container compared to
the size of the specimen (which means using an insufficient
amount of fixative or squashing the specimen inside); rough
handling; poor quality embedding wax (which produces blocks
that are difficult to cut); suboptimal knife tilt angle during
microtomy and wrong blade type; delay before cutting the
final sections of a block (which makes the block warmer); and
overheated flotation bath and sections left too long in it (which
cause over-expansion). It is also important to be aware that
paraffin sections are unlikely to be of even thickness as the first
couple of sections are the widest (due to the thermal expansion
of the block during the first passes across the knife) and the
least compressed; however as the block warms the sections
get narrower and more compressed. As for frozen sections,
compression and distortion will most likely result from ice
crystal formation—the more water a tissue contains, the more
chances artefacts will occur. As water freezes, the expansion of
ice crystals compresses cellular tissues (compression artefacts)
and distort histopathological correlations. They usually have the
appearance of bubbles (ice crystals “bubbles” artefacts). The
knife used in cryosectioning can also create cutting artefacts
(shearing of the tissue).

In the end, artefacts are unavoidable but also surmountable
as pathologists learn to read around them. However, it is very
important to try to minimise their impact on subsequent steps,
which heavily rely on the tissue quality: for example, sections
with cracks and holes often have to be manually discarded be-
cause they cannot be registered. Artefacts hamper image com-
puting methods by reducing comparability between supposedly
similar structures within or across modalities. For this reason,
preprocessing methods have been developed to account for their
presence in images.

3. Preprocessing of digital pathology

Among the artefacts resulting from histological preparation,
loss of detail and changes in morphology burden image analysis.
Not much can be done about them as content is hardly retrievable
from lost or corrupted information without any prior knowledge.
When due to scanning, though (local poor focusing can cause
blurred regions in images), loss of detail is surmountable but
at the cost of time-consuming review by the scanner operator.
In the context of whole slide imaging, Lopez et al. (2013) au-
tomatically identified tiles that required additional focus points.
Specifically, they compared the ability of several features in
discriminating between blurred and sharp regions of images and
showed that the Haralick contrasts and gradient-based features
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best performed at this task. Compression and distortion are usu-
ally taken care of by the process of registration. Regarding other
artefacts such as: inhomogeneous intensity distributions within
and across slices; folding and crumpling; cracks and holes, ded-
icated preprocessing methods are presented in the following
paragraphs.

Inhomogeneous slices appearance. Ideally, the absolute colour
of a slide reveals the biological component that a pathologist
wishes to retrieve. For example, in the case of H&E, the colour
value quantifies the amount of nucleic acids (blue-purple) hema-
toxylin has bound to, and the amount of proteins (in pink) Eosin
has bound to. However, for the reasons listed in §2.4—and/or
because of the microscope and the camera used for imaging
(Yagi and Gilbertson, 2005)—slides exhibit different colours.
Improved feature classification, segmentation and visualisation
require the reduction of these variations as well as some sort of
standardisation of the imaging protocols (Badano et al., 2015).
This calls for transforming the appearance of a source image
into that of a target image preferred by an expert.

In general, histological reconstruction methods use greyscale
images for intensity standardisation (or the channel that provides
the best contrast in an RGB image). Most techniques are based
on histogram matching (Gonzalez and Woods, 2002). One rep-
resentative method, used for example in Yelnik et al. (2007) and
Alegro et al. (2016), was proposed by Malandain and Bardinet
(2003). First, continuous probability density functions from the
discrete intensity histograms of two input slices were computed
using Parzen windowing—a Gaussian kernel was also used in
Ceritoglu et al. (2010) and Casero et al. (2017). Then, Malandain
et al. estimated the optimal affine intensity transformation be-
tween them (though higher order polynomial fits may be used).
This type of method can be applied in different ways and the
reference slice is usually picked for its relative smooth intensity
variation of staining and high-contrasted structures (Gaffling
et al., 2009; Yang et al., 2013). Adler et al. (2014) optimised
the parameters of a global affine intensity transformation using
white and grey matter masked images jointly. The central slice
was taken as a reference. Yang et al. (2012) used histogram
equalisation, in which case a flat histogram is implicitly taken
as reference for matching. Equalisation is however not robust
because it is very sensitive to outliers (the extremal values of the
intensity spectrum) (Malandain and Bardinet, 2003).

Attempts at decreasing the bias introduced by selecting a
single reference slice have been proposed: Li et al. (2009) ap-
plied to each slice a transformation that was a weighted sum of
transformations from that slice to a set of reference slices (ex-
perimentally, one slice every 30 slices). Weights were based on
its distance to the corresponding references. Chakravarty et al.
(2003) used least trimmed square technique to calculate two third
order polynomials for every slice, each of which mapped its in-
tensity profile to that of its predecessor and successor. These
polynomials were then averaged and applied to the single slice.
Chakravarty et al. (2003) used least trimmed square (LTS) to cal-
culate the coefficients of two polynomials of order three that map
the intensities of the current slice to the previous and the next
one. The coefficients of the two polynomials were then averaged

and applied to the single slice. An extension was proposed by
adding an extra step that accounted for local variations: the same
averaging process (though restricted to linear mapping) was ap-
plied to patches of every slice (Chakravarty et al., 2006). This
approach however depends on where it starts in the stack. Pichat
et al. (2015) computed an unbiased average intensity profile to
which the intensity distributions of all slices were matched.

Should it be using a single, a set of, or an average reference
distribution, normalisation always depends on the set of available
histological slices. Hence, the purpose of standardising slices
appearance is, in general, more to bring visual consistency and
help with subsequent segmentation and classification tasks, than
being representative of tissue behaviours relative to staining.

The idea of computing a standard histogram allows for a stan-
dardisation that is not “stack-specific”. This was proposed by
Nyul and Udupa (1999) within the context of medical imag-
ing, where a standard histogram was computed from a training
dataset made of images coming from several acquisition pro-
tocols. A similar principle was used by Bagci and Bai (2010).
Dauguet et al. (2004) followed the same effort although standard
values of each class of tissues had to be user-defined.

Within the field of histopathological image analysis, the im-
portance of colour consistency has long been known and is an
active research topic: computational methods, referred to as
colour normalisation, have been developed to cope with inter-
slice colour variations. Two ways of addressing the problem
stand out: (i) colour modification methods represent the mathe-
matical transformations applied to the source images to match
the characteristics of a target image—they are similar to previ-
ously described intensity standardisation methods for grey-scale
images; (ii) colour separation (or deconvolution) methods, con-
cerned with first extracting the main components (i.e., the stains)
constituting the original image (relying on the manual delin-
eation of regions of interest, non-negative matrix factorizations,
plane fitting in the optical density domain or other colour mod-
els), then normalising them individually and finally recombining
them, such as in Macenko et al. (2009); Magee et al. (2009);
Khan et al. (2014); Vicory et al. (2015); Vahadane et al. (2016);
Bejnordi et al. (2016). These methods apply to sections stained
with more than one dye, mostly H&E stained images, and are
still actively developed. Colour modification was introduced by
Shirley (2001), who proposed to match the colour distribution
of one image to that of a reference image by use of a linear
transform in Lab colour space (a more perceptual colour model
than RGB) so as to match the means and standard deviations
of each colour channel in the two images in that colour space.
This was applied to histological data in Wang et al. (2007). In
order to account for scanner-induced variations, Bautista et al.
(2014) proposed to use a colour-calibration slide made in-house
to derive a colour correction matrix. Bautista and Yagi (2015)
showed that it is possible to achieve consistent and accurate seg-
mentations with simple classifiers by accounting for the staining
conditions of the slides using dye amount tables.

The use of such colour normalisation methods in the histolog-
ical reconstruction literature is sparse: Braumann et al. (2005)
used them and linearly transformed the three RGB colour chan-
nels of every image to match the histogram statistics (i.e., mean
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and standard deviation) of a manually selected reference slice.

Folds. They are defined as regions containing multiple layers
of stained tissue. This results in regions with higher satura-
tion and lower luminance. As such, Kothari et al. (2013) used
the difference between colour saturation and luminance to de-
tect them. They developed a model that adaptively finds the
difference-value range of tissue folds in order to account for the
high variability of colour saturation and intensity in different
slides. Bautista et al. (2010) enhanced folds and limited the
changes in hue by using the difference value between saturation
and luminance as a shifting factor for pixel values. Palokangas
et al. (2007) used k-means clustering on HSI (Hue, Saturation,
Intensity)-transformed images (although only saturation and
intensity components were said to be discriminative enough).
However, such clustering assumes that there are always folds
in the images and the method relies on careful initialisation of
cluster centres. Simple thresholds are said to be less effective
because a tissue fold in a lightly stained image can look simi-
lar to e.g., a tumour in a darkly stained image (Kothari et al.,
2013; Palokangas et al., 2007). Similarly to intensity/colour nor-
malisation, fold detection and masking were shown to improve
subsequent feature extraction and classification tasks.

The correction of folds may be one of the most difficult prob-
lem to solve here, mainly because of the interference of con-
stituents caused by the overlap of different parts of the tissue.
Although modelling of developable surfaces has been proposed
in computer graphics (Solomon et al., 2012), the reconstruction
of an unfolded tissue section is difficult as it supposes the sepa-
ration of structures belonging to different overlapping bits of the
tissue—the number of folded layers is also unknown a priori.

Tears (or cracks) and holes. Such artefacts are more frequently
addressed than folds but their correction remains sparse. Cracks
require, in general, manual delineation of the torn area (Breen
et al., 2005b) as it is challenging to automatically tell whether a
piece of tissue is missing or if the tissue has effectively opened
up without loss of material. Yang et al. (2012) filled up the
missing sections and missing parts and corrected folds using
a procedure described in Qiu et al. (2009). Choe et al. (2011)
proceeded with manual contouring of the torn area and filled it
by repeating pixel values of the contour along the columns of
that region. Such a process however makes a strong assump-
tion about the horizontality of tears. A similar protocol was
followed in Kindle et al. (2011). Breen et al. (2005a) used cor-
respondences between landmarks to stitch the torn piece back:
a first thin-plate splines (TPS) warping (Bookstein, 1989) was
performed between histology and blockface photograph using
manually defined sets of corresponding landmark points. Then,
another set of landmarks was found at the borders of the torn
piece of tissue in histology and in the intact corresponding piece
of the blockface photo (both were overlaid to ease the process).
Finally, a separate TPS warping was applied to register the torn
piece of tissue back. Correspondences between sets of land-
marks were found using the “live-wire” algorithm developed
by Falcão et al. (1998) and Mortensen et al. (1992). One could
also approach the problem of tear correction as jigsaw puzzle

solving (Kong and Kimia, 2001; Paikin and Tal, 2015), although
it has failed in Yigitsoy and Navab (2013) because these meth-
ods rely on borders and medical images usually have low signal
and distortions at their boundaries. The tearing/cracking of thin
sheets has been subject to extensive studies within the fields
of statistical physics (Holmes and Crosby, 2010) or computer
vision (Pfaff et al., 2014).

Masking. In order to discard various contaminants in the back-
ground or edges of the glass slide, which could have an influence
in subsequent registration steps, tissue is usually separated from
the background. Thresholding is widely used (Nikou et al., 2003;
Malandain et al., 2004; Lee et al., 2005; Dauguet et al., 2007b;
Palm et al., 2010; Goubran et al., 2013; Stille et al., 2013) and
it is usually complemented by mathematical morphology oper-
ations (Malandain and Bardinet, 2003; Dauguet et al., 2007b;
Palm et al., 2010). Dubois et al. (2007) used iterative Gaus-
sian smoothing of histograms for the automatic computation
of thresholds: following Mangin et al. (1998), they tracked the
positions of modes in the scale-space and the two modes that
remained across most scales were picked as those representing
background and tissue. Region growing was then applied in the
histogram using previously computed upper and lower bounds.
Masking was preformed with mathematical morphology (succes-
sive erosions using a priori knowledge of the tissue surface) and
the largest connected component was extracted. Yushkevich et al.
(2006) used active contour segmentation with region competition
(Zhu and Yuille, 1996) followed by mathematical morphology to
refine the masks: opening (which is less destructive than erosion
alone but still removes isolated pixels) was performed and the
largest connected component was kept as final mask. Level-sets
were used with a dynamic speed function in Li et al. (2009), and
in Uberti et al. (2009) based on Li et al. (2005). They incor-
porated higher level constraints obtained from prior knowledge
and understanding of mouse brain anatomy. Palm et al. (2010)
used k-means clustering on the “a” channel, after transformation
from RGB to CIELab colour space, to segment tissue in block-
face photographs. This was followed by a hole-filling algorithm.
Adler et al. (2014) used Atropo (Avants et al., 2011), an n-class
Markov random field segmentation software package for tissue
foreground segmentation. They used three labels: grey matter,
white matter and background—grey matter and white matter
labels were united into foreground tissue mask, from which the
largest connected component was retained.

Vignetting (or shading). A common problem irrespective of the
type of camera and method of microscope attachment is uneven
illumination at the edges of the image (Leong et al., 2003). In
general, it occurs in most imaging sensors due to an uneven illu-
mination of the scene being imaged. As a consequence, images
are usually lighter near the optical centre and darker at image
borders (i.e., a shading artefact). This effect is particularly ev-
ident when stitching images into a mosaic in order to increase
the field of view of the microscope to obtain e.g., whole-slide
images. Correction of uneven illumination in histological slices
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Table 1: Company/academic softwares and plugins for histological reconstruction from serial sections and their use in the literature.

softwares/plugins institution non-rigid warping references used in

TrakEM2 (ImageJ) Uni of Zürich (CHE) no (Cardona et al., 2012) (Chklovskii et al., 2010)
StackReg (ImageJ) EPFL (CHE) no (Thevenaz et al., 1998) (Micheva and Smith, 2007)

AutoAligner Bitplane (CHE) no - (Friedrich and Beutel, 2010)
Voloom TU München (DEU) yes (Feuerstein et al., 2011) (Fónyad et al., 2015)

BrainView LIN (DEU) yes (Lohmann et al., 1998) (Dubois et al., 2007)
Free-D INRA (FRA) yes (Andrey and Maurin, 2005) (Bonnet et al., 2013)

BrainVISA CEA I2BM (FRA) yes (Cointepas et al., 2001) (Dubois et al., 2007)
AlignSlices (Amira) FEI VSG (FRA) no - (Andersson et al., 2008; Cornillie et al., 2008)

3DHISTECH (HUN) - - (Onozato et al., 2013)
poSSum Nencki Institute (POL) yes (Majka and Wójcik, 2015) (Majka and Wójcik, 2015)

ImageRegistration (ImageJ) NTUST (TWN) yes (Wang et al., 2014) (Wang et al., 2014)
BioVis3D (URY) - - (Dezső et al., 2012)

HistoloZee UPenn (USA) yes (Adler et al., 2014) (Yushkevich et al., 2016)
Protomo Florida SU (USA) no (Winkler, 2007) (Singh et al., 2016)

Reconstruct Boston Uni (USA) yes (Fiala, 2005) (Mathiisen et al., 2010)
IMOD Uni of Colorado (USA) yes (Kremer et al., 1996) (Mishchenko, 2009)
ImageJ NIH (USA) no (Schneider et al., 2012) (Le Nobin et al., 2015)

NIH Image NIH (USA) no (Rasband and Bright, 1995) (Laissue et al., 1999)

has borrowed ideas from intensity inhomogeneity correction in
MRI (Sled et al., 1998; Vovk et al., 2007). The correction of
vignetting was addressed by Peng et al. (2014) and Piccinini
et al. (2013b), and the interested reader may also refer to Reyes-
Aldasoro (2009); Yu (2004). In the histological reconstruction
literature, shading correction was performed as preprocessing
in Bürgel et al. (1999) using methods from (Gonzalez, 1987).
Arganda-Carreras et al. (2010) developed a background correc-
tion algorithm based on a phantom (Fernandez-Gonzalez et al.,
2004) that was used to correct the mosaic-like effect of the im-
ages caused by uneven illumination of the field of view of the
microscope. Methods for compensation of such a light variabil-
ity were also applied in Capek et al. (2009), further described
in Čapek et al. (2006). Colour difference and optical degrada-
tion were accounted for in Hsu et al. (2008), by means of a
Gaussian-like model and a wavelet-based image blending.

