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Preface

	e flourishing field of bioinformatics has been the catalyst to transform biological 
research paradigms to extend beyond traditional scientific boundaries. Fueled by 
technological advancements in data collection, storage, and analysis technologies 
in biological sciences, researchers have begun to increasingly rely on applications 
of computational knowledge discovery techniques to gain novel biological insight 
from the data. As we forge into the future of next-generation sequencing technolo-
gies, bioinformatics practitioners will continue to design, develop, and employ new 
algorithms that are efficient, accurate, scalable, reliable, and robust to enable knowl-
edge discovery on the projected exponential growth of raw data. To this end, data 
mining has been and will continue to be vital for analyzing large volumes of hetero-
geneous, distributed, semistructured, and interrelated data for knowledge discovery.

	is book is targeted to readers who are interested in the embodiments of data 
mining techniques, technologies, and frameworks employed for effective storing, 
analyzing, and extracting knowledge from large databases specifically encountered 
in a variety of bioinformatics domains, including, but not limited to, genomics and 
proteomics. 	e book is also designed to give a broad, yet in-depth overview of the 
application domains of data mining for bioinformatics challenges. 	e sections of 
the book are designed to enable readers from both biology and computer science 
backgrounds to gain an enhanced understanding of the cross-disciplinary field. In 
addition to providing an overview of the area discussed in Section 1, individual 
chapters of Sections 2, 3, and 4 are dedicated to key concepts of feature extrac-
tion, unsupervised learning, and supervised learning techniques prominently used 
in bioinformatics.

Section 1 of the book contains three chapters and is designed such that read-
ers from the biological and computer sciences can obtain a comprehensive over-
view of the evolution of the field and its intersection with computational learning. 
Chapter 1 provides an overview of the breath of bioinformatics and its associated 
fields. Readers with a computer science background can obtain an overview of 
the various databases and the challenges these databases pose through the topics 
elucidated in Chapter 2. Similarly, readers with a biological background can get 
acquainted with the concepts prominently referred to in computer science and data 



xvi  ◾  Preface

mining by using the topics covered in Chapter 3. For a course taught at the under-
graduate level, Section 1 captures concepts that are vital in data mining and pertain 
to its applications on biological databases.

Feature extraction and selection techniques are described in Section 2. 
Chapter 4 contains associated concepts of data mining, and Chapter 5 pro-
vides an overview of the concepts discussed in Chapter 4, pertaining to their 
application on biological data specific to gene expression analysis and protein 
expression data. 	ese two chapters can be taught at both undergraduate and 
graduate levels.

Sections 3 and 4 contain intertwining lessons. Section 3 consists of Chapters 6 
and 7, which focus on concepts of unsupervised learning, also known as clustering. 
Chapter 6 provides an overview of unsupervised learning with simpler and more 
generic clustering techniques and its application on bioinformatics data, and caters 
to readers at the undergraduate level. Chapter 7 provides a more comprehensive 
view of advanced clustering techniques applied to large biological databases and 
caters to readers at the graduate level.

Chapter 8 of Section 4 provides an overview of supervised learning, also known 
as classification. 	is chapter is tailored to suit advanced readers and covers a gamut 
of classification techniques commonly used in bioinformatics. Chapter 9 is the con-
cluding chapter of the book and contains a description of the various validation and 
benchmarking techniques used for both clustering and classification.

Possible Course Suggestions
As represented in Figure 0.1, a course focusing on clustering techniques in bioin-
formatics can use Chapters 6, 7, and 9. Similarly, a course that focuses on classifica-

Figure 0.1
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tion techniques in bioinformatics can use Chapters 8 and 9. A set of references for 
additional reading is listed at the end of each chapter.

Organization of the Book
Section 1 of this book is targeted to readers who would be interested in learning the 
evolution and role of data mining in bioinformatics. It introduces the evolution of bio-
informatics and the challenges that can be addressed using data mining techniques.

