
ABSTRACT 

SINGH, HARMINDER. Systematic Uncertainty Reduction Strategies for Developing 

Streamflow Forecasts Utilizing Multiple Climate Models and Hydrologic Models. (Under the 

direction of Sankarasubramanian Arumugam). 

 

Skillful streamflow forecasts are important for planners and water managers to inform the 

public about seasonal water availability and its allocation. Typically, streamflow forecasts 

are obtained by forcing downscaled precipitation and temperature forecasts from atmospheric 

general circulation models (AGCMs) into hydrologic models. But, the skill of these 

streamflow forecasts depends on the type of AGCM, hydrologic model as well as the season 

and the location of interest. Recent studies show that combining multiple models improves 

the hydroclimatic predictions by reducing model uncertainty.  Given that we have 

precipitation and temperature forecasts from multiple climate models, which could be 

ingested with multiple watershed models, what is the best strategy to reduce the uncertainty 

in streamflow forecasts? To answer this, we consider three possible strategies:   (1) reduce 

the input uncertainty first by combining climate models and then use the multimodel climate 

forecasts with multiple watershed models (2) ingest the individual climate forecasts (without 

multimodel combination) with various watershed models and then combine the streamflow 

predictions that arise from all possible combinations of climate and watershed models (3) 

combine the streamflow forecasts obtained from multiple watershed models based on 

strategy (1) to develop a single streamflow prediction that reduces uncertainty in both 

climate forecasts and watershed models.  To address this question, we consider synthetic 

schemes that generate streamflow and climate forecasts, so that we can compare the 

performance of both strategies with the true flows.  Results from the study shows that 

reducing input uncertainty first by combining climate forecasts results in reduced error in 



predicting the true streamflow compared to the error of multimodel streamflow forecasts 

obtained by combining streamflow forecasts from all-possible combination of individual 

climate model with various hydrologic models.  The findings are also consistent on 

application to a real watershed, Tar River at Tarboro, for which the ability to predict the 

observed streamflow is evaluated by developing multimodel streamflow forecasts based on 

both strategies based on five climate models, two stochastic streamflow models and one 

water balance model. 
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CHAPTER 1 Introduction 

Skillful seasonal streamflow forecasts are useful to planners and managers making 

decisions regarding water availability and allocation.  Seasonal streamflow forecasts are 

typically obtained either by statistical relationships between the climate forecasts and initial 

land surface conditions and the observed streamflow (Sankarasubramanian et al., 2008) or by 

downscaling the precipitation and temperature forecasts into watershed model’s grid scale, so 

that downscaled forcings could be ingested into a land surface model (Wood et al., 2002; Luo 

et al., 2008; Mahanama et al., 2011, Sinha and Sankarasubramanian, 2012).  To obtain 

streamflow forecasts using the latter method, a skillful seasonal climate forecasts along with 

a good hydrologic model is required.  Since the skill of the climate forecasts from general 

circulation models (GCMs) varies enormously across the season (Goddard et al., 2003) as 

well as across the models (Devineni and Sankarasubramanian, 2010), research institutes and 

operational agencies issue forecasts from multiple GCMs. Similarly, there are many 

hydrologic models available but each model has its own strengths and applications under 

different conditions and regions (Xu and Singh, 2004; Overgaard et al., 2006).  Thus, the 

availability of multiple models provides options to develop streamflow forecasts based on 

various combinations of climate and hydrologic models. 

Recent studies have shown that combining multiple models reduces the uncertainty in 

climate forecasts (Rajagopalan et al., 2002; Devineni and Sankarasubramanian, 2010). For 

instance, real-time climate forecasts are these days issued based on net assessment by 

combining multiple climate models (Goddard et al., 2003; Barnston et al., 2003). Devineni et 
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al., (2010) improved the skill in predicting winter precipitation and temperature over the 

United States by optimally combining multiple general circulation models (GCMs) using an 

algorithm by assessing the models’ skill conditioned on El Nino Southern Oscillation 

(ENSO) state. Weigel et al. (2008) demonstrated using a synthetic model setup that 

multimodel forecasts were able to outperform the best single model by reducing the 

overconfidence of the single models.  

Similarly, on the streamflow predictions, studies have investigated about the utility of 

combining hydrologic models in order to improve streamflow predictions (Georgakakos et al. 

2004; Ajami et al., 2007; Marshall et al., 2005; Marshall et al., 2006; Oudin et al., 2006; 

Devineni et al., 2008). Since no hydrologic model can perfectly replicate the conditions of 

the real world processes, it is advantageous to combine the strengths of individual hydrologic 

models to improve predictions (Vrugt et al., 2006; Duan et al. 2007; Marshall et al., 2007; 

Vrugt and Robinson, 2007; Chowdhury and Sharma, 2009).  For developing streamflow 

forecasts using statistical models too, it has been shown that multimodel forecasts seem to 

outperform individual model forecasts (Regonda et al., 2005; Devineni et al. 2008).  