Stitching (or mosaicing). It is needed when the field of view of
the classical microscope is too narrow to allow for the visualisa-
tion of the entire tissue. The section can either be physically cut
into several pieces that are isolated in the image (see Chappelow
et al. (2011b), or Ou and Davatzikos (2009), who simulated
it), or spatial tiles can be obtained by moving the microscope
stage (Capek et al., 2009). The latter protocol however intro-
duces overlapping between adjacent fields of view. Overlap is
recommended to account for field curvature-induced artefacts in
the image and avoid loss of detail at the edges between images;
Gareau et al. (2008) included 10% overlap in the translation
step distance. Spatial rearrangement of the pieces relatively to
each other is required in both situations to recover an image of
the full tissue section for subsequent volume reconstruction or
registration with other modalities. This is usually performed
through image registration. Capek et al. (2009) performed stitch-
ing by first positioning the tiles using landmark points, and then
optimising a similarity measure in the parameter space of trans-
lations using n-step search (Tekalp, 1995). This method was

implemented in GlueMRC (Karen et al., 2003). Hsu et al. (2008)
mosaicing by matching features detected in adjacent histological
tiles. Those were extracted using wavelet-based edge correlation
and pairs of corresponding features were then identified by max-
imisation of the normalised correlation coefficient. Saalfeld et al.
(2012) addressed mosaicing of ssTEM images using previous
work (Saalfeld et al., 2010) and SIFT features.

There exist several softwares that automatically perform the
task (Piccinini et al., 2013a): in ImageJ, the Stitching1 plug-in
(Preibisch et al., 2009); Autostitch2 (Brown and Lowe, 2007);
MosaicJ3 (Thévenaz and Unser, 2007); XuvTools4 (Emmenlauer
et al., 2009); HistoStitcher and AutoStitcher5 (Chappelow et al.,
2011b; Penzias et al., 2016). Only a few studies, such as Ma et al.
(2007) using Autostitch, have been accounting for vignetting
(Piccinini et al., 2013a). Piccinini et al. (2013a) developed Mi-
croMos6 and ensured their tiles had all been flat-field corrected
prior to stitching them back together.

An automatic mosaic acquisition and processing system for
multiphoton microscopy was described in Chow et al. (2006),
along with the importance of normalisation to avoid shading
artefacts at the border of tiles. Methods that extend the tiles
beyond their boundaries by propagating available structures
were also developed in Jia and Tang (2008) and Yigitsoy and
Navab (2013). Stitching is extensively studied in the general
computer vision literature (Brown and Lowe, 2007).

4. 3D histological reconstruction

1imagej.net/Image_Stitching
2autostitch.net/
3bigwww.epfl.ch/thevenaz/mosaicj/
4xuvtools.org/doku.php
5engineering.case.edu/centers/ccipd/content/software
6sourceforge.net/projects/micromos/
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Table 2: List of open-source registration toolkits/softwares used for histological reconstruction (L and NL stand for linear and non-linear
registrations respectively).

softwares/packages/plugins institution type of transformation(s) references used in

ANIMAL McGill (CAN) NL (Collins et al., 1994, 1995) (Chakravarty et al., 2006)
TurboReg (ImageJ) EPFL (CHE) L (Thevenaz et al., 1998) (Riddle et al., 2011)
UnwarpJ (ImageJ) EPFL (CHE) NL (Sorzano et al., 2005) (Wang et al., 2015)

MERIT (MeVisLab) Fraunhofer MEVIS (DEU) L/NL (Boehler et al., 2011) (Schwier et al., 2013)
bUnwarpJ (ImageJ) UAM (ESP) NL (Arganda-Carreras et al., 2008) (Kindle et al., 2011)

Elastix UMC Utrecht (NDL) NL (Klein et al., 2010) (Alic et al., 2011; Stille et al., 2013)
NiftyReg UCL (UK) L/NL (Modat et al., 2010, 2014) (Pichat et al., 2015)

VTK CISG KCL (UK) L/NL (Hartkens et al., 2002) (Benetazzo et al., 2011)
AIR USC (USA) L/NL (Woods et al., 1998a,b) (Brey et al., 2002; Beare et al., 2008)
ITK NLM (USA) L/NL (Yoo et al., 2002) (Mosaliganti et al., 2006; Gijtenbeek et al., 2006)

ANTs UPenn (USA) NL (Avants et al., 2009) (Adler et al., 2014)
DRAMMS UPenn (USA) NL (Ou and Davatzikos, 2009) (Ou and Davatzikos, 2009)

Histological reconstruction methods aim to restore the loss
of continuity due to volume slicing. They are based on the
fact that the shape of a biological specimen changes smoothly
across sections, but suffers from various artefacts that affect
every section independently during its preparation.

When using histology alone, reconstruction algorithms pro-
vide representations of structures and their environment in three
dimensions—which helps with subsequent segmentation and
classification tasks (McCann et al., 2015)—but one needs to
bear in mind that the original shape is unattainable without prior
or external knowledge.

Reconstruction algorithms from serial histological slices rely
on image registration and consist of optimising the spatial align-
ment of variously oriented 2D slices relative to each other, while
being robust to artefacts following histological preparation. The
most straightforward way is to register every slice with its direct
neighbour and repeat the process with the following pairs, but
this is not robust to errors. First efforts towards the reconstruc-
tion and visualisation of volumes from 2D sections relied on this
technique and were initiated in the early 1970s (Levinthal and
Ware, 1972; Lopresti et al., 1973). A list of company/academic
softwares and plugins for histological reconstruction from serial
sections is available in Table 1.

Registration is the process of bringing two images (one usu-
ally referred to as “reference, fixed or target” and the other as
“floating, moving or source”) into spatial alignment and deform-
ing the floating image such that it looks like the reference image
(for transformations others than rigid-body). The objective is to
estimate the transformation that optimises an energy function.
It is usually made of two terms, one referred to as the matching
criterion (a distance measure, in a broad sense) and a regulariser,
either implicit (by restricting the type of transformation) or ex-
plicit (e.g., deformation field filtering, penalty terms, etc.), which
controls the transformation and prevents excessive or unrealistic
deformations. This definition holds for the rest of the paper.
Further details can be found in reviews about (medical) image
registration (Maintz and Viergever, 1998; Hill et al., 2001; Zi-
tova and Flusser, 2003; Sotiras et al., 2013) and a report was
recently presented in Viergever et al. (2016) to assess whether
the goals of the field were met. A list of open-source toolkits for
medical image registration is available in Table 2.

Histological reconstruction is obtained by the composition of
every single pairwise transformation with respect to a certain
reference. The quality of the resulting volume highly depends
upon the choice of that reference slice. It is usually an arbitrary
choice made by an expert, who selects a slice that exhibits little
deformations, few artefacts and high contrast. Although the first
slice (Lee et al., 2005; Colchester et al., 2000) is sometimes
chosen as reference (Chen et al., 2003; Krinidis et al., 2003a),
it may be preferable to select it around the centre of the stack
(Ourselin et al., 2001b; Pitiot et al., 2006; Cifor et al., 2011). This
minimises the propagation of errors due to slight misalignments
(let aside registration failures), which may produce skewed or
helicoidal stacks. To the best of our knowledge, only Bagci and
Bai (2010) proposed to automate the process of selecting the
best reference slice by considering the information content in
feature space.

Without any information about the true shape, volume recon-
struction remains an ill-posed problem i.e., although there exists
a solution, it is not unique (and the true one is unknown); for
example, changing the initial arrangement of slices relative to
one another will lead to a different reconstruction. Whichever
way it is addressed, the process tends to straighten up structures:
a banana-like original volume, cut and reconstructed, will end
up looking like an ellipsoid—hence its name, the “banana effect”
or “z-shift” effect (Malandain et al., 2004).

Some works tried to bypass registration failures through graph
theoretic approaches (Yushkevich et al., 2006; Adler et al., 2014;
Pichat et al., 2015), which formulate the reconstruction problem
as a shortest path problem in order to identify the best sequence
of transformations. Alternatively, most recent works commonly
proceed by aligning every slice with a set of neighbouring slices
(as opposed to considering only one neighbour) in order to
smooth out potential errors and improve continuity (Mertzanidou
et al., 2016; Rusu et al., 2015; Saalfeld et al., 2012; Feuerstein
et al., 2011; Nikou et al., 2003).

We classify works aiming to reconstruct volumes based on the
registration method they used. This yields two categories: reg-
istration using geometric features (§4.1) and registration using
voxel comparison (§4.2). While the former may be fast (because
it uses a subset rather than the whole image domain), the latter
is more accurate but slower and requires careful initialisation as
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methods tend to settle in local optima.

4.1. Geometric methods (landmark-based)
Geometric methods aim to register two images by minimising

a criterion that takes into account landmark information. The
first step in geometric registration is to obtain points of interest
(§4.1.1). Those are usually noticeable locations in the image, un-
der the assumption that saliency at the image level is equivalent
to relevant anatomical regions. After finding correspondences
between landmarks, a smooth transformation is sought so that
their alignment is respected (§4.1.2). Further details can be
found in Sotiras et al. (2013).

Note that although geometric methods can theoretically be
used for more complex transformations than rigid and affine
(if the sets of points are large enough and well-distributed),
intensity-based methods (§4.2) would likely perform better at
such task for they use the entire image domain (contrary to
features, which would likely be concentrated along contrasted
boundaries).

4.1.1. Detecting points of interest
Processing histological images is complex when it comes to

using points of interest: the appearance of slices vary greatly
and even adjacent sections expose similar rather than the same
constituents. Consequently, their description should be flexi-
ble enough to grant matching, while peculiar enough to disam-
biguate between close potential candidates. Besides, the very
task of locating reliable landmarks remains an open problem,
and it is still an active area of research (Sotiras et al., 2013). In
this section, we use interchangeably the terms landmark, key-
point and point of interest. Points of interest fall into three
categories: manually extracted landmarks, needle tracks, and
automatically extracted landmarks.

Manual landmark selection. It is usually carried out by expe-
rienced histopathologists and benefits from the rich details that
high resolution histological images provide. The main advan-
tage of manual selection is that it allows for accurate, consistent
selection of anatomically relevant landmarks. The task is how-
ever very time-consuming and subject to inter- and intra-user
variability, and was for example performed in Gaffling et al.
(2011). Zhao et al. (1993) manually segmented the contours
of the autoradiographs; boundaries may be sampled for point
matching, or used as such for curve matching.

Needle tracks as landmarks. Needles can either be inserted in
the fresh tissue, or in the embedding medium by placing ink
marks (Simonetti et al., 2006). The marks can then be manually
or automatically isolated, such as in Colchester et al. (2000)
who identified centres of labelled needles tracks using Hough
transform. Although the technique is known to be invasive,
recent advances allow to minimise damages to the tissue (Hughes
et al., 2013).

Automatic feature extraction. Within the context of histology,
we identified three main types of features associated with auto-
mated methods to extract and describe them, namely Fourier-
based, blob-like and object-level features.

Fourier-based features Such features relate to edges ex-
tracted via harmonic analysis. Hsu (2011) adapted a method
introduced earlier in the context of mosaicing (Hsu et al., 2008)
to histological reconstruction, also based on Hsieh et al. (1997).
The detection of edges was handled by wavelet transforms. The
robustness to noise was achieved using edge correlation, as in-
troduced by Xu et al. (1994). Reliability of feature points was
increased by means of multiscale edge confirmation, which fil-
tered out the noise since mostly features remain across multiple
scales (unlike noise). The reader may also refer to Mallat’s
works for a thorough study of multiscale edge detection through
wavelet theory (Mallat and Zhong, 1992). The orientation of
the feature point was determined through a line-fitting method
rather than estimated using the result of the wavelet transform
(which is sensitive to noise): it essentially considered a neigh-
bourhood of a detected feature and estimated the orientation of
the edge line passing through it and neighbouring edge points.
Braumann et al. (2005) used Fourier-Mellin invariant (FMI) de-
scriptors of images (Casasent and Psaltis, 1976). They were
obtained by Fourier-Mellin transform of the image in a polar
coordinate system, which decoupled translation, rotation and
scaling (respectively for rotation and scale invariance). Note
that Ghorbel (1994) later showed that using instead the analyt-
ical Fourier-Mellin transform allows getting a complete set of
similarity-invariant features.

Blob-like features The most popular blob detector in the
computer vision literature is surely the Scale-invariant feature
transform (SIFT). It is based on local extrema (or blob) detection
(Lowe, 1999). The detector relies on difference of Gaussians
(DoG), which is an approximation of the scale-normalised Lapla-
cian of Gaussian (related to each other through the heat equation)
and thus contains no directional information. Keypoints are lo-
cal optima in the DoG scale space of the image. Candidate
keypoints that are unstable i.e., low contrasted extrema or those
lying on edges (since they are invariant to translations along
their direction) are discarded. Location, scale and orientation
(estimated as the main gradient orientation over a keypoint neigh-
bourhood) are encoded in the descriptor of every keypoint. The
interested reader may refer to Toews and Wells (2009) for an
efficient encoding of that vector. An in-depth analysis of the
SIFT method is available in Rey Otero and Delbracio (2014).

It was used in Koshevoy et al. (2006), and Saalfeld et al. (2012)
based on their previous work for the registration of tiled serial
TEM sections7 (Saalfeld et al., 2010). Wang and Chen (2013)
used colour deconvolution (see §3) to separate hematoxylin and
eosin stain contributions from individual histopathological im-
ages. Eosinophilic structures were used as object-level features
for image registration, from which points of interest were de-
tected using DoG detector. This was reused in Wang et al. (2014,
2015).

Lobachev et al. (2017) used another popular feature detec-
tor and descriptor, SURF (Bay et al., 2006). It is based on the

7Saalfeld and Tomancák (2008) developed plug-ins for ImageJ to extract
SIFT and Multi-Scale Oriented Patches, MOPS Brown et al. (2005) correspon-
dences in two images: http://imagej.net/Feature_Extraction

11



determinant of the Hessian matrix operator and relies on inte-
gral images for fast computation. As far as SIFT is concerned,
DoG is basically a Laplacian-based detector and the Laplacian
operator is defined as the trace of the Hessian matrix. Using its
determinant (instead of the trace) as it is the case with SURF,
discourages the detection of elongated, ill-localised structures.

Ulrich et al. (2014) used Binary Robust Invariant Scalable
Keypoints, BRISK (Leutenegger et al., 2011), based on the
AGAST corner detector (Mair et al., 2010). Note that an evalua-
tion of binary feature descriptors performance can be found in
Heinly et al. (2012).

Nagara et al. (2017) used Accelerated KAZE feature points
(Alcantarilla et al., 2012, 2013).

Object-level (or high-level) features We identified two
subtypes of such features: (i) anatomical structures and (ii)
tissue boundaries (curves and points).

(i) One school of thought recommends the use of structures
such as vessels, nuclei etc., (Ruiz et al., 2009). The rationale
is that traditional feature detection schemes generate a great
amount that are regular in appearance, thereby making matching
unrealistic. Such features are also described in Gurcan et al.
(2009). For example, Schwier et al. (2013) extracted vessel-like
structures in greyscale images using thresholding and mathemat-
ical morphology in every slice. The sets of structures were then
refined using eccentricity, ellipticity and size criteria. Prescott
et al. (2006) extracted specific regions in cochlear images using
Otsu’s thresholding, mathematical morphology and only kept
the largest connected components. For each stain type, colour
segmentation followed by mathematical morphology allowed
Cooper et al. (2009) to segment significant structures such as
blood vessels, other ductal structures or small voids within the
tissue area.

Other methods, although relying on that same subtype of
features (Xu et al., 2015; Ruiz et al., 2009; Arganda-Carreras
et al., 2010), address the matching step by comparing informa-
tive patches (also referred to as windows, blocks, boxes or tiles)
centred around those keypoints. In other words, features are
described by the intensities of pixels around them, which comes
down to a block-matching strategy to infer correspondences. We
thus detail the matching step for such approaches (referred to as
tile-based methods) in §4.2. For the sake of completeness, Xu
et al. (2015) extracted relevant structures from the images based
on colour and size. Arganda-Carreras et al. (2010) extracted
structures of interest by combining fast marching algorithm and
level-sets. Ruiz et al. (2009) selected tiles that have rich content
i.e., which variance is above a certain threshold.

One successful application of those high-level features has
been the registration of differently stained histological sections,
although the literature on that problem is relatively sparse (Brau-
mann et al., 2006; Song et al., 2013, 2014). It is a multimodal
problem in that every section varies in appearance: images ex-
hibit different colour distributions and different structures due to
different staining. This is solved by identifying common struc-
tures and grouping them into comparable clusters. The problem
thus becomes monomodal using labeled images or probability

maps. Braumann et al. (2006) assigned every pixel a “segmen-
tation vector” containing, for successive Gaussian smoothed
versions of the image, its RGB value and the colour mean of
a neighbourhood around the pixel. The clustering of the im-
age into different numbered classes was based on Pernkopf and
Bouchaffra (2005), who selected the number of components that
best modeled the distributions in order to represent the charac-
teristics of the images adequately. A similar idea was proposed
in Song et al. (2014) except that the segmentation vectors for
each pixel, called “appearance feature vectors”, also included
information about texture. The clustering of the appearance fea-
ture vectors was carried out using a principal eigenvector binary
tree clustering algorithm.

(ii) One last type of approaches consists of using solely the
tissue boundary (probably the highest-level feature), whereby
the images simplify to a single curve. After extraction, those are
used for contour matching. Extracted curves may also be sam-
pled to perform point matching (those points are also referred to
as nodes). Tissue edge points sampled along boundaries have the
advantage of being less vulnerable to e.g., tearing—when sam-
pled appropriately—from which intensity-based methods would
suffer. However, their detection relies on accurate segmentations,
which in turn may be affected by intensity inhomogeneities if for
example a simple global threshold is to be used for all the slices.
Contours of tissues were obtained automatically by thresholding
in Shojaii et al. (2014); Shojaii and Martel (2009); Cohen et al.
(1998). They were manually edited, if necesssary, in Cohen
et al. (1998) and modeled using B-splines; the inverse chord
length method (Cohen Fernand et al., 1995), which regulates
the number of knot points based on the amount of shape vari-
ation a region is subjected to, was used to select the set that
best described a given curve (fewer knots when the variation
is small). Rangarajan et al. (1997) extracted the locations of
high confidence edges (including tissue boundaries) by thresh-
olding Canny edge images (Canny, 1986). Tan et al. (2007)
extracted the sharpest curvatures along the contours of tissues,
which yielded three feature points at consistent locations in every
section. The tractability across slices allowed for the computa-
tion of “trajectories”. Krinidis et al. (2003b) obtained contours
using a 2D elastic physics-based deformable model. The model
consisted of a set of nodes, initially distributed over a circle.
In its fully deformable configuration, the model allowed each
node to move independently, without affecting adjacent ones.
Guest and Baldock (1995) extracted two types of nodes with
the aim of creating a mesh: the object nodes were automatically
selected, ideally along the boundary of the structure i.e., with
large gradient, and a minimum distance criterion to prevent them
from being too close. The background nodes were sought in
the background region with larger minimum distance. Delaunay
triangulation from the obtained nodes provided a mesh with
higher density over the domain of the tissue.

4.1.2. Correspondences and spatial transformations
Correspondences between landmarks may be straightforward,

as it is the case when extracted manually (although labour inten-
sive and time-consuming) or using segmented needle track holes.
For example, Gaffling et al. (2011) computed the trajectories of
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landmarks (placed at identifiable locations along the tissue outer
and inner boundaries) tracked across the slices through a fourth
order polynomial fit. Note that polynomial transformations are
usually advised to be computed using a low-degree polynomial
due to noise and numerical instabilities (Ali and Cohen, 1998).

Using needle tracks. Holes from the tracks allow for the compu-
tation of a (linear) transformation by least-squares minimisation.
Colchester et al. (2000) used a set of photographs of both ante-
rior and posterior faces of every tissue sections. ”Within-slice
co-registration” was achieved by minimising the sum of squared
distances between centres of labelled needles tracks for every
pair of faces. Then, ”between-slice co-registration” consisted of
registering the posterior face of one section with the anterior face
of the next using block-matching (Ourselin et al., 2001b). Other
examples of use of fiducial markers include works from Gold-
szal et al. (1995) and Humm et al. (1995). Although they may
increase the reliability of the registration process because their
locations are easy to track in the images, needles also damage
the tissues and introduce bias if the cutting plane is not orthogo-
nal to the needles axes. This protocol was however improved in
Gibson et al. (2012) and Hughes et al. (2013).

Using automatically extracted features. In contrast, automati-
cally extracted features require a dedicated step that seeks for
correct matching pairs in order to derive the correct transforma-
tion. Automatically discarding false matches is critical; other-
wise the latter methods would suffer from the same problems
that hamper intensity correlation (Rangarajan et al., 1997).

Using Fourier-based features Hsu (2011) used an analytic
robust point matching method for global registration. The align-
ment was refined using a feature-based modified Levenberg-
Marquardt algorithm (Moré, 1978). Braumann et al. (2005)
matched FMI descriptors between a reference and a target image
using a symmetric phase-only matched filtering (Chen et al.,
1994). The parameters of rigid transformations were derived
from it.

Using blob-like features Matching pairs are usually found
by minimising the Frobenius norm in the descriptor space. Ran-
dom sample consensus, RANSAC (Fischler and Bolles, 1981)
is then used to discard wrong correspondences and to solve for
the transformation. Koshevoy et al. (2006) assumed that serial
section transmission electron microscopy (ssTEM) images were
taken at the same scale, and suffered from minor deformation
on the global scale, which made the scale-invariance require-
ment unnecessary. Only SIFT descriptors belonging to the same
octave and scale of the DoG scale space thus needed to be com-
pared against each other. To this end, Koshevoy et al. used an
optimised kd-tree with a best-bin-first nearest neighbour search
algorithm (Beis and Lowe, 1997). Wrong correspondences were
filtered out using a criterion based on Euclidean distances, sim-
ilar to that introduced in Hsieh et al. (1997). Lobachev et al.
(2017) matched SURF descriptors using a bi-directional brute-
force matcher.

Solving for the transformation parameters was achieved using
RANSAC in Koshevoy et al. (2006); Wang and Chen (2013);
Wang et al. (2014, 2015); Lobachev et al. (2017); Ulrich et al.
(2014); Nagara et al. (2017). It essentially estimates the set of
feature points that behave consistently with respect to a linear
transformation. Saalfeld et al. (2010) estimated simultaneously
the rigid arrangement of tiles within and across sections using
SIFT features and RANSAC registration. The methods are
available online8. It was extended in Saalfeld et al. (2012) by
refining the alignment using intensity-based registration (a block-
matching strategy detailed in §4.2). The combination of both
strategies was used to initialise an elastic registration, for which
each image was tessellated into a mesh of regular triangles.
Like in Guest and Baldock (1995), the system of equations
representing the whole stack of slices was an elastic spring finite
element model. The entire system stabilised when the sum of
the forces of all springs was close to zero.

Lobachev et al. (2017) computed an additional non-rigid trans-
formation at multiple resolutions using feature pairs in adjacent
sections, in order to constrain the control points of B-splines. At
every iteration, the feature size decreased while the resolution
of the grid of control points increased. No reference section was
taken and all the images were deformed towards a minimum
energy function. Ulrich et al. (2014) aligned all BRISK feature
pairs by least-squares deformations. This process was repeated
if the pairs after transformation were not stable. The methodol-
ogy was reused in Lobachev et al. (2017) and incorporated into
a multi-resolution framework.

Using high-level features (i) The Euclidean distance in
combination with other criteria, like the size of structures, is used
to assess the similarity between pairs of such features. Schwier
et al. (2013) tried all possible combinations of pairs in adjacent
sections. The transformation that gave the best similarity was
kept. The matching cost took into account a distance range,
within which matching pairs should lie, as well as the close-
ness in terms of object size (area). This was robust to cases
where no valid correspondence was found. Pairwise non-rigid
registrations (Modersitzki, 2004) were performed and imple-
mented as part of a software (Boehler et al., 2011). Prescott
et al. (2006) paired features using the area only. Mismatches
were identified using a distance-based criterion, similar to that
presented in Koshevoy et al. (2006). The linear transformation
was derived from a matching graph, in which every node is
a matching pair and is associated with a transformation. An
edge exists between two nodes if the two transformations are
sufficiently similar. The global transformation is the average of
those constituting the maximal cyclic structure from the graph.
It served as an initialisation for subsequent registration based on
maximisation of mutual information and gradient information
(Pluim et al., 2000). Cooper et al. (2009) paired features based
on both size (area) and eccentricity. Mismatches were filtered

8Two stand-alone plugins were implemented: Elastic Montage, for mosaic-
ing, and Elastic Stack Alignment, for the alignment of images from serially
sectioned volumes. They are incorporated in the TrakEM2 software and available
at http://imagej.net/Elastic_Alignment_and_Montage
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out in a way similar to Prescott et al. (2006) and rigid trans-
formation parameters were associated with every correct pair.
The correct rigid transformation was then estimated through
a voting scheme. Non-rigid registration was performed using
second-order polynomials, which coefficients were calculated
using correct feature pairs.

When registering differently stained histological sections, la-
belled classes must be matched to corresponding common struc-
tures in the images. Braumann et al. (2006) applied a method-
ology partly based on Braumann et al. (2005) and reused in
Wentzensen et al. (2007): after clustering the images into dif-
ferent numbered classes, class label adjustment was performed
in cases where the assignment was not consistent. The problem
of having more and/or different classes—because sections may
exhibit different structures—was tackled by merging classes so
as to have the same regions segmented in both images. Every la-
belled image pair was finally aligned by computing the displace-
ment vector field using non-linear, non-parametric curvature-
based registration. Song et al. (2014) solved the correspondence
problem by grouping clusters into three superclusters (called
“content classes”) in each image according to various partition
schemes. The pair of partitions that maximised mutual informa-
tion provided the optimal content classes in each image. These
classes were then refined using spatial features. Then, each im-
age was transformed into a multichanel probability map, where
each channel corresponded to one content class. Block-matching
registration was performed between pairs of probability maps for
each channel independently. This provided a displacement field,
from which a non-rigid transformation was estimated using a
regularised least squares difference minimising method.

(ii) Cohen et al. (1998) matched tissue boundaries from ad-
jacent sections, modeled as B-splines, by comparing their knot
points. The major drawback associated with B-spline represen-
tations is the non-uniqueness of the set of control points, which
hampers the comparison of curves. This was solved in Ali and
Cohen (1998) (see §5.1.2) using the intrinsic features of curves,
which properties derived from the Frenet frames (Millman and
Parker, 1977). Zhao et al. (1993) affinely registered slices of
autoradiographs by minimising displacement of manually seg-
mented contours (using sum of squared differences, SSD) by
analysis of point-to-point disparities in two images: a boundary
point in one section differs from its corresponding point in the
adjacent section by a disparity vector. Trahearn et al. (2014)
used Curvature Scale Space (Mokhtarian and Mackworth, 1986)
to represent shape (the tissue boundary) at various scales and
register whole-slide images of histological sections.

When sets of points sampled along the extracted boundaries
of tissues are to be matched, one popular method is the Iterative
Closest Point (ICP) method (Besl and McKay, 1992). Shojaii
and Martel (2009) used ICP to register every histological slice
with its corresponding blockface photograph. Points were uni-
formly distributed along every smoothed boundary of the tissue
by excluding high curvatures using a rolling-ball filter. Shojaii
et al. argued that “high-curvature boundaries might lead ICP to
converge to local minima and deteriorate its robustness”. De-
formable registration was then performed using thin-plate spline
(TPS). Rangarajan et al. (1997) optimised simultaneously the

affine transformation parameters and the one-to-one correspon-
dences between two sets of edge points in adjacent sections.
This method was referred to as robust point matching. Krinidis
et al. (2003b) found correspondences between contour nodes of
adjacent slices using an affinity matrix. Corresponding nodes
between adjacent slices were couples which relative distance
was lower than a certain threshold. False matching were filtered
out by global affinities, which ensured that correct correspon-
dences also exist in slices further away. Translation and rotation
parameters were computed by minimising the mean square error
between pairs of matching nodes. Gaffling et al. (2011) used
the offsets of every landmark to a smooth curve representing
the trajectory of that landmark across slices to compute a sparse
displacement field for every slice; the vector fields were then
densified (Fischer and Modersitzki, 2003). Every image was
finally deformed such that its landmarks lied on the trajectories,
and every following slice was then registered to it. A similar
strategy was followed earlier by Tan et al. (2007), where three
edge points in every slice were used as control points of three
non-uniform rational B-spline curves (trajectories).

4.2. Iconic methods (intensity-based)

Histological reconstruction can also be achieved by means
of intensity-based registration. The main difference with the
geometric methods described in §4.1, is that—as their name
suggests—iconic methods are based on voxel intensities instead
of features. This means the distance-optimisation framework
(where the distance can be a similarity measure) is applied to the
entire image domain. In that sense, they can potentially be better
at estimating a dense deformation field; feature-based methods
require interpolation, which makes them less accurate when the
set of landmarks is sparse. However, their efficacy comes at a
computational cost.

In the following, we present reconstruction methods that relied
solely on linear registration, and others that were complemented
with non-linear registration so as to improve the continuity of
anatomical structures.

Linear transformations. Some authors have relied on linear reg-
istrations to address that task. Andreasen et al. (1992) optimised
the parameters of every rigid transformation by minimising a
weighted SSD between the intensities of two adjacent slices.
Weights were defined as the ratios of intensities of both im-
ages. More recently, methods more robust to intensity variations
across slices have been proposed. Block-matching (Ourselin
et al., 2000) was used in Dubois et al. (2007) and Ourselin et al.
(2001b); it consisted of (i) finding correspondences between
blocks of two images by maximisation of a certain similarity cri-
terion within an exploration neighbourhood, and (ii), using the
resulting displacement field, filtering out mismatches via least
trimmed squares (LTS) (Rousseeuw, 1984) in order to compute
a robust, global rigid transformation between the two images.
Nikou et al. (2003) defined a local energy function that was opti-
mised sequentially in order to bring into rigid alignment every
unvisited slice with a group of neighbouring slices. They used
M-estimators as cost functions, which aimed to reduce the effect
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of outliers in the regression process by replacing the square func-
tion of the residual in the standard least square minimisation by
the German-McClure ρ-function. Dubois et al. (2007) jointly
reconstructed histological and autoradiographic volumes by first
stacking sections using their centres of mass, and registering
pairs of adjacent sections for each stack using block-matching.
The histological volume was then used as a reference for the re-
finement of the reconstructed autoradiographic volume (2D-2D
registration between autoradiographs and histology), due to the
fact that inner anatomical structures of the brain are more visible
in histology.

Non-linear transformations. Other authors employed non-linear
transformations (Gefen et al., 2003) for reconstruction. Such
methods must be initialised with a linear registration (or with
manual alignment, or image centres alignment). One should
note that initialisation is a non-trivial and non-negligible step,
and this statement holds for §5 too. The additional use of non-
linear registration is often a source of discussions in the literature
(Lee et al., 2005; Dubois et al., 2007). On the one hand, these
transformations can provide a better overlay and grant richer
quantitative analyses. On the other hand, since no external
information about the shape of the tissue is available, bias may
be introduced by choosing one slice as the reference shape.

Cifor et al. (2011) guaranteed the smoothness of the recon-
structed volume in three steps: the volume was initially recon-
structed using pairwise rigid registrations. Next, boundaries of
interesting structures were extracted (by thresholding) in every
2D section and smoothed using a min-max curvature flow con-
strained to 2D (out-of-plane)—and using a mean curvature flow
in Cifor et al. (2009). This provided a sparse displacement field
computed over pixels along the initial boundary of the extracted
surface, then extrapolated to the entire slices. Smoothness was
also used as a criterion for histological reconstruction in Casero
et al. (2017), where the refined alignment of the stack was a
solution of the heat diffusion equation. The algorithm alternated
between the updates of slices’ transformations and their neigh-
bours’ transformations until convergence. Finally, accumulated
transformations updates were applied to each slice. The same
purpose was followed in Gaffling et al. (2015), where the recon-
struction of a stack of histological slices was formulated as an
iterative Gauss-Seidel update scheme applied to images, using
by definition two adjacent slices (above and below) and modi-
fied to also include information from the image itself (Gaffling
et al., 2009)—thereby, they also showed that a small neighbour-
hood is sufficient to restore smoothness. That scheme allowed
for smoothing high-frequency perturbations more than lower
frequencies associated with the progression of anatomical struc-
tures along the stack (as it is assumed to vary slowly enough
by nature of the histological process). A similar strategy was
followed earlier in Krinidis et al. (2003a), using iterated con-
ditional modes (Besag, 1986) for the optimisation of a global
energy function that quantified similarity between slices.

Ju et al. (2006) represented deformations by independent
single valued functions in horizontal and vertical directions:
they considered that every 2D warp can be decomposed into 1D
piecewise linear deformations with elastic constraint in x and

y. The minimisation of the error function for registration was
achieved by means of an extension of the dynamic time warping
in 1D (Sakoe and Chiba, 1978) to 2D problems.

Wirtz et al. (2004) first rigidly registered slices using principal
axis transformations, and then performed multi-scale non-linear
registration with a regularisation based on elastic potentials. The
system of Navier-Lamé equations was linearised by means of
a non-linear Gauss-Seidel iteration method and approximated
by finite differences. This was extended in Wirtz et al. (2005)
by replacing the SSD similarity measure in the variational for-
mulation with a weighted combination of two derivative-based
(respectively gradient and Laplacian of the image) SSD mea-
sures. The error function was thereby less sensitive to intensity
inhomogeneities.

Braumann et al. (2005) performed non-rigid registration on
rigidly pre-aligned slices in two steps. First, they used poly-
nomial warping on luminance-transformed images: correspon-
dences between control points of adjacent slices were used to
estimate the polynomial coefficients through the minimisation of
a least-square error. This provided a sparse displacement field.
Then, a curvature-based registration (Fischer and Modersitzki,
2003) was performed on staining-based tumour probability maps.
Such maps reduced artefacts around the tumour and thus eased
the registration. Braumann et al. also suggested to skip the
intermediate polynomial registration as improved performance
is expected using a multi-grid scheme for the curvature-based
registration.

Pitiot et al. (2006) proposed a method that computed a global
non-linear transformation by elastically interpolating between
linear transforms defined on pairs of sub-images (hence the
name of “piecewise affine registration”). These sub-images rep-
resented geometrically, and often anatomically, coherent com-
ponents. They were automatically extracted through clustering
of an initial displacement field (Ourselin et al., 2000) computed
between the images to be registered.

Feuerstein et al. (2011) formulated the problem of optimising
transformation parameters for every slice relative to, simulta-
neously, a reference image and the two neighbouring sections,
as Markov random fields. The Markov random fields energy is
composed of unary potentials, which account for the registration
to the reference images and pairwise potentials, which encode
the registration to neighbouring slices and the regularisation of
the displacement field. This formulation served as basis for the
deformation field model in Müller et al. (2014).

Brandt et al. (2005) an initial affine registration followed by
non-rigid registration, were performed both by maximisation
of the NMI. The latter transformation was modeled as a cubic
B-spline free-form deformation (Sederberg and Parry, 1986).

Schmitt et al. (2007) initialised the reconstruction by reg-
istering slices affinely using a variant of principal axes
transformation—PAT (Alpert et al., 1990). They adopted the
stochastic interpretation of PAT presented in Modersitzki (2004)
(p.45), in which the images are represented as Gaussian density
functions. The problem was formulated as the estimation of
a density that best fits a set of reference densities in the sense
that the Kullback-Leibler distance is minimised. Due to the lack
of robustness of Gaussian distributions to perturbations, such
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as tears, wrinkles, torn out pieces, artefacts etc., Schmitt et al.
used Cauchy density functions instead, on which robust PAT
relies. Standard PAT was used in Cooper et al. (2006). This was
followed by two partial optimisations of the SSD with respect
to the shear first, and then to rotation, shearing and translation.
Finally, elastic deformation was performed, similar to that used
in Saalfeld et al. (2012).

The only work, to the best of our knowledge, explicitely ad-
dressing the problem of histological reconstruction with missing
slices was found in Gaffling et al. (2009) and dealt with by
interpolating them. Images adjacent to a missing slice were non-
rigidly registered using the variational approach of the problem
defined in Modersitzki (2003). The interpolated deformation
field, which is a fraction of the resulting deformation field de-
pending on the gap between the two registered images, is applied
to the template image to approximate the missing intermediate
slice.

Tile-based approaches. These methods, introduced in §4.1.1,
use patches of the image as features and are therefore similar to
block-matching when establishing correspondences: Ruiz et al.
(2009) computed the translation and rotation parameters that re-
lated corresponding blocks in two images; those were identified
within a sufficiently large area of the reference image by max-
imisation of normalised cross-correlation. This step provided a
sparse displacement field and a second-order polynomial trans-
formation was computed, which coefficients were obtained using
least squares. Xu et al. (2015) explicitely based their method
on Ourselin et al. (2000). Arganda-Carreras et al. (2010) pro-
posed a shape-based rigid registration method. After an initial
rigid-body registration between adjacent sections, correspon-
dences between structures of interest were sought for by means
of bounding boxes around them. Overlapping boxes in adjacent
sections were assigned the same group label. Two bounding
boxes overlapping in the same section were grouped into a su-
pergroup. Remaining ungrouped structures were assigned the
number of the closest group/supergroup in the adjacent section.
Registration of every grouped structures was performed using
the phase correlation method. Correction of remaining misalign-
ments was achieved by elastic registration using B-splines in a
multiresolution framework. Auer et al. (2005) kept meaning-
ful tiles (called “subimages”) that satisfied a variance criterion.
Their centres were used as control points for TPS registration.
TPS was preferred for its physical properties but Auer and col-
leagues outline that it highly depends on the control points, as
opposed to e.g., B-spline interpolation.

5. Histological reconstruction using 3D medical images

This section presents pipelines that aim to improve histol-
ogy reconstructions with the help of 3D medical images. As
mentioned earlier, this supposes the access to a suitable set of
histological slices. By suitable we mean that a sufficient number
of sections with an appropriate spacing between them (relative
to the MRI slices thickness) is available. Hence the slight abuse
of language made in the section title, and briefly precised in the

introduction of §5.1, in the case where only a single or too few
histological slices are available.

Combining histology and medical imaging dates back to the
late 1980s. Early attempts include works by Sze et al. (1986),
who aimed to provide histological explanation for high inten-
sities detected routinely in MR, and Nesbit et al. (1991), who
studied the pathogenesis of multiple sclerosis using MR, com-
puted tomography (CT) and a biopsy.

The process of combination benefits from the heterogeneity
and multiple resolutions of the images. In the end, it serves to in-
crease the specificity of medical imaging analysis with baseline
information about the actual properties of the underlying bio-
logical tissues (Annese, 2012): since medical imaging provides
only indirect information, it is essential to show that resultant
findings correlate with pathological findings.

Multi-modal works treat their different images as separate
entities: the terms (co-)registration, (co-)alignment, matching,
mapping or warping are used interchangeably in the covered
literature. They all provide additional, combined information in
the form of overlays for diagnostics, treatments, quantification
etc. The term “fusion” is also commonly used but it should be
distinguished from “data fusion” in the sense of creating a single
composite image from different sources via numerical fusion
operators, extensively reviewed by Bloch (1996), and more
recently by James and Dasarathy (2014) for medical images.

The section is structured according to the modalities involved
in the registration process: (i) registration of histology with
ex and/or in vivo 3D medical imaging (§5.1): this includes
cases where ex vivo is used as an intermediate modality when
relating in vivo imaging with post mortem data; (ii) registration
of histology with ex and/or in vivo 3D medical imaging using
blockface photographs as an intermediate modality (§5.2): this
also includes cases where both blockface photographs and ex
vivo are used as intermediate modalities.

5.1. Histology↔ 3D medical imaging

Multi-modal registration between histological slices and 3D
medical imaging can be addressed in three ways:
- Slice-based approaches (§5.1.1 and 5.1.2) They consider ev-

ery histological slice as an individual object. Those may be
preferred over volume-based approaches in cases where e.g.,
the histological dataset is too sparse or has too few slices. The
alignment between histology and medical imaging is then car-
ried out using either (i) slice-to-volume (2D-3D) registration
or (ii) slice-to-slice (2D-2D) registration, which is a simplifi-
cation of the former point and requires careful identification
of the “corresponding” plane in the medical image volume.

- Volume-based approaches (§5.1.3) They consider the set of
histological slices as a whole and therefore rely on an initial
histological volume. The main goal of initial reconstruction
is to correct for the various orientations that the tissues may
have across slices (when mounted on glass slides) in order to
facilitate subsequent registration with 3D medical imaging.
It provides better support and aids the optimisation of the
cost function. More complex initialisations have also been
developed, which intend to be more robust to registration
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failures. Both the alignment and the reconstruction are then
refined in various ways.

- Hybrid approaches (§5.1.4) They also rely on initial
histological reconstructions and alternate between volume-
and slice-based approaches so as to get the best out of the
two worlds: a more accurate histological reconstruction for a
refined alignment with clinical imaging and vice versa. They
repeat until the histological reconstruction has converged.

One should note that volume-based and hybrid approaches
can only be used when a suitable set of histological slices is avail-
able. Conversely, the access to a single or a few slices naturally
suggests the use of slice-based approaches, since one cannot al-
ways speak of histological volumes and thus of reconstructions.
However we can agree that 2D-3D registration frameworks may
as well be applied to a suitable set of slices, like in Nir et al.
(2014) for example.

5.1.1. Slice-to-slice approaches (2D-2D)
These methods assume that the cutting planes of histological

slices and the acquisition planes of the 3D medical image are
parallel and that there always exists a histological section that
has a counterpart in the set of MR slices. The problem therefore
simplifies to a 2D-2D registration between every histological
slice and its corresponding slice in the 3D medical image.

Visual selection. Slice correspondences can be achieved visually
(Gangolli et al., 2017; Chappelow et al., 2011a; Mazaheri et al.,
2010), in which case an expert radiologist is most commonly
asked to identify the MRI slice corresponding to a histological
slice on the basis of anatomical landmarks.

Chappelow et al. (2011a) took advantage of all the data to
drive image registration using a multivariate formulation of mu-
tual information, while Mazaheri et al. (2010) performed rigid
alignment of the images’ centres of mass, followed by 2D affine
registration and finally 2D non-rigid registration using free-form
deformations (FFD) (Rueckert et al., 1999).

Li et al. (2006) used TPS transformation to register the in
vivo MR plane with its visually corresponding histological slice.
It was a smooth registration based on specified corresponding
landmarks. The optimal number of landmarks was evaluated as
a minimiser of the non-rigid registration error.

Gangolli et al. (2017) manually extracted landmarks at visu-
ally matching locations along the tissue edges, within and at the
boundary between grey and white matter. Then, a forward non-
linear moving least squares transformation (Goshtasby, 1988)
was applied to register the histological section with the MRI
slice.

Nagara et al. (2017) identified the cutting plane of the speci-
men thanks to a mark made by a clinician on the µCT prior to his-
tological preparation. Both modalities were first linearly aligned
using AKAZE feature points in combination with RANSAC;
2D-2D non-linear registration between every pair of slices from
histology and µCT was then performed and formulated as dis-
crete Markov random fields.

Automatic selection. Automated selection of corresponding
slices can be achieved via the optimisation of a similarity mea-
sure between each histological slice and every slice of the 3D
medical image. This assumes that the maximum similarity is
obtained when actual corresponding slices are compared. How-
ever, Xiao et al. (2011) showed that both visual and automated
approaches failed to reliably determine slice correspondences
mostly due to the alteration of the tissue during the histology
preparation i.e., direct comparison of images from different
modalities is a non-trivial task which is prone to errors. Rather,
they proposed to compare the set of histological slices with all
possible subsets of equal number of in vivo MR slices using
mutual information. These subsets were ranked based on cu-
mulated similarity. A group of top-ranked MRI subsets was
retained and their lists of correspondences were averaged. The
final list was used for 2D affine registrations between slices from
both modalities followed by 3D affine registration.

In the clinical literature. Slice-to-slice approaches seem to be
favoured for the visual control they allow. However, in most of
the works the problem is only partly stated and adressed (Harkins
et al., 2015; Kilsdonk et al., 2016; Hammelrath et al., 2016):
Lopez Gonzalez et al. (2016) performed linear registrations
between ex vivo MR slices and histological images, and these
were then visually matched to the closest (in vivo) 3T MR slice.

Harteveld et al. (2016) and Van Der Kolk et al. (2015) man-
ually matched histological sections to their corresponding MR
planes using the marked locations from fiducials in the MR
images, ink markings in the histologic sections, and gross mor-
phologic features.

Nakagawa et al. (2016) visually identified the histological
sections that were morphologically close to the T1ρ mapping
image, and only those were stained.

Koh et al. (2016) compared the tissue sections of the largest
cut surface of the tumour side-by-side with MR imaging.

State of the art data analyses therefore rely on two rather loose
assumptions:

(i) The sampling during histology is consistent and can co-
incide with that of the MRI. However, it is for example
well-known that thermal expansion of the tissue when a
new block face is exposed during microtomy causes uneven
thickness of histological sections. Otherwise, one counts
on interpolation whereby, depending on resolution, new
and uncertain content is created.

(ii) The histological cutting planes are parallel to each other
and to the MRI acquisition plane. One counter-argument
directly follows from (i); another, from the fact that
it is very difficult to ensure that the specimen lies
prefectly flat at the bottom of the cassette during histology
processing (this is especially true when tissue is the frozen).

As a result, apparatus have been developed to help cutting
the specimen at the same interval and orientation as the MR
images, as proposed by Drew et al. (2010); Trivedi et al. (2012)
in the context of prostatectomy, or by means of 3D-printed
brain holders (Absinta et al., 2014; Guy et al., 2016) but their
use is not so common. The error made when selecting the
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Figure 3: Strategies to register histology with volumetric medical imaging (ex or in vivo alone). The three main approaches (slice-based,
volume-based and iterative) are presented. (*) In cases where ex vivo imaging is used as an intermediate modality, correspondences between ex vivo
and histology are achieved through steps 2 and 3, and the mapping between histology and in vivo is completed via registration between ex and in
vivo scans (extra step).

closest MR slice was considered in Steenbergen et al. (2015),
and the consequences of differences in sampling were noted in
Martel et al. (2016) in the specific case of vascular trees from
the femoral trochlea. By disregarding such approximations, one
needs to be aware that wrong correspondences are very likely to
be established and this directly affects, for example, statistical
analyses. Similarly, these challenges were described by Meyer
et al. (2013) and numerous erroneous assumptions made during
the process of alignment were listed in the case of prostate
cancer.

In some cases when the medical image has low (axial) reso-
lution and the histological dataset is sparse or limited to a few
consecutive slices, or when the contrast/quality of histological
slices is poor, one should acknowledge the fact that visual se-
lection of corresponding slices, manual alignment of images,
manual selection of landmarks or manual initialisation remains
the safest and quickest way to address multimodal registration.

5.1.2. Slice-to-volume approaches (2D-3D)
Slice-to-volume approaches extend methods presented in

§5.1.1 by acknowledging that nothing ensures that the cutting
plane of histological slices is parallel to the 3D medical im-
age acquisition plane. Likewise, there is no guarantee that the
histological slices are parallel to each other. This means that
structures belonging to a tissue slice may extend over several
3D medical image slices, or in other words, a histological slice
may lie obliquely in the medical image volume. This in turn
suggests that the corresponding 3D medical image slice can
only be found through a slice-to-volume (2D-3D) registration.
Reviews on slice-to-volume registration can be found in Markelj

et al. (2012) and Ferrante and Paragios (2017).

Landmark-based. Khimchenko et al. (2016) rigidly registered a
histological section with a µCT volume using a density-driven
RANSAC for plane fitting (Chicherova et al., 2014) and relied
on SURF keypoints detected in both histological and each µCT
slices. The resulting 3D point cloud had an increased density
of matches at the correct location of the histology section, and
this was used as a criterion to filter out incorrect pairs. The
random sampling of RANSAC plane fitting was thereby biased
towards those points that were close to the µCT plane of interest.
The alignment between the interpolated plane and histology was
further refined using 2D Demon registration tool9 (Kroon and
Slump, 2009).

Gibson et al. (2012) utilised well-arranged strand-shaped fidu-
cial markers, which allowed for the determination of the location
and orientation of each section. First, a 2D-3D affine transforma-
tion that mapped a fiducial histological slice to its corresponding
points on the MR image was found by minimisation of the
residuals. Then, a 2D-2D affine transformation mapping each
histology slice to its counterpart in the MR was computed us-
ing spatial information from all fiducial markers. Finally, the
fiducial correspondences were refined using a local optimisation
and one last affine transformation was computed using the affine
transformation from the previous step as initialisation. Using
non-anatomical fiducials was argued to provide robustness to
variations in the appearance of the prostate on MR and histology
images.

9Code is available on MathWorks File Exchange.
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Ali and Cohen (1998) approached registration as a contour
matching problem and the multimodal registration problem
thereby becomes monomodal. The contour curves were de-
scribed by means of sets of affine invariants constructed from
the sequence of area patches bounded by the contour and the
line connecting two consecutive inflections. The affine trans-
formation was estimated from matching vertices using the least
square error estimation method.

Intensity-based. Nir et al. (2014) aimed to find the poses of
all the histological slices such that the transformed segmented
histology slices optimally matched the corresponding re-sliced
images of the 3D medical image. They made use of particle
filtering to model pose uncertainty, where each particle repre-
sents a combination of histological slices in various 3D poses,
and derived optimal affine registration parameters in a Bayesian
approach. The admissible space of 3D poses was constrained
such that the transformed slices do not intersect.

Osechinskiy and Kruggel (2010) proposed and compared
geometric transformations that combined a rigid alignment with
a 3D deformation field parametrised by various classes of spline
functions, various similarity measures, different optimisation
algorithms and different optimisation strategies.

Kim et al. (2000) used polynomial transformations to warp
an initial in vivo MRI slice that produced minimum error (when
compared with all the histological slices). The parameters of
a low-order polynomial transformation between the MRI slice
and the histological section were optimised by minimisation of
the SSD and the correlation coefficient. This method was reused
in Zarow et al. (2004) and Singh et al. (2008).

Gefen et al. (2008) proposed a non-linear registration method
to align histological brain sections with a volumetric brain at-
las. They started with an image to planar surface matching,
during which sections were linearly matched with an oblique
slice automatically extracted from the atlas. An image-to-curved
surface matching was then performed, during which each sec-
tion was matched with its corresponding image overlaid on a
curved-surface within the atlas. Specifically, a PDE-based regis-
tration technique was developed that was driven by a local NMI
similarity.

5.1.3. Volume-based approaches (3D-3D)
The main drawback of slice-based (2D-3D) approaches

is their sensitivity to initialisation, as the landscape of cost
functions is very complex and this conditions the convergence
behaviour. Other challenges involve the cost function selection
and the optimisation strategy (Osechinskiy and Kruggel, 2010).
The information from a single histological slice is used alone
and its content may be hard to handle by itself (see §2 and
3) in a multi-modal registration problem: the performance
of slice-to-volume registration shows greater dependence on
the input images than 3D-3D registration (Osechinskiy and
Kruggel, 2010). Considering histological slices altogether i.e.,
the histological dataset as a whole, allows overcoming such
issue. Volume-based approaches follow Procedure 1.

Procedure 1 Volume-based approaches (3D-3D)

Input: M, ex or in vivo 3D MRI and
{
Hi

}
, a set of 2D histolog-

ical slices.
Output: histological volume H f aligned with M.

1: H0 ← Reconstruct histological volume from
{
Hi

}
. Step 1

2: H1 ← Linearly register M and H . Step 2
3: H f ← Non-linearly register M and H1 . opt. Step 3

Initial histological reconstruction. (Step 1) can be achieved in
several ways and the reader is referred to §4 for a more complete
list of methods dedicated to that purpose. Simple stacking by
alignment of centres of mass was used in Goubran et al. (2013).
The most common way however consists of serial pairwise linear
registrations and provides roughly aligned though satisfactory
enough initial volumes (Delzescaux et al., 2003; Malandain
et al., 2004; Li et al., 2009; Ou and Davatzikos, 2009; Ceritoglu
et al., 2010; Alic et al., 2011; Yang et al., 2012; Stille et al.,
2013). In particular, Ceritoglu et al. (2010) registered every
slice with its successor starting from the bottom of the stack and
repeated the process starting from the top of the resultant stack.
In contrast, Stille et al. (2013) started the process from the middle
of the stack (the most central slice with minimum artefacts was
manually picked) and registrations between pairs of adjacent
slices after aligning the centres of mass of masked images were
performed. Maximisation of mutual information was used in
Ou and Davatzikos (2009), and block-matching in Malandain
et al. (2004) and Yang et al. (2012). Initial reconstruction may
also be achieved by use of fiduciary rods, such as in Humm et al.
(2003), for which the Euclidean distance between corresponding
segmented holes from pairs of adjacent slices was minimised.

Other reconstruction methods consider neighbourhoods
around slices (as opposed to a single adjacent slice) in order
to improve the consistency of the resulting volume. Chakravarty
et al. (2006), every slice was registered with both its successor
and its predecessor and applied the average transformation to
the original slice so that the transformed slices match both their
neighbours simultaneously. A similar strategy was used by Rusu
et al. (2015). Yushkevich et al. (2006), the size of the neigh-
bouring was extended up to five slices away. A weighted graph
was built, with slices as vertices, edges symbolised registrations,
and weights were given by an information- and distance-based
measure. The shortest path from every vertex in the graph to
a specific reference slice was found using Dijkstra’s algorithm,
and incidentally favoured slices that registered well (hence by-
passing those that registered poorly). The concatenation of rigid
transformations yielded a reconstructed histological volume.
Such reconstruction method was reused in Adler et al. (2014)
with different edge weights. Later, however,manual histologi-
cal reconstructions using HistoloZee were used in Yushkevich
et al. (2016) and Adler et al. (2016). While much more labor-
intensive, it was found that manual reconstructions led to better
histological reconstructions especially when slices were torn or
poorly stained.
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Multimodal alignment. Once an initial histological volume is
available, a coarse, linear alignment of the geometries of both
medical image and histological volumes is performed (Step 2),
which may then be refined by non-linear registration (Step 3).
This can be achieved using standard inter-modality registration
techniques implemented in packages such as AIR (Woods et al.,
1998a) followed by Diffeomap (LDDMM) (Li and Mori, 2001)
in Ceritoglu et al. (2010), landmark-based registration followed
by ANIMAL (Collins and Evans, 1997) in Chakravarty et al.
(2006), or maximisation of mutual information (Wells et al.,
1996) followed by free-form deformations (Rueckert et al., 1999)
and a pyramidal approach with gradually increasing number of
control points in Delzescaux et al. (2003). Only global linear
registration was performed in Stille et al. (2013).

Variations. A variation of Procedure 1 consists of complement-
ing Step 2 with the registration of every slice of the globally
aligned histological volume with its 2D counterpart in the medi-
cal image volume. Such variation is the cornerstone of hybrid
approaches described in §5.1.4. Li et al. (2009) aligned the cen-
tres of mass of each histological slice with their corresponding
in vivo MR plane (although this is not a registration per se) after
3D rigid registration between both volumes. This was refined
by 3D non-rigid registration using the adaptive bases algorithm
(ABA) (Rohde et al., 2003). Yushkevich et al. (2006) deformed
each histological slice of the 3D aligned histological volume
towards the average of its immediate neighbours (predecessor
and successor) and the corresponding MR slice. Some of their
methods have been included in the framework developed by Ma-
jka and Wójcik (2015)10. Humm et al. (2003) only performed
linear registration between every histological slice and its 2D
counterpart in the MR.

Matching in vivo via ex vivo imaging. Ex vivo correspondences
can be further carried to in vivo space by an extra registration
between both image volumes. Given the registration between
histology and ex vivo, concatenating transformations relates
histology and in vivo medical imaging. As such, Alic et al.
(2011) performed 3D linear (rigid, affine) and elastic registra-
tion between histological and ex vivo MR volumes, followed
by 3D rigid, affine and elastic registration between ex vivo and
in vivo MR volumes. All registrations were performed using
Elastix (Klein et al., 2010). Affine registration between the re-
constructed histological and ex vivo volumes was also performed
using Elastix in Rusu et al. (2015). Ex vivo and in vivo medi-
cal images were affinely registered, yielding linear alignment
between histology and in vivo. Finally, non-rigid registration
between histological and in vivo volumes refined the alignment
of both modalities using free-form deformations in a multiscale
setting.

5.1.4. Hybrid methods
We call hybrid methods those similar to Procedure 1 except

both the serial arrangement of the histological volume (its re-
construction) and its alignment relative to the medical image

10http://www.3dbar.org/wiki/barPosSupp. The source code is avail-
able for download at https://github.com/pmajka/poSSum.

volume are jointly refined (Procedure 2). Both processes hence
benefit from each other as changing one affects the other. Initial
histological reconstructions (Step 1) follow methods presented
in §5.1.3.

Procedure 2 Hybrid methods

Input: M, ex or in vivo 3D MRI and
{
Hi

}
, a set of 2D histolog-

ical slices
Parameter: N, number of iterations after convergence
Output: histological volume H f aligned with M

1: H0 ← Reconstruct histological volume from
{
Hi

}
. Step 1

2: k = 0
3: repeat . Step 2
4: Linearly register Hk and M
5: for all slices do
6: Hk

i ← Linearly register Hk
i and Mi

7: end for
8: Hk+1 ←

{
Hk

i

}
9: k = k + 1

10: until convergence
11: H f ← Non-linearly register HN and M . opt. Step 3

Mono/Multimodal alignment. Step 2 consists of iterating over
two registrations: (i) a 3D-3D registration, which updates the
global alignment between the current estimate of the histological
volume and the 3D medical image, and (ii) 2D-2D registrations,
which affect the serial arrangement of slices relative to each
other by aligning them with their (current) corresponding slice
in the medical image volume used. This in turn provides a new
histological volume which is used at the next iteration. This
process is repeated until convergence. In general, linear regis-
trations are used in the iterative process to avoid creating wrong
correspondences through non-rigid registration. In particular,
block-matching was used in Malandain et al. (2004), the ANTs
toolkit with NMI was used in Adler et al. (2014) and maximisa-
tion of MI was used in Yang et al. (2012). The latter addressed
the specific case of separate pieces of tissue by using 2D piece-
wise local registration. They also addressed the challenging case
of automatically initialising the location of a tissue block that
is a sub-volume of the tissue MR. Yang et al. identified the
locations of the first and last slices of the histological block in
the MR as those maximising NMI after 2D rigid registrations.

Once the iterative process has converged, a final step may
consist of a non-rigid registration to refine the matching (Step 3).
The 2D diffeomorphic registration in Adler et al. (2014) was
similar to that introduced by Yushkevich et al. (2006), while
cubic B-spline parametrisation for 3D non-rigid registration and
the normalised correlation coefficient was used as a similarity
measure in Yang et al. (2012).

Variations. A variation of Step 2 was proposed by Ou and Da-
vatzikos (2009). They iterated over: (i) a 3D affine registration
between the current histological and MR volumes, by maximisa-
tion of the correlation coefficient and (ii) a 2D rigid registration
between every histological slice and the central histological slice.
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Subsequent steps jointly addressed the segmentation and the re-
finement of the registration of prostate cancer images and also
consisted of an iterative process.

Another variation was proposed by Goubran et al. (2013), who
embedded the non-rigid registration of Step 3 in the iterative
process of Step 2. The pipeline thus consisted of iterating over:
(i) a 3D rigid registration of the current estimate between the cur-
rent histological volume with the MR, (ii) 2D rigid registrations
between every histological slice and its currently corresponding
MR plane, and (iii) 2D non-rigid registrations between every his-
tological slice and its currently corresponding MR plane using
free-form deformations.

Matching in vivo via ex vivo imaging. Correspondences between
histology and ex vivo can be further carried to in vivo space sim-
ilarly to §5.1.3. Goubran et al. (2015) first translated the ex
vivo MR to match the in vivo MR space in order to facilitate the
placement of landmarks in subsequent steps. Then, 3D linear
(rigid+scaling) landmark-based registration was performed be-
tween in vivo and ex vivo MRs using manually picked landmarks.
This was refined by 3D non-rigid registration between both 3D
MRIs using landmark-based registration and a symmetric imple-
mentation of FFD, respectively for hippocampal and neocortical
specimen.

5.2. Histology ↔ 3D medical imaging using blockface pho-
tographs

Blockface photographs provide structural information of the
tissue face prior to cutting and therefore allow correcting for sub-
sequent tissue deformations (mainly induced by cutting, floating
and mounting). In theory, they should be inherently aligned
by virtue of the set-up: it consists of a camera on a tripod—or
mounted on the microtome itself—oriented towards the face of
the tissue block secured on the microtome, and which imaging
plane is parallel to the block face. Though, it is common to
affinely register them with each other in order to account for
small displacements (Annese et al., 2006; Yelnik et al., 2007;
Groen et al., 2010) but this not robust to perspective distortions
(the camera imaging plane is never and can not remain truly
parallel to the block face). Eiben et al. (2010) considered that
each time the microtome cuts a section out of the tissue block, its
face lies in a slightly different plane (due to small mechanical im-
precisions or due to the expansion of the tissue when a new face
is exposed). This leads to a perspective error, which may hinder
the consistency of the reconstructed volume. Their method pro-
vided a way to correct for scaling variations and displacements
of the sample that may occur from one acquisition to the next.
However, they did not take into account the camera motion (as
small as it may be). Breen et al. (2005b) assessed the camera
lens for image distortion by ensuring that lines from manually
selected points (including edges of the image) remained straight.
They also ensured those lines were not blurred in any region
of the image. Casero et al. (2017) corrected the perspective
error of the blockface photograph aquisition by computing a
projective transformation using manually extracted landmarks.
“Scratched” photographs (which occur when using a poor quality
knife blade during microtomy) were also taken care of: images

were first rotated to make the scratches horizontal/vertical using
the wax block sides; then, the image rows/columns intensities
were scaled so that their median values equaled the wax median
value.

We identified three main types of pipelines that relate his-
tology to volumetric medical imaging according to how they
exploit blockface (BF) photographs as an intermediate modality
(Fig. 4), namely for histological reconstruction or for alignment
with medical imaging (§5.2.1: resp. BF for histoRec, and BF
for MedIm alignment) and for both (§5.2.2: BF2).

5.2.1. Single use of blockface photographs
These pipelines follow Procedure 3.

Procedure 3 BF for histoRec

Input: M, ex or in vivo 3D MRI,
{
Hi

}
, a set of 2D histological

slices, B =
{
Bi

}
, a set of 2D blockface photographs.

Output: histological volume H aligned with M
1: for all slices do . Step 1
2: H0

i ← Register Hi and Bi

3: end for
4: H0 ←

{
H0

i

}
5: H1 ← Register H0 and M . Step 2
6: H f ← Non-linearly register H1 and M . opt. Step 3

In Step 1, Alegro et al. (2016) affinely registered each
histological image with its corresponding blockface photograph
by optimisation of mutual information, as defined by Mattes
et al. (2003). Schormann and Zilles (1998) first reconstructed
the blockface volume by least square minimisation between
corresponding pairs of landmarks in adjacent photographs
(Schormann et al., 1995) and then registered each histological
section with its corresponding blockface photographs using
an extension of principal axes theory generalised to affine
transformations (in order to be able to account for shearing
artefacts introduced during the tissue preparation). Johnson et al.
(2010) used 2D moments-based rigid alignment for some brains,
then refined using AIR software. For other brains, the method
by Thevenaz et al. (1998) was used between corresponding
images with manual refinement. This protocol was reused in
Johnson et al. (2012).

In Step 2, Alegro et al. (2016) used symmetric diffeomorphic
3D registration, SyN (Avants et al., 2008) to align the recon-
structed histological and the MRI volumes. Johnson et al. (2010)
first linearly aligned the reconstructed histological with MR vol-
umes using a quaternion transform followed by an affine trans-
form. Then, the alignment was refined using a multi-resolution
diffeomorphic registration algorithm (Avants et al., 2008). Schor-
mann and Zilles (1998) first performed a 3D affine registration
between the histological and the MR volume, followed by a 2D
non-linear registration between every histological sections and
its corresponding MR plane using a 3D elastic full-multigrid
technique (Stüben and Trottenberg, 1982) restricted to 2D (Rohr
et al., 1996). It was initialised with a 2D linear registration
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Figure 4: Strategies to register histology with volumetric medical images using blockface photographs as intermediate modality; (*) see Fig. 3.

driven by the analysis of Rayleigh-Bessel statistics, which de-
scribe the probability density of local non-linear deformations
in histological sections (Schormann et al., 1995).

Variations. A variation of Step 2 consists of considering slices
instead of volumes: in the method developed by Bürgel et al.
(1999), after reconstructing the histological volume, every histo-
logical slice was warped to its corresponding ex vivo MR plane,
based on the methodology developed in Schormann et al. (1993,
1995).

A variation of Procedure 3, BF for MedIm alignment (Fig. 4),
was proposed in Amunts et al. (2013) and relied on the registra-
tion between the blockface volume and the 3D medical image.
Then, using the direct, known 2D correspondences between
histology and blockface, every histological slice was registered
with its corresponding MR plane.

5.2.2. Dual use of blockface photographs
These pipelines use blockface photographs for both histologi-

cal reconstruction and matching with 3D medical images. They
are to be the most frequent way to address the problem and
follow Procedure 4.

Linear transformations. The choice of aligning every histolog-
ical slice to its corresponding blockface photograph (Step 1)
using linear registration (as opposed to non-linear) may stem
from the poor content that the unstained tissue face exhibits.
Blockface photographs provide little structural information apart
from the tissue borders (higher contrast with the surrounding
embedding medium), which could lead to erroneous deforma-
tions of the inside of the tissue. Linearly registering every pair

Procedure 4 BF2

Input: M, ex or in vivo 3D MRI,
{
Hi

}
, a set of 2D histological

slices, B =
{
Bi

}
, a set of 2D blockface photographs.

Output: histological volume H f aligned with M
1: for all slices do . Step 1
2: H0

i ← Register Hi and Bi

3: end for
4: H0 ←

{
H0

i

}
5: Register B and M . Step 2
6: Non-linearly register B and M . opt. Step 3

of corresponding images may suffice to restore a globally con-
sistent arrangement of histological slices, which will be refined
locally when matched with the medical image volume. Leben-
berg et al. (2010) rigidly aligned every histological section with
its corresponding blockface photograph; every autoradiograph
(see “Cerebral function” in §6 for a brief definition of autora-
diography) was then rigidly registered with its histological slice
counterpart, both using block-matching (Ourselin et al., 2000).
This was reused in Vandenberghe et al. (2016). Yelnik et al.
(2007) first reconstructed the blockface volumes using ICP i.e.,
by registering every photograph to its immediate neighbour
(binary images of segmented rivets) and then performed 2D
rigid registration between every histological section and its cryo-
blockface counterpart. In order to refine the histological volume,
3D regions of interest centred around the basal ganglia were
extracted using Yav++ software (Delingette et al., 2001) in both
histological and blockface volumes and 2D hierarchical regis-
tration (rigid, homothetic and affine) was performed between
corresponding 2D images. Dauguet et al. (2007b) aligned every
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histological section with its corresponding blockface photograph
using a “hemi-rigid” method, which accounted for the indepen-
dent spreading of the hemispheres on the glass slides.

Non-linear transformations. Other authors have chosen to
refine Step 1 with a non-rigid registration. For example, Choe
et al. (2011) performed 2D linear followed by 2D non-linear
registrations between light micrographs and corresponding
blockface photographs using respectively maximisation of
MI and ABA (Rohde et al., 2003). Breen et al. (2005b)
performed 2D non-rigid registration between a histological
section and its corresponding blockface photograph using
TPS and corresponding landmarks: interior ink fiducials and
anatomical landmarks, such as blood vessels, and corresponding
points along the external tissue boundary using “live-wire”
semi-automated algorithm (Falcão et al., 1998; Mortensen et al.,
1992). TPS was also used in Meyer et al. (2006) with 7 control
points; six control points were used in Piert et al. (2009) and
Park et al. (2008). Groen et al. (2010) performed 2D rigid,
followed by 2D non-rigid FFD-based registrations Rueckert
et al. (1999).

In Steps 2 and 3—consisting of registering blockface and
medical imaging—pipelines start with 3D linear registration
(Groen et al., 2010). Dauguet et al. (2007b) performed 3D
rigid registration between the blockface volume and the in vivo
T1 MRI by maximisation of mutual information, as defined by
Viola and Wells III (1997). 3D non-rigid registration between the
blockface volume and the MRI was performed using free form
deformations , similarly to what Groen et al. (2010) proposed,
and the composition of the two previous transformations was
applied to the “hemi-rigid” transformed histological volume.
The same sequence was applied by Lebenberg et al. (2010).
Choe et al. (2011) also described a similar strategy apart from
the last step of the non-rigid registration between blockface and
ex vivo T2w MR volumes, for which they made use of ABA.
The composition of the transformations between blockface and
the medical image volume, and between histology and blockface
volume was applied to the T2w image in order to resample it in
the histological space. The 3D non-rigid registration between
blockface and ex vivo MR volumes was performed using TPS
with 6 control points in Meyer et al. (2006); 18 control points
were used in Piert et al. (2009) and Park et al. (2008).

Other applications of Procedure 4—without the non-rigid re-
finement of Step 3—include Yelnik et al. (2007), who performed
3D rigid registration between blockface and ex vivo T1w MR
volumes one hemisphere at a time (Prima et al., 2002). The
alignment was refined by a 3D hierarchical registration between
3D regions of interest centred around the basal ganglia and prop-
agated to the full volumes. Breen et al. (2005b) performed 3D
linear (rigid+scaling) registration between the blockface volume
(stack of 3mm-thick slice faces) and the MR volume, for which
the centres of the needle paths were manually segmented. The
global transformation was optimised using the ICP algorithm.
Non-rigid refinement was not performed and the method was
validated in Lazebnik et al. (2003).

Variations. A variation of Procedure 4 was proposed by Uberti
et al. (2009) and consists, as in §5.2.1, of considering slices
instead of volumes. After reconstructing the histological vol-
ume (Step 1), 2D non-registration was performed between every
blockface photograph and the corresponding in vivo MR planes.
Registrations were based on moving landmarks sampled on
curves generated from the contours of corresponding anatomical
features. Once landmarks locations were optimised for match-
ing through minimisation of a cost function based on the local
curvature of the curves and limited to small displacements, TPS
interpolation for point-based registration was performed.

Matching in vivo via ex vivo imaging. Ex vivo correspondences
can be further carried to in vivo space through an extra registra-
tion between ex and in vivo medical image volumes in order to
relate histology to in vivo imaging. As such, Groen et al. (2010)
rigidly (point-based) registered the ex vivo µCT and the in vivo
CTA using manually selected landmarks (e.g., calcium spots,
lumen, bifurcation position are clearly visible in both medical
imaging modalities). Meyer et al. (2006) performed 3D non-
rigid registration between the ex vivo and in vivo MRs using
3D TPS with 14 control points, and it was used as an initiali-
sation for a last non-rigid registration between in vivo volume
and the blockface image by optimising the position of 7 control
points and using mutual information as the objective function.
Piert et al. (2009) reused the methodology presented in Park
et al. (2008): the ex vivo MR and in vivo T2 MR volumes were
non-rigidly registered using TPS with 7 control points. The T2
MRI was chosen as the reference space. Additionally, in vivo T2
and CT volumes were non-rigidly registered using TPS with 7
control points and PET and CT volumes were rigidly registered.

6. Validation methods

We hereafter detail the ways authors have validated the ac-
curacy and the precision of image registration, as defined by
Maintz and Viergever (1998), in the context of histological re-
construction (with or without the help of medical imaging).