Simplistically titled “Introduction to Bioinformatics,” Chapter 1 provides an 
introduction and overview of the inception and evolution of bioinformatics, which 
can serve both as an initial reference and a refresher for readers. It highlights key 
technological advancements made in the field of biology that have fueled the need 
for computational techniques to enable automated analysis.

Chapter 2, “Biological Databases and Integration,” provides a description of 
the various biological databases prominently referred to in bioinformatics. 	is 
chapter emphasizes the need for data cleaning and cleaning strategies in biological 
databases that are constantly evolving.

Chapter 3, “Knowledge Discovery in Databases,” provides and introduction 
to the various data mining techniques that can be employed in biological data-
bases. It also emphasizes the various issues and data integration schemes that can 
be employed for data integration.

Section 2 of this book introduces the role of data mining in analyzing large 
biological databases. 	is section is structured such that the reader understands 
the breath of the various feature selection and feature extraction techniques that 
data mining has to offer. It also contains application examples of techniques 
that are prominently used in data-rich fields of proteomics and gene expression 
data analysis.

Titled “Feature Selection and Extraction Strategies in Data Mining,” Chapter 4 
focuses on the data mining techniques used to extract and select relevant features 
from large biological datasets. In this chapter, we touch on topics of normalization, 
feature selection, and feature extraction that are important for the analysis of large 
datasets.

It is an important challenge to determine how to interpret the features extracted 
or selected using the techniques described in Chapter 4. Chapter 5, titled “Feature 
Interpretation for Biological Learning,” therefore focuses on how normalization, 
feature extraction, and feature selection techniques can be exploited through appli-
cations on biological datasets to gain significant insights. 	is chapter contains 
descriptions of the application of data mining techniques to areas of mass spec-
trometry and gene expression analysis that are data rich and introduces the concept 
of ontologies, abstractions of function for features extracted.

	e remaining two sections of the book encapsulate paradigms of both unsu-
pervised and supervised learning in bioinformatics. More specifically, Section 3 
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focuses on the paradigm of unsupervised learning in data mining, referred to as 
clustering, and its application to large biological data. 	e chapters of this section 
cover important concepts of clustering and provide a gamut of examples of the use 
of clustering techniques in bioinformatics.

Chapter 6 provides an in-depth description of prominently used clustering 
techniques and their applications in bioinformatics. Similarly, Chapter 7 contains 
a comprehensive list of the applications of advanced clustering algorithms used in 
bioinformatics.

Section 4 gives the reader insight into the challenges of using supervised learn-
ing, also known as classification, on biological datasets. 	is section also addresses 
the need for validation and benchmarking of inferences derived using either clus-
tering or classification.

“Classification Techniques in Bioinformatics,” Chapter 8, contains an overview 
of classification schemes that are prominently used in bioinformatics. 	is chapter 
provides a conceptual view of the challenges encountered during the application of 
classification on biological databases. 	e chapter covers systems of both single and 
ensemble classifiers. Chapter 9 provides the reader insights on model selection and 
the performance estimation strategies in data mining. 	e techniques described in 
this chapter cater to both the validation and benchmarking of clustering and clas-
sification techniques.
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Chapter 1

Introduction to 
Bioinformatics

1.1 I ntroduction
To understand the functions of the human body, it is first necessary to understand 
the function of the basic unit of the body—the cell. 	e human body consists of 
trillions of cells that perform independent functions and are synchronized to carry 
out complex bodily functions. Scientists have dug into the functionality of cells, 
investigating how and why cells perform the tasks that they do. 	e study of the 
principles that govern these functions using modeling and computational tech-
niques is the foundation of computational biology.

	e human cell possesses hereditary material that is vital for cell replication and 
duplication and contains several parts, including a plasma membrane and various 
organelles, which are each designed to render both structure and function for the 
body (U.S. National Library of Medicine 2011) (Figure 1.1).