Recently, Li and Sankarasubramanian showed using a synthetic study that multimodel 

streamflow predictions perform better than individual model predictions as model uncertainty 

increases. While these multimodel combination studies focus exclusively on reducing the 

uncertainty on climate forecasts or on uncertainty in hydrologic models, there is no unified 

approach available on how to reduce the uncertainty in seasonal streamflow forecasts given 

the plethora of climate forecasts and hydrological models.   
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The main objective of this study is to find the best strategy to reduce the uncertainty 

in the streamflow forecasts using a hydrological model.  Given the climate forecasts from 

multiple GCMs are better than individual model GCMs, which one should one employ in 

developing streamflow forecasts? Towards this, we consider three possible strategies: (1) 

reduce the input uncertainty first by combining climate models and then use the multimodel 

climate forecasts with multiple watershed models (2) ingest the individual climate forecasts 

(without multimodel combination) with various watershed models and then combine the 

streamflow predictions that arise from all possible combinations of climate and watershed 

models (3) combine the streamflow forecasts obtained from multiple watershed models based 

on strategy (1) to develop a single streamflow prediction that reduces uncertainty in both 

climate forecasts and watershed models.  Evaluating the above three strategies can provide a 

systematic approach that can reduce uncertainty in streamflow forecasts. We evaluate these 

three strategies based on a synthetic streamflow forecasting scheme by their ability to predict 

a known “true flow” as well as by applying for a watershed in NC. 

This paper is organized as follows: Chapter 2 describes the experimental design as 

well as evaluation methodology for evaluating the performance of streamflow forecasts 

under the proposed multimodel combination strategies.  Chapter 3 presents the results and 

analysis of the various multimodel strategies by evaluating the skill of the streamflow 

forecasts.  Finally, the application and conclusions from the study are presented in Chapter 4 

and 5. 
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CHAPTER 2 Multimodel Combination Methodology 

This chapter describes the experimental design that is involved in developing 

synthetic streamflow. The primary idea behind developing synthetic streamflow is that the 

“true flow” under a given forecast skill is known, so that the performance of candidate 

modeling strategies could be compared. To understand why multimodel climate forecasts 

perform better than individual model forecasts, Wiegel et al., (2008) employed a toy model 

setup under which the true value of the climatic attribute was corrupted to develop a climate 

forecast with a specified correlation with the true value. Similarly, in evaluating how 

streamflow predictions from combining multiple hydrologic models perform better than 

individual models, Li and Sankarasubramanian (2011) employed a streamflow generation 

scheme that evaluated the performance of candidate models and multimodel schemes under a 

specified model errors. 

  In this study, we consider the observed precipitation, potential evapotranspiration 

and streamflow at Tar River at Tarboro as the true hydroclimatic attributes for which the 

precipitation forecast with a specified skill and streamflow with a specified error 

characteristic is obtained. Observed monthly and seasonal time-scale precipitation, 

streamflow and potential evapotranspiration are obtained for 35 years at the Tar River Site 

from the national hydroclimatic database available for the continental United States (Vogel 

and Sankarasubramanian, 1999; Vogel and Sankarasubramanian, 2005).  The first section of 

the experimental design describes a scheme to create synthetic precipitation forecasts from 

the observed monthly precipitation.  The synthetic climate forecasts can be thought of as 
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climate forecasts obtained from a GCM having a specified skill over the watershed.  The 

second section describes the population model setup where we consider multiple watershed 

models as the true underlying models.  The climate forecasts and hydrologic models are used 

to evaluate the performance of various multimodel combinations that could reduce the 

uncertainty in the estimated streamflow. As discussed in the introduction, we evaluate three 

strategies of multimodel combination in developing streamflow forecasts: (1) reduce the 

input uncertainty first by combining climate models and then use the multimodel climate 

forecasts with multiple watershed models (2) ingest the individual climate forecasts (without 

multimodel combination) with various watershed models and then combine the streamflow 

predictions that arise from all possible combinations of climate and watershed models (3) 

combine the streamflow forecasts obtained from multiple watershed models based on 

strategy (1) to develop a single streamflow prediction that reduces uncertainty in both 

climate forecasts and watershed models.  For simplicity, we refer to these three multimodel 

combination strategies as MM-P, MM-Q and MM-PQ respectively. 

 

2.1   Precipitation Forecast Generation Scheme 

The synthetic climate forecasts, Pm
i
, where m=1,2,…,M denote the number of 

members in the ensemble and i=1,2,…,nm represent the number climate models issuing 

forecasts, are generated based on the toy model suggested by Weigel et al. (2008). The skill 

of the synthetic climate forecasts is controlled by two parameters α and β, which denote the 

correlation between the forecasted precipitation and the true precipitation and the 
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overconfidence of the forecasted precipitation respectively.  We consider the observed winter 

(January-March) precipitation (Pt) at Tar River at Tarboro over the period 1952-1986 as the 

true precipitation with winter climatology represented by mean (µP) and standard deviation 

(σP). Using the winter climatology, the observed precipitation is standardized to obtain xt 

(Equation 1).  Two noise terms εβ and εm are generated from the normal distribution with zero 

mean and the respective standard deviations as specified in equations 2 and 3.  The noise 

term, εβ, specifies the overconfidence of the forecast, which forces all the members of 

ensemble to be far away from the true precipitation (Pt). It is important to note that the noise 

term εβ which denotes the overconfidence of the forecasts is fixed for a given year.  Thus, the 

parameter β is used to control the relocation of the conditional mean by generating the 

overconfidence forecasts with Gaussian noise term with zero mean and standard deviation β.  

The parameter α is used to control the correlation between the observed precipitation and the 

precipitation forecasts.  Since α represents correlation coefficient, its value ranges between 0 

and 1.  Thus, the noise term, εm, controls the correlation between the observed precipitation 

(P) and the issued forecast over the period 1952-1986. For further details on the analytical 

derivation of how α and β control the correlation and forecast overconfidence, see Weigel et 

al., (2008).   

                                           ...(1)t P
t

P

P
x






  

~ (0, )                                         ...(2)i iN   

2 2~ (0, 1 ( ) ( ) )                 ...(3)i i i

m N     
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The two noise terms εβ and εm are added to the standardized precipitation adjusted to 

the specified skill parameter α (equation 4).  The members of the ensemble, Xt,m
i
 , are then 

averaged to obtain Xt
i
 (equation 5) and are transformed back using the observed winter 

climatology of precipitation (equation 6). We assume the precipitation forecast ensemble for 

each winter season, t, to constitute 100 members (M=100) following Gaussian distribution. 

The conditional mean of the forecasted precipitation is equal to the observed precipitation if 

α  = 1 and β = 0.  Thus, by adjusting these two parameters, α and β, the center and the spread 

of the precipitation forecast ensemble are controlled.  For example, a precipitation forecast 

with α = 0.9 and β = 0 represents a well-dispersed high skill forecast while α = 0.5 and β = 

0.85 represents an overconfident low skill forecast. By assuming different α and β, we 

generate climate forecasts having different skills for the Tarboro site.   

, ,                           ...(4)i i i i

t m t t mX x        

,

1

 =                                           ...(5)
M

i

t t m

m

X X


  

                                   ...(6)
i

i
tt P PP X      

 

2.2   True Streamflow Generation for a given Hydrological Model 

To generate streamflow forecast conditional on the precipitation forecasts from 

Section 2.1, we consider two stochastic streamflow generation models and one conceptual 

water balance model. The streamflow generation scheme is similar to that of the scheme 

employed by Li and Sankarasubramanian (2012) for understanding why multimodel 
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streamflow estimates perform better than the individual model estimates. Table 1 provides 

the structure of linear, log-linear and ‘abcd’ model.  The true streamflow is generated using 

one of these watershed models based on the observed precipitation and potential 

evapotranspiration available for the Tarboro site.  We use the observed winter precipitation 

(Pt), streamflow (Qt) and potential evapotranspiration (PETt) for the Tar River at Tarboro to 

estimate the population parameters by minimizing the sum of squares of errors between the 

observed streamflow and the model predicted streamflow.   

 

Table 1: Summary of candidate stochastic streamflow generation models used in the 

synthetic study as well as for individual model evaluations 

Models  Population model  Population 

parameters  

Model/output  

error 

Linear 1 1

1 1 1
ˆˆ ˆ = * *t t t tQ a b P c PET     1 41.15, 0.58, -0.77   

 

Log-

Linear  

2

2 2 2

2

ˆˆ ˆ = *log( ) *log( )

10 t

t t t t

Y

t

Y a b P c PET

Q

  


 

2 .99, 1.08, -0.80   
 

‘abcd’  Conceptual model with Gt-1, St-1, PETt,  

Pt as inputs and 3

tQ  as output  
3 0, 148.60, .48, 0   

 

 

Using the population parameters specified in Table 1, we generate true streamflow, 

j

tQ where j denotes the hydrologic model index, from each watershed model using the 

observed precipitation and PET.  It is important to note that the true flows also contain a 

model or output error ( j

t ), which follows Gaussian noise with zero mean and standard 

deviation, f* ˆ j

 , where ‘f’ denotes a factor that control the residual standard deviation ( ˆ j

 ) 

for model ‘j’. The residual standard deviation ( ˆ j

 ) for a given model is estimated based on 

 1 1ˆ~ N 0, *t f  

 2 2ˆ~ N 0, *t f  

 3 3ˆ~ N 0, *t f  
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the residuals between the observed winter streamflow and the model-estimated flow. For f=0, 

the generated flow does not have any model error resulting in flows being exactly as that of 

model estimates for the Tar River at Tarboro. The model error is added explicitly to the 

model-estimated flow to generate many realizations of true flows. The true flows from the 

population models allow us to compare between single model streamflow predictions and 

various streamflow multimodel schemes developed using the precipitation forecasts.  The 

next section describes the candidate single models and multimodels that are available for 

inter-comparison. 

 

2.3   Single Model Forecasts Development and Evaluation Methodology 

Based on the details given in Sections 2.2 and 2.3, we generate 35 years of synthetic 

climate forecasts based on the chosen α and β and then force it with a candidate model, j, in 

Table 1 to develop 35 years of synthetic streamflow forecasts. We also obtain the true 

streamflow, Qt
j
, by using the observed precipitation and PET for the 35 year period using the 

population parameters given in Table 1. Figure 1 shows the evaluation methodology for a 

single model.  The generated streamflow, Qt
j
, is split into two sets with the first 20 years 

(t=1, 2,…nc; nc denotes the number of years of calibration)of flow  being used for calibration 

and the remaining 15 years (t=nc+1,nc+ 2,…n; n denotes the number of years of 

evaluation)for validation. Considering the generated streamflow as the flow available for 

calibration, we estimate the model parameters, ˆ
j , using Qt

j
 , precipitation forecasts (Pt

i
) and 

PETt by minimizing the sum of squares of errors between Qt
j
 and the calibrated flow ˆ j

tQ  over 
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the 20-year calibration period. The calibrated parameters, ˆ
j , are subsequently used with 

precipitation forecasts (Pt
i
) and PETt to estimate the forecasted streamflow, ,i j

SM tQ 
,  by the 

individual model for the validation period. It is important to note that the forecasted 

streamflow by a given model, j, could vary depending on the skill of precipitation forecasts, 

Pt
i
, which is determined by α and β equations (1)-(6)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow chart for the generation of synthetic streamflow forecasts under a given 

climate forecasting scheme and hydrologic model 

Obtain true streamflow (Qt
j
, t=1,2,…,n; j=1,2,3) using the population parameters 

(θj) for a given watershed model (Table1) with observed precipitation (Pt), and 

potential evapotranspiration (PETt) as inputs. 

Generate synthetic precipitation forecasts (Pt
i
) based on the chosen  

and using the generation scheme in equations 1-6. 

Calibrate/estimate parameters, ˆ
j  

, for the chosen streamflow model, j, by 

using Qt
j
 and inputs Pt

i
, PETt over the period t = 1…nc  

 

Split the generated streamflow and precipitation forecasts (Pt
i
) and PETt  into two sets, 

with one for calibration (Qt
j
 t=1,2,..nc) and another for validation (Qt

j
, t=nc+1,nc+2,…n) 

Obtain forecasted streamflow (
,i j

SM tQ   
) for the model, j, using ˆ

j  
, Pt

i
 and 

potential evapotranspiration (PETt) for the validation period t = nc+1…n. 

 

Evaluate the performance of streamflow prediction model, j, under precipitation 

forecasts, i, by computing MSE between the forecasted streamflow,
,i j

SM tQ   
and the 

true streamflow, Qt
j
, over the validation period t = nc+1…n 

 



11 

 

 

 

 

 

We also consider a conceptual watershed model, abcd, for estimating the single 

model forecasts of streamflow. The ‘abcd’ model originally suggested by Thomas (1981) has 

been employed by various monthly and annual water balance studies (Vogel and 

Sankarasubramanian, 2000; Sankarasubramanian and Vogel, 2002a). For details, see 

Sankarasubramanian and Vogel (2002b). For forecasting the winter streamflow using ‘abcd’ 

model, apart from Pt
i
 and PETt, the model also requires initial soil moisture and groundwater 

states, St-1 and Gt-1, over the calibration and validation period. We upfront develop these 

estimates, St-1 and Gt-1, over the entire 35 year period by simulating the ‘abcd’ model at 

seasonal time scale using observed precipitation and potential evapotranspiration and the 

model parameters (shown in Table 1) over the entire 35 years of record. Thus, for forecasting 

each year winter streamflow, we use the simulated initial soil moisture and groundwater 

states along with Pt
i
 and PETt for performing calibration and validation. Given the single 

model streamflow forecasts, we combine them next to develop multimodel streamflow 

forecasts.  

 

2.4   Multimodel Precipitation and Streamflow Forecasts Development 

Models invariably contain model errors due to different sources including quality of 

input data, initial states of the model, parameter estimation and the inability of the model to 

perfectly replicate the actual physical process (Feyen et al., 2001).  In recent years, 

multimodel combinations have emerged as a way to reduce these model errors by combining 

multiple models to obtain improved predictions.  (Georgakakos et al. 2004; Ajami et al., 
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2007; Devineni et al., 2008; Devineni and Sankarasubramanian, 2010) have shown that 

combining different competing single models result in improved predictions.  Multimodel 

predictions are also able to capture the strength of the single models which results in 

improved predictability (Ajami et al., 2007; Duan et al., 2007; Devineni et al., 2008).   

When considering multimodel combination there are various methods available using 

weighted averages, including simple or weighted average of single model predictions 

(Georgakakos et al., 2004; Shamseldin et al., 1997; Xiong et al., 2001).  Other studies have 

explored statistical techniques such as multiple linear regression (Krishnamurthi et al., 1999) 

and Bayesian model averaging (Duan, et al., 2007) for multimodel combinations.   In this 

study, multimodel combinations are obtained from single models by using weights which are 

obtained based on the performance of the single model over the calibration period. 

For combining different synthetic precipitation/streamflow forecasts to develop 

multimodel forecasts, we combine models based on their ability to predict during the 

calibration period. Given the precipitation forecasts, i

tP , over the calibration period (20 

years), we compute the skill of the issued precipitation forecast by computing the mean 

square error between the forecasted mean, i

tP , and the observed precipitation, Pt, using 

equation (7).  Given that we have nm climate forecasts from the synthetic scheme in Section 

2.1, we obtain weights for individual models by giving higher weights for the best-

performing model (equation 8).  Using the weights, Wi, obtained for each model, we obtain 

multimodel precipitation forecasts, MM tP  , over the validation period. One could obtain 

further improvements in multimodel precipitation forecasts by pursuing optimal model 
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combination (Rajagopalan et al., 2002) or optimal model combination conditioned on the 

predictor state (Devineni and Sankarasubramanian, 2010). Those approaches are not pursued 

here, since the focus is to compare the three strategies proposed in the introduction. 

Application of such methods will only result in further improvements in multimodel 

predictions.  

2

1

( )                                                           ...(7)
cn

i

i t t

t

MSE P P


   

1

1

1

                                                                 ...(8)
m

i
i n

i

i

MSE
W

MSE










 

1

*        1,  2,  ...,                        ...(9)
mn

i

MM t t i c c

i

P P W t n n n



     

Similar to multimodel combination on precipitation forecasts, we also combine the 

streamflow forecasts, ,   ( 1,2..., ; 1,2,3)i j

SM t mQ i n j   , developed from individual models with 

different synthetic precipitation forecasts. To begin with, we first compute mean square error 

between the single model prediction, ,i j

SM tQ 
and the true flow for the model, Qt

j
, over the 

calibration period (t=1,2,..nc). This results in a total of nm*3 MSE estimates from different 

combinations of precipitation forecasts forced with various streamflow prediction models. 

These MSE estimates (equation 10) are converted into weights (equation 11) for each 

forecast by giving higher weights for the forecasts that perform the best. Given the weights, 

Wi,j, the individual model predictions are converted into multimodel forecasts using equation 
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(12) over the validation period. This basically gives the multimodel forecasts corresponding 

to the second strategy MM-Q.   

, 2

,

1

( )                                                           ...(10)
cn

j i j

i j t SM t

t

MSE Q Q 



   

1

,

,
1

,

,

                                                                 ...(11)
i j

i j

i j

i j

MSE
W

MSE










 

,

,

,

*        1,  2,  ...,                        ...(12)i j

MM Q t SM t i j c c

i j

Q Q W t n n n  



     

 

2.5   Streamflow Predictions – Candidate Single Models and Multimodels 

To evaluate the three strategies proposed in the introduction for reducing the 

uncertainty in streamflow predictions, we also need candidate streamflow prediction models 

that estimate the streamflow forecasts for the given precipitation forecasts.  Synthetic 

precipitation forecasts with different skills could be generated using equations (1) - (6) for 

the 35-year period with each year forecast being represented with 100 realizations. The 

ensemble mean is used as the forecast inputs for the streamflow prediction models.  The first 

model is the single model setup in which the individual synthetic precipitation forecasts ( i

tP ) 

is be used with one of the streamflow prediction models (Table 1) to obtain the modeled 

streamflow ( ,i j

SM tQ 
). Thus, in the individual model streamflow predictions denoted as ,i j

SM tQ 

(Table 2), there is no combination of precipitation or streamflow forecasts from multiple 

models.   
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Table 2: Summary of streamflow forecasts developed from different climate and hydrology 

model combinations 

Model Indices-Schemes Brief Description 
,i j

SM tQ   Streamflow is obtained by forcing individual streamflow model ‘j’ 

with a single climate model input ‘i’. 
j

MM P tQ    Streamflow is obtained by forcing individual watershed model ‘j’ 

with the combined MM tP   as the input 

MM Q tQ    Streamflow is obtained by combining all 
,i j

SM tQ   

MM PQ tQ    Streamflow is obtained by combining all 
j

MM P tQ    

 

The first strategy, MM-P, reduces the input uncertainty first by combining the 

synthetic precipitation forecasts to develop multimodel precipitation forecasts, MM tP  , which 

are then used as an input with the streamflow prediction model (Table 1), j, to obtain 

streamflow ( j

MM P tQ  
). Details and steps involved in multimodel combination of precipitation 

and streamflow are given in the previous section.   The second strategy, MM-Q, reduces the 

uncertainty in streamflow prediction by first ingesting the individual synthetic climate 

forecasts (without multimodel combination) with the individual watershed models and then 

combines the individual streamflow ( ,i j

SM tQ 
) to obtain a multimodel streamflow which is 

denoted by 
MM Q tQ  

.  Thus, the strategy, MM-P, uses multimodel precipitation forecasts to 

obtain streamflow, while the MM-Q method combines the streamflow forecasts obtained 

from various individual models.  The third strategy, MM-PQ, combines all j

MM P tQ  
 obtained 

from the strategy MM-P to obtain 
MM PQ tQ  

.  The multimodel modeled streamflow, j

MM P tQ  
 

from the MM-P, are combined to give a single streamflow denoted by 
MM PQ tQ  

.  
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In summary, we have streamflow predictions from single models, ,i j

SMQ  and three 

multimodel combinations j

MM PQ 
, 

MM QQ 
and

 MM PQQ 
as shown in Table 2.  The performance 

of these streamflow predictions is evaluated using mean square error, which is computed 

based on the streamflow predictions and the true model streamflow Qt
j
 during the validation 

period t = nc+1…n.  For each climate model precipitation i and model index j, the evaluation 

of streamflow predictions ,i j

SMQ  gives a single value of mean square error.  The first 

multimodel combination, MM-P, denoted by j

MM PQ 
yields a single value of mean square 

error for each model index, j.  The second and third multimodel combinations denoted by 

MM QQ 
and 

MM PQQ   
each yield a single value of mean square error.  For the results, the 

evaluation methodology as outlined in Figure 1 is repeated 1000 times for all single and 

multimodel combinations to yield 1000 mean square error values for each model.  A box plot 

is used to evaluate the performance of each model by plotting the 1000 mean square error 

values. 
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CHAPTER 3 Results 

In this chapter, we compare the performance of single models and the three 

multimodel strategies based on the estimated mean square error from 1000 realizations.  The 

first section presents results from three precipitation forecasts forced with the linear 

streamflow prediction model (Table 1). The true flows, 1

tQ , are also generated from the 

linear model. Given that we have only one streamflow prediction model, the third strategy, 

MM-PQ, is non-existent resulting in comparison between MM-P and MM-Q.  The primary 

question that we address under this analysis is: Given no hydrologic model uncertainty, what 

is the best way to reduce uncertainty in streamflow forecasts using precipitation forecasts 

available from multiple models?  

In the second section, we consider three streamflow prediction models (Table 1) with 

the true streamflow being generated from one of the hydrologic model. Thus, under this case, 

we explicitly consider uncertainties across climate models and hydrologic models by 

analyzing the proposed three strategies, MM-P, MM-Q and MM-PQ, for reducing the 

uncertainty in streamflow forecasts based on MSEs from 1000 realizations. This helps us to 

pick the right strategy that will reduce uncertainty in streamflow predictions by considering 

both input (precipitation) uncertainty and output (streamflow) uncertainty.  

 

3.1   Streamflow Predictions – Candidate Single Models and Multimodels 

Under this analysis, we consider the linear streamflow prediction model (Table 1) to 

be the population model as well as the candidate watershed model.  We generate three 
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precipitation forecasts with different skills by varying α and β.  Each precipitation forecast is 

used with the candidate model – linear streamflow prediction model – to estimate three single 

model streamflows denoted by i

SMQ . The first multimodel combination streamflow, MM PQ  , 

is derived by combining the three precipitation forecasts and then the combined precipitation 

forecasts, PMM, is used with the linear model.  The second multimodel combination 

streamflow, 
MM QQ 

, is derived by combining the streamflow from the single models ( i

SMQ ; 

i=1,2,3). We basically repeat the procedure in Figure 1 1000 times to develop 1000 estimates 

of MSEs. Similarly, we also obtain MSEs, MM PQ  and 
MM QQ 

, by repeating the procedure in 

Section 2.4. 

To begin with (Figure 2), we consider precipitation forecasts with varying skills by 

adjusting values for α and also by allowing the forecasts to be well-dispersed (Figure 2a) or 

overconfident (Figure 2b) based on β. It is important to note that in evaluating the 

precipitation forecasting schemes, we compare their ability to predict the true streamflow 

arising from the same population model.  It is obvious from Figure 2a, skillful forecasts have 

lesser MSEs compared to the streamflow estimated by using lower skillful forecasts. 

Comparing Figures 2a and 2b, MSEs produced by a well-dispersed forecast have a lower 

MSE values compared to the overconfident forecasts.  This is due to the ensemble spread of 

the forecasts becoming narrower due to the increase in the value of β.   
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Figure 2: Box-plots of MSEs in predicting streamflow estimated by a linear model for (a) 

well-dispersed (β = 0) precipitation forecasts having different correlations (α = .9, .7, .5) and 

(b) over-dispersed (β ≠0) precipitation forecasts having different correlations (α = .9, .7, .5) 
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Figure 3: Box-plots of MSEs in predicting streamflow estimated by a linear model with the 

true streamflow generated with output error (f=0.2) for (a) well-dispersed (β = 0) 

precipitation forecasts having different correlations (α = .9, .7, .5) and (b) over-dispersed (β 

≠0) precipitation forecasts having different correlations (α = .9, .7, .5)   
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The single models perform better as the skill of the precipitation increases.  We also 

see that the two multimodels (MM-P and MM-Q) perform better due to reduction in climate 

model uncertainty.  Both multimodel combinations improve performance by reducing 

uncertainty.  It is important to note that MM-P performs very close to the best-performing 

individual model. Since the skill of the precipitation forecast is not the same  

 (varying values for α), we have used varying weights to combine the precipitation and 

streamflow used in the multimodels.  Due to the varying weights we can observe that the 

multimodel combinations can perform better than the best single model (model with the 

highest value of α) as shown in Figure 2(a).  The multimodel combination MM PQ   (reducing 

input uncertainty) performs better than the best single model and the 
MM QQ 

(reducing output 

uncertainty) multimodel. This implies that for systematic uncertainty reduction in 

streamflow, we need to reduce input (precipitation) uncertainty first, so that the estimated 

streamflow using multimodel climate forecast performs better than streamflow forecasts 

derived without any reduction in input uncertainty.  This is mainly because reduced 

uncertainty in the inputs to the watershed model results in better accuracy in predicting the 

true streamflow arising from the same model. So regardless of the whether the precipitation 

forecast is well-dispersed or overconfident, the improvement in performance is better if one 

reduces the input uncertainty rather than the output uncertainty.  Furthermore, both 

multimodel combinations provide improvements in performance. From this analysis, we infer 

that given no hydrologic model uncertainty, forcing the hydrologic models with reduced 

input uncertainty result in improved streamflow forecasts. 
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In Figure 2, we did not consider the hydrologic model error or output error by forcing 

the term f=0 in synthetic streamflow generation. By selecting f=0.2,   Figure 3 shows the 

performance of different models under a well-dispersed and over-confident precipitation 

forecasts with varying β. Figure 3a shows that the performance of the multimodel, MM-P, is 

just as good as the best-performing streamflow prediction scheme forced with a highly 

skillful well-dispersed precipitation forecast. From Figure 3b, we see that as the forecasts 

become overconfident, MM-P performs better than MM-Q as well as the best-performing 

single model predictions. These findings are completely in line with Weigel et al. (2008) who 

showed that multimodel combinations result in better predictions as the model dispersion 

increases. In the case of well-dispersed forecasts, the performance of multimodel predictions 

is just as good as the best-performing individual model predictions. 

 

3.2   Source of Model Uncertainty - Climate Models and Hydrologic Models 

In the previous section we considered only the linear model to be the candidate and 

the population hydrologic model.  In this section we consider all three models (in Table 1) to 

be candidate models with the true streamflow being generated by either linear model or 

‘abcd’ watershed model.  Similar to the previous section, we consider three precipitation 

forecasts having different skills. Each precipitation forecast is forced with the three 

streamflow prediction models to develop nine streamflow forecasts, ,i j

SMQ where i = 1,2,3 and 

j = 1,2,3.  We also combine the three precipitation forecasts (using equations (7) – (9)) and 

use the combined precipitation forecast with each candidate model to develop three 
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multimodel combination streamflows ( j

MM PQ 
with j = 1,2,3).  The streamflow from nine 

single models ,i j

SMQ is combined using equations (10)-(12) to develop multimodel
MM QQ  .

 

Similarly, streamflow forecasts from three multimodel j

MM PQ 
is combined separately (using 

equations (10)-(12)) to develop multimodel streamflow forecasts, 
MM PQQ 

, which reduces 

first the input uncertainty followed by output uncertainty.  Thus, in this section, we present 

MSEs from 14 models that include nine single models and five multimodels.  All the 

multimodel combinations on precipitation/ streamflow are obtained using weights dependent 

upon the skill of the forecast during the calibration period. 

Figure 4 presents the box-plots of MSEs for 14 models with the linear model as the 

population model having no output error (f=0).  From Figure 4, we can see that the abcd

SMQ  and 

abcd

MM PQ 
perform the worst across all the models. This is partly because the assumed watershed 

model is linear and the ‘abcd’ model is a nonlinear water balance model.  The multimodel 

combinations, MM PQ  , that reduces first the input uncertainty performs better than their 

counterpart forced with individual model precipitation forecasts. We can see that in the case 

of the linear candidate model, Linear

MM PQ 
performs better than the best single model 1,Linear

SMQ .  

Similarly, log-linear and ‘abcd’ candidate model forced with multimodel precipitation 

forecast, MM PQ  , perform better than their respective counterpart in the single model. Since 

we are using varying weights during combination we assign more weight to the precipitation 

or streamflow forecast with good skill.  The multimodel combination 
MM QQ 

, which reduced 

the output uncertainty by combining the streamflow all the six single models, performs worse 
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than the multimodel combination 
MM PQQ 

.  This is to be expected since 
MM PQQ 

reduces 

input and output uncertainty by combining the streamflow from the multi-modes 

combination MM PQ  rather than the single models. 

 

 

Figure 4: Box-plots of MSEs for 1000 realization for three candidate streamflow prediction 

models with the true streamflow arising from linear model (f=0) and the precipitation 

forecasts having different skill (α = .9, .7, .5) and dispersiveness (β = .43, .7, .85)   
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Figure 5: Same as Figure (4) but with streamflow output error (f =.2)   

 

The mean square error of all models has increased in Figure 5 primarily due to the 

noise added to the true model streamflow (f = .2).  But the relative performance of the single 

and multimodel combinations has remained the same.  Forcing the candidate watershed 

model with multimodel precipitation forecasts, MM-P, improves the performance of three 

candidate models.  Similarly, streamflow forecasts developed based on the strategy, MM-PQ, 
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perform better than MM-P and MM-Q when output error is present.  Thus, to reduce the 

uncertainty in streamflow prediction, it is important to first reduce the input uncertainty, 

which needs to be followed with reduction in hydrologic model uncertainty. 

 

 

Figure 6: Same as Figure 5, but the true flows arise from ‘abcd’ model with output error (f 

=.2)   
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Figure 7: Same as Figure 6, but without ‘abcd’ model among the candidate models  

 

In all previous results we have considered the true streamflow generation model along 

with the candidate model available for developing streamflow forecasts.  We also considered 

how various candidate single models and multimodels perform when the true streamflow 

arises from a population model that is not part of the candidate models.  In Figure 7, we 

perform the same analysis by excluding ‘abcd’ model from the candidate model. Thus, we 

consider the linear and log-linear to be the candidate models.  Thus, we have a total of six 
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single model forecasts ( ,i j

SMQ ), two single model predictions forced with multimodel 

precipitation forecast ( j

MM PQ 
), one multimodel predictions (

MM QQ 
) from ,i j

SMQ and one 

multimodel predictions (
MM PQQ 

) based on j

MM PQ 
. This results in a total of 10 prediction 

schemes available for evaluation. Based on Figure 7, the best-performing models are Linear

MM PQ 

and 
MM PQQ 

. Though the median of 
MM PQQ 

is slightly higher than that of Linear

MM PQ 
, the 

difference in the MSE between the two schemes is very marginal. 

In this chapter we have considered reducing only climate model uncertainty and both 

climate and hydrological model uncertainty as a means of reducing uncertainty in the 

streamflow predictions by analyzing three proposed strategies, MM-P, MM-Q and MM-PQ. 

When considering no hydrological model uncertainty, reducing input uncertainty by using 

MM-P strategy performs better than reducing output by using MM-Q regardless of whether 

the precipitation forecasts is well-dispersed or overconfident.  We can attribute this to the 

fact that reduced uncertainty in the inputs of the watershed model results in better accuracy in 

predicting the true streamflow arising from the same model.  While we only consider the 

linear model to be the population and candidate model in Section 3.1, the same conclusions 

can be reached if one uses other model, log or ‘abcd’ model, for either population or 

candidate model.  In Section 3.2 we consider multiple candidate models thus incorporating 

both climate and hydrological model uncertainty which allows us to evaluate the streamflow 

predictions from all three proposed strategies MM-P, MM-Q and MM-PQ.  We find that 

regardless of the candidate models it is important to first reduce the input uncertainty, which 

needs to be followed with reduction in hydrologic model uncertainty in order to obtain the 
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best streamflow prediction given that we do not know the true watershed.  In the next section 

we will evaluate performance of three multimodel combination strategies in predicting the 

observed streamflow at Tar River at Tarboro using five coupled GCMs. 
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CHAPTER 4 Application 

 The results discussed so far have been based on a synthetic model.  In this section, we 

investigate how the proposed multimodel combination strategies perform in predicting the 

observed streamflow at Tar River at Tarboro (Figure 8).  The observed winter seasonal 

streamflow and potential evapotranspiration are obtained for the Tar River at Tarboro site 

(02083500) from the HCDN database of Vogel and Sankarasubramanian (2005).  The 

precipitation forecasts for Tar River at Tarboro are obtained from five coupled GCMs (Table 

3) developed as part of the ENSEMBLES project (Devineni, N., and A. Sankarasubramanian 

2010). The precipitation forecasts from eight grid points over the domain (longitude -80W to 

75W; latitude-32.5N to 37.5N) available at a monthly time step from 1981 to 1999 are 

considered for developing winter streamflow forecasts. The monthly precipitation forecasts 

issued in November from each GCM are converted into seasonal precipitation forecasts over 

the period January-March for further analysis.   

 

Table 3: List of coupled GCMs used in the application for Tar River at Tarboro 

Ocean Model Atmospheric Model Institution Reference 

HOPE IFS CY31R1 ECMWF Balmaseda et al. [2008] 

HadGEM2-O HadGEM2-A UKMO Collins et al. [2008] 

OPA8.2 ARPEGE4.6 MF Daget et al. [2009] 

MPI-OMI ECHAM5 IFM-GEOMAR Keenlyside et al. [2005] 

OPA8.2 ECHAM5 CMCC-INGV  
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Figure 8: Location of the Tar River at Tarboro along with the latitude and longitude of the 

eight grid points used for the analysis 

 

The precipitation from the five GCMs (Table 3) (i = 1…5) is used with the candidate 

models (j = 1…3) to obtain the single model streamflow ,i j

SMQ .  There are fifteen single 

models which are combined to obtain the multimodel streamflow denoted by 
MM QQ 

.  The 

multimodel precipitation data is based on the algorithm developed by Devineni and 

Sankarasubramanian (2010) which considers the forecasted Nino3.4 from each GCM as the 

conditioning variable.  The multimodel streamflow j

MM PQ 
 is obtained by using the 

multimodel precipitation with the candidate model j.  The final multimodel combination 

MM PQQ 
 is obtained by combining the three j

MM PQ 
streamflow.  The winter precipitation 

forecasts from the above five GCMs (Table 3) and the multimodel algorithm are statistically 

downscaled using principal component regression before the precipitation data can be used 

with the candidate models.  Since the precipitation data from the eight grid points (Figure 8) 
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of each GCM is spatially correlated, we can use Principal Component Analysis to obtain a 

single time series which explains the maximum variance of the original eight grids of the 

GCM.  Generally the downscaled precipitation has better correlation than the eight grid 

points. 

 

 

Figure 9: Mean square error of individual GCMs and multimodel combination schemes in 

predicting the observed streamflow for the Tar River at Tarboro.  The analysis considers 

three hydrological models linear, log-linear and ‘abcd’ model 
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Figure 10: Multimodel streamflows plotted with the observed streamflow at Tar River 

 

In order to evaluate the performance of the various multimodel methods, we use a 

calibration and validation approach as described in the experimental design section with 

mean square error as the performance metric.  The first 20 years of data (1961-1980) are used 

to calibrate the various hydrological models while the last 19 years (1981-1999) are used for 

validation.   The models are calibrated and validated using the observed streamflow, potential 

evapotranspiration and precipitation data from the five single GCMs and multimodel 

algorithm.  The results from the application are presented in Figure 9 during the validation 

period (1981-1999).   
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Multimodel and observed streamflow are plotted in Figure 10.  The results obtained 

in this analysis verify the results obtained through the synthetic model setup.  It is clear that 

employing multimodel combination improves performance over single models.  We also see 

that reducing the input uncertainty (climate models) through multimodel combinations is 

more critical than reducing output uncertainty (hydrological models) (the results for MM-Q 

for each candidate model are not shown in Figure 9). The overall best performance is 

obtained by reducing input uncertainty followed by reducing output uncertainty as shown by 

model MM-PQ. Thus, application to actual watershed confirms the synthetic study that MM-

PQ is the overall best strategy to reduce the uncertainty in streamflow forecasts.  
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CHAPTER 5 Conclusions 

Given that we have climate forecasts from multiple climate models, which could be 

ingested with multiple watershed models, a systematic analysis is performed for identifying 

the right strategy to reduce the uncertainty in streamflow forecasts. The methodology 

considers reducing the input uncertainty first by combining climate forecasts and then uses 

those multimodel climate forecasts as inputs with multiple watershed models. We further 

combined the streamflow predictions obtained using multimodel climate forecasts to develop 

a forecast that reduces uncertainties in climate models and hydrologic models. We also 

considered combining streamflow predictions developed by forcing individual climate 

models with individual watershed models.  Considering the synthetic precipitation forecast 

scheme suggested by Weigel et al. to generate climate forecast, the study considers three 

streamflow prediction models linear, log-linear and ‘abcd’ model as candidate models. Based 

on the synthetic models and application for Tar River, we reach the following conclusions: 

(a) Multimodel streamflow obtained either by reducing input (climate forecast) or output 

(hydrologic model) uncertainty performs better than the streamflow predictions obtained 

from single models even if we employ the single models having the true model form. 

(b) Reducing the input (climate forecast) uncertainty through multimodel combinations is 

more critical than reducing output (hydrologic model) uncertainty. 

(c) Multimodel streamflow obtained by giving higher weights for the best-performing model 

during the calibration period results in improved predictions during the validation period 

even compared to the streamflow predictions obtained from the best single model. 
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(d) When considering multiple candidate models, reducing input (climate forecast) 

uncertainty followed by reducing output (hydrologic model) uncertainty will provide 

better results than only reducing output (hydrologic model) uncertainty. 

(e) Of all the multimodels, MM-PQ, performed the best in most situations. Given that we 

don’t know the true watershed model, it is imperative to reduce model uncertainties in 

both sources – climate model and hydrologic model – for improving the streamflow 

predictions. 
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