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Abstract—The investigation of protein functionality often re-
lies on the knowledge of crystal 3-D structure. This structure
is not always known or easily unravelled, which is the case of
eukaryotic cell membrane proteins such as G Protein-Coupled
Receptors (GPCRs) and specially of those of class C, which are
the target of the current study. In the absence of information
about tertiary or quaternary structures, functionality can be
investigated from the primary structure, that is, from the amino
acid sequence. In previous research, we found that the different
subtypes of class C GPCRs could be discriminated with a
high level of accuracy from the n-gram transformation of their
complete primary sequences, using a method that combined two-
stage feature selection with kernel classifiers. This study aims
at discovering whether subunits of the complete sequence retain
such discrimination capabilities. We report experiments that show
that the extracellular N-terminal domain of the receptor suffices
to retain the classification accuracy of the complete sequence and
that it does so using a reduced selection of n-grams whose length
of up to five amino acids opens up an avenue for class C GPCR
signature motif discovery.

I. INTRODUCTION

GPCRs are eukaryotic cell membrane proteins with several
biologically relevant roles due to their ability to transmit ex-
tracellular signals, activating intra-cellular signal transduction
pathways. Their biomedical relevance comes from the fact that
they have become, at present, the target of up to 36% of
all drugs approved by the US Food and Drug Administration
during the past three decades [1], making them of obvious
interest in pharmacology.

This study involves class C, a family of GPCRs that has
become the center of much investigation in new therapies for
(amongst others) neurological pathologies [2]. The determina-
tion of the 3-D structure of full-length class C GPCRs has
proven to be a particularly challenging task and it was only
in 2014 that the first structures of the seven transmembrane
(7TM) domains of two class C receptors were discovered
[3], [4]. For this reason, the definition of direct quantitative
strategies for the analysis of the primary sequence of class C
GPCRs is a relevant problem in bioinformatics. Some recent
approaches have even suggested the possibility of generating
3-D models of receptors de novo by defining restraints

on structural proximity of residue pairs through amino acid
evolutionary covariation analysis [5].

We are specifically interested in finding out which charac-
teristics of the receptor sequence facilitate the discrimination
between the known subtypes of class C. For that, we can
start from sequence transformations to align the sequences,
which is a common strategy in the field, or from alignment-
free transformations of different types, which is our strategy of
choice to allow retaining as much of the available information
as possible. This GPCR discrimination task has been addressed
in the past using supervised [6], semi-supervised [7] and even
fully unsupervised [8], [9] modelling approaches.

The current paper focuses on a specific type of unaligned
sequence transformation, namely n-grams, which are specific
amino acid subsequences of length n that can also be under-
stood as sequence motifs. In previous research, we found that
the different subtypes of class C GPCRs could be discriminated
with a high level of accuracy from the n-gram transformation
of their complete primary sequences, using a method that
combined two-stage feature selection with kernel classifiers.

The GPCR, though, is a highly structured protein with very
clearly differentiated domains, including the 7TM domain,
with seven transmembrane α-helices and three extra-cellular
and three intra-cellular loops connecting them; the extracellular
N-terminus and an intracellular C-terminus [10]. This study
aims at discovering whether subunits of the complete sequence
retain the subtype-discrimination capabilities of the complete
sequence. For that, we extended the combination of feature
selection and classification method to lengthier n-grams of
class C GPCR sequence parts.

In the following, we report experiments that show that the
extracellular N-terminal domain of class C GPCRs suffices to
retain the classification accuracy of the complete sequence.
Bearing in mind that the objectives of this study go beyond
discriminability assessment to also address the discovery of
those subsequences that are the most responsible for achieving
class C GPCR subtype discrimination, the selection of the
latter from n-grams of length of up to five amino acids opens
up an avenue for GPCR signature motif discovery.



II. MATERIALS AND METHODS

The raw class C GPCR sequences under study, which
belong to an open access curated database, are described next.
This is followed by a brief introduction to the n-gram tech-
nique for the transformation of these symbolic primary amino
acid sequences into real-valued features. Next, we describe
some basic techniques to reduce the dimensionality of the
resulting features and the subsequent method for classification.

A. The Class C GPCR Database

As described in the introduction, GPCRs are a large family
of integral cell membrane receptor proteins, mediating signal
transmission from the extracellular to the intracellular domains
and thus prompting cellular response. The data analyzed in our
experiments was extracted from GPCRDB [11], which is a
publicly accessible, curated database including heterogeneous
but thoroughly structured information about GPCRs at large.
GPCRDB divides this superfamily into several major classes
(namely, A to C, plus Vomeronasal receptors, cAMP receptors
and Taste receptors T2R) based on ligand types, functions, and
sequence similarity. Our investigations concerns only class C,
which is of medical interest for its increasingly important role
in the development of new therapies in areas such as pain,
anxiety, neurodegenerative disorders and as antispasmodics.

The originally sampled data set (from version 11.3.4 as
of March 2011) comprised 1,510 class C GPCR sequences,
sub-classified into seven subtypes: 351 metabotropic glutamate
(mG), 48 calcium sensing (CS), 208 GABA-B (GB), 344
vomeronasal (VN), 392 pheromone (Ph), 102 odorant (Od) and
65 taste (Ta). Given that this study focuses on the investigation
of how the information in different sequence parts and domains
could be independently used to discriminate between these
class C subtypes, these sequences were filtered to remove all
those from which no 7TM domain information was available,
using a transmembrane topology prediction tool (Phobius
[12]). As a result, the final data set included 1,252 sequences:
282 mG, 45 CS, 156 GB, 293 VN, 333 Ph, 80 Od and 63 Ta.

At a structural level, class C GPCRs have seven transmem-
brane helices; an extracellular domain, the N-terminus; and
the C-terminus. The N-terminus contains the Venus Flytrap
(VFT), which is a part of special relevance as it contains
the recognition site where the endogenous agonist binds [13].
Besides the VFT, the N-terminus also contains a cystein-rich
domain (CRD), which is present in almost all classes (with
the exception of subtype GB [14]) and connects the VFT to
the first transmembrane helix. Due to the importance of the
N-terminus for the protein activation, this part of the receptor
was isolated in all sequences and saved for analysis.

B. The n-Gram GPCR Sequence Transformation

The n-grams are, in general, contiguous specific amino acid
subsequences of length n. This concept is commonly used in
text and natural language processing, but it has also been used
in the context of protein analysis [15], [16], [17], [18], even
by direct transposition of text classification methods for the
classification of GPCRs [19].

In most cases, GPCR classification from n-grams has been
accomplished for n = 2, that is, for digrams, also known

as dipeptide composition [20]. This choice is not made on
biological grounds, but, usually for the sake of analytical and
even computational tractability: for a 20 amino acid alphabet
there are 400 digram and 8,000 trigram possible combinations;
the large feature space dimensionality of longer n-grams would
compromise such tractability.

In this study, we use the relative frequencies of occurrence
of the n-grams, which are continuous, real-valued variables.
Each feature corresponds to the measurement of an n-gram
relative frequency in the sequence. The n-grams can be un-
derstood as receptor sequence deterministic motifs. They can
be either contiguous, if there are no gaps between the amino
acids that constitute de n-gram, or gap motifs, if such gaps
(filled with any amino acid of the analyzed alphabet, known
as a wild-card) are allowed.

For the experiments reported in the following sections, we
considered a combination of contiguous and rigid gap motifs
or n-grams of up to five amino acids. The latter are rigid in
the sense that there is a fixed number of gaps in between the
n-gram amino acids [21].

As stated in [22], the sequence space of proteins is redun-
dant and, therefore, the use of amino acid grouping strategies
based on physicochemical similarity is advisable, in order to
decrease the granularity of the feature space and therefore al-
leviate the computational burden and potential inconsistencies
involved in the analysis of very high dimensional datasets.
In this study, and besides the 20-amino acid alphabet (as
displayed in Table I), we used the Sezerman (SEZ) alphabet
to create the n-grams. It includes 11 groups of amino acids of
length 1 to 4, namely: [A], [W], [C], [P], [DE], [QN], [ST],
[GT], [YF], [RKH] and [IVLM]. The performance of SEZ has
been positively evaluated in [23] in the classification of GPCRs
into their major classes.

TABLE I. LIST OF THE 20 AMINO ACIDS IN THE AA ALPHABET.

Amino acid name Symbol Amino acid name Symbol

Alanine A Leucine L

Arginine R Lysine K

Asparagine N Methionine M

Aspartate D Phenylalanine F

Cysteine C Proline P

Glutamate E Serine S

Glutamine Q Threonine T

Glycine G Tryptophan W

Histidine H Tyrosine Y

Isoleucine I Valine V

C. Two-stage Feature Selection with SVM-Based Classification

The n-gram transformation of the GPCR sequences is
likely to yield many features that are not relevant in terms
of class C subtype discrimination. These irrelevant n-gram
frequencies may have a negative impact (or at best a neg-
ligible one) in this classification process and, therefore, we
aim to investigate whether a subset of relevant frequencies
retains the subtype classification capabilities. Indirectly, we
also want to investigate the selected n-grams for hitherto
unknown signature motifs. One criterion of significance is
their statistical or informative performance, which is related to
biological significance [24]. It has been suggested that motif



over-representation maybe due to evolutionary preservation of
sequence segments, suggesting their structural and functional
roles [21]. This should make n-gram frequencies informative
measures in terms of functionality exploration.

Two complementary feature selection approaches were
used in this study, following a two-step strategy previously
tested for complete sequences in [6]: two-sample t-tests among
the class C GPCR subtypes for feature filtering followed by
sequential forward feature selection with a Support Vector
Machine (SVM) classifier. In a similar approach, a t-test with
SVM classifiers was used in [25].

The two-sample t-tests in the first step are a somehow
crude evaluation of the discriminating power of individual fea-
tures. This univariate statistical test analyzes whether there are
foundations to consider two independent samples as coming
from populations (normal distributions) with unequal means
by analyzing the values of the given feature. In our case, we
used t-tests with 0.01 significance level.

Given the multi-class nature of the problem, t-tests were
run for the 21 two-class combinations of the 7 class C
subtypes. The two-sample t-test values were calculated at this
detail because the multi-class SVM implementation internally
performs class-vs-class comparisons. Therefore, the t-test an-
alyzes the data in each binary classifier, making the ranking
of the features possible according to their overall significance
(i.e., according to how many binary classifiers a feature is
significant in).

The second dimensionality reduction step starts from the
selection performed through the t-tests and involves a sequen-
tial forward selection algorithm [26] operating in wrapper
mode, that is, each feature subset is tested as part of the
classification procedure [27]. It starts from an empty candidate
feature set and adds, in each iteration, the feature which
most improves the SVM classifier accuracy in a 5-fold cross-
validation (5-CV). Note that an ideal or signature motif, and
thus a candidate for potential structural and functional roles,
has been described to be one “that matches all the sequences
of the target family and no other sequence outside this family”
[21].

SVMs have often been the type of classifier of choice for
the analysis of GPCRs from different types of transformations
of their primary sequences (see, for instance, [20], [28]).
As previously mentioned, SVMs were used in the current
study for the supervised classification of the alignment-free
amino acid sequence transformations into the seven subtypes
of class C GPCRs described in Section II-A. Given the multi-
class problem setting, the LibSVM implementation [29] was
employed.

III. EXPERIMENTS

A. Results

1) Comparative Classification of the N-terminal Domain:
We built our SVM-based classification models using the n-
grams from the N-terminus for each of the two alphabets under
consideration: the complete amino acid alphabet (AA) and
SEZ. In previous research [6], we analyzed the amino acid fre-
quencies (1-grams) and digrams from the complete sequence.
For comparative purposes, Table II shows the classification

results, as measured by accuracy, for each alphabet using n-
grams of length 1 and 2, for both approaches.

TABLE II. N-GRAM COMPARATIVE CLASSIFICATION RESULTS FOR

THE N-TERMINUS AND THE COMPLETE SEQUENCE, WHERE D IS THE SIZE

OF A FEATURE SET AND ACC STANDS FOR CLASSIFICATION ACCURACY

(RATIO OF CORRECTLY CLASSIFIED SEQUENCES).