Typically, the plasma membrane, also called the lipid bilayer in animal cells, 
forms an outer lining called the plasma membrane of a cell. 	is membrane sepa-
rates the cell from the rest of the environment and selectively allows materials 
to enter and leave the cell. It is also the characteristic difference between animal 
and plant cells, as the animal lipid bilayer is characteristically flexible, unlike the 
rigid plant plasma membrane. 	e flexibility of the plasma membrane in an ani-
mal cell membrane is brought about by its composition of lipid molecules that 
are characteristically polar, hydrophilic, or hydrophobic in nature. 	is diver-
sity in composition allows the cell membrane to form various shapes, depending 
on changes in environmental conditions. 	e membrane of a cell is coated with 
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surface proteins, such as cell surface receptors, surface antigens, enzymes, and 
transporters, that bring about the functions of the membrane (Schlessinger and 
Rost 2005; Tompa 2005). 	ese surface proteins are highly sensitive to the envi-
ronment, as they are highly hydrophobic or hydrophilic. Research in identifying 
the structure and function of these membrane proteins has generated interest in 
recent times (Schlessinger et al. 2006).

	e plasma membrane encases the cytoplasm and various organelles of the 
cell. 	e bulk of the cell is composed of cytoplasm, which is composed of cytosol 
(a jelly-like fluid), the nucleus, and other organelle structures. 	e largest organelle 
is the cytoskeleton, which is composed of long fibers that spread over the entire cell. 
	us, the cytoskeleton provides the vital structure of the cell. Apart from providing 
the structure and shape of the cell, the cytoskeleton provides several critical func-
tions, including the cell division and movement of the cell.

	e endoplasmic reticulum is an organelle of the cell that is a collection of 
vesicles and tubules held together by the cytoskeleton. Also referred to as the lacey 
membrane, the endoplasmic reticulum can be one of three types: the rough endo-
plasmic reticulum (RER), the smooth endoplasmic reticulum (SER), or the sarco-
plasmic reticulum (SR). Each of these types of endoplasmic reticulum has specific 
functions. 	e RER manufactures proteins through embedded structures known as 
ribosomes. Ribosomes are organelles that help create proteins by processing genetic 
instructions coded in the DNA of the nucleus. 	e ribosomes characteristically 
attach to the endoplasmic reticulum but, at times, float freely in the cytoplasm. 
	e SER enables the synthesis of lipids and the metabolism of steroids. It is also 
responsible for regulating the calcium concentration throughout the cell. 	e SR, 
which is similar to the SER, functions as a calcium pump. Overall, the endoplasmic 
reticulum facilitates protein creation, folding, and the transport of the molecules 
that are in the form of sacs, referred to as the cisternae.

Other organelles in the cell, such as the Golgi apparatus, aid in the packaging 
of the processed molecules (proteins) from the endoplasmic reticulum for excretion 
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Figure 1.1  A schematic representation of the anatomy of the cell.
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from the cell; this is better known as the recycling center of the cell. Similarly, 
lysosomes are organelles that break down and digest toxic substances, engulfed 
bacteria, and viruses in a cell. 	ey also maintain the proper functioning of the 
cell by recycling worn-out organelles. 	e organelle responsible for cell function is 
the mitochondrion, which is responsible for converting food to energy that can be 
used by the cell. 	e mitochondrion is a complex organelle that has its own genetic 
material (deoxyribonucleic acid (DNA)), which is different from the genetic mate-
rial in the nucleus. 	is material is known as mitochondrial deoxyribonucleic acid 
(mtDNA) and enables the mitochondria to self-replicate.

	e most important central command center of the cell is the nucleus that 
houses DNA, the heredity material of the cell. 	e DNA found in the nucleus is 
known as the nuclear DNA. Nuclear DNA stores genetic information in the form 
of a code consisting of four chemical bases, adenine (A), guanine (G), cytosine (C), 
and thymine (T). Human DNA consists of about 3 billion bases, more than 99% 
of which are the same in all people. Moreover, nearly every cell in the human body 
has the same DNA. 	e nucleus is enveloped by a membrane called the nuclear 
envelope that protects and separates the DNA from the rest of the cell organelles.

