
 
 

University of Birmingham

Mathematical modeling and multi-objective
evolutionary algorithms applied to dynamic flexible
job shop scheduling problems
Shen, Xiao-ning; Yao, Xin

DOI:
10.1016/j.ins.2014.11.036

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Shen, X & Yao, X 2015, 'Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic
flexible job shop scheduling problems', Information Sciences, vol. 298, pp. 198-224.
https://doi.org/10.1016/j.ins.2014.11.036

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
NOTICE: this is the author’s version of a work that was accepted for publication. Changes resulting from the publishing process, such as
peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes
may have been made to this work since it was submitted for publication. A definitive version was subsequently published as X-N. Shen, X.
Yao, Mathematical modelling and multi-objective evolutionary algorithms  applied to dynamic flexible job shop scheduling problems,
Information Sciences (2014), doi: http://dx.doi.org/  10.1016/j.ins.2014.11.036

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 11. Mar. 2020

https://doi.org/10.1016/j.ins.2014.11.036
https://research.birmingham.ac.uk/portal/en/persons/xin-yao(7d3cc4fc-b6db-4ce4-9566-7a9ac7c3701e).html
https://research.birmingham.ac.uk/portal/en/publications/mathematical-modeling-and-multiobjective-evolutionary-algorithms-applied-to-dynamic-flexible-job-shop-scheduling-problems(4b6bbfc0-8d2a-4e56-a960-f6eaad54a121).html
https://research.birmingham.ac.uk/portal/en/publications/mathematical-modeling-and-multiobjective-evolutionary-algorithms-applied-to-dynamic-flexible-job-shop-scheduling-problems(4b6bbfc0-8d2a-4e56-a960-f6eaad54a121).html
https://research.birmingham.ac.uk/portal/en/journals/information-sciences(7b27609e-83c1-4817-bcaf-f42a7baf5574)/publications.html
https://doi.org/10.1016/j.ins.2014.11.036
https://research.birmingham.ac.uk/portal/en/publications/mathematical-modeling-and-multiobjective-evolutionary-algorithms-applied-to-dynamic-flexible-job-shop-scheduling-problems(4b6bbfc0-8d2a-4e56-a960-f6eaad54a121).html


Accepted Manuscript

Mathematical modelling and multi-objective evolutionary algorithms applied to

dynamic flexible job shop scheduling problems

Xiao-Ning Shen, Xin Yao

PII: S0020-0255(14)01117-7

DOI: http://dx.doi.org/10.1016/j.ins.2014.11.036

Reference: INS 11272

To appear in: Information Sciences

Received Date: 29 May 2014

Revised Date: 12 October 2014

Accepted Date: 22 November 2014

Please cite this article as: X-N. Shen, X. Yao, Mathematical modelling and multi-objective evolutionary algorithms

applied to dynamic flexible job shop scheduling problems, Information Sciences (2014), doi: http://dx.doi.org/

10.1016/j.ins.2014.11.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ins.2014.11.036
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2014.11.036
http://dx.doi.org/http://dx.doi.org/10.1016/j.ins.2014.11.036


  

* Corresponding author. Address: No.219, Ningliu Road, Nanjing, 210044, China. Tel.: +86 13813835843.
   Email address: sxnystsyt@gmail.com

Mathematical modelling and multi-objective evolutionary algorithms

applied to dynamic flexible job shop scheduling problems
Xiao-Ning Shena,*, Xin Yaob

a School of Information and Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
b CERCIA, School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

Abstract Dynamic flexible job shop scheduling is of significant importance to the

implementation of real-world manufacturing systems. In order to capture the dynamic and

multi-objective nature of flexible job shop scheduling, and provide different trade-offs among

objectives, this paper develops a multi-objective evolutionary algorithm (MOEA)-based

proactive-reactive method. The novelty of our method is that it is able to handle multiple

objectives including efficiency and stability simultaneously, adapt to the new environment

quickly by incorporating heuristic dynamic optimization strategies, and deal with two

scheduling policies of machine assignment and operation sequencing together. Besides, a

new mathematical model for the multi-objective dynamic flexible job shop scheduling

problem (MODFJSSP) is constructed. With the aim of selecting one solution that fits into the

decision maker’s preferences from the trade-off solution set found by MOEA, a dynamic

decision making procedure is designed. Experimental results in a simulated dynamic flexible

job shop show that our method can achieve much better performances than combinations of

existing scheduling rules. Three MOEA-based rescheduling methods are compared. The

modified ɛ-MOEA has the best overall performance in dynamic environments, and its

computational time is much less than two others (i.e., NSGA-II and SPEA2). Utilities of

introducing the stability objective, heuristic initialization strategies and the decision making

approach are also validated.

Keywords Metaheuristics; Scheduling; Evolutionary computations; Mathematical modelling;

Decision making

1. Introduction

      Job shop scheduling problem (JSSP) is well-known as a strongly NP-hard combinational

optimization problem [17], which mainly deals with finding out the best sequences for

processing jobs on each operable machine to achieve the required objectives subject to

precedence and processing time constraints. In JSSP, each operation of a job should be

processed on a predefined machine only once in a fixed operation sequence. However, the

wide employment of multi-purpose machines in the real-world job shop makes it more

general that an operation can be managed by several machines, i.e., there are alternative

routings, which is the so-called flexible job shop scheduling problem (FJSSP). FJSSP is a



  

generalization of JSSP. It has more complexity than JSSP because the machine assignment

problem which selects an alternative machine for each operation should also be addressed,

besides  the  sequencing  problem.  Hence,  FJSSP  is  also  considered  to  be  strongly  NP-hard

[15].

      In  real-world  manufacturing  systems,  it  is  often  the  case  that  the  working  environment

changes  dynamically  by  unpredictable  real-time  events,  such  as  one  machine  fails  to  work

suddenly, and new jobs arrive in a stochastic way, etc. A previously optimal schedule may

get poor system performance or even becomes infeasible in the new environment. Moreover,

some information about the job shop is previously unknown. For example,  the due date and

processing time of the new job are not given until the job arrives. This kind of problems is

generally known as dynamic scheduling [14]. As indicated in [29], dynamic scheduling is of

great importance to the successful implementation of real-world manufacturing systems.

In the literature reported, there are mainly three categories of dynamic scheduling

technologies, which are completely reactive, predictive-reactive, and pro-active scheduling

[29]. Among them, predictive-reactive scheduling is the most commonly used. It has a

scheduling/rescheduling process where previous schedules are revised to adapt to the new

environment caused by dynamic events. Most of the existing research generated a new

schedule by minimizing the effect of disruption on shop efficiency like make-span [2,5].

However, it may produce a new schedule totally different from the original one. For example,

some remaining operations in the previous schedule which have not begun processing at the

time of rescheduling may have their starting time accelerated or delayed. It has a serious

impact on other production activities planned based on the original schedule, and brings

instability and lack of continuity in the shop system [33]. Thus, both the performances of

efficiency and stability should be considered in predictive-reactive scheduling. Above all,

FJSSP in the real world has the dynamic and multi-objective nature.

A few literature have rescheduled dynamic job shops based on multiple objectives. Some

of them only considered the performances of efficiency [2,5,32], e.g. make-span and

tardiness. The others incorporated both efficiency and stability [14,33,62]. All the above

studies used a weighted sum approach to convert multiple objectives to a single function.

However, in most real-world cases, it would be difficult to identify suitable weights for each

objective. On the other hand, multiple objectives such as make-span, tardiness and stability

are usually conflicted with each other. It is better to handle multiple objectives with

knowledge about their Pareto front. The various trade-offs among different objectives

provided by the Pareto front is very useful in making an informed decision in dynamic



  

scheduling. Evolutionary algorithms (EAs) have been recognized to be well suited for multi-

objective optimization problems due to their capability to evolve a set of solutions

simultaneously in one run. In the past 20 years, MOEA received much attention, and lots of

success has been achieved [39].

So far, various EAs have been applied to solve manufacturing optimization problems. To

optimize cutting parameters in the multi-pass turning operations, a comparative study of ten

population-based optimization algorithms was performed in [47], and an artificial bee colony

algorithm [48] and a hybrid Taguchi-differential evolution algorithm [49] were proposed,

respectively. To select optimal machining parameters in milling operations, a hybrid

differential evolution algorithm and a cuckoo search algorithm were presented in [50] and

[51], respectively. As to the structural and shape design optimization problem, different EAs

have been investigated, such as the hybrid of immune algorithm and Taguchi method [52],

the hybrid differential evolution algorithm [53], the harmony search algorithm [54], the

hybrid particle swarm optimization algorithm [55-57], Cuckoo search algorithm [13], genetic

algorithm [58], the immune algorithm combined with a hill climbing local search [59,60], and

the hybrid of immune and simulated annealing algorithm [61].

To our best knowledge, in the literature reported, MOEA has not yet been adopted to

regenerate new schedules in a predictive-reactive way when shop environments change. The

primary  aim  of  this  paper  is  to  solve  MODFJSSP  based  on  an  MOEA  in  a  modified

predictive-reactive scheduling manner. With the aim of covering the shortage of existing

methods, three aspects are studied: (i) the mathematical model for MODFJSSP is constructed.

In the model, four objectives including both the performances of efficiency and stability are

considered simultaneously. Besides, constraints to the search space change dynamically when

real-time events occur, which are also addressed in the model developed; (ii) a new MOEA-

based rescheduling method is proposed, which do not regenerate a new schedule from scratch,

but incorporate several heuristic methods in creating the initial population, and use problem

specific genetic operators for variation; and (iii) in order to select one appropriate solution

from the trade-off solution set found by an MOEA, a dynamic decision making procedure is

designed. To evaluate the effectiveness of the proposed methods, a realistic dynamic flexible

job shop is simulated with three purposes: (1) comparing the job shop performance produced

by the MOEA-based rescheduling method to that of the combinations of existing heuristic

rules and that of the existing static algorithms; (2) analysing different trade-offs among the

four objectives, and comparing the overall performances in dynamic environments produced

by three MOEAs (ε-MOEA [9], NSGA-II [10], SPEA2 [64]); and (3) investigating the impact



  

and utility of the stability objective, heuristic initialization strategies and the decision making

approach.

The remainder of this paper is organized as follows. Section 2 presents a short overview

of the existing related work. Section 3 describes the problem formulation which introduces

the rescheduling mode and constructs the mathematical model of MODFJSSP. In Section 4,

the new MOEA-based rescheduling method for MODFJSSP and the dynamic decision

making approach are described in detail. Experimental results are discussed in Section 5.

Finally, conclusions are drawn in Section 6.

2. Related work

Mathematical model is very useful for understanding the problem structure, thus a few

literature have focused on mathematical formulations for static FJSSP. A mathematical model

was presented in [15] to achieve optimal solution for small size problems. A mixed-integer

linear programming model was developed for FJSSP in [30]. In [12], models formulated for

FJSSP in literature were reviewed which categorised them as sequence-position variable

based model, precedence variable based model, and time indexed model. As to the dynamic

flexible job shop scheduling problem (DFJSSP), there have been few studies describing the

mathematical model. In [63], a dynamic rescheduling model based on Multi-Agent System

was proposed. A mathematical model for DFJSSP which minimized a weighted sum of two

objectives (make-span and stability) was developed in [14]. It used binary variables to form

constraints, which would introduce a lot of binary parameters. Besides, the definition of

make-span at a specific rescheduling point is not given. In this paper, a dynamic multi-

objective optimization model for DFJSSP which can capture the dynamic characteristics of

both objectives (related to efficiency and stability) and constraints are constructed. DFJSSP is

formulated in our model in a more comprehensible way. Stability measures the deviation

between revised and original schedules, and there is no universal definition for stability. In

[6], stability was defined as the number of times rescheduling occurred. In [1,44], stability

was defined as the starting time deviation and operation sequence deviation. In [14,33],

stability had two dimensions. One was the starting time deviation, and the other reflected how

close to the current time changes were made. In our model, a more sophisticated definition

for stability is presented which captures the deviation of operation starting time accelerating,

starting time delay and completion time delay between two successive schedules, respectively.

Generally, there are mainly four research directions on multi-objective dynamic job shop

scheduling in the existing literature. The first class developed customized rules before the

running of a job shop. A co-evolutionary genetic programming method was developed in [26]



  

for simultaneous design of dispatching rules and due-date assignment rules. Gene express

programming was adopted in [27] to evolve machine assignment rules and job dispatching

rules together in DFJSSP. This kind of methods is suitable for off-line optimization.

      The  second class  belongs  to  completely  reactive  scheduling.  In  [32],  at  each  scheduling

point, an existing dispatching rule that performed best was determined by looking up the

idiotypic network model constructed in advance. A heuristic was proposed in [28] to

implement the reactive scheduling in a dynamic production environment where jobs arrive

over time. A multiple attribute decision making technique which used grey numbers to deal

with uncertainties was given in [45] to determine which lot was suitable to be processed next

when a machine was free. [38] focused on the implementation concept of a discrete event

simulation based “online near-real-time” dynamic scheduling system using conjunctive

simulated scheduling. Completely reactive scheduling is quick to implement, but it considers

only the local information, so the shop performance cannot be guaranteed. It is suitable for

online dynamic scheduling.

      The third class is called the predictive-reactive scheduling, which uses the global

information and searches in a larger solution space in comparison with completely reactive

scheduling [29]. In [2], an adaptive variable neighbourhood search was triggered in respond

to a random event. A conventional genetic algorithm was used in [5] to regenerate a new

schedule  whenever  a  dynamic  event  occurred.  However,  it  is  often  inefficient  to  restart  the

optimization process with a totally new population [34]. In order to solve the instability

problem induced by unrestricted rescheduling, bi-objectives of stability and efficiency were

considered simultaneously in [14,33,62], respectively. However, the weighted sum method

was adopted in all the above studies to deal with multiple objectives. Predictive-reactive

scheduling is also suitable for online dynamic scheduling. In our paper, we solve MODFJSSP

based on an MOEA in a modified predictive-reactive scheduling way.

The fourth class can be categorized as the pro-active scheduling, which builds predictive

schedules in advance. [21] introduced four different probability distributions to model

stochastic processing times, and proposed three uncertainty handling methods to estimate the

fitness of a solution. A multi-objective immune algorithm is given in [66] to produce robust

scheduling solutions of uncertain scheduling problems described by the workflow simulation

scheduling model. A simplified multi-objective genetic algorithm was proposed in [23] for

the stochastic JSSP with exponential processing times. A robust and stable predictive

schedule for one machine scheduling, JSSP, and FJSSP with random machine breakdowns

was generated by a genetic algorithm in [24,20,3], respectively. A robust genetic algorithm



  

was proposed in [4] to minimize the make-span of a parallel machine scheduling problem

with fuzzy processing times. In [46], parallel machine scheduling with learning effects and

fuzzy processing times was solved by the simulated annealing algorithm and the genetic

algorithm. In this class of methods, optimization is performed offline.

Decision making is an important process in evolutionary multi-objective optimization,

especially in the dynamic case. However, few attentions have been paid to this aspect. In

[8,11], only problems with bi-objectives were considered, and a precise weight value of each

objective should be provided by the decision maker (DM). However, the DM usually does

not have enough knowledge about objective functions. When expressing preferences, they

prefer to employ the qualitative language like “Objective A is more important than objective

B” to describe the relative importance between two objectives [38]. For this reason, in our

paper, linguistic terms are used to represent the DM’s vague thought instead of requiring

them to give numerical values so as to reduce his/her cognitive overload.

3. Problem formulation

3.1 Rescheduling mode

      In order to infuse more reality in job shops, random new job arrivals and machine

breakdowns (repairs) are considered. Among them, urgent job arrivals, machine breakdowns

and repairs are regarded as critical events, and regular job arrivals are uncritical events.

      A modified predictive-reactive dynamic scheduling is adopted. A production schedule for

all the jobs at the initial time is generated at first. In order to reduce the rescheduling

frequency, a critical-event-driven mode is employed. Once a critical event occurs, the

rescheduling method is triggered. The time at which a new schedule is constructed is called

the rescheduling point, and the time span between two successive rescheduling points is

named the rescheduling interval. Besides, a special case is considered. Suppose by the time

instant t* after a specific rescheduling point lt , all the scheduled jobs have finished so that all

the available machines are idle, and the next critical event has not occurred. If the number of

regular job arrivals between lt and t* is larger than an upper bound, then a new schedule is

constructed for these new uncritical jobs to make full use of the machine resources. We call it

the resource-idle-driven mode. The upper bound is set to be 5 here.

3.2 Mathematical modelling of MODFJSSP

     Some notations used for describing the mathematical model are listed in Table 1.

Given  the  extremely  high  complexity  of  MODFJSSP,  some  common  assumptions  are

made in this paper.



  

(1) A job can be processed by only one machine each time and each machine can perform

at most one operation at a time.

(2) Once an operation has begun on a machine, it must not be interrupted, except for the

machine breakdown.

(3) The machine setup time for two consecutive jobs is included in the processing time.

(4) There is no travel time between machines. Jobs are available for processing on a

machine immediately after completing processing its previous operation.

(5) Jobs can wait to be processed in an unlimited buffer of a machine.

     The mathematical model for MODFJSSP at a specific rescheduling point is formulated. At

the rescheduling point lt ( 0lt t> ),  considering  all  the  current  information  gathered  from  the

job shop floor, which includes attributes of the available machines, all the unprocessed job

operations from the previous schedule, and the new arrival regular or urgent jobs since the
Table 1 Notations used for describing the mathematical model

0t : the initial time lt : The rescheduling point (l=1,2,…)

( )ln t : Number of jobs that contain unprocessed and available

operations at lt

( )i lJ t : The ith job at lt , 1,2, , ( )li n t= L

( )lm t : Number of available machines at lt ( )k lM t : The kth available machine at lt , 1,2, , ( )lk m t= L

in : Total number of operations in job ( )i lJ t . It is predefined and

unchanged with lt

' ( )i ln t : Number of unprocessed and available operations left in job

( )i lJ t at lt , '1 ( )i l in t n£ £

( )i lC t : The completion time of all the current available operations

of job ( )i lJ t  at lt

( )i lS t : The starting time of the first unprocessed operator of job

( )i lJ t  at lt

( )i lDD t : Due date for all the current available operations of job

( )i lJ t  at lt
ia : The initial arrival time of job ( )i lJ t  in  the  job  shop.  It  is

unchanged with lt

iw : The importance weight of job ( )i lJ t . It is unchanged with lt ( )i lI t : Index of the first unprocessed operation in job ( )i lJ t  at lt ,

( ) 1i lI t ³  and '( ) ( ) 1i l i l iI t n t n+ - £

( )-1i li I tc（ ）
: The completion time of the last operation of job ( )i lJ t

that has begun processing before lt

( )ij lO t : The jth operation of job ( )i lJ t  which is available to be

processed during the rescheduling interval of lt ,
'( ), ( )+1, , ( )+ ( ) 1i l i l i l i lj I t I t I t n t= -L

ijTMA : The set of all the machines that can process operation

( )ij lO t . It is predefined and unchanged with lt

_ ijAverage p : The average processing time of operation ( )ij lO t

for the machines in ijTMA . It is unchanged with lt

( )ij lMA t : The set of available machines that can process operation

( )ij lO t  at lt . ( )ij l ijMA t TMAÍ

( )kk
ij lp t : The processing time of ( )ij lO t  on the machine

( ) ( )kk l ij lM t MA tÎ , 1,2, , ( )ij lkk MA t= L  ( ×  means cardinality

of a set)
_ ( )ij lA p t : The actual processing time of ( )ij lO t  on its assigned

machine at lt

( )ij ls t : The starting time of operation ( )ij lO t

( )ij lc t : The completion time of operation ( )ij lO t ,

( )= ( )+ _ ( )ij l ij l ij lc t s t A p t

_ last
-1( )k

lc t : The completion time of the last operation processed

on ( )k lM t before lt

( )k
lq t : Number of operations assigned to the machine ( )k lM t  at

lt , 1,2, , ( )lk m t= L

( )kr
lO t : The rth operation scheduled on the machine ( )k lM t  at lt ,

1, 2, , ( )k
lr q t= L

( )
krO

lp t : The processing time of operation ( )kr
lO t ( )

krO
lc t : The completion time of operation ( )kr

lO t

( )i lR t : The initial release time of job ( )i lJ t during the

rescheduling interval of lt

( )k lA t : The initial available time of machine ( )k lM t during the

rescheduling interval of lt



  

previous rescheduling point -1lt , a new schedule which represents the operations assigned to

each machine and the corresponding sequence is constructed by optimizing the following

objectives with respect to both shop efficiency and stability.

1 2 3 4min =[ ( ), ( ), ( ), ( )]l l l lf t f t f t f tF                                                 (1)

where 1( )lf t  represents make-span which means the elapsed time required for finishing all the

current jobs rescheduled at lt ; 2 ( )lf t  is the tardiness measure which gives penalties to delays

from the due date; 3 ( )lf t  denotes the maximal machine workload which is to avoid assigning

too much work to a single machine; 4 ( )lf t  indicates the stability which measures the deviation

between the new and original schedules.

The formula of each objective is given below.

1 1,2, , ( )1,2, , ( )
( )= max ( ( )) min ( ( ))

ll
l i l i li n ti n t

f t C t S t
==

-
LL

                                                  (2)

2
1,2, , ( )

( )= max(0, ( ) ( ))
l

l i i l i l
i n t

f t C t DD tw
=

× -å
L

                                               (3)
( )

3 =1,2, , ( )
1

( )= max ( ( ))
k l

kr

l

q t
O

l lk m t
r

f t p t
=
å

L

                                                           (4)

4 -1 1 1( )= ( ) ( ) ( ) ( ) ( ) ( )
ij ij ij

l ij l ij l ij l ij l ij l ij l
O rush O delay O delay
starting starting delivery

f t s t s t s t s t c t c tg - -
Î Î Î

- + - + -å å å                   (5)

where -1( )ij ls t  and -1( )ij lc t  are the starting time and completion time of operation ijO  in the

previous schedule generated at the rescheduling point -1lt , respectively.

The make-span measure 1( )lf t  in  Eq.  (2)  is  calculated  as  the  difference  between  the

maximum completion  time and  the  minimal  starting  time of  all  the  current  jobs  at lt . Here,

( )i lC t  represents the completion time of all the current available operations of job ( )i lJ t . This

is because by lt , some operations might have become unavailable due to the occurrences of

dynamic events. For example, the operation 47O  cannot be processed because all of its

alternative machines broke down before or at lt , and have not gotten repaired by lt . The

succeeding operations 48O  and 49O  become unavailable either, because no pre-emption is

allowed. Thus at lt , 4 ( )lC t  is the completion time of the last available operation 46O .

The tardiness measure 2 ( )lf t  in  Eq.  (3)  is  defined  as  the  weighted  sum  of  differences

between the completion time and due date of each job in which its completion time is larger

than  the  due  date.  Similar  to ( )i lC t , ( )i lDD t  is  the  due  date  for  all  the  current  available

operations of job ( )i lJ t . According to this characteristic, it is generated by a modification to

the commonly used total work content (TWK) rule [2]:



  

'
1,2, ,

( ) ( ) 1

( ) * _

i l i l

i l i i ij
j
I t n t

DD t a K Average p
=

+ -

= + å
L

                                              (6)

where ( )i lDD t  is  equal to the sum of the job arrival time and a multiple of the total  average

processing time from the first operation to the last available operation. The multiple iK  is

called the tightness factor and is related to job characteristics. In our research, iK  follows the

normal distribution with the mean of 1.5 and variance of 0.5.

The maximal machine workload 3 ( )lf t  in  Eq.  (4)  is  calculated  as  the  maximum working

time spent at any available machine.

The stability measure 4 ( )lf t  in Eq. (5) has three terms. The first term is the starting time

deviation of operations which are rescheduled to start processing at an earlier time multiplied

by a weight g , where 1g > . It gives more penalties to bring forward the starting time of an

operation, because rush order cost is incurred if the delivery of materials is required earlier

than planned based on the original schedule. Here, we set =1.5g . The second term is the

starting time deviation of operations which are rescheduled to begin processing at a later

time. This case may lead to carrying costs because materials are delivered earlier than

required. The third term is the completion time deviation of operations which have their

ending time delayed, and it causes the deterioration of delivery performance.

It should be mentioned that at the initial time 0t , only three objectives which are make-

span, tardiness and the maximal machine workload (without stability) are to be optimized.

In the dynamic flexible job shop, constraints to the search space change dynamically with

occurrences of random events. They are listed as

follows.

1) Machine set constraints

{ }1 2 ( )( ) ( ), ( ), , ( )
lij l l l m t lMA t M t M t M tÍ L , for 1,2, , ( )li n t= L , '( ), ( )+1, , ( )+ ( ) 1i l i l i l i lj I t I t I t n t= -L    (7)

The machine available set ( )ij lMA t  contains all available machines that can process the

operation ( )ij lO t . It may change at different rescheduling points due to machine breakdowns

or repairs.

2) Processing time constraints

For each machine ( ) ( )kk l ij lM t MA tÎ  ( 1,2, , ( )ij lkk MA t= L ),  a  processing  time ( )kk
ij lp t  is

associated with operation ( )ij lO t . If ( )ij lO t  is assigned to ( )kk lM t  in the schedule at lt , then its

actual processing time _ ( )= kk
ij l ijA p t p  ( 1,2, , ( )li n t= L , '( ), ( )+1, , ( )+ ( ) 1i l i l i l i lj I t I t I t n t= -L ).



  

3) Precedence constraints

      Operations of each job should be processed through the machines in a particular order.

At lt , job ( )i lJ t  consists of a sequence of ' ( )i ln t operations, and each operation ( )ij lO t  can be

processed on any machine out of its machine available set ( )ij lMA t ( 1,2, , ( )li n t= L ,
'( ), ( )+1, , ( )+ ( ) 1i l i l i l i lj I t I t I t n t= -L ).

4)  Initial state constraints

( )-1( ) max( , )
i li l l i I tR t t c= （ ）

for 1,2, , ( )li n t= L (8)

_ last
-1( ) max( , ( ))k

k l l lA t t c t= for 1,2, , ( )lk m t= L (9)

Eq. (8) gives the initial release time of each job. It guarantees that all the operations that

have begun processing before lt  not be considered in the rescheduling model. If ( ) 1i lI t = ,

then ( )-1 0
i li I tc =（ ） . Eq. (9) gives the initial idle time of each machine. It indicates that one

machine is available until it has finished all the operations that have begun before lt . If there

is no operation processed on the machine ( )k lM t before lt , then _ last
-1( )=0k

lc t .

5) No preemption constraints

5.1) No preemption in a single job

An operation of a job cannot be processed until its preceding operations are completed.

If ( )ij lO t  is the first unprocessed operation of job ( )i lJ t  at lt , i.e. ( )i lj I t= , then it should

start processing after the initial release time ( )i lR t :

( ) ( )i l ij lR t s t£ , for 1,2, , ( )li n t= L , ( )i lj I t=                                         (10)

Otherwise,

-1 ( ) ( )l ij li jc t s t£
（ ）

, for 1,2, , ( )li n t= L , '( )+1, , ( )+ ( ) 1i l i l i lj I t I t n t= -L                   (11)

5.2) No preemption in a single machine

An operation can be processed on its assigned machine until the machine has finished its

previous scheduled operations. Suppose at lt , the operation ( )ij lO t  is assigned to the machine

( )k lM t , and it is scheduled as the rth operation on ( )k lM t , i.e., ( ) ( )kr
ij l lO t O t= .

If 1r = , then ( )ij lO t  should start processing after the initial machine available time ( )k lA t :

( ) ( )k l ij lA t s t£ , for 1r = , { }1,2, , ( )lk m tÎ L                                           (12)

If 2r ³ ,  suppose  the  completion  time  of  the th( -1)r  operation scheduled on ( )k lM t  is
( 1)

( )
k rO

lc t
- , then

( 1)
( ) ( )

k rO
l ij lc t s t

-

£ , for 2, , ( )k
lr q t= L , { }1,2, , ( )lk m tÎ L                             (13)



  

5.3) Starting time of an operation

From  Eq.  (10)  -  Eq.  (13),  it  can  be  concluded  that  the  starting  time  of  operation ( )ij lO t
(suppose it is scheduled as the rth operation on ( )k lM t  at lt ) is:

( 1)

'
-1

-1

max( ( ), ( ))           for  ( ), 1

max( ( ), ( ))      for  ( ), 2, , ( )
( )

max( ( ), ( ))        for  ( )+1, , ( )+ ( ) 1, 1

max( ( )

k r

i l k l i l

O k
i l l i l l

ij l
l k l i l i l i li j

li j

R t A t j I t r

R t c t j I t r q t
s t

c t A t j I t I t n t r

c t

-

= =

= =
=

= - =

L

L
（ ）

（ ）

( 1) ', ( ))   for   ( )+1, , ( )+ ( ) 1,  2, , ( )
k rO k

l i l i l i l lc t j I t I t n t r q t
-

ì
ï
ï
í
ï
ï = - =î L L

            (14)

6) Interruption mode constraints

At lt , if one machine breaks down, and an operation is being processed on it, then the

work has to stop and wait until the machine has been repaired. On the other hand, if a broken

machine gets repaired at lt , then the previously interrupted operation (if any) will resume to

be processed on it with the interrupt-resume mode, or be processed from scratch with the

interrupt-repeat mode [1]. In this paper, the interrupt-resume mode is used.

Compared to the existing model in [14], superiorities of our model can be summarized as

follows: (1) Multi-objective handling method. A dynamic multi-objective optimization model

for DFJSSP is constructed, where three efficiency objectives and one stability objective are

optimized simultaneously based on Pareto dominance, instead of being converted into a

single one in [14]; (2) Objective definitions. In our model, considering the dynamic feature of

DFJSSP, objective definitions are formulated specifically for each rescheduling point lt .

Since some unprocessed operations might become unavailable temporarily due to

occurrences of random events (e.g. machine breakdowns), the four objectives (make-span,

tardiness, maximal machine workload and stability) at lt  are defined only for current

available operations. In contrast, only two objectives of make-span and stability were

considered in [14], and the definition of make-span at a specific rescheduling point was not

given; (3) Consideration of dynamic constraints. In the dynamic flexible job shop, in addition

to objectives, constraints to the search space also change dynamically with occurrences of

random events. We classify these dynamic constraints into six categories, and give

straightforward and comprehensible definitions to them which can capture dynamic features

of constraints. In contrast, [14] used binary variables to form constraints, which would

introduce a lot of extra binary parameters. Besides, the initial state constraints, the earliest

starting time of an operation, and interruption mode constraints were not considered in [14];

and  (4)  Definition  of  the  stability  objective.  A  more  sophisticated  definition  for  stability  is

presented which captures the deviation of operation starting time accelerating, starting time



  

delay and completion time delay between two successive schedules, respectively, since they

have different impact on the production plan.

4. A predictive-reactive scheduling method to solve MODFJSSP

4.1 Framework of the predictive-reactive scheduling method

The flowchart of our predictive-reactive scheduling in MODFJSSP is summarized in Fig.
1. At the initial time of the shop floor, a predictive schedule is generated by an MOEA
considering three objectives which are make-span, tardiness and the maximal machine
workload. Then during the implementation of the schedule, at each rescheduling point, an
MOEA-based rescheduling method is triggered to construct a new schedule by considering
four objectives which are make-span, tardiness, the maximal machine workload and stability
simultaneously. The newly generated schedule is implemented in the job shop until the next
rescheduling point comes, at which time the rescheduling method is triggered again. In short,
MODFJSSP is a dynamic process formed by a sequence of multi-objective FJSSPs with
different sets of job operations and machines to be scheduled. This process continues until all
the  jobs  appearing  in  the  shop  floor  have  finished.   At  each  scheduling  point,  a  set  of  non-
dominated solutions are obtained by an MOEA. Thus one solution that fits into the DM’s
preferences is selected by a decision making procedure and implemented in the shop floor.

start

Obtain a set of non-dominated schedules by an MOEA-based
rescheduling method considering four objectives of make-
span, tardiness, maximal machine workload and stability

Select one schedule to be
implemented by the decision

making procedure

Have all the jobs
finished?

Yes
Stop

No

Generate a set of non-dominated predictive schedules
by an MOEA considering three objectives of make-

span, tardiness and maximal machine workload

Select one predictive schedule
to be implemented by the

decision making procedure

Consider jobs & machines that
exist at the start point in shop floor

Move to the next
rescheduling point

Update the job shop state

Fig. 1. Flowchart of the proposed predictive-reactive scheduling in the multi-objective flexible job shop.

4.2 The ε-MOEA-based rescheduling method for MODFJSSP

As indicated in Section 4.1,  MODFJSSP can be seen as a dynamic process formed by a

sequence of multi-objective FJSSPs. However, we should not just treat MODFJSSP as a

sequence of independent static problems and use the existing static MOEAs to solve it. There



  

are mainly four reasons for that: (1) these problems are not independent and they are related

to each other. At each rescheduling point, a new FJSSP with an updated set of job operations

and machines is formed and to be scheduled. Most operations in the current problem are

composed of unprocessed operations left from the previous schedule, and most of the

machines  are  the  same  as  those  of  the  prior  problem;  (2)  in  a  real-world  job  shop  system,

stability and continuity which means there should be a small difference between the new

generated schedule and the original one are very important. So when rescheduling,

arrangements in the previous schedule should be taken into account; (3) MODFJSSP is a

dynamic problem thus some dynamic optimization strategies should be introduced to make

the algorithm adapt to the changing environments quickly. Here, the features of different

dynamic events can be utilized to guide the searching direction; and (4) as indicated in [34], it

is often inefficient to restart the dynamic optimization process with a totally new population.

Thus, we should invent a new dynamic algorithm for solving MODFJSSP, which can capture

the correlations between the sequence of problems, and avoid producing a new schedule

totally different from the original one.

ε-MOEA is an ε-domination based steady-state MOEA. It  employed efficient parent and

archive update strategies, and was validated that it is a balanced algorithm which can produce

good  convergence  and  diversity  with  a  very  small  computational  effort,  especially  when

dealing with many objectives (3 or more) [9]. MODFJSSP studied in this paper is a dynamic

problem with four objectives. In order to solve it in an efficient way, an ε-MOEA-based

rescheduling method is proposed. Meanwhile, to keep the system stability and continuity in

mind, and to exploit the information left from the original schedule and the characteristics of

different dynamic events, our ε-MOEA-based rescheduling method is featured with three

points: (1) some heuristic strategies are incorporated in constructing the initial population of

ε-MOEA at each rescheduling point; (2) new individual representations and two kinds of

problem specific variation operators are designed so that the proposed method can handle

operation sequencing and machine assignment simultaneously; and (3) the stability objective

is considered together with the shop efficiency (make-span, tardiness, the maximal machine

workload) for multi-objective optimization in our approach. The procedure of ɛ-MOEA-

based rescheduling method at the rescheduling point lt ( 0lt t> ) is presented below.

Step 1: Initialization: Construct the initial population ( )lP t by some heuristic strategies

according to the updated job shop state at lt . Then multi-objective evaluations are performed,



  

and all the non-dominated solutions are determined to form the initial archive population

( )lA t . Set the counter of objective evaluation numbers _ct population size= .

Step 2: Population selection: One individual sp  is chosen from the population ( )lP t .

Here, the tournament selection method is used. Two individuals are picked up uniformly at

random from the  population,  and  check  the  domination  of  each  other.  If  one  dominates  the

other, the former will be chosen. Otherwise, one of them is selected at random.

Step 3: Archive selection: One solution e is chosen uniformly at random from the archive

( )lA t .

Step 4: Variation: Two offspring 1sc  and 2sc  are generated from sp and e by two kinds of

problem specific variation operators.

Step 5: Decoding and objective evaluation: Evaluate the offspring individuals 1sc  and 2sc .

Step 6: Update of the population: Offspring individuals 1sc  and 2sc  are included in ( )lP t

using a pop_acceptance procedure.

Step 7: Update of the archive: Individuals 1sc  and 2sc  are included in ( )lA t  using an

archive_acceptance procedure.

Step 8: Termination: If the termination criterion is not satisfied, set 2ct ct= +  and go to

Step 2, else output ( )lA t , and select one solution from ( )lA t  as the implementation schedule

based on a decision making procedure.

In the above Steps 6 and 7,  the pop_acceptance and archive_acceptance procedures are

the same as those in [9]. The termination criterion is the counter ct achieves a predefined

maximum number of objective evaluations. It should be mentioned that at the initial time 0t

of the job shop, the ε-MOEA used to generate a set of predictive schedules is also based on

the procedure introduced above. The differences are that the random population initialization

is used in Step 1 instead of the heuristic population initialization, and when evaluating an

individual, only three objectives (without stability) are considered.

Details of our implementation for the ε-MOEA-based rescheduling method and the

decision making procedure will be discussed below.

4.2.1 Representations

In MODFJSSP, both the operation sequence vector and the machine assignment vector

are used to represent a complete scheduling individual. Fig. 2 gives an example of such a

representation.



  

76 81 69 82 91 77 92 83 93 84O O O O O O O O O Of f f f f f f f f

Fig. 2. An example of the representation of a chromosome.

For the operation sequence vector, a job-based representation [18] is used. All the

operations from the same job are denoted by the job number. Take Fig. 2 as an example.

Suppose at a specific rescheduling point, the operations O69, O76 and O77 from jobs 6 and 7

are left unprocessed from the previous schedule, and there are two new jobs 8 and 9. Thus,

the operation sequence vector contains the job numbers 6, 7, 8, and 9. Each operation is

interpreted according to its order of appearance in the sequence vector. For example, the first

appearance of number 8 represents O81, the second appearance of 8 means O82, and so on. So

the operation sequence vector in Fig. 2 can be interpreted as:

76 81 69 82 91 77 92 83 93 84O O O O O O O O O Of f f f f f f f f

where a bf  means operation a joins the waiting queue of its assigned machine first, then

operation b is scheduled.

      The machine assignment vector represents the assigned machine of each operation. The

order is from the first remaining operation of the oldest job (with the minimum job index) to

the last remaining operation of the newest job (with the maximum job index). For example, in

Fig. 2, suppose the current available machines are 2, 3, 5, 6, 9, and 10. In the machine

assignment vector, the first element of 3 means the first remaining operation O69 of the oldest

job  6  will  be  assigned  to  machine  3,  the  second element  of  6  represents  the  first  remaining

operation O76 of the second oldest job 7 will be assigned to machine 6, and so on. Thus, the

machine assignment vector can be interpreted as:

69 76 77 81 82machine 3, machine 6, machine 5, machine 3, machine 2,O O O O O® ® ® ® ®

83 84 91 92 93machine 2, machine 6, machine 9, machine 10, machine 5O O O O O® ® ® ® ®

where ®  means the operation is assigned to the corresponding machine.

4.2.2 Decoding

For the convenience of objective evaluation, a scheduling solution should be decoded into

the form of Gantt chart. Fig. 3 gives the Gantt chart of the chromosome represented in Fig. 2.

Assume the rescheduling point in Fig. 2 is =10lt , and at =10lt , two operations O68 and O75 in

the previous schedule are being processed on machine 6 and 5, respectively. The predefined

processing time of each operation on the assigned machine is listed in Table 2. From Fig. 2,



  

we can see that the sequence of operations is: 76 81 69 82 91 77(6) (3) (3) (2) (9) (5)O O O O O Of f f f f f

92 83 93 84(10) (2) (5) (6)O O O Of f f , where the number in the parentheses is the machine

assignment  of  each  operation.  The  process  of  constructing  the  Gantt  chart  in  Fig.  3  is

described as follows. First, take the first operation O76 in the operation sequence into account.

Since O76 is also assigned to machine 6, it can be processed until both O75 (its previous

operation  in  the  same  job  7) and O68 (its previous operation in the same machine 6) have

finished due to the no preemption constraints. Then, since the second operation O81 is the first

operation of job 8 and its assigned machine 3 is idle, it is scheduled at =10lt for a processing

time of 0.5 time units. Next, the third operation O69 is to be processed on machine 3 at the

maximum value of the completion time of O68 and O81. The following operations in the

operation sequence are scheduled to the assigned machines following the same method.

Fig. 3. Decoded schedule of the chromosome in Fig. 2.

Table 2 Processing time of each operation on the assigned machine in Fig. 2

operation O76 O81 O69 O82 O91 O77 O92 O83 O93 O84

assigned machine 6 3 3 2 9 5 10 2 5 6
processing time 1.3 0.5 1.8 0.7 0.3 1 0.9 1.3 0.4 0.4

      It should be noted that the idle time insertion method which inserts an operation into the

first available idle time interval of its assigned machine is used to make full use of the

machine resources. For example, O93 goes after O77 on machine 5 according to the operation

sequence in Fig. 2. But in Fig. 3, there is an interval of idle time on machine 5 between the

completion time of O92 (11.2) and the starting time of O77 (11.8). Meanwhile, the processing

time of O93 (0.4) is smaller than the length of the time interval (11.8-11.2=0.6). Thus O93 is

inserted into this interval and begins at the completion time of O92 (11.2). Let ( )lL t  be the

total number of operations to be processed at lt , and W(i, j) be the locus of ( )ij lO t  in the

machine assignment vector. The pseudo code of the decoding procedure is shown in Fig. 4.



  

Procedure: Decoding Procedure
Input: 1 ( )ln tJJ ´ : the array of available jobs at lt , chromosome vs(u), vm(w)

// examples of vs(u), vm(w) is given in Fig. 2, ( )ln t  is the total number of available jobs at lt
Output: a schedule
for i = 1 → ( )ln t

( )JJ ij ← 0; // ( )JJ ij means the number of operations already assigned for job JJ(i)

end for
for u = 1 → ( )lL t // ( )lL t  is the total number of operations to be processed at lt

       i←vs(u), M←vm(W(i, ( )i lI t + ij ) ); // ( )i lI t  is the index of the first unprocessed operation in job ( )i lJ t

       search an available idle time interval on machine M from left to right for operation ( ( ) )i l ii I t jO + ;

if such a time interval is found,
then the operation is inserted there;

  else the operation is scheduled at the end of machine M;
end if
ji ← ji +1

end for
return the schedule;

Fig. 4. Pseudo code of the decoding procedure.

4.2.3 Update of the job shop state

Once the rescheduling procedure is triggered, the shop state should be updated at first.

(i) At lt , information left from the previous schedule should be collected, which includes

the remaining unprocessed operations, and the operations that are being processed on each

machine at lt . Meanwhile, information about new arrival jobs since the previous rescheduling

point -1lt  and the current available machines must also be gathered.

      (ii) Update the machine available set ( )ij lMA t  for all the current operations. By lt , if some

machines have broken down and thus become unavailable, they should be removed from the

machine  set  of  each  operation.  For  a  specific  operation,  if  there  is  no  machine  available  to

process it, then it will not enter the rescheduling model at lt . On the other hand, if a broken

machine has been repaired by lt , it must rejoin the machine set of corresponding operations.

Meanwhile, all the operations that cannot be processed temporarily due to the previous

breakdown of the repaired machine, must be added to the rescheduling model at lt .

      (iii) Update the machine available time ( )k lA t  and job release time ( )i lR t  according to the

initial state constraints (Eq. (8) and (9)) for all the current machines and jobs.

4.2.4 Construction of the initial population in rescheduling

      At each rescheduling point, a new multi-objective FJSSP with an updated set of job

operations and machines is formed and to be scheduled. In order to guide the search of the ɛ-

MOEA-based rescheduling method and accelerate the convergence speed so that the method

can adapt to the new environment quickly, some heuristic methods are incorporated in



  

creating the initial population of ε-MOEA, which makes the proposed rescheduling methods

different from those completely rescheduling approaches that regenerate a new schedule from

scratch [14,33,62].

      (i) Make use of the characteristics of different dynamic events. As indicated in [29],

schedule  repair  refers  to  local  adjustments  of  the  original  schedule,  and  it  can  preserve  the

system stability well. Hence, three schedule repairs are employed here to exploit the dynamic

event characteristics. Firstly, for machine breakdowns, a modification to the partial schedule

repair [1] is designed. All the unaffected operations remain unchanged both for their

machines and starting times. The directly affected operations (previously scheduled on the

broken machine and unprocessed) are moved to another alternative machine if possible, and

the indirectly affected operations are assigned to the same machines as before. Only the

sequences of the affected operations are rescheduled. Secondly, for machine repairs, some

operations are shifted to the repaired machine so as to balance the machine workload. These

operations should satisfy that they can be processed by the repaired machine, and the shift

will not affect the starting time of other operations. Thirdly, for new job arrivals, a new job is

scheduled as soon as one of its alternative machines becomes idle. The result of schedule

repair is called the schedule repair solution.

      (ii) Make use of the history information. At each rescheduling point, information left

from the previous schedule is regarded as the history information which can be exploited.

The sequence and machine assignment vector of all the remaining unprocessed operations in

the old schedule is called the history solution.

      (iii) Make use of the heuristic machine assignment rules. Two machine assignment rules

following the approach of localization [22] are adopted. The first rule searches for the global

minimum in the processing time table [14]. Then it fixes that assignment, and updates the

machine workload on every other operation. The second rule randomly permutes jobs and

machines in the processing time table at first. Then for each operation, it finds the machine

with the minimum processing time, fixes that assignment, and updates the machine workload.

The first rule determines the machine assignment for each operation uniquely, while the

second rule finds different assignments in different runs of the rules.

(iv) Incorporation of random individuals. In order to introduce diversity, some random

individuals are created in the initial population. Sequence vectors are generated by permuting

all the current operations at random. For half of these random individuals, machine

assignments are determined according to the two rules described above. Each operation in

another half is assigned to a randomly chosen machine from its machine available set.



  

      In this paper, 20% of the initial population are formed with the history solution and its

variants by mutation (as introduced in Section 4.2.5), 30% with the schedule repair solution

and its variants, and 50% with the random individuals.

4.2.5 Problem specific genetic operators

I) Sequence based variation operators

      In order to preserve the feasibility of the generated offspring, a specialized crossover

operator is designed for the operation sequence vectors in the individuals. It works as follows.

      Step i: All the current available jobs at the rescheduling point lt  are divided uniformly at

random into two groups: G1 and G2.

      Step ii: The operations from the first job group G1 are picked from Parent1, and recorded

in a new array R1 as their original positions in Parent1. The operations from G2 are picked

from Parent2, and recorded in a new array R2 as their original positions in Parent2.

Step iii: All of the recorded operations in R1 and R2 are merged according to their original

sequences to generate an offspring.

Another offspring is generated using the same method described above, except that the

operations from G1 are picked from Parent2, and the operations from G2 are picked from

Parent1. This procedure is illustrated in Fig. 5. When merging, if two operations have the

same positions in the parents, such as jobs 6 and 7 in the third order of each parent in Fig. 5,

their sequence in the offspring is generated uniformly at random.

Fig. 5. An example of the crossover for the operation sequence vectors in the scheduling individuals.

The sequence based mutation operator is the commonly used swap and insert operators.

The swap operator selects two operations in the operation sequence vector at random, and

exchanges the positions of them. The insert operator inserts one randomly selected operation

before another one. When performing a mutation on an individual, either the swap or the

insert is chosen with the possibility of 0.5.

It should be noted that when performing the sequence based variation operators, the

machine assignment vector is kept unchanged. Since our representation of the machine

assignment vector given in Section 4.2.1 is not related to the operation sequence, the

variation of the sequence vector will not affect it. This will not cause the potential

infeasibility problem when performing the swap or insert operator, which would otherwise be



  

faced if we had used the representation where each machine corresponds to each operation in

the operation sequence vector as in [14].

II) Machine based variation operators

      In the representation of the machine assignment vector given in Section 4.2.1, the

machines in the same positions of two parents correspond to the same operation. So the

traditional single point crossover can be used. The mutation operator is performed as follows.

An allele is chosen randomly, and the machine on which the operation is to be processed is

replaced with one of the alternative machines. Similarly, when performing the machine based

variation operators, the operation sequence vector is kept unchanged in the offspring.

4.2.6 Parameters

      We also apply NSGA-II and SPEA2 to explore the Pareto front of non-dominated

schedules at each rescheduling point in order to understand the impact of different algorithms

on the performance of MODFJSSP. The population initialization and variation operators

introduced above are also used in NSGA-II and SPEA2.

Parameters used by the three MOEA-based rescheduling methods are given in Table 3.

SPEA2 had a tournament size of 2 for mating selection and the archive size of 100. Each

algorithm stopped after 20000 objective evaluations had been performed.
Table 3 Parameter settings of MOEA-based rescheduling methods

Population size                                                   100
Sequence based crossover possibility                 0.9×0.5=0.45
Machine based crossover possibility                  0.9×0.5=0.45
Sequence based mutation possibility                  0.2×0.5=0.1
Machine based mutation  possibility                  0.2×0.5=0.1
maximum number of   objective evaluations      20000

4.3 Decision making in DFJSSP

      At each rescheduling point, once a set of trade-off solutions are found by the MOEA

method, one solution that fits into the DM’s preferences should be selected, and implemented

in the shop floor. Here, a decision making method inspired by the Analytic Hierarchy Process

(AHP) [35,43] and the Multi-attribute Utility Theory (MAUT) [16] is proposed, and the

procedure is given as follows.

  Step i: Construction of the pairwise comparison matrix.

      Suppose there are N_O objectives to be optimized. As in AHP, the pairwise comparison

questions of “How important is the objective if  relative to jf ?” ( , 1,2, , _i j N o= L , j i> ) are

answered by the DM a priori. So there are totally _ ( _ 1) / 2N o N o× -  comparisons. The

answers use the following nine-point scale which describes the degree of the preference for

one objective versus another [16],



  

1, Equal importance or preference
3, Moderate importance or preference of one over another
5, Strong or essential importance or preference
7, Very strong or demonstrated importance or preference
 9, E

ijc =

xtreme importance or preference
2n 1, 2,3,4 between the intensity of importance of 2 1 and 2 1n n n

ì
ï
ï
ïï
í
ï
ï
ï

= - +ïî ， ，

where ijc  denotes the value derived by comparing the objective if  versus jf . And we have

1ji ijc c=  and 1iic =  ( , 1,2, , _i j N o= L ) to maintain the consistency of judgements about any

pair of objectives. Then, the pairwise comparison matrix 1 _   _( )ij N o N oC c ´=  can be constructed.

Step ii: Estimation of the weight vector for multiple objectives.

      A weight vector 1   _( )i N ow w ´=  should be estimated so that the entries =ij i jW w w  in the

matrix _   _( )ij N o N oW W ´=  will provide the best consistency with the judgement ijc  in the

pairwise comparison matrix 1C  ( , 1,2, , _i j N o= L ). Here, the logarithmic least squares method
[36] is adopted. First, the geometric mean of each row in the matrix 1C  is calculated. Then
normalize each geometric mean by dividing it by the sum of them.
      Step iii: Normalization of the objectives of trade-off solutions.

      For the objective if  ( 1,2, , _i N o= L ), find out the maximum max
if  and minimum min

if

among all the trade-off solutions obtained at current rescheduling point. Then for each

solution x, the normalized objective _ ( )in f x  is calculated as:
max max min_ ( )=( ( )) / ( )i i i i in f x f f x f f- - , 1,2, , _i N o= L                           (15)

Since all the four objectives in the model of MODFJSSP are to be minimized, while the

utility function in the MAUT has to be maximized, in Eq. (15), ( )if x  is not only normalized

to locate in [0, 1],  but also converted so that the bigger the value of _ ( )in f x , the better it is.

      Step iv: Calculation of the utility value for each trade-off solution.

      In [25], it was pointed out that the optimal method to find the utility value for each trade-

off solution x, is a weighted geometric means of its multiple objective values:

_
_

1

( ) _ ( )
N ow wi ii

N o

i
i

U x n f x å

=

=Õ                                                         (16)

      Step  v:  Choose  the  solution  with  the  maximum utility  value  as  the  final  schedule  to  be

implemented.

      It should be mentioned that the execution of the above Steps i and ii can be either before

the running of the dynamic job shop, or performed dynamically. In the first way, the pairwise

comparison matrix and the weight vector for multiple objectives are determined beforehand

and remain unchanged during the dynamic process. Only Steps iii, iv, and v are performed at



  

each rescheduling point. In the second way, the preferences of DM are allowed to be changed

dynamically, which can be realized through a graphical user interface, and DM can interact

with the job shop running process. To simplify the problem, the first way is employed in this

paper. Suppose the pairwise comparison matrix for the four objectives given in Section 3.2 is

1 4  4

1 2 3 1
1 2 1 2 1 2

( ) =
1 3 1 2 1 1 3
1 2 3 1

ijC c ´

é ù
ê ú
ê ú=
ê ú
ê ú
ë û

. Then the weight vector can be calculated as

1 4( ) [0.3512, 0.1887, 0.1089, 0.3512]iw w ´= = .

5 Experimental studies

5.1 Dynamic job shop simulation model

      In  order  to  validate  the  effectiveness  and  efficiency  of  our  proposed  method,  a  realistic

job shop has been simulated. The characteristics of the simulation were synthesized from

literature ([2,5,33]). All the experiments were performed in the software of MATLAB 2010a

on a personal computer with Intel core i5, 3.2 GHz CPU and 4 GB RAM.

      It was point out that a job shop with more than six machines presents the complexity

involved in large dynamic job shop scheduling [2]. In this paper, a job shop consisting of ten

machines (m=10) is simulated to evaluate the performance of methods.

The number of operations per job and the number of machines that can process each

operation both vary uniformly in the interval of [1, m]. The set of alternative machines that

can process each operation are randomly selected from { }1, 2, ,mL . The processing time of

each operation follows the exponential distribution with the mean of 1.

For each machine, the time interval between fails (TBF) and the time to repair (TTR) are

also assumed to follow an exponential distribution. To infuse realism into the simulation,

each machine was assigned different mean time between failure (MTBF) and mean time to

repair (MTTR). MTBF and MTTR vary uniformly in [100, 300] and [20, 120], respectively.

These values were chosen such that on average, a machine is available for 130 time units,

then breaks down and gets repaired for 70 time units. Hence, a machine’s availability is 65%.

      Simulation starts with a 10×10 static flexible job shop problem, where the initial numbers

of jobs and machines are both 10. Then new jobs arrive following the Poisson distribution

[19], so the time between new job arrivals is distributed exponentially. Suppose the mean

time between job arrivals (MTBJA) is 0.625. New jobs are assigned random weights such that

the weights of 20% of jobs are 1, 60% are 2, and 20% are 4 [26]. Here, jobs with weight 1



  

and weight 2 are of less importance and average importance, respectively, both of which are

considered as regular jobs. Jobs with weight 4 are urgent jobs which are of high importance.

      Simulation  continues  until  the  number  of  jobs  which  have  arrived  at  the  shop  floor

reaches 1240. As in [33], to eliminate transient effects, all dynamic events occurring during

the interval of last 1000 new job arrivals are considered to evaluate the statistical

performance measures in the dynamic environment.

      One dynamic flexible job shop instance was generated using the parameters introduced

above, and it was used as the problem instance in all the following experiments. The data of

the instance is provided in Appendix A.

5.2 Pareto fronts of the evolved schedules at rescheduling points

      At each rescheduling point, a set of non-dominated solutions was evolved by an MOEA-

based rescheduling method. In order to demonstrate the trade-offs among these solutions, one

rescheduling point was selected at random and taken as an example. At =344.2344lt ,

machine 7 broke down, and only machines 1, 4, 5, 8, 10 were available. By this time instant,

544 jobs had already arrived in the shop floor, and there were totally 26 jobs with 116

operations  left  to  be  processed.  30  independent  runs  of  each  of  the  three  MOEA-based  (ɛ-

MOEA, NSGA-II, and SPEA2) rescheduling methods were performed. The evolved Pareto

fronts in each run of each algorithm were combined, and the non-dominated solutions were

determined from them. Since there are totally four objectives to be optimized, the obtained

aggregated Pareto front cannot be plotted graphically. We pick three objectives from the four

in turn, and give the 3-D plot of them respectively in Fig. 6. Firstly, it is obvious from Fig.

6(b)(c)(d) that the efficiency objectives are seriously conflicted with the stability measure.

When tracing along the Pareto front to find solutions that have high efficiency (small make-

span, tardiness and workload), it can be observed that the stability measure becomes worse.

Secondly, it can be seen from Fig. 6(a) that given a similar value of workload, there is also a

slight conflict between the objectives of make-span and tardiness. A smaller make-span

normally leads to a larger tardiness. Thirdly, Fig. 6(c) suggests that given a similar value of

stability, there is little conflict between the make-span and the workload, which means that a

small make-span requires a small maximal workload. This is reasonable because a small

make-span  implies  full  use  of  the  resources  to  finish  all  the  current  operations  as  soon  as

possible, thus the workload balance among different machines can be achieved. All the above

observations suggest that solutions that provide better performance of shop efficiency will

result in the deterioration in the system stability. There is no solution that can simultaneously



  

optimize all the considered objectives.
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Fig. 6. Pareto front of the non-dominated solutions plotted on three of the four objectives at the rescheduling point =344.2344lt .

Table 4 gives several examples of the objective vectors selected from the aggregated

Pareto front. A solution may perform well for one objective, but give bad results for others,

such as Solution1 - Solution4. And one solution may have a ‘not bad’ value on each objective,

which means a good compromise among all the objectives, such as Solution5 – Solution7.

Pareto front produced by the MOEA-based method can provide the DM with a full

knowledge about the various trade-offs among multiple objectives. It is helpful for him/her to

make an informed decision about the ‘best compromise’ with regards to his/her preference.
Table 4 Several examples of objective vectors selected from the aggregated Pareto front at the rescheduling point =344.2344lt

[f1, f2, f3, f4]
Solution1 [18.55,334.36,16.94,29.53]
Solution2 [24.24,335.56,19.63,14.35]
Solution3 [18.78,331.72,16.91,37.06]
Solution4 [21.75,327.77,17.99,35.21]
Solution5 [19.67,330.84,16.97,18.85]
Solution6 [18.88,334.08,17.09,23.63]
Solution7 [20.08,329.16,17.70,20.91]

5.3 Comparisons of the MOEA-based rescheduling methods

5.3.1 Performance measures

      Four popular metrics are employed to evaluate the performances of MOEA-based

methods. The first one is the hypervolume ratio (HVR) [41]. The hypervolume metric HV

(a) Pareto front plotted on make-span,
tardiness, and workload

(b) Pareto front plotted on make-span,
tardiness, and stability

(c) Pareto front plotted on make-span,
workload and stability

(d) Pareto front plotted on tardiness,
workload and stability



  

measures the size of the objective space dominated by the obtained non-dominated front

PFknown [65], and HVR is  the ratio of HV and the hypervolume of the reference Pareto front

PFref  . The second one is the Generational Distance (GD), which measures how far PFknown

from PFref is [42]. The third one is Spacing which measures the distance variance of

neighbouring vectors in PFknown [37].  The  smaller Spacing is,  the  better  the  distribution

uniformity of PFknown is. The fourth one is Spread, which measures the extent of spread

achieved among the obtained solutions and the non-uniformity in the distribution of PFknown .

The  definition  of Spread in [10] was used for bi-objective problems. As to problems with

three or more objectives, a modified Spread is given in Eq. (17):
_ ' '

1 1

_ '

1

PFN o n

j ij i

N o

j PFj

df d d
Spread

df n d
= =

=

+ -
=

+ ×

å å
å

                                                (17)

where jdf  is the Euclidean distance between the best solution on the jth objective and its

nearest solution in PFknown (i.e., the boundary solution), nPF is  the  number  of  vectors  in

PFknown, '
id is the Euclidean distance from the ith vector of PFknown to its nearest neighbour in

PFknown, and 'd  is the mean of all '
id . A wide and uniform spread of solutions in PFknown will

result in a small value of Spread.

Because the true Pareto front is unknown in MODFJSSP, PFref is obtained by merging

the solutions found during all the independent runs of three MOEA-based methods, and

determine the non-dominated solutions from them. The reference point in HVR is formed

with the worst objective values observed in all the optimization runs.

5.3.2 Performance comparisons of MOEA-based rescheduling methods

Performances of the Pareto fronts produced by the three MOEA-based methods were

compared. First, results in the initial static FJSSP are given. Then the overall performances of

the algorithms across the rescheduling points in the dynamic job shop are presented.

I) Performance comparisons in the initial 10×10 static FJSSP

      At the initial time 0 0t = , there were totally 50 operations from 10 jobs to be processed on

10 machines (data is provided in Appendix A). Three objectives of make-span, tardiness and

maximal machine workload were to be optimized. 30 independent runs of each MOEA were

performed, and the generated Pareto fronts of each run were recorded for statistical tests.

      The performance indicators of three MOEA-based methods are shown in Fig. 7. All the

objective values of Pareto fronts obtained by each algorithm were normalized by the

maximum and minimum value found on the corresponding objective. To significantly



  

compare all the algorithms, Wilcoxon signed-rank tests with significance level of 0.05 were

employed and the results were given in Table 5. When the statistical test indicated that there

was significant difference between A and B,  the  effect  size  which  quantifies  how  large  the

difference is between two data sets was checked. The effect size of Cohen’s d [7] was used,

and it was calculated using the pooled standard deviation [40]:

2 2

( )

2

A B

A B

mean meand
std std

-
=

+
                                                             (18)

where iimean  denotes the average value on the considered metric obtained by algorithm ii in

the 30 independent runs, and iistd denotes the corresponding standard deviation, { },ii A BÎ .

Average CPU time consumed by each of the three methods, and the corresponding

standard deviation in the 30 runs in the initial 10×10 static FJSSP are listed in Table 6.

It can be seen that HVRs produced by ε-MOEA and NSGA-II are significantly better than

that  of  SPEA2.  The  values  of GD and Spread obtained by ε-MOEA are significantly better

than  those  of  NSGA-II  and  SPEA2.  In  terms  of Spacing, there is no significant difference

among  the  three  methods,  but  the  standard  deviation  of Spacing obtained by ε-MOEA is

slightly smaller than those obtained by NSGA-II and SPEA2. In addition, the computational

cost of ε-MOEA is much smaller than that of NSGA-II and SPEA2. The experimental results

show that ε-MOEA  can  produce  a  set  of  scheduling  solutions  with  better  convergence  and

distribution within a shorter period of time. Thus, it is the most competitive algorithm for the

initial 10×10 static FJSSP studied in this paper.
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Fig. 7. Performances in the initial static FJSSP. (HVR is to be maximized, and GD, Spacing and Spread are to be minimized)



  

Table 5 Effect size and statistical tests of performances obtained by three MOEA-based methods in the initial static FJSSP. The sign of

‘+/−/≡’ in A vs. B indicates that according to the metric considered, algorithm A is significantly better than B, significantly worse than B, or

there is no significant difference between A and B based on the Wilcoxon signed-rank test with the significance level of 0.05. The p-values

are included in the parentheses. If there is no significant difference between two algorithms, the effect size is not given and ‘− −’ is used.

HVR GD Spacing Spread
ε-MOEA vs.

NSGA-II
effect size

(p-value) sign
− −

 (0.2210) ≡
0.7109

(3.3173E-004) +
− −

(0.2059) ≡
0.9428

 (0.0020) +
ε-MOEA vs.

SPEA2
effect size

(p-value) sign
0.8033

(0.0039) +
1.2426

(8.9187E-005) +
− −

(0.5999) ≡
0.9306

(0.0068) +
SPEA2  vs.
NSGA-II

effect size
(p-value) sign

0.5634
(0.0026) −

− −
(0.1020) ≡

− −
(0.3493) ≡

− −
(0.7813) ≡

Table 6 CPU time comparisons of three MOEA-based methods in the initial 10×10 static FJSSP.

Running Time (sec)
mean std.

ε-MOEA 28.3966 0.5884
NSGA-II 65.9488 3.2107
SPEA2 161.1220 15.0371

II) Performance comparisons in the dynamic job shop

This section gives the overall performance comparisons of the three MOEA-based

rescheduling methods during the dynamic process of the job shop. In this experiment, one

complete run of the dynamic job shop instance (data is provided in Appendix A) was

performed, and there were totally 220 rescheduling points. At each rescheduling point, 30

independent  runs  of  each  MOEA were  performed.  In  this  way,  it  can  be  ensured  that  three

MOEA-based methods were compared in the same job shop scenarios. All the solution sets

obtained in 30 runs of three methods were merged, and the non-dominated solutions were

determined from them to form the reference Pareto front at the specific rescheduling point.

Then the performance values (HVR, GD, Spacing, Spread) of each MOEA in each run at each

rescheduling point could be obtained, and the overall performances across the rescheduling

points in MODFJSSP were compared.

    Firstly, the average performance values across rescheduling points were calculated. For

each run of each MOEA, the performance values were averaged over all the rescheduling

points during the interval of last 1000 new job arrivals. Thus, 30 mean values could be

obtained for each MOEA on each performance metric (because the number of runs was 30

here). Then the 30 mean values were averaged, and the corresponding mean standard

deviation across rescheduling points was calculated by means of the pooled standard

deviation as follows [40]:

1

2 2 2
1

1

jj n
pooled

std std std
std

n
+ + + +

=
L L

                                                         (19)

where 1n  is  the  number  of  runs  (30  in  our  case), jjstd  is the standard deviation across

rescheduling points in the jjth run. The obtained average performances across rescheduling



  

points are shown in Table 7(a). It can be seen that ε-MOEA achieves the best mean value on

the metrics HVR, GD and Spacing, and SPEA2 has the best Spread value. The mean standard

deviation obtained by each method is rather close to each other.

Secondly, with the aim of investigating to what extent the overall performances of

different methods differ from each other, they were compared by the Wilcoxon signed-rank

test  with  the  significance  level  of  0.05,  and  the  effect  size  of  Cohen’s d was checked when

there was a significant difference between them. The results are presented in Table 7(b). It

can be found that HVR and GD obtained by ε-MOEA are significantly better than those of

NSGA-II  and  SPEA2.  Especially,  the  effect  size  on GD is  larger  than  that  on HVR, which

shows that ε-MOEA is very good at obtaining better GD performance. These results indicate

that ε-MOEA has the best convergence performance among the three MOEA methods. In

terms of the distribution metrics, Spacing produced by ε-MOEA is significantly better than

that of NSGA-II, and there is no significant difference between ε-MOEA and SPEA2.

However, the effect size of ε-MOEA versus  NSGA-II  is  slightly  larger  than  that  of  SPEA2

versus NSGA-II. For Spread, SPEA2 is significantly better than ε-MOEA and NSGA-II,

which is consistent with the result of average performances. The reason for the relatively

poor performance of ε-MOEA on Spread is  that  this  metric  quantifies  the  extent  of  spread

achieved among the obtained solutions and it is biased towards the boundary solutions. Since

ε-MOEA employs ε-dominance in the archive update procedure, it will not be usually

possible to obtain the extreme corners of the Pareto-optimal front [9].

The mean CPU time of three MOEA-based methods at each rescheduling point is plotted

in  Fig.  8,  which  shows  that  the  computational  time  cost  by ε-MOEA is much smaller than

that of NSGA-II and SPEA2 throughout all the rescheduling points.

From experimental results in both initial static FJSSP and the dynamic flexible job shop,

it can be concluded that the ε-MOEA-based rescheduling method is most competitive among

the three algorithms for evolving efficient non-dominated scheduling solutions in the problem

instance studied in this paper, since it can achieve the best convergence and find a good

distribution of solutions in a much less computational time than the other two MOEA-based

methods (i.e.,  NSGA-II and SPEA2). Reasons for a better compromise of ε-MOEA between

convergence, diversity and computational efficiency are [9]: (1) it adopts careful strategies in

choosing mating partners from two co-evolving populations (an EA population and an

archive population) and in accepting the generated offspring to each population; (2) The ε-

dominance criterion used can help reduce the cardinality of Pareto-optimal region and

maintain a good distribution of the solutions, which is useful when solving the many-



  

objective problems; and (3) its parent population is updated in a steady-state manner, thus it

has higher chances of producing good offspring solutions, and high computational speed can

be achieved. In contrast, NSGA-II and SPEA2 are two generational algorithms. The nearest

neighbour density estimation approach makes SPEA2 find a well distributed set of solutions

but at the expense of very large computational time, and it has been validated that the

crowding operator in NSGA-II is not adequate in keeping a good distribution of solutions in

many-objective problems [9].
Table 7 Comparisons of the overall performances of MOEA methods across rescheduling points in the MODFJSSP instance

(a) Average performances across rescheduling points (HVR is to be maximized, and GD, Spread and Spacing are to be minimized. Here,

'std.' is short for the pooled standard deviation. The best of mean value and std. on each metric is in red/yellow (dark / light grey)).

Average Performances across Rescheduling Points HVR GD Spacing Spread

ɛ- MOEA
mean
std.

0.9206
0.1568

0.0648
0.1117

0.0621
0.0873

0.6294
0.3029

NSGA-II
mean
std.

0.9068
0.1638

0.1004
0.1285

0.0683
0.0955

0.6233
0.3006

SPEA2
mean
std.

0.9149
0.1597

0.0786
0.1097

0.0641
0.0868

0.5813
0.3109

(b) Effect size and statistical tests of MOEA methods across rescheduling points

Effect Size and Statistical Tests
across Rescheduling Points

HVR GD Spacing Spread

ɛ-MOEA vs.
NSGA-II

effect size
(p-value) sign

0.0866
(0.0020) +

0.2961
(0.0020) +

0.0678
(0.0059) +

− −
 (0.5566) ≡

ɛ-MOEA vs.
SPEA2

effect size
(p-value) sign

0.0362
(0.0273) +

0.1250
(0.0020) +

− −
(0.4316) ≡

0.1568
(0.0020) −

SPEA2  vs.
NSGA-II

effect size
(p-value) sign

0.0504
(0.0020) +

0.1826
(0.0020) +

0.0464
(0.0273) +

0.1375
(0.0020) +
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Fig. 8. CPU time comparisons of three MOEA-based methods at each rescheduling point in the MODFJSSP instance.

5.4 Comparisons to existing dynamic scheduling methods

With the aim of further validating the effectiveness of the proposed MOEA-based

rescheduling methods in MODFJSSP, we compared them with the commonly used

completely reactive scheduling methods, which assigns operations to different machines

according to a specific machine assignment rule, and once a machine becomes idle and there

are operations in its waiting queue, it chooses the operation with the highest priority to

process based on a heuristic priority dispatching rule.



  

Four popular priority dispatching rules (PDRs) which are Shortest Processing Time (SPT)

[31], First-In-First-Out (FIFO), Last-In-First-Out (LIFO) and the random dispatching rule

were employed. At each rescheduling point, there may be some operations which need to be

assigned to an available machine. For example, the operations of the new arrival jobs, the

operations that are waiting in the queue of the broken machine, and some previously

unavailable operations become available again due to the machine repairs. We considered

three machine assignment rules (MARs) for such operations. The first one finds the available

machine  with  the  minimum  processing  time  for  each  operation,  then  fixes  that  assignment,

and updates the machine workload. The second one assigns each operation to its alternative

machine  which  has  the  minimum  workload  currently.  The  third  one  chooses  an  alternative

machine at random for each operation. We call them MAR1, MAR2, and MAR3 in short.

      Combinations  of  four  PDRs and  three  MARs were  evaluated.  Since  the  principle  of  the

completely reactive scheduling (make local decisions once a machine becomes free) is

different from that of the proposed MOEA-based methods (make global decisions and revise

the schedule at each rescheduling point), the objectives in Eq. (2) - (5) which are defined for

each rescheduling point are not applicable to the completely reactive scheduling methods.

Thus, we compared three other performances which are finishing time of all the jobs,

weighted average job tardiness, and average machine workload during the whole running

process of the dynamic flexible job shop. 30 independent runs of the dynamic job shop

instance (data is provided in Appendix A) were replicated for each combination of the PDRs

and MARs, and also for the three MOEAs. Average results are listed in Table 8.

It can be found that compared to the completely reactive scheduling, the proposed

MOEA-based rescheduling methods make the job shop finish processing all the jobs in a

much smaller time. Meanwhile, they have a much less average delay to the due dates of the

jobs. In terms of the average machine workload, the combinations containing MAR1 achieve

better performance than MOEA-based methods. The reason is that MAR1 always assigns an

operation to its alternative machine with the minimum processing time, which tends to reduce

the  total  workload  of  all  the  machines.  But  on  the  other  hand,  it  may  lead  to  long  waiting

queues in specific machines, and idleness of the others, which results in a long finishing time

of all the jobs and a large tardiness. Considering three MOEA-based methods, the

performance vector obtained by ε-MOEA dominates that generated by NSGA-II or SPEA2.

Overall, compared to the traditional completely reactive scheduling, the proposed MOEA-

based rescheduling methods can improve the dynamic job shop efficiency to a large extent.



  

Table 8 Comparisons of the MOEA-based rescheduling methods against the existing dynamic scheduling methods

Scheduling Methods / Performance
Finishing Time of

All the Jobs
Weighted Average

Job Tardiness
Average Machine

Workload
MAR1 + SPT 1436.55 ± 2.40E-13 38.34 ± 0.77 372.88 ± 1.44
MAR2 + SPT 1440.15 ± 0.00033 66.98 ± 0.68 406.11 ± 1.90
MAR3 + SPT 1437.30 ± 1.04 83.29 ± 2.46 602.61 ± 3.91
MAR1 + FIFO 1436.56 ± 2.40E-13 46.39 ± 1.06 385.60 ± 1.91
MAR2 + FIFO 1440.21 ± 0.054 113.38 ± 1.49 436.42 ± 1.83
MAR3 + FIFO 1428.00 ± 14.74 183.44 ± 10.53 642.49 ± 6.29
MAR1 + LIFO 1436.56 ± 2.40E-13 43.30 ± 1.09 386.18 ± 1.91
MAR2 + LIFO 1440.15 ± 0 92.11 ± 2.62 426.99 ± 3.68
MAR3 + LIFO 1612.42 ± 246.40 163.16 ± 7.54 639.83 ± 6.40

MAR1 + random dispatching rule 1436.55 ± 0.032 44.51 ± 0.89 384.68 ± 1.91
MAR2 + random dispatching rule 1439.34 ± 1.76 110.21 ± 2.70 434.59 ± 3.90
MAR3 + random dispatching rule 1427.97 ± 19.92 179.72 ± 9.50 639.70 ± 6.74

ɛ-MOEA based rescheduling method 875.25 ± 0.18 18.43 ± 0.38 404.70 ± 3.15
NSGA-II based rescheduling method 876.31 ± 2.06 18.54 ± 0.38 409.67 ± 3.74
SPEA2 based rescheduling method 880.29 ± 1.09 18.73± 0.48 407.61± 3.76

5.5 Comparisons to existing static algorithms

With the aim to observe the consequence caused by using the existing static algorithms to

solve MODFJSSP, our ε-MOEA-based rescheduling method is compared with two classical

static  MOEAs  (we  call  them  static  NSGA-II  and  static  SPEA2  here).  It  is  assumed  that

MODFJSSP can be divided into some static FJSSP, and the two static MOEAs are run many

times to solve each static problem. Here, static NSGA-II and static SPEA2 are different from

the ones employed in Section 5.3.2 in that: (1) the initial population are generated at random

and  no  heuristic  strategies  are  incorporated  at  each  rescheduling  point,  so  the  two  MOEAs

regenerate a new schedule from scratch; and (2) stability is not considered as an objective and

only three shop efficiency related objectives (make-span, tardiness, the maximal machine

workload) are optimized. On the other hand, to make static NSGA-II and static SPEA2 solve

each static FJSSP, individual representations in Section 4.2.1 and two problem specific

variation operators designed in Section 4.2.5 are used in static NSGA-II and static SPEA2.

The comparison method in the dynamic job shop is similar to that used in Section 5.3.2.

Average performances, effect size of Cohen’s d, and Wilcoxon signed-rank tests of our ε-

MOEA-based rescheduling method, static NSGA-II and static SPEA2 across rescheduling

points  are  given  in  Table  9.  It  can  be  seen  from Table  9(a)  that ε-MOEA achieves the best

mean value on all the four metrics HVR, GD, Spacing, and Spread. It can be found from

Table 9(b) that HVR and GD obtained by ε-MOEA are significantly better than those of static

NSGA-II and static SPEA2. These results indicate that ε-MOEA has much better

convergence performance than static MOEAs. In terms of the distribution metrics, Spacing

produced by ε-MOEA is significantly better than that of static NSGA-II, and there is no

significant difference between ε-MOEA and static SPEA2. However, the effect size of ɛ-



  

MOEA versus static NSGA-II is slightly larger than that of static SPEA2 versus NSGA-II.

For Spread, ε-MOEA is significantly better than that of static NSGA-II and static SPEA2.

      From above comparison results, it can be concluded that the proposed heuristic

population initialization and simultaneous consideration of the stability and efficiency in the

job  shop  are  very  useful  for  solving  MODFJSSP,  since  they  can  capture  the  correlations

between the sequence of multi-objective FJSSPs and guide the search of ε-MOEA so that our

ε-MOEA-based rescheduling method can find the solution to the new problem effectively and

efficiently. In contrast, each static FJSSP is regarded as independent by static NSGA-II and

static SPEA2 and they just search the large decision space from scratch each time, so their

searching efficiency is highly reduced.
Table 9 Comparisons of the overall performances of ε-MOEA-based rescheduling method, static NSGA-II and static SPEA2 across

rescheduling points in the MODFJSSP instance

(a) Average performances across rescheduling points (HVR is to be maximized, and GD, Spread and Spacing are to be minimized. Here,

'std.' is short for the pooled standard deviation. The best of mean value and std. on each metric is in red/yellow (dark / light grey)).

Average Performances across Rescheduling Points HVR GD Spacing Spread

ε-MOEA-based rescheduling method
mean
std.

0.9206
0.1568

0.0648
0.1117

0.0621
0.0873

0.6294
0.3029

static NSGA-II
mean
std.

0.8375
0.1644

0.2339
0.1898

0.1041
0.0929

0.7134
0.3792

static SPEA2
mean
std.

0.8586
0.1608

0.1673`
0.1057

0.0641
0.0893

0.6901
0.3493

(b) Effect size and statistical tests of ε-MOEA-based rescheduling methods, static NSGA-II and static SPEA2 across rescheduling points

Effect Size and Statistical Tests
across Rescheduling Points

HVR GD Spacing Spread

ε-MOEA vs.
NSGA-II

effect size
(p-value) sign

0.4999
(0.0020) +

1.0731
(0.0039) +

0.4387
(0.0054) +

0.3626
 (0.0098) +

ε-MOEA vs.
SPEA2

effect size
(p-value) sign

0.3729
(0.0020) +

0.6524
(0.0488) +

− −
(0.1602) ≡

0.3093
(0.0020) +

SPEA2  vs.
NSGA-II

effect size
(p-value) sign

− −
(0.1602) ≡

0.6260
(0.0137) +

0.2691
(0.0059) +

− −
(0.4922) ≡

5.6 Further analysis

      In  this  section,  we  will  investigate  the  effectiveness  of  some strategies  employed  in  the

proposed MOEA-based rescheduling methods. All the experiments in this section were

performed in the same job shop instance as before.

5.6.1 Influence of the stability objective

      In this section, we will study the impact that the stability objective has on the

performance of the MOEA-based methods. Results from two types of approaches were

compared. There were four objectives in approach1, and in approach2 only three objectives

on the shop efficiency were considered. Both approaches used the three MOEA-based

methods (ε-MOEA, NSGA-II, and SPEA2). First, at each rescheduling point, 30 independent

runs of each MOEA in approach1 were performed. All the solution sets obtained in each run



  

of each MOEA were merged, and the non-dominated solutions at each rescheduling point

were determined. Then they were averaged along each of the four objectives, and plotted in

Fig. 9. The same method was also adopted for approach2 (only three objectives on efficiency

were considered in the non-domination comparisons in MOEA-based methods. The stability

values were evaluated only for the obtained non-dominated solutions to compare with

approach1). The reason for using the average values along each objective is that we expect to

check the overall performance improvement (or deterioration) on individual objectives by

using the stability as one of the multiple objectives.
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Fig. 9. Average performance values of the non-dominated solutions obtained at each rescheduling point. (All the four performances are to be

minimized. + means solutions found by approach1 (with stability), and · denotes solutions produced by approach2 (without stability))

At the rescheduling point lt , the quantitative improvement (or deterioration) of approach1

(with stability) over approach2 (without stability) on each objective is calculated as follows:
1 2

2

( _ ( )  _ ( ))
( ) 100%

_ ( )

approach approach
i l i l

i l approach
i l

Avg f t Avg f t
Imp t

Avg f t
-

= - ´                             (20)

where 1_ ( )approach
i lAvg f t  and 2_ ( )approach

i lAvg f t  represent the average values of the non-dominated

solutions obtained by approach1 and approach2 on the objective if  at lt , respectively. Since

all the objectives considered are to be minimized, we use a negative sign in Eq. (20).  The

overall improvement (or deterioration) on each objective if  is the average value of ( )i lImp t



  

over all the rescheduling points during the interval of last 1000 new job arrivals, which are

listed in Table 10. It can be seen that compared to approach2 (without stability), approach1

(with stability) improves the system stability significantly with a small sacrifice in the shop

efficiency. The improvement in stability is much more than the deterioration in efficiency,

which suggests that if we solve MODFJSSP by simultaneously considering stability and

efficiency,  we  will  have  a  high  chance  of  obtaining  more  stable  solutions  without  severely

affecting the efficiency. This result is very practical since stability is an important factor in

the real-world job shop.
Table 10 Performance improvement (or deterioration) of approach1 (with stability) over approach2 (without stability) on each objective (the

positive value means improvement, and the negative value means deterioration)

Objective Make-span Tardiness Maximum workload Stability
Improvement of approach1 over approach2 -2.03% -12.24% -1.44% 36.76%

5.6.2 Influence of the heuristic initialization strategy

      As indicated in Section 4.2.4, at each rescheduling point, to guide the search of the ε-

MOEA-based rescheduling method, three heuristic methods which are utilizing dynamic

event features, history information and machine assignment rules are incorporated in the

population initialization. Here, we will investigate the influence of each method on the

performance of ε-MOEA. The comparison method in the dynamic job shop is similar to that

used in Section 5.3.2. Average performances, effect size of Cohen’s d, and Wilcoxon signed-

rank tests of different initialization methods across rescheduling points are given in Table 11,

where Proposed_Ini is the ε-MOEA-based method using the initialization strategy proposed

in this paper. The other four methods are similar to Proposed_Ini, except that Norepair_Ini

and Nohistory_Ini do  not  make  use  of  the  dynamic  event  characteristics  and  the  history

information, respectively. Norepair_nohistory_Ini only employs the machine assignment

rules and random individuals. There is no heuristic method in Random_Ini, and all the initial

individuals are generated at random which regenerates a new schedule from scratch.
Table 11 Comparisons of the overall performances of different initialization methods across rescheduling points in MODFJSSP

(a) Average performances across rescheduling points (HVR is to be maximized, and GD, Spread and Spacing are to be minimized. Here,

'std.' is short for the pooled standard deviation. The best of mean value and std. on each metric is in red/yellow (dark / light grey)).

Average Performances across Rescheduling Points HVR GD Spacing Spread
 Proposed_Ini

(with MA rules)
mean
std.

0.9206
0.1568

0.0648
0.1117

0.0621
0.0873

0.6294
0.3029

Norepair_Ini
(with MA rules)

mean
std.

0.9155
0.1761

0.0689
0.1136

0.0616
0.0898

0.6258
0.2983

Nohistory_Ini
(with MA rules)

mean
std.

0.9186
0.1581

0.0680
0.1245

0.0601
0.0838

0.6246
0.3046

Norepair_nohistory_Ini
(with MA rules)

mean
std.

0.8858
0.1930

0.0766
0.1206

0.0624
0.0868

0.6171
0.3023

Random_Ini
(without MA rules)

mean
std.

0.8464
0.2385

0.1214
0.1798

0.0653
0.0917

0.6516
0.2979



  

(b) Effect size and statistical tests of different initialization methods across rescheduling points

Effect Size and Statistical Tests across Rescheduling Points HVR GD Spacing Spread

Proposed_Ini vs. Norepair_Ini
effect size

(p-value) sign
0.1526

(0.0273) +
− −

(0.0840) ≡
− −

(0.2840) ≡
− −

(0.6953) ≡

Proposed_Ini vs. Nohistory_Ini
effect size

(p-value) sign
− −

(0.0645) ≡
− −

(0.0840) ≡
− −

(0.2324) ≡
− −

(0.3750) ≡

Proposed_Ini vs. Norepair_nohistory_Ini
effect size

(p-value) sign
0.1982

(0.0020) +
0.1019

(0.0020) +
− −

(0.7695) ≡
0.0406

(0.0039) −

Proposed_Ini vs. Random_Ini
effect size

(p-value) sign
0.3680

(0.0020) +
0.3781

(0.0020) +
− −

(0.0645) ≡
0.0741

(0.0020) +

Norepair_nohistory_Ini vs. Random_Ini
effect size

(p-value) sign
0.1817

(0.0020) +
0.2923

(0.0020) +
− −

(0.0840) ≡
0.1151

(0.0020) +

In terms of convergence, Proposed_Ini achieves the best average performances (mean

and std. value in Table 11(a)) on HVR and GD. According to Table 11(b), although GD

values of Proposed_Ini, Norepair_Ini and Nohistory_Ini are not significantly different,

Proposed_Ini is significantly better than Norepair_nohistory_Ini on HVR and GD,  and  also

significantly better than Norepair_Ini on HVR, which indicates that the combined use of the

dynamic characteristics and history information in initialization can help improve the

convergence performance of the ε-MOEA-based rescheduling method a lot. It can be found

that Norepair_nohistory_Ini is significantly better than Random_Ini on  both HVR and GD,

which shows that incorporating the machine assignment rules in initialization is also helpful

in improving the convergence. Moreover, the effect sizes of Proposed_Ini vs. Random_Ini on

HVR and GD are larger than that of Norepair_nohistory_Ini vs. Random_Ini, which further

validates the effectiveness of making use of dynamic characteristics and history information.

      With respect to distributions of non-dominated solutions, there is no significant difference

among the five initialization methods for Spacing. For Spread, Norepair_nohistory_Ini

achieves the best performance, which demonstrates that employing machine assignment rules

in initialization can help improve the spread performance, but the incorporation of dynamic

characteristics and history information may deteriorate the spread a little. The reason is that

Proposed_Ini uses the history solution, the schedule repair solution and their variants as parts

of the initial population, which can help speed the convergence, but on the other hand may

limit  the  search  space  explored  by  the  algorithm.  However,  considering Proposed_Ini vs.

Norepair_nohistory_Ini in Table 11(b), Proposed_Ini improves HVR and GD (effect sizes are

0.1982 and 0.1019, respectively) much more than it degrades Spread (effect size is 0.0406).

Overall, by making use of the dynamic event features, history information and machine

assignment rules, the proposed heuristic initialization method at each rescheduling point can

make ε-MOEA adapt to the new environment quickly and find the solution to the new

problem efficiently, since compared to the random initialization, it is very effective in



  

improving the convergence performance of ε-MOEA, and it can also maintain a good

distribution of non-dominated solutions.

5.6.3 Utility of the dynamic decision-making method

To demonstrate the utility of the decision-making procedure presented in Section 4.3, we

used six different preferences over the four objectives. At each rescheduling point lt , suppose

the objective vector of the final selected solution is 1 4( ( ))i lf t*
´ , and the best and worst values of

each objective among the obtained non-dominated solutions are min
1 4( ( ))i lf t ´  and max

1 4( ( ))i lf t ´ .

Then the proportions min max min( ) ( ( ) ( )) / ( ( ) ( )) 100%i l i l i l i l i lPro t f t f t f t f t*= - - ´  ( 1,2,3,4i = ) are

calculated. 30 simulation replications were performed, and the average values of ( )i lPro t

across different rescheduling points/simulation replications in the six preference cases are

listed in Table 12. The first case of w = [0.3512, 0.1887, 0.1089, 0.3512] is the preference

employed  in  all  previous  simulations  as  indicated  in  Section  4.3.  The  second  case  of w =

[0.25, 0.25, 0.25, 0.25] reflects the equal importance of four objectives. The last four rows in

Table 12 emphasize four extreme cases which give 100% importance to one objective and do

not care about others. In the first case, the performances of objectives f1 and f4 are good due

to more preferences over them. In the second case, similar performances are obtained among

the four objectives because equal importance is assigned to each. In the last four cases, the

extreme solution with the best value on the objective given 100% importance is always

chosen. These results suggest that the proposed decision-making procedure is able to select a

solution which fits into the DM’s preferences from a set of trade-off solutions.
Table 12 Comparisons of results obtained by the dynamic decision-making method over six different preferences

(A smaller value of average proportion indicates a better performance on fi, i=1, 2, 3, 4)
Different preferences

 (weight vectors)
Average

proportion on f1

Average
proportion on f2

Average
proportion on f3

Average
proportion on f4

[0.3512,0.1887,0.1089,0.3512] 0.1935 0.2993 0.3529 0.1676
[0.25,0.25,0.25,0.25] 0.2742 0.2368 0.2265 0.2644

[1 0 0 0] 0 0.5617 0.4668 0.5343
[0 1 0 0] 0.5524 0 0.5185 0.5707
[0 0 1 0] 0.5218 0.4942 0 0.5633
[0 0 0 1] 0.5611 0.5078 0.4779 0

6 Conclusions

This paper proposed an MOEA-based rescheduling method to regenerate new schedules

in respond to random events in dynamic flexible job shops. Our first contribution is the

construction of a dynamic multi-objective optimization model for MODFJSSP. In the model,

considering the updated job shop state at each rescheduling point, four objectives with respect

to both the shop efficiency and stability are optimized simultaneously. In addition, six



  

categories of constraints to the search space which change dynamically with the occurrences

of real-time events are addressed, and a more sophisticated definition for stability is presented.

Our second contribution is an ε-MOEA-based predictive-reactive scheduling method. The

novelty is the employment of heuristic strategies in population initialization so that the

method does not regenerate a new schedule from scratch at each rescheduling point. In

addition, the proposed method can deal with multiple scheduling policies (operation

sequencing and machine assignment) simultaneously as a result of individual representations

and two kinds of problem specific variation operators. Experimental results show that our ɛ-

MOEA-based method can achieve much better performances on total make-span and

tardiness than combinations of popular dispatching rules with machine assignment rules.

Three MOEA-based rescheduling methods (ε-MOEA,  NSGA-II  and  SPEA2)  are  compared.

Results in both static and dynamic flexible job shops show that ε-MOEA is the most

competitive approach for evolving efficient non-dominated solutions for MODFJSSP.

Statistical tests indicate that it has the best overall performances across rescheduling points in

dynamic environments. Moreover, its computational cost is much less than NSGA-II and

SPEA2. In addition, Pareto front obtained at each rescheduling point provides much better

knowledge about various trade-offs in the objective space for the DM to make an informed

decision, which cannot be achieved by combinations of existing scheduling rules or by the

methods using a weighted sum approach. Further analyses show that introduction of the

stability objective can improve the system stability much more than it degrades efficiency,

and heuristic initialization strategies are very effective in improving the convergence of the ε-

MOEA-based method.

Our third contribution is the design of a dynamic decision making procedure. Simulation

results demonstrate that the proposed method can select a solution which corresponds to the

DM’s preferences from the trade-off solution set generated at each rescheduling point.

As future work, the proposed MOEA-based rescheduling methods should be applied to

more job shop conditions, e.g. different levels of job arrival rates, and other kinds of job shop

scenarios with more dynamic events such as variations of processing times. Moreover, other

constraints in the real-world job shop must be added, e.g. sequence dependent setup time.

Evolution of other scheduling policies such as due-date assignment will also be considered.
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Appendix A. The dynamic flexible job shop instance used in our experiments

      A summary of the parameters used to design the flexible job shop instance in our

experiments is presented in Table A.1.
Table A.1 Summary of the parameters used in the design of experiments

Characteristics Specifications

Job Shop

Size m=10 machines
Shop Utilization 0.8

Machine Breakdowns MTBF=U[100, 300]
MTTR=U[20, 120]

Distribution of TBF Exponential with the mean of MTBF
Distribution of TTR Exponential distribution with the mean of MTTR

Jobs

# of operations in each job U[1, m]
# of alternative machines to process an operation U[1, m]

Distribution of the processing time of each
operation Exponential distribution with the mean of 1

Mean time between job arrivals (MTBJA) 0.625
Distribution of the time between new job arrivals Exponential distribution with the mean of MTBJA

Job release policy Immediate

Distribution of the tightness factor in the due date Normal distribution with the mean of 1.5 and
variance of 0.5.

weights 20% of the jobs are 1, 60% are 2, and 20% are 4
Simulation
Analysis

Warm-up period 240 jobs
Simulation period 1000 jobs

   * # denotes the number, and U(a, b) denotes a number generated uniformly at random from the interval of [a, b]

The problem instance used in our experiments is generated using the parameters given in

Table A.1. The data is described below.

A.1 The initial 10×10 static FJSSP

      The initial number of available machines is 10, and the initial number of jobs is also 10.

      The due dates, weights, numbers of operators and processing times of the initial ten jobs

are given in Table A.2 and Table A.3, respectively.
Table A.2 Due dates, weights and numbers of operators of the initial ten jobs

Job number 1 2 3 4 5 6 7 8 9 10
Due date 11.3868 2.5035 2.2035 3.2497 4.8579 8.8373 3.3804 10.7493 0.6042 4.0552
Weights 2 2 2 1 1 2 2 2 2 4

# of operators 6 9 1 4 5 5 5 9 1 5

Table A.3 Processing times of the initial ten jobs
k
ijp M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J1 O11

       O12

      O13

      O14

     O15

     O16

∞
0.3683
1.5514
1.2497

∞
∞

  1.5929
∞

1.1718
2.9106
0.0204

∞

0.4713
∞

0.3505
4.5696
0.6969

∞

0.6089
  0.3831
0.3004
2.4650
1.8902
1.5782

0.9498
1.0458
1.9272
0.2619
0.2029

∞

0.3568
1.5021
0.8895
0.1324
0.2410
0.0405

3.0133
∞
∞

1.2787
∞

0.2971

∞
0.0672
0.8923
0.0984
1.7994
0.8711

0.3139
∞

1.7593
1.4564
3.9043
2.0635

∞
1.2794

∞
2.3571
1.6718

∞

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/K001523/1


  

J2 O21

       O22

      O23

      O24

     O25

     O26

      O27

      O28

      O29

0.5818
0.7960
0.8205
0.5487
0.6449

∞
0.2813
0.2496
0.9233

3.6391
4.0006
1.2625
1.2152
0.7731
0.8113
0.4945
0.1919
1.1829

1.9767
∞

0.7756
1.2999

∞
0.7191
1.5254
0.5184
0.1585

1.2716
∞

5.5463
0.7223
0.1760

∞
1.3661
0.0885
0.7979

0.3420
∞

3.6130
1.6280
0.0458

∞
∞

0.0206
0.1791

0.0927
∞
∞

0.8747
0.0433

∞
1.1051
1.6698
1.4378

0.7917
0.4459

∞
1.6926

∞
∞

3.9508
0.3020
0.2417

0.1709
∞

0.1478
0.2280
1.0591

∞
1.7132
1.3353
0.8223

∞
1.3633
2.4985
0.5254

∞
∞

0.2092
∞

0.3893

2.7091
2.8225
0.1623
0.7552
0.9215
3.2824
0.6487

∞
∞

J3 O31 0.9771 1.0099 2.9758 ∞ 1.3394 0.4705 0.6757 0.8319 0.3779 0.0446
J4 O41

       O42

      O43

      O44

∞
∞

5.6919
1.2405

1.0357
1.3208

∞
∞

∞
∞

0.6640
0.3849

∞
∞

0.1421
∞

0.7537
∞

1.2372
∞

∞
∞

0.4312
∞

0.1385
∞
∞
∞

∞
1.8026
2.3704

∞

∞
0.3236
0.0265

∞

∞
∞
∞
∞

J5 O51

        O52

       O53

      O54

      O55

3.4409
∞

0.2369
0.5677

∞

∞
∞
∞
∞

0.1008

∞
0.0113

∞
∞
∞

∞
∞
∞

0.2594
0.6411

0.1332
∞

0.8359
0.6281

∞

0.5820
∞
∞
∞

0.2383

0.9092
0.0739
0.4202

∞
∞

∞
0.2343

∞
∞

0.7075

1.7438
∞
∞
∞
∞

0.9701
0.3678

∞
∞
∞

J6 O61

       O62

       O63

      O64

      O65

0.5516
∞

1.8110
∞

0.0516

∞
0.2604

∞
0.1603
0.0442

0.4784
∞

1.4192
∞

0.7801

1.5560
0.4006

∞
∞

0.9099

∞
∞
∞

0.9575
0.8919

∞
0.0954

∞
∞

0.2765

∞
∞
∞

0.7134
∞

1.0649
1.3528

∞
∞

0.6066

0.8064
∞
∞

6.3752
1.2999

∞
∞
∞
∞

0.2917
J7 O71

       O72

       O73

      O74

      O75

∞
0.8529

∞
0.8029
1.0230

0.0968
∞

0.6212
∞
∞

∞
0.0520

∞
∞

2.1644

∞
0.3783

∞
∞

0.7203

0.3768
∞
∞
∞

1.1795

1.8021
∞

0.1327
∞

0.5878

∞
0.3147
0.5453

∞
0.2262

1.3239
1.1333
0.0029

∞
0.5861

∞
0.1240

∞
∞

1.9826

0.8450
2.5777

∞
∞

0.4364
J8 O81

       O82

      O83

      O84

      O85

      O86

      O87

      O88

      O89

∞
0.4718

∞
0.9827
0.7264
1.1461
1.0050
1.0312

∞

∞
∞
∞
∞

0.1525
2.7974
0.0910

∞
1.9825

∞
∞
∞

0.1177
0.7264
0.0672
1.9157

∞
∞

∞
0.6534

∞
∞

0.1085
0.8124
0.0031
1.2478

∞

∞
0.2169

∞
∞

1.1185
∞

0.0763
∞

        ∞

∞
∞

0.7083
∞
∞

0.6622
1.5097

∞
∞

∞
0.2381

∞
0.3315
0.2082
0.6470
0.0632

∞
∞

∞
∞
∞
∞

1.4826
3.0756
0.2600
0.8171

∞

0.5780
0.4372
0.5230
0.4755
0.3010
2.4451
1.8009
2.3766

∞

∞
0.5237

∞
∞

1.0829
∞

0.5334
∞
∞

J9 O91 0.2641 2.1988 2.1656 0.6222 0.0620 ∞ 1.0994 0.5537 0.1268 2.6729
J10 O10,1

        O10,2

        O10,3

       O10,4

        O10,5

0.2214
∞

0.2825
1.7011
1.0015

0.7747
∞
∞

0.0960
1.0611

∞
∞
∞

0.1790
0.0505

0.3649
∞
∞

1.3843
0.9126

0.2022
2.4277

∞
∞

0.1459

0.1460
∞
∞

0.2157
0.3104

1.3065
∞

0.0503
0.4788
1.8697

3.3038
∞
∞
∞

0.9845

0.7544
∞
∞

1.3449
1.6904

∞
∞
∞
∞

0.2118
* ∞ denotes the operation cannot be processed by the corresponding machine

A.2 The dynamic environment

      Each of the ten machines was assigned different mean time between failure (MTBF) and

mean time to repair (MTTR). MTBF and MTTR of ten Machines are given in Table A.4.
Table A.4 MTBF and MTTR of the ten machines

Machine
number

1 2 3 4 5 6 7 8 9 10

MTBF 209.0739 129.2992 232.5994 267.6733 225.5985 206.5362 181.7854 192.4251 190.6878 127.2050
MTTR 86.0711 66.8782 62.3333 84.9613 74.8550 54.7553 61.6485 30.5769 94.9891 20.1627

      For each machine, the time interval between fails (TBF) and the time to repair (TTR) are

assumed  to  follow  an  exponential  distribution  with  the  mean  of  MTBF  and  MTTR,



  

respectively. TBF and TTR of the ten machines are shown in Table A.5 and Table A.6,

respectively (Due to the space limitation, only the first ten time intervals are listed).
Table A.5 TBF of the ten machines (The first ten time intervals are listed)

TBF 1 2 3 4 5 6 7 8 9 10 …
M1 60.1815 341.4744 183.5197 414.6272 293.0613 176.2809 363.8440 215.5021 207.7758 155.5732 …
M2 11.8945 105.8802 200.6703 70.0234 232.3056 233.1006 60.7633 180.2931 7.5569 371.6800 …

M3 51.9138 270.0075 155.2262 298.4262 121.1599 494.0131 367.2544 189.6868 183.6290 189.6868 …

M4 8.1471 1.0067 952.0060 27.8017 347.8132 645.7056 185.1724 449.9411 204.1842 14.4955 …

M5 3.0207 280.3702 102.2818 488.1254 207.7280 764.9804 211.9077 22.5843 366.7581 226.4633 …

M6 49.7856 274.1227 571.4564 263.5927 16.2753 211.5855 430.9105 70.5444 295.9994 155.1191 …

M7 344.2344 33.6427 245.5943 276.7207 135.7361 211.3870 281.6149 160.6632 198.1626 670.8063 …

M8 125.4887 40.3707 17.5687 288.3028 42.3520 230.3891 158.9897 358.4110 124.0999 37.6119 …

M9 296.9732 361.4254 358.3395 124.2674 234.0589 456.5467 201.2278 72.9277 133.7395 279.5786 …

Table A.6 TTR of the ten machines (The first ten time intervals are listed)

TTR 1 2 3 4 5 6 7 8 9 10 …
M1 271.9629 106.7211 246.1584 44.7464 96.7911 166.9721 135.7452 130.6676 94.0891 11.9935 …

M2 33.6536 154.8170 47.7032 24.4864 104.9593 13.6237 87.1751 6.8407 106.5141 42.0916 …

M3 181.4899 30.1449 67.6488 96.0800 6.4491 45.1603 42.7101 167.3514 39.5006 9.5077 …

M4 5.6822 102.9366 27.6108 38.7185 93.9815 90.4160 54.4585 106.1199 5.1494 19.5327 …

M5 202.5777 59.1750 87.6478 2.6217 77.6089 46.8037 19.2985 189.1264 9.1386 31.9112 …

M6 37.3848 138.7584 177.7283 7.8361 120.8651 0.0281 3.4760 161.9860 18.6557 53.7578 …

M7 19.9020 51.1838 1.1964 126.2360 144.2601 13.2633 53.0933 14.4923 21.3423 37.0561 …

M8 5.4266 2.8717 137.4882 5.2254 12.3110 28.8929 79.9172 32.5647 1.0783 8.2916 …

M9 329.4294 18.8285 15.9770 25.9160 47.7416 61.2770 20.4254 70.8265 137.1752 5.5885 …

M10 2.2202 9.1865 2.7268 22.9990 31.1073 25.4911 1.0184 10.8054 12.9061 3.7713 …

There are totally 1230 new jobs which arrive at the job shop dynamically following the

Poisson distribution. The time between new job arrivals is distributed exponentially with the

mean of =0.625MTBJA .  The  time between new job  arrivals  are  listed  in  Table  A.7,  and  due

dates, weights and numbers of operators of the new arrival jobs are listed in Table A.8 (Due

to the space limitation, only the information of the first ten out of the 1230 new jobs is given).
Table A.7 Time between new job arrivals (The first ten out of 1230 new job arrivals are listed)

Job number-
Job number

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 …

The time
between new
job arrivals

0.0535 1.7011 0.0981 0.4584 0.9182 0.8659 0.0600 1.5530 0.2514 0.4173 …

Table A.8 Due dates, weights and numbers of operators of the new arrival jobs (the first ten out of 1230 new jobs are listed)

Job number 1 2 3 4 5 6 7 8 9 10 …
Due date 20.2707 4.0544 4.4483 13.1379 19.3717 10.4268 7.6107 19.8581 7.5316 18.0237 …
Weights 2 1 2 2 1 2 2 2 2 4 …

Number of
operators

9 3 1 6 7 4 3 10 1 5 …

      Processing  times  of  the  new  arrival  jobs  are  shown  in  Table  A.9  (due  to  the  space

limitation, only the processing times of the first three out of the 1230 new jobs are given).
Table A.9 Processing times of the new arrival jobs (the first three out of 1230 new jobs are listed)



  

k
ijp M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

J11 O11,1

        O11,2

        O11,3

        O11,4

        O11,5

        O11,6

        O11,7

        O11,8

       O11,9

∞
∞
∞

4.2175
∞

0.4287
0.2671

∞
0.7081

0.3052
2.6245
0.7278

∞
∞

4.4217
0.5823

∞
1.1823

1.9727
∞

1.0555
0.3228

∞
0.2878
0.0608

∞
∞

∞
∞
∞
∞
∞

1.2293
0.1812

∞
∞

∞
∞
∞

0.2146
∞

0.3602
0.2479
0.4674
2.8905

0.8753
∞
∞
∞
∞

0.1132
3.3421
0.0940
0.3217

0.9758
∞
∞

0.1748
0.9689
0.0453

∞
1.0082

∞

∞
∞
∞

0.7009
∞

1.3656
0.7710

∞
0.7101

∞
∞
∞
∞
∞

1.3325
0.2648

∞
0.6052

0.3342
∞
∞

1.9349
∞

0.3720
1.2957

∞
1.2965

J12 O12,1

        O12,2

        O12,3

∞
0.4386
0.2729

∞
0.6790
0.3201

∞
∞

0.3932

0.6595
0.0374
0.1881

∞
∞

0.7544

2.0985
0.5916
0.7872

1.0571
1.4045
0.1155

0.1704
0.4547
0.1735

0.7779
0.5833
0.0086

∞
0.0623
0.7471

J3 O31 0.7003 2.3103 0.9669 0.8928 0.7072 1.5008 0.1126 0.9777 1.7132 7.1134
…      … … … … … … … … … … …

* ∞ denotes the operation cannot be processed by the corresponding machine
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Highlights

· A new mathematical model for multi-objective dynamic scheduling is constructed.
· Novel multi-objective evolutionary rescheduling methods are proposed.
· The proposed methods have been shown to outperform existing approaches.
· Advantages of our stability objective and initialization strategies are validated.
· Our decision-making method can select a suitable solution for user preferences.
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