N-terminus Complete Sequence
AA SEZ AA SEZ

N-GRAM D ACC D ACC D ACC D ACC
1-gram 20 0.84 11 0.78 20 0.87 11 0.82

2-gram 400 0.92 121 0.91 400 0.93 121 0.93

2) t-Test Filtering and Sequential Forward Feature Selec-
tion: Supported by the previous results, we then proceeded
to apply the proposed two-step feature selection with SVM-
based classification to the combination of contiguous and rigid
gap motifs (n-grams) of lengths three to five. Their very high
dimensionality makes them difficult to use with SVMs and,
therefore, t-test filtering was used to generate a first crude
ranking of features.

Table III shows this ranking according to the overall sig-
nificance of the attributes. This means that, for each alphabet,
we counted how many features were significant (column D)
in at least 20,19,18,17, etc., class-vs-class tests (bear in mind
that there are 21 possible combinations of the 7 class C
subtypes). The ACC values shown for each subset are the
classification accuracies of the SVM built from each feature
set. For comparison, we also show, besides the results obtained
with rigid gap motifs for the N-terminus, the corresponding
results from previous research [6] in which continuous (n-
grams) of lengths one to three were calculated from the
complete sequence.

TABLE III. N-GRAM COMPARATIVE CLASSIFICATION RESULTS AFTER

T-TEST, WHERE D IS THE SIZE OF A FEATURE SET AND ACC STANDS FOR

CLASSIFICATION ACCURACY (RATIO OF CORRECTLY CLASSIFIED

SEQUENCES).

N-Terminus Complete Sequence
AA SEZ AA SEZ

SIGNIF D ACC D ACC D ACC D ACC
20 - - - - 1 0.37 2 0.5

19 4 0.55 11 0.76 15 0.88 8 0.77

18 25 0.87 42 0.88 49 0.93 39 0.9

17 97 0.92 133 0.915 105 0.93 79 0.92

16 268 0.92 331 0.92 212 0.94 149 0.93

15 600 0.93 649 0.92 357 0.94 253 0.94

14 1187 0.93 1185 0.92 585 0.94 386 0.93

The filtering method described in Section II-C found fea-
ture subsets with high classification accuracy. Nevertheless,
their dimensionality is still quite high, which is the reason
we applied the more nuanced second step of dimensionality
reduction consisting on SVM-based sequential forward selec-
tion. Table IV shows, for each alphabet, the results of applying
this method starting from the n-gram subset that is significant
in 16 class-vs-class problems, as reported in Table III. The
initial number of features (FEAT), the final number of selected
features (D) and the corresponding classification accuracies are
displayed.



TABLE IV. CLASSIFICATION RESULTS FOR THE AA AND SEZ
ALPHABETS, USING SEQUENTIAL FORWARD FEATURE SELECTION

STARTING FROM THE FIRST STAGE, T-TEST-BASED SELECTION THAT IS

SIGNIFICANT IN 16 CLASS-vs-CLASS T-TESTS.

AA SEZ
FEAT D ACC FEAT D ACC

268 45 0.91 331 43 0.90

B. Discussion

From Table II, it seems clear that the classification analysis
using only the N-Terminus almost completely retains the
accuracies obtained using the complete sequences, specially for
the digram representation. This is consistent with the fact that
the VFT, included in the N-terminus, contains the orthosteric
binding site that, because it differentiates between different
endogenous ligands, should also help to differentiate between
the different class C subtypes. From a practical viewpoint, this
result potentially simplifies the search for signature motifs by
restricting it to the extracellular domain, while making the
analysis more computationally tractable.

We are, in any case, interested in the analysis of longer
n-grams. The classification results for n-grams of lengths
between three and five, reported in Table III, provide evidence
of the usefulness of this simple ranking approach based on
filtering: the n-gram representation of the AA alphabet retains
an accuracy of 0.92 with 268 attributes, while the n-gram
representation of the SEZ alphabet achieves the same accuracy
with 331.

The subsequent second-step, SVM-based forward selec-
tion process, starting from the optimal t-test selection was
quite successful at reducing the number of attributes, while
maintaining an accuracy of approximately 0.91 in the case
of the AA alphabet for 45 features (a 83% reduction of the
dimensionality) and a very reasonable 0.90 in the case of SEZ
for 43 features (a 87% reduction), as seen in Table IV. In the
case of the AA alphabet, the algorithm selects 6 contiguous
and 39 rigid gap n-grams. For the SEZ alphabet, the 43 n-
grams include 12 contiguous and 31 rigid gap ones. Table V
lists all these n-grams in the order they were selected by the
sequential forward procedure.

This list should be the starting point for proteomics experts
to investigate the involvement of specific n-grams in structural
and functional roles of the receptor. For class C GPCRS, this
entails investigating motifs potentially related to the orthosteric
site at the VFT, that is, the binding site of a ligand. The
standing hypothesis for our study is that the n-grams shown
to have the ability to discriminate between class C subtypes
might be related to these binding sites, because the latter are
meant to be subtype-specific in as much as each subtype binds
to different ligands.

Note that we have not only provided a selected list of n-
grams with the ability to discriminate the most between class C
GPCR subtypes, but also an explicit ranking of relevance for
these n-grams that experts can resort to. For obvious space
limitations, we only show in some detail the three n-grams
from each alphabet at the top of this ranking.

In the case of the AA alphabet, we consider the rigid
gap n-grams WXW (which is significant in 18 t-tests) and

TABLE V. LISTS OF n-GRAMS, FROM ALPHABETS AA (LEFT

COLUMN) AND SEZ (RIGHT COLUMN), RANKED BY RELEVANCE

ACCORDING TO THE SEQUENTIAL FORWARD FEATURE SELECTION

PROCEDURE FOR SVM CLASSIFIERS. FOR EACH ALPHABET, THE RANKING

ORDER (�), THE SYMBOLIC SUBSEQUENCE(SEE TABLE I), WHERE X IS THE

WILDCARD RESIDUE IN rigid gap n-GRAMS, AND THE NUMBER OF BINARY

CLASSIFIERS IN WHICH THE n-GRAM WAS FOUND TO BE SIGNIFICANTLY

DISCRIMINANT (SIGN), ARE DISPLAYED.

AA SEZ
� n-gram SIGN � n-gram SIGN
1 WXW 18 1 WXXW 16

2 PXXFR 16 2 G[DE]X[RKH] 16

3 YGR 17 3 [ST]XX[QN][ST] 16

4 WXWXG 17 4 GXCC 16

5 CIA 16 5 CX[IVLM] 16

6 YXI 16 6 [QN]XWG 16

7 AXXL 16 7 [ST][QN]A[RKH][IVLM] 17

8 TGXE 19 8 W[QN]X[QN] 18

9 GXXG 16 9 [ST][QN][RKH][ST] 16

10 GEXXN 17 10 PPX[ST] 17

11 DCXXG 16 11 W[IVLM][QN][RKH][DE] 16

12 FPXH 16 12 [IVLM][IVLM][IVLM][ST]W 17

13 PNXXL 18 13 [QN]X[QN]XW 16

14 WXL 17 14 [QN]GW[QN] 16

15 QXMXF 16 15 [QN]X[IVLM]XC 16

16 CXG 17 16 [IVLM]GXXC 16

17 IPG 16 17 [ST][QN]W[QN] 16

18 HXXF 17 18 [IVLM]X[ST]XC 16

19 CXXGT 17 19 [RKH]WX[IVLM] 19

20 YXKXG 17 20 [QN][ST]W 16

21 DYG 16 21 [ST][DE][ST] 16

22 PXIXY 16 22 PX[DE][ST] 16

23 WXXV 16 23 [IVLM]XW 16

24 YXXXY 16 24 AXXX[ST] 16

25 CXEXC 16 25 C[RKH]XG 17

26 VXXLL 16 26 [IVLM][IVLM]XW 16

27 SNXXD 16 27 CXAX[RKH] 16

28 SXKXQ 16 28 [QN]XGX[QN] 16

29 CXDG 17 29 [IVLM]XC[QN] 16

30 IXR 17 30 W[ST]XX[IVLM] 16

31 WXXXL 16 31 WX[RKH]W 16

32 AWXXS 16 32 W[QN]P 16

33 AXXSS 16 33 [DE]CXXC 17

34 PGXXK 16 34 [QN]CC 16

35 GXRK 16 35 [ST]XWW 16

36 PNXT 16 36 [ST]X[ST]X[QN] 16

37 VXCXD 16 37 [QN][QN]XX[ST] 16

38 GXXY 19 38 GXC[RKH] 16

39 DCLP 16 39 W[RKH]X[IVLM] 16

40 GXCXA 16 40 [QN][RKH][ST][RKH][IVLM] 16

41 IXWH 16 41 [ST]X[RKH][ST] 16

42 CXXGT 17 42 [RKH]XGXA 16

43 CXAXS 16 43 [QN]XWX[ST] 16

44 YXD 16

45 VVFS 16

PXXFR (significant in 16 t-tests) and the contiguous YGR
(significant in 17 t-tests). Figure 1 shows the corresponding
relative frequencies per subtype as boxplot diagrams.

Figure 2 shows the corresponding boxplots for the three
most discriminant n-grams from the SEZ alphabet. They are
WXXW, G[DE]X[RKH] and [ST]XX[QN]ST, all of which are
significant in 16 tests.



0

1

2

3

4

5

x 10 3

m
G

C
S

G
B

V
N

P
h

O
d

Ta

WXW

0

1

2

3

4

5

x 10 3

M
G

C
S

G
B

V
N

P
h

O
d

Ta

PXXFR

0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10 3

m
G

C
S

G
B

V
N

P
h

O
d

Ta

YGR

Fig. 1. Frequencies boxplots of the three n-grams of the AA alphabet ranked
as the most discriminative in the classification of the 7 class C GPCR subtypes.
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Fig. 2. Frequencies boxplots of the three n-grams of the SEZ alphabet
ranked as the most discriminative in the classification of the 7 class C GPCR
subtypes.



The AA n-grams discrimination capabilities seem to be
mainly based on their existence, or lack of it, in sequences
of different subtypes. This is consistent with the restrictive
idea that a signature motif should be characterized as one that
matches all the sequences of a given family and no sequence
outside this family [21]. WXW seems to be mostly absent
in two of the main subtypes, namely mG and GB, whereas
PXXFR appearance seems mostly restricted to GB and Ph,
and YGR restricted to Ta. Note also that the grouping of some
frequency values for some subtypes beyond the main quartiles
of the boxplots is a hint to the existence of grouping structure
within subtypes. For instance, YGR seems to be present with
very specific frequencies not only in Ta, but also in small
subgroups of mG and GB.

The SEZ alphabet discrimination capabilities, instead, seem
to be rather more subtle, as they are less based on the lack
of a given n-gram than on a more gradual differentiation of
the range of their frequencies. This a somehow natural conse-
quence of their flexibility of sequence instantiation, resulting
from the less granular use of the amino acid alphabet. WXXW
seems very frequent in mG but infrequent in VN, Ph, Od and
Ta. Instead, G[DE]X[RKH] is most frequent in VN and least in
GB and Od, while [ST]XX[QN][ST] is mostly absent from mG
(again with the exception of an eccentric but tight subgroup),
but most frequent in GB and VN.

IV. CONCLUSION

Class C GPCRs are the largest class of current drug targets,
with a direct involvement in a wide array of pathologies. This
makes them relevant both for pharmacology and for medicine
at large. Their full tertiary structure is unknown, making their
functional study more complicated than that of other families
of GPCRs such as, for instance, class A.

In this study, we have analyzed class C amino acid
primary sequences from their contiguous and rigid gap n-
gram frequencies, using a combination of feature selection
and classification. This analysis involved class C subtype
discrimination and aimed at identifying those n-grams most
relevant to such task as candidate signature motifs. Motif over-
representation in the sequence maybe the result of evolutionary
preservation, which might be a lead to potential structural and
functional roles. The selected discriminant n-grams may be
related to the orthosteric sites at the VFT of the N-Terminal
domain, given that these sites bind to different ligands for
different subtypes and are thus subtype-specific.

Our previous research, using the frequencies of n-grams
of length up to three obtained from the complete sequences,
reported class C subtype classification accuracies that have
been matched in the current study using the frequencies of
a parsimonious selection of n-grams of length up to five ob-
tained from just the N-terminal domain. Such results reinforce
the interest of this extracellular domain in class C GPCR
functional investigation. Of note also that the list of relatively
long selected n-grams should be more effective than shorter
ones as the starting point for proteomics experts to investigate
motifs potentially related to the orthosteric site of the VFT, an
investigation with clear potential in pharmacological research.
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