Visual assessment. It may be the most intuitive way of validat-
ing the registration accuracy but must be carried out by experts
and does not provide with any quantitative measure. In the
case of histological volume reconstruction, criteria used to tell
whether registrations are successful encompass improved repre-
sentations of small structures (subcortical nuclei, cortical areas)
and smooth inner and outer borders (Wirtz et al., 2004). Wirtz
et al. used three classes of neuroanatomical structures that are
recognisable after registration when examining whole rat brains:
subcortical nuclei, ventricles, certain cerebral and cerebellar
cytoarchitectonic layers. Smoothness was explicitly used a cri-
terion for reconstruction in Cifor et al. (2011). Ju et al. (2006)
compared the reconstructed volume to real histology sections
from the Paxino’s Atlas (Paxinos et al., 2000) at similar sagittal
and horizontal locations.

Visual assessment can also be used when comparing one
method against others (assuming that the same data have been
used). Gaffling et al. (2011) compared the reconstruction against
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that obtained through standard non-registration scheme (without
landmarks) using histological data from Ju et al. (2006) and
artificial data. Ju et al. (2006) compared the reconstruction
against that obtained from the method described in Guest and
Baldock (1995).

In the case of multi-modal alignment, visual assessment can
be performed by (i) cross-section comparison. Malandain et al.
(2004) used two synchronised 3D viewers to display the two
volumes in the same geometry. This allowed showing same
cross-sections (axial, sagittal and coronal) as well as a cursor
at corresponding positions. Alic et al. (2011) qualitatively eval-
uated the alignment between 3D in vivo T2 and histological
volumes with two observers using visual inspection with a mov-
ing quadrant view; or by (ii) superposition of adjacent sections
(Li et al., 2009; Choe et al., 2011). Dauguet et al. (2007b) su-
perimposed the external and internal borders of the MRI brain—
extracted using Deriche filter Deriche (1987)—registered onto
the blockface volume. A similar visulisation was used to assess
the quality of the histological reconstruction in Lebenberg et al.
(2010); Malandain et al. (2004); Colchester et al. (2000).

Landmark-based validation. It is the most widespread method,
used for example in Nir et al. (2014); Gibson et al. (2012); Liu
et al. (2012); Ward et al. (2012); Yang et al. (2012); Ou and
Davatzikos (2009). It consists of computing the Euclidean norm
between corresponding tie points extracted in two images (also
referred to as target registration error, TRE). This measure might
not be not appropriate for the validation of histological recon-
struction from 2D sections only (Ju et al., 2006): a minimum
distance does not mean the true shape has been recovered. It is
however very relevant in the case of multi-modal registration.
Those landmarks can be:

- needle tracks, such as in Colchester et al. (2000); Lazebnik
et al. (2003); Breen et al. (2003).

- manually identified anatomical landmarks, that are visu-
ally tractable across modalities. The anterior commissure,
the pillars of fornix, perivascular spaces and optic chiasm
were used by Kim et al. (2000). Automatically extracted
sulcal lines of maximal depth (sulcal fundi or sulcal bottom
lines) were used by Osechinskiy and Kruggel (2010); the
extraction procedure is described by Lohmann (1998). The
urethra, nodules, scars (from previous biopsies), calcifica-
tions, and “other general distinguished anatomical features”
were considered by Nir et al. (2014) with the help of a
radiologist. Landmark points were extracted manually by
Goubran et al. (2013, 2015) to compute the TRE. Bound-
ary curves were manually drawn by Adler et al. (2014)
to compute the boundary displacement error. When such
landmarks are used for registration, reliability of their loca-
tions is usually assessed by looking at intra- and inter-user
variability. For example, Gangolli et al. (2017) evaluated
the former by asking a user to perform landmark selection
twice, five days apart, and comparing registered voxels
shifts. The latter was assessed by asking two different users
to perform the previous procedure. In addition, artificial
perturbation of an established set of landmarks in histol-
ogy was performed in order to test the robustness of the

registration method to such changes.
- anatomical artefacts. Singh et al. (2008) used the centroids

of manually segmented lesions to evaluate and validate the
registration accuracy. Alic et al. (2011) identified charac-
teristic features in the tumour and its contour.

- Ink marks made on the fresh tissue, such as in Breen et al.
(2005b).

Measures of overlap. They rely on regions of interest (RoIs)
manually delineated by an expert in two images. The Dice score
or the Jaccard index are two measures that can be computed
to quantify the amount of overlap between the two regions (Li
et al., 2009; Alegro et al., 2016; Beare et al., 2008; Hess et al.,
1998; Baheerathan et al., 1998; Nagara et al., 2017). Specifically,
Lebenberg et al. (2010) manually delineated the hippocampus,
cortex, and striatum, as well as the corpus callosum and sub-
stantia nigra, to compare different reconstructed histological
volumes. The hippocampus was also manually delineated in
every histological atlas in Palm et al. (2010). In Mazaheri et al.
(2010), the whole prostate, the peripheral zone, and the transition
zone were outlined by an experienced radiologist in MR and his-
tology images. Nir et al. (2014) compared the segmentations in
the registered histological slices with the corresponding manual
segmentations in the re-sliced images of the MR volume of the
prostate. The Dice score was shown to be a reliable indicator of
registration accuracy only for small and localised RoIs (which
approximate point landmarks) in several locations in the image
space (Rohlfing, 2012).

Texture-based methods. Grey-level co-occurrence matrices
(GLCM) were presented in Haralick (1979) and were used to
assess the alignment quality of the histological reconstruction
(Baheerathan et al., 1998; Cifor et al., 2011). Such matrices
were computed by calculating how often the pair made of a pixel
of interest with a certain intensity and its immediate neighbour
in the direction going across slices (orthogonal to the cutting
plane) occurs. Cifor et al. (2011) computed GLCMs in the
neighbourhood around the boundaries of the tissue rather than
the whole volume in order to quantify the smoothness of the
reconstruction.

Artificial perturbation of a ground truth. Artificially perturbing
a ground truth allows having access to the original alignment,
against which the resulting alignment is compared. It is done by
taking a volumetric image which original alignment is known
(e.g., a 3D medical image) and applying random, smooth trans-
formations to each of its slice independently (as well as e.g., in-
cluding artefacts that simulate holes/tears, ignoring some slices
etc.). The error made after reconstruction is then computed
(Cifor et al., 2011; Nikou et al., 2003; Ju et al., 2006; Braumann
et al., 2005; Majka and Wójcik, 2015; Bagci and Bai, 2010).
Synthetic datasets (e.g., phantom models) were used in Schwier
et al. (2013); Ou and Davatzikos (2009); Arganda-Carreras et al.
(2010). Comparison against manually realigned stack (by an
expert physician researcher) can also be performed (Krinidis
et al., 2003a; Groen et al., 2010). Robustness to holes and tears
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was tested by Cifor et al. (2011), and the effect of missing sec-
tions was assessed by Arganda-Carreras et al. (2010). Both were
addressed by Nikou et al. (2003).

7. Applications

We underline three main areas of applications within which
the covered literature falls into: (i) examining structures with
respect to their environment in 3D (§7.1) with or without the
help of 3D medical imaging; (ii) the correlation of data (§7.2),
which benefits from the access to the underlying microbiol-
ogy to improve the characterisation/discrimination of signals
in non-invasive imaging; and (iii) the creation of digital atlases
(§7.3), which allows for easy 2D and 3D visualisations as well as
quantitative measures of anatomy when independent data from
different subjects are included.

7.1. Examining functions and relationships in 3D

This section includes works for histological reconstruction
with or without the help of 3D medical imaging.

Organs. Mice brains were reconstructed in Gaffling et al. (2011,
2015) and Müller et al. (2014). Nissl-stained cryosections of
an adult mouse brain, available from Ju et al. (2006), were
used in Gaffling et al. (2011). Rat liver tissues were studied by
Schwier et al. (2013), who proposed a registration method for
the reconstruction of histological whole slide images that exhibit
vessel structures. Human liver tissues were studied by Song et al.
(2013) and Roberts et al. (2012). Chen et al. (2003) described
the 3D configuration of extravascular matrix patterns in archival
human uveal melanoma tissue. Mice lungs (Rusu et al., 2015)
and heart (Magee et al., 2015; Mansoori et al., 2007) were also
studied.

Tumours. The 3D structure of tumoural invasion fronts of carci-
noma of the uterine cervix was investigated by Braumann et al.
(2005) in order to understand their architectural-functional re-
lationship, while Wentzensen et al. (2007) analysed the spatial
organisation of a cervical cancer.

Vasculature. Xu et al. (2015) studied the microvascular struc-
ture of the mouse hind-limb. Due to the 3D rearrangement of
the microvessel networks during pathology, a reconstruction
was critical in understanding the dysfunction of organs during
disease. The 3D vascular network from immunostained sections
of the human spleen was reconstructed by Ulrich et al. (2014).

Cerebral function. It is dependant on neurological organisation
and metabolic activity (Hibbard et al., 1987); autoradiography
allows looking in great details at, among others, the cerebral
metabolic rate of glucose utilisation in response to physiologic
activation of the visual, auditory, somatosensory, and motor sys-
tems, and in pathologic conditions. Rat brains are often studied
(Hibbard and Hawkins, 1984, 1988; Zhao et al., 1993; Kim et al.,
1997, 1995; Bronchti et al., 2002; Nikou et al., 2003; Lee et al.,
2005; Dubois et al., 2007). Bronchti et al. (2002) studied the
auditory activation of visual cortical areas in the blind mole rat.

Lee et al. (2005) studied the cerebral glucose metabolism in
the rat cortical deafness model using 3D voxel-based statistical
analysis of autoradiographic data. They observed a significant
decrease in the glucose metabolism in the bilateral auditory
cortices. Dubois et al. (2007) combined histology and autoradio-
graphy to study interhemespheric differences through voxel-wise
statistical analyses. Hess et al. (1998) studied the metabolism
and function of gerbil brains. Autoradiographic volumes from
2-DG autoradiographs of primates were reconstructed using 3D
MRI (Rangarajan et al., 1997; Malandain et al., 2004).

7.2. Characterising 3D medical imaging signals
Neurological diseases. A 3D mapping of pathological changes
throughout the brain for Creutzfeld-Jacob disease was devel-
oped by Colchester et al. (2000). Goubran et al. (2013, 2015)
identified and delineated lesions in MRI in order to improve the
surgical treatment of epilepsy. Lockwood-Estrin et al. (2012)
investigated specific semi-quantitative 3T MRI parameters in
order to understand whether they are associated with particular
histological features. The study was performed on temporal lobe
specimens in epilepsy surgery patients whose conventional MRI
scan appeared normal.

Stroke. Li et al. (2006) correlated signal changes observed in
T1-weighted images acquired during brain ischemia in small
animal models to molecular features obtained from histology.
A similar effort was followed by Stille et al. (2013), who regis-
tered “abnormal” images from a rat model of stroke with 3D in
vivo T2w MR images to study neurobiological correlates of the
variations in MRI signal intensities.

Cancer. Histopathologic examination can be related to in vivo—
or ex vivo (Gibson et al., 2012), MR imaging with the aim of
improving prostate cancer detection rate (Nir et al., 2014; Ward
et al., 2012; Alic et al., 2011; Chappelow et al., 2011a; Samavati
et al., 2011; Xiao et al., 2011; Mazaheri et al., 2010; Ou and
Davatzikos, 2009; Zhan et al., 2007). Le Nobin et al. (2015)
compared prostate tumour boundaries on MRI to those in histol-
ogy in order to define an optimal treatment margin for achieving
complete tumour destruction during image guided focal abla-
tion. Edwards et al. (2005) used histology to identify the tumour
boundaries in oral cancer patients with better accuracy in or-
der to enable precise PET-guided resection. Jiang et al. (2013)
combined in vivo MRI/MRSI, ex vivo brightfield/fluorescence
microscopic imaging, and histology to study human breast can-
cer. Seeley et al. (2014) studied secondary breast cancer in
the bone using diffusion weighted MRI, Matrix-Assisted Laser
Desorption/Ionisation Imaging Mass Spectrometry and histol-
ogy in order to observe changes caused by tumour cells in the
bone at the protein level. Studies from Mertzanidou et al. (2017,
2016) investigated the mapping between histology and 3D whole
specimen imaging along with whole mastectomy volume recon-
struction from radiographs. Breen et al. (2005b) correlated in
vivo MR thermal lesion images with histological tissue damage
in rabbit thighs. Humm et al. (2003) developed a stereotactic
fiduciary marker system for hypopharyngeal tumour xenografts
in rodents to co-register MRI, PET, histology, autoradiography,
and measurements from physiologic probes.
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Vascular lesions. can be seen in human MRI but are only de-
tected reliably in histology. Singh et al. (2008) registered lesions
microscopical features with their corresponding locations in
the in vivo MR images in order to understand better their MRI
signatures. Coombs et al. (2001) correlated MR signal charac-
teristics with carotid atherosclerosis plaque components in order
to optimise protocols for future clinical carotid MRI. Groen
et al. (2010) studied the relationship between biomechanical
parameters and atherosclerotic tissue components in the carotid
using histology, in vivo CT angiography and ex vivo MRI and
CT imaging.

7.3. Combined MRI-histology atlases

Atlases provide detailed segmentations and classifications of
certain regions and sub-regions in a common anatomical refer-
ence framework. They stem from the need for accurate maps
of architectonic areas with reference to MRI images. The main
rationale is to help understanding the localisation of functional
activity in different regions (Brett et al., 2002) but they are also
of great importance in segmentation (Aljabar et al., 2009) or can
be used to improve preoperative planning (Goerres et al., 2017)
and post-operative follow-up.

There exist three types of atlases:
- MRI-based atlases (Kovačević et al., 2005; Dorr et al.,

2008). They are useful for measuring volumes and
analysing large morphological features but suffer from im-
precise delineations due to low resolutions.

- Histology-based atlases (Ju et al., 2006). Most of them
derive from rodent brains but are limited: it was reported in
Ma et al. (2005) that distortions during tissue preparation
and the lack of structural ground-truth in 3D make it hard
to extract spatial cues or to derive quantitative group varia-
tions. Annese et al. (2006) proposed a high-resolution 3D
reconstruction of blockface-imaged Methylene blue per-
fused primate brain tissue as the basis for detailed stereo-
taxic anatomical atlases. The use of blockface images by-
passes the tedious correction and alignment of histological
sections without external information.

- Combined MRI and histology atlases (Saleem and Logo-
thetis, 2012). They combine accurate anatomical delin-
eations in histology for propagation in the 3D medical
image, with ground truth 3D shape for improved histologi-
cal reconstructions. We emphasize this last type of atlases
as it involves multimodal image registration.

Human studies. The creation of a brain atlas of the human
basal ganglia based on histological images and MR images was
investigated by Ourselin et al. (2001a). Other brain atlases of
the basal ganglia and the thalamus derived were then proposed
by Chakravarty et al. (2006), Yelnik et al. (2007), and Bardinet
et al. (2009) based on immunohistochemical and MRI data.

Animal studies. Johnson et al. (2007, 2010) presented an atlas
of the C57BL/6 mouse brain based on MRI and conventional
Nissl histology. Lebenberg et al. (2010) derived an MRI-based
3D digital atlas from C57Bi/6J mouse brain, which was matched

with 3D reconstructed post-mortem data in order to evaluate mor-
phology and functions of mouse brain structures in the context
of Alzheimer’s disease. Mailly et al. (2010) reported a procedure
for the construction of a 3D digital model of the primate and
rodent basal ganglia. Yushkevich et al. (2006) used an average
MRI of 30 in vivo scans of 10 mice in order to build a 3D ref-
erence histological atlas of the mouse brain from Nissl-stained
sections. Ali and Cohen (1998) combined histological sections
of rat brain with a 3D brain atlas in order to contribute to brain
mapping efforts. Gefen et al. (2008) followed the same path by
aligning Nissl-stained histological sections with a volumetric
mouse brain atlas for the segmentation of hippocampal complex.
Dauguet et al. (2007b) proposed a pipeline for the reconstruction
of a histological volume from whole baboon brain Nissl-stained
sections using in vivo MRI. Amunts et al. (2013) created an
ultrahigh-resolution 3D model of a human brain at nearly cel-
lular resolution of 20µm. Burton et al. (2006) combined MRI
and Trichrome-stained histological sections in order to construct
histo-anatomically detailed models of cardiac 3D structure and
function at a high resolution.

8. Discussion and perspectives

This section covers three topics: (i) some methodological
comments on pipelines (§8.1), their differences, advantages and
drawbacks; (ii) some of the remaining challenges (§8.2); and
(iii) concluding remarks on the importance of cross-disciplinary
knowledge in solving the biological question associated with
histology-MRI registration (§8.3).

8.1. Methodological comments

On hybrid pipelines. We discuss two points: (i) the methodol-
ogy per se and (ii) the usefulness of complex initial histological
reconstructions when medical images are available.

(i) Volume-based approaches (§5.1.3) rely on a single round
of registration between histology and medical image volumes. In
that respect, changing the input (another reconstructed histologi-
cal volume) results in a different global alignment and thereby
establishes different correspondences between both modalities.
On the contrary, hybrid pipelines (§5.1.4) rely on the principle
that global alignment between both volumes is optimal only
when the arrangement of histological slices relative to each other
(the 3D histology reconstruction) is itself optimal, and vice versa.
In other words, one conditions the performance of the other. This
strategy offers a robust way to achieve accurate reconstructions
and we highlight two representative works from Adler et al.
(2014) and Goubran et al. (2013):

- Goubran et al. relied on an iterative process that consisted
of both (3D and 2D) linear and (2D) non-linear registrations
between histology and medical imaging. However, there is
no preliminary guarantee that a histological section and its
“corresponding” (resampled) MRI plane at some iteration
are actual counterparts to each other. In fact, unless the
histological stack has first been well initialised (with a
linear transformation that brings it to the MRI space), there
is a risk of biasing both its final reconstruction and the
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Figure 5: Working with blockface photographs. Left: camera fixed on
a tripod, standing behind the histopathologist collecting tissue sections
from an automated microtome (bottom right). Top right: one blockface
photograph is shown.

global alignment with medical imaging by non-linearly
transforming histology when registering it with the wrong
(resampled) MRI plane.

- On the contrary, Adler et al. performed 2D non-rigid regis-
trations between histology and medical imaging only after
the same type of iterative process (though consisting exclu-
sively of linear registrations) had converged.

(ii) In view of Figure 9 from the work by Adler et al. (2014),
the gain from complex methods for initial histological recon-
structions is also, in general, unclear in multimodal registration
pipelines (compared to pairwise registrations or simple stacking).
Furthermore, whereas consistency and accuracy of the initial
reconstruction would matter in the case of volume-based ap-
proaches, hybrid pipelines allow to relax that constraint as they
account for it by design. Manual reconstructions using open-
source softwares represent another attractive solution (Yushke-
vich et al., 2016; Adler et al., 2016).

On the use of intermediate modalities. Mapping histology with
medical imaging is challenging due to the alteration of the tissue
between the starting (in or ex vivo) and the end (histological
images) points of its handling. Not using any proxy may com-
plicate the path to a plausible solution.

Similarly to longitudinal image analysis, the more snapshots
during tissue preparation, the easier it is to track and correct
deformations between in vivo imaging and sectioned histology
(of the same specimen). This is where blockface photographs
are of great value (Fig. 5). Using in addition fixed ex vivo
medical images allows accounting for the non-uniform shrinkage
that happens when extracting the sample. Besides, the main
rationale for also using fresh ex vivo scans may be the study
of the influence of fixation on tissues magnetic properties (see
§8.3). The right balance should however be found when using
intermediate modalities as this not only calls for more resources
(time, space, study goals etc.), but also impacts the accuracy of
the histological reconstruction: (i) none (Adler et al., 2014); (ii)
ex vivo medical images (Goubran et al., 2013); (iii) fresh + fixed
ex vivo and blockface photographs (Samavati et al., 2011).

Another advantage of intermediate modalities lies in that they
offer additional levels of resolutions between that of in vivo imag-
ing and histology. This naturally results in pyramidal schemes,

in which the optimisation of the transformation parameters is
less likely to get trapped in local optima.

8.2. Remaining challenges in histological reconstruction
Preprocessing. Tears and folds may be the most challenging
artefacts to account for and frequently result in discarding the
damaged section. The correction of tears requires to ascertain
that no tissue material has been lost. Assuming this is possible
to tell automatically, the problem is to recover in-plane conti-
nuity between separated structures. The problem of tears can
be extended to purposeful cuts when for example, whole mount
histology is to be studied and the tissue slice needs to be cut into
several pieces. Mosaicing/stitching is extensively studied in the
general computer vision literature (Brown and Lowe, 2007) and
may also be approached as Jigsaw puzzle solving (Gallagher,
2012; Noroozi and Favaro, 2016). So far, detection of folds has
relied on rather simplistic assumptions about the colour bright-
ness properties of an image and could benefit from the addition
of geometrical considerations. It is challenging to know how
many layers a single fold is made of. Assuming it is possible
to know that number, the correction of a fold still requires the
separation of structures belonging to each of the layers that
compose it. It also necessitates the rearrangement of the entire
piece of tissue according to its configuration prior to folding (i.e.,
unfolding), which may be approximated from adjacent sections.

Other fields are involved in similar problems and give poten-
tial to exciting parallels. They include computational geometry
(Demaine and O’Rourke, 2005) and computer vision with e.g.,
the simulation and visualisation of realistic tearing and cracking
of thin sheets (Pfaff et al., 2014); material science with e.g.,
the study of mechanical instabilities of certain materials during
compression (Kim et al., 2011; Pocivavsek et al., 2008); statis-
tical physics with e.g., the modeling of folding of thin sheets
(Deboeuf et al., 2013; Adda-Bedia et al., 2010); or even geology
with e.g., the study of orogeny (Ramsay, 1962). Incidentally, ex-
tensive information about the nature of tissue distortions during
microtomy was already given in Dempster (1942).

Image analysis. The extraction and manipulation of meaningful
information from histology and medical images is a very compli-
cated task. Thus, attention has been directed towards simplifying
them, that is classically, using the shape and the edges.

Such a simplification is not trivial (Marr, 1982) and it cannot
be achieved by only looking at intensity changes (Guichard et al.,
2004): many unwanted edges are produced in the process, and
not only texture and noise are responsible for it (e.g., tears and
cuts in histological images). The reduction of images to their
main features thus relies on smoothing, which has become a
commonplace to separate “true edges” from noise. However, the
type of smoothing in multi-scale approaches—how to actually
build a scale space? (Morel and Yu, 2011); see also the introduc-
tion of Alcantarilla et al. (2012)—remains an important matter
to guarantee reliable and tractable detections.

In the monomodal case, feature-based based methods were
successfully applied to the registration of histological slices but
investigations such as the study of factors that influence keypoint
stability in scale space (Rey-Otero et al., 2015), or the derivation
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Figure 6: Part-to-whole registration. One T2 slice from a slab of a
whole brain is shown in the image on the right. It was then cut into
blocks, each of which was put in separate cassettes and processed for
histology. A GFAP-stained section from one of these blocks (delineated
in red) is shown in the image on the left.

of criteria for detectors comparison (Rey-Otero and Delbracio,
2015) may be of great benefit to the field: in general, little de-
tails are given about the consistency and reliability of detections.
Besides, a common drawback in their use for histopathological
image analysis is the large amount of features that may be gener-
ated; this is due to the rich content of images, which can quickly
turn into “biological noise”.

In the multimodal case, histology and medical imaging have,
by nature, their own contrast and there does not always exist a
mapping between their constituents; incidentally, the latter is
one reason why intensity-based methods tend to get trapped in
local optima. Geometric approaches rely on a meaningful subset
of an image pixels by presupposing that there exists a group of
characteristic landmarks which is (relatively) consistent across
modalities i.e., which serves the purpose of correspondence;
and this is an equally complex task: not only extracting reliable
points is difficult (Sotiras et al., 2013), but their description is
also very challenging (the purpose of multimodal imaging being
to combine images of different nature).

As such, classical feature description methods, such as SIFT,
will also fail to match features (Toews et al., 2013) especially
due to non-linear local intensity mappings (letting aside the lack
of counterpart, which could be handled by suitable descriptions
and filtering out false matches).

Alternative methods are necessary and rethinking descriptions
may be required (Heinrich et al., 2012). Note that manual extrac-
tion of anatomical landmarks in histology and medical imaging
still remains a safe way to establish correspondences (Gangolli
et al., 2017).

Lastly, shape—as defined by Attneave (1954), can become a
valuable asset (see Fig. 6), and multimodal registration may be
obtained as a result of shape recognition.

Gutierrez-Becker et al. (2017) tackled the aforementioned
limitations about description in a multimodal setting by learn-
ing correspondences between context-aware Haar-like features
from intravascular ultrasound and histology, and inferring dis-
placements by means of a regression forest. Such approach
naturally brings the promising tracks related to convolutional
neural networks (Greenspan et al., 2016) in the medical domain.
The alignment problem could directly benefit from the compu-

Figure 7: The block of tissue (left) being too thick for histology pro-
cessing, was cut into sub-blocks, re-scanned (middle) and individually
processed. Nissl-stained reconstructed and rearranged histological sub-
blocks are shown (right). Image reproduced with permission from Adler
et al. (2014).

tational power of such methods for learning correspondences
between two different modalities. For example, a method for
real-time 2D-3D registration of tools images with 3D CT was
developed by Miao et al. (Miao et al., 2016). A survey on deep
learning in medical image analysis was recently proposed by
Litjens et al. (2017).

Part-to-whole. It is not uncommon for histopathology labora-
tories to receive tissue samples that are (p1) too wide (Fig. 6)
or (p2) too thick (Fig. 7) to be processed as they are. The sam-
ple is therefore cut into separate sub-blocks, each of which is
processed individually. If no scan of each sub-block is available,
one has to keep track on which part of the sample each sub-block
corresponds to and use that knowledge to initialise the registra-
tion of histological slices with the clinical image, or manually
align them. As for problem (p2), attempts at using similarity
measures have been made to initialise registrations, but those are
ambiguous and rely on absolute measures rather than relative
ones (Yang et al., 2012). On that matter, it was shown that direct
comparison of images from different modalities is non-trivial,
and fails to reliably determine slice correspondences (Xiao et al.,
2011). A solution to (p1) was proposed by Pichat et al. (2017).

Fusion. It seems that the first true attempt at drawing mutual
enrichment from separate modalities (mass spectrometry and
microscopy) has been made by Van de Plas et al. (2015). This
seems reasonable to think that one goal of combining informa-
tion could also be to actually do so through fusion (as opposed
to only overlay images), and thereby for example, increase the
spatial resolution as well as augment the informative power of
3D medical imaging.

8.3. Concluding remarks
The problem of histological reconstruction using medical

imaging involves at least four experts: a histopathologist, a
physicist, a computer scientist and a physician in order to an-
swer a single biological question. Interdisciplinary collabo-
rations are essential and communication on the object to be
delivered/handled at every stage, time constraints and resources
is critical (what? how? when?). This allows avoiding compro-
mises, thinking backward and instead appropriately (re)defining
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a problem (Cristancho et al., 2017). For the sake of illustration,
such a timeline is presented in Figure 2 of the Supplementary
Methods 1 from the work by Hawrylycz et al. (2012). Cross-
field awareness is crucial as data analyses rely on the assumption
that the object remains similar enough through time and stages
to be reliably compared across modalities. Improvements are
consistently being made to minimise alterations of tissue and
towards understanding the causes and effects of such variations.

Ex vivo MRI is commonly applied in neuroscience for a better
understanding of the contrast mechanisms of disease-induced
tissue changes. Its use supposes that the tissue has been pre-
served (fixed/frozen). As a matter of fact, the effect of time and
storage conditions on the magnetic properties of post mortem
tissue is important for correct interpretation of in vivo clinical
results based upon ex vivo measurements.

According to Fischer et al. (1989) and more recently to Kaye
et al. (2010), quick deep freezing is a satisfactory method of stor-
age for tissue samples (e.g. brain, heart) which does not affect
T1 or T2 significantly. However, this method is not applicable
to liver and muscle tissues (Duck, 2013).

In contrast, chemical fixation (aldehydes, and commonly for-
malin) causes reduction in tissue T1 and increase in T2 relaxation
times for human tissue (Duck, 2013), as well as a significant
decrease of mean water diffusivity in e.g. nervous tissue. Little
is known about how fixative solutions alter the tissue microstruc-
tures responsible for its MRI properties: while some effects
may be reversible, others may be irreversible (Purea and Webb,
2006; Shepherd et al., 2009). Conducting such investigations
may require the imaging of the fresh specimen (fixative-free) as
well as examinations of the effects of different fixation protocols
(Shepherd et al., 2009).

Lastly, detailing data acquisition protocols goes beyond the
scope of this review but it still seems relevant to stress out the
importance of generating standard data. As far as image reg-
istration is concerned, it is simply a tool designed to achieve
accurate and reproducible correspondences between separate
images. However, improving it becomes vain if similar attention
is not also directed towards ensuring consistent, quality input
data within and across institutions (Lin and Shi, 2015; Milidonis
et al., 2015; Traboulsee et al., 2016). Standardising protocols is
not easy and immediate, and although the importance of such
undertaking is acknowledged by many, so is the amount of
work that remains to be done. Furthermore, since quantitative
measurements are to be extracted from those images and inter-
preted by clinicians/physicians, a comparable amount awaits
computational imaging scientists dealing with such variations
(Madabhushi and Lee, 2016).
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