A closer inspection of the DNA sequence shows the existence of an order of 
the bases in the DNA sequence. 	is order determines the coded instructions for 
the cell to grow, mature, divide, or die. In the DNA, the bases A, C, T, and G 
combine to form base pairs, such as A and T or C and G. A nucleotide consists 
of an ensemble of these base pairs attached to a sugar molecule and a phosphate 
molecule (refer to Figure 1.2 for examples of these molecules). 	e nucleotides in a 
DNA molecule are arranged in two long strands to form a spiral called the double 
helix. 	e structure of DNA is analogous to that of a ladder, where the ladder rungs 
correspond to the base pairs while the sugar and phosphate molecules correspond 
to the vertical side pieces of the ladder. 	is double helix structure of the DNA 
molecule facilitates replication, and each strand serves as a pattern template for the 
duplication of sequence bases during cell division, as the resultant child cells should 
possess the exact copy of the DNA in the parent cell (Figure 1.2).

Base Pairs Sugar-
Phosphate
Backbone

�ymine Adenine

Cytosin Guanine

Figure 1.2  Schematic representation of the DNA double helix formed by base 
pairs attached to a sugar-phosphate backbone. (From http://ghr.nlm.nih.gov/
handbook/illustrations/dnastructure.jpg.)
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Chromosomes are thread-like structures that contain multiple, tightly packed 
DNA molecules. 	ese tightly packed units are coiled multiple times around pro-
teins called histones. 	ese histone molecules are believed to provide the necessary 
structural reinforcement for the chromosome and help in the analysis of the struc-
ture of chromosomes. Typically, the structure of a chromosome consists of a central 
point called the centromere (refer to Figure 1.3), which divides the chromosome 
into sections called arms. 	e location of the centromere over the entire chromo-
some renders the characteristic shape of a chromosome, and acts as the point of 
reference in locating genes throughout the chromosome. Typically, a chromosome 
consists of two arms of different lengths. 	e shorter arm is referred to as the p-arm, 
and the longer is called the q-arm.

Genes are best known as the basic physical and functional units of heredity. 
	ey are found at characteristic locations over the chromosome; these locations are 
called loci. 	e coded information (i.e., the DNA) found in genes is translated and 
transcribed to create protein molecules.

Most humans share the same genes; however, a small number of genes vary 
from individual to individual. 	ese genes provide individuals their unique charac-
teristics, like hair, eye color, body shape, and skin pigmentation. A particular gene 
with two or more forms is called an allele. 	e difference in the gene is exhibited 
as changes in the DNA bases that contribute to an individual’s unique physical 
features (Figure 1.4).

DNA Double Helix

p Arm

q Arm

Histone Proteins

U.S. National Library of Medicine DNA

Chromosome
Centromere

Figure 1.3  DNA and histone proteins are packaged into structures called 
chromosomes. (From http://ghr.nlm.nih.gov/handbook/illustrations/chromo-
somestructure.jpg.)
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Genes contain codes that are translated into proteins. During translation, the 
gene codes consisting of trinucleotide units called codons provide the necessary 
coding for an amino acid. Table 1.1 shows the triplet combinations of nucleotides 
that result in the creation of 20 known amino acids. 	e translation is initiated 
by a START codon (along with nearby initiation factors) and is terminated by 
a STOP codon. A sequence of amino acids forms a protein, which is a complex 
molecule that carries out critical functions in the human body. 	e function of the 

Chromosome

Gene
U.S. National Library of Medicine

Figure 1.4  Genes are made up of DNA. Each chromosome contains many genes. 
(From http://ghr.nlm.nih.gov/handbook/illustrations/geneinchromosome.jpg.)

Table 1.1  All Amino Acids and Their Corresponding Codons

Amino Acid Codon Amino Acid Codon

Ala/A GCU, GCC, GCA, GCG Lys/K AAA, AAG

Arg/R CGU, CGC, CGA, CGG, 
AGA, AGG

Met/M AUG

Asn/N AAU, AAC Phe/F UUU, UUC

Asp/D GAU, GAC Pro/P CCU, CCC, CCA, CCG

Cys/C UGU, UGC Ser/S UCU, UCC, UCA, 
UCG, AGU, AGC

Gln/Q CAA, CAG Thr/T ACU, ACC, ACA, ACG

Glu/E GAA, GAG Trp/W UGG

Gly/G GGU, GGC, GGA, GGG Tyr/Y UAU, UAC

His/H CAU, CAC Val/V GUU, GUC, GUA, GUG

Lle/I AUU, AUC, AUA START AUG

Leu/L UUA, UUG, CUU, 
CUC, CUA, CUG

STOP UAA, UGA, UAG
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complex protein molecule is determined by its sequence and its three-dimensional 
(3D) structure, which has direct bearings on the function of the associated gene.

	e function of genes is, at times, affected by random changes to naturally 
occurring sequences. 	ese changes are called mutations. Mutations are random 
changes in the structure or composition of DNA, which can be caused by mis-
takes in reproduction or external environmental events, like UV damage. While 
evolutionary changes in species are caused by beneficial mutations that enable 
organisms to adapt over time, not all mutations are beneficial. Certain mutations 
cause diseases such as cancer and could affect the survival of organisms and 
species over time.

A significant amount of biomedical research has been carried out to determine 
the functions of protein complexes for medical use. 	is research has resulted in 
breakthroughs in drug development.

Section 1.2 contains a description of transcription and translation, closely fol-
lowed by an introduction to the Human Genome Project (HGP) in Section 1.3, which 
resulted in an estimate of between 20,000 and 25,000 genes reported in humans.

1.2 T ranscription and Translation
	e creation of proteins from a gene is complex and consists of two integral steps: 
transcription and translation. 	ough most genes contain the information needed 
to generate proteins, some genes help the cell assemble proteins. Transcription and 
translation are part of the central dogma of molecular biology, which is the funda-
mental principle that governs the conversion of information from DNA to RNA 
to protein (refer to Figure 1.5). 	e following section provides an overview of the 
two-stage process of transcription and translation.

	e first step of transcription occurs in the nucleus of the cell where the infor-
mation stored in the DNA (of a gene) is transferred to the mRNA (messenger 
ribonucleic acid). Typically, both RNA and DNA are composed of nucleotide base 
chains; however, they differ in properties and chemical composition. 	e mRNA 
is a type of RNA that holds the chemical blueprint of the protein product. 	e 
resultant protein product carries the encoded information from the DNA within 
the nucleus to the DNA within the cytoplasm of the cell for the production of the 
protein complex.

	e second step of translation occurs outside the walls of the nucleus, in which 
the ribosomes present on the rough endoplasmic reticulum read the encoded infor-
mation from the mRNA to produce the protein. 	e mRNA sequence consists of a 
string of codons, three bases that represent independent amino acids. 	e assembly 
of amino acids into the corresponding protein sequence is brought about by the 
transfer RNA (tRNA) one amino acid at a time. 	is process of assembly continues 
until the stop codon in the mRNA is encountered. 	is two-step process is called 
the central dogma of molecular biology (refer to Figure 1.5).
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1.2.1  The Central Dogma of Molecular Biology
As described previously, each gene contains the genetic makeup of an individual 
and the coded information required to manufacture both noncoding RNA and 
proteins. 	e expression of a gene is carried out by the two-stage process of transla-
tion and transcription (refer to Figure 1.6).

	e first step in this process is called transcription, which involves the replica-
tion of gene content by copying the content of the DNA to an equivalent RNA 
molecule also known as the primary transcript. 	e primary transcript is essentially 
the same sequence as the gene, except that it is complementary in its base pair con-
tent. 	is similarity enables the sequence to convert from DNA and RNA and vice 
versa, in the presence of certain enzymes. 	e resultant RNA sequence reflecting 
the transcribed DNA is called a transcription unit encoding one gene. 	e nucleo-
tide composition of the resultant RNA includes uracil (U) in place of thymine (T) 
in the DNA complement. DNA transcription is regulated and directed by regula-
tory sequences. 	e DNA sequence before the coding sequence is called the five 
prime untranslated region (5’UTR); similarly, the sequence following the coding 
sequence is called the three prime untranslated region (3’UTR). 	e direction of 
transcription moves from the 5’ to the 3’. Each gene is further divided into inter-
mediate regions called exons and introns. 	e exons carry information required for 
protein synthesis. As shown in Figure 1.6, the messenger RNA (mRNA) contains 
information from the exons. 	e process of splicing filters out the intron sequence 
from the primary transcripts.

Cytoplasm

DNA Transcription

Translation

DNA

RNA

PROTEIN

RNA

Ribosome

Protein

Nucleus

Figure 1.5 T he central dogma of molecular biology. The processes of transcrip-
tion and translation of information from genes are used to make proteins. (From 
http://ghr.nlm.nih.gov/handbook/illustrations/proteinsyn.jpg.)
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	e second step is translation, also known as protein synthesis. In this step, the 
resultant mRNA from transcription is translated to the resultant protein complex 
with the help of ribosomes. Translation occurs in the cytoplasm of the cell, outside 
the nuclear wall. 	e decoding of mRNA is initiated when the ribosome binds to 
the mRNA with the help of tRNAs, which transfer specific amino acids from the 
cytoplasm to the ribosome. 	e ribosome helps build the protein complex as it 
reads the information encoded in the mRNA.

	e process of translation begins when the ribosome binds to the 5’ end of the 
mRNA. 	e codons of the mRNA specify which amino acid needs to be appended 
to create the polypeptide chain. 	is process is terminated when the ribosome 
encounters the 3’ (stop codon) of the mRNA. 	e resultant chain of amino acids 
folds to form the structure of the protein. 	is process is called translation, as there 
is no direct correspondence between the nucleotide sequence of the DNA and the 
resultant protein complex.

Transcription and translation is a regulated process that enables the controlled 
expression of genes. With evolution and differences in species, it is known that all 
genes are not expressed in the same way. With the exception of the housekeeping 
genes, genes that are always expressed in all cells (performing the basic functions) 
are expressed differently during different phases of development. Proteins known as 
transcription factors (TFs) regulate genes. 	ese proteins bind to DNA sequences, 
preventing them from being transcribed and translated, and thereby switching 

5´

5´ 3´

3´
Exon 1

Primary Transcript (RNA)
Transcription

Splicing

Protein Synthesis

Mature Transcript (mRNA)

Protein

Intron 1 Intron 2 Intron 3

Exon 2 Exon 3 Exon 4

Figure 1.6  An overview of the transcription to translation. The gene is first tran-
scribed to yield a primary transcript, which is processed to remove the introns. 
The mature transcript (mRNA) is then translated into a sequence of amino 
acids, which defines the protein. (From http://genome.wellcome.ac.uk/assets/
GEN10000676.jpg.)
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them on or off as desired. 	us, the gene expression can be a controlled process 
based on the activity of transcription factors.

Transcription factors, being proteins themselves, require genes to produce 
them. 	is requirement opens a conundrum in which one gene expression affects 
the expression of the other genes. In this manner, genes and proteins are linked 
in a regulatory hierarchy. 	is process of turning genes on and off is called gene 
regulation. Gene regulation is an important part of normal development; how-
ever, a number of human diseases are the result of the absence or malfunction of 
transcription factors and the resultant disruption of gene expression. Considering 
the importance of gene regulation, a significant amount of research should be per-
formed to understand how genes regulate each other (Figure 1.6) (Baumbach et al. 
2008; Cao and Zhao 2008).

1.3 T he Human Genome Project
	e Human Genome Project (HGP) was initiated as a joint endeavor and spon-
sored by the Office of Biological and Environmental Research at the Department 
of Energy (DOE) and the National Human Genome Research Institute at the 
National Institutes of Health (NIH), with the goal of sequencing the human 
genome within 15 years (Collins 1998). More than 2,000 scientists from over 20 
institutions in 6 countries collaborated to produce the first working draft of the 
human genome, a landmark in scientific research. 	e final phase of the HGP 
(1993–2003) has fulfilled its promise as the single most important project in biol-
ogy and the biomedical sciences. Although the initial sequence had ∼150,000 gaps, 
and the order and orientation of many of the smaller segments had yet to be estab-
lished, the finished sequence contained 2.85 billion nucleotide base pairs (bp) and 
just 341 gaps (Figure 1.7).
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Figure 1.7  Key milestones achieved in the last 5 years of the HGP (1999–2003) 
(Constructed based on information from http://www.genome.gov/Images/press_
photos/highres/38-300.jpg.)
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	e comprehensive human genome sequence made available through this proj-
ect has increased our ability to analyze genomes, and has aided research in areas 
such as large-scale biology, biomedical research, biotechnology, and health care. 
	ough researchers involved with the project have proclaimed it to be complete, 
certain aspects of the project have yet to be fully implemented. 	e methods and 
outcomes of this project are constantly evolving and can lead to a better under-
standing of gene environment interactions, structures, and functions, thereby 
eventually leading to the creation of accurate DNA-based medical diagnostics 
and therapeutics that would be important to the biomedical research community 
(Collins 1998).

Genetic sequence variation is necessary for the study of evolution. 	e HGP 
provides a comprehensive availability of the human genome sequence, thereby pre-
senting unique scientific and research avenues for collaborative research. Apart from 
providing a means to understand numerous medically important and genetically 
complex human diseases, the HGP is also focused on delivering (1) genetic tests, 
(2) a better understanding of inherited diseases, and (3) patient-specific therapies.

Bioinformatics and computational biology are important components of mak-
ing these goals a reality. 	e HGP (along with the other genome projects) has pro-
vided us with a description of the complete sequences of all the genes in more than 
a dozen organisms, and continuously provides more complete genome sequences as 
research continues. With technological innovations, the data generated have been 
growing at an exponential rate and are stored in distributed databases across the 
world. 	ese databases provide challenges and opportunities for the analysis and 
exploitation of genes and protein sequences. In order to reap the intellectual and 
commercial benefits of this genetic information, researchers must be able to 
find the function of individual gene products. In the following section, we high-
light the goals laid by the HGP and the corresponding strides made thereof in 
achieving the goals.

1.4  Beyond the Human Genome Project
With the completion of the sequencing of the human genome, the HGP focus 
switched to making the sequence publicly available to its mapping. 	e extrac-
tion of 3 billion base pairs was in itself a humongous task, and the analysis of this 
magnitude of data presented its own set of challenges and opportunities requiring a 
huge number of resources. Researchers from around the world realized the impor-
tance and the significant scientific contributions that could be made in the areas 
of human health and participated in the global endeavor to map the entire human 
genome (Figure 1.8).

	e following sections describe the technological strides made thus far in five 
key areas: (1) sequencing technologies, (2) sequence variation studies, (3) functional 
genomics, (4) comparative genomics, and (5) functional annotation.
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1.4.1  Sequencing Technology
With technological innovations, DNA sequencing technology continues to improve 
dramatically. Since the HGP began, the growth in data generated from sequenc-
ing projects has been exponential. 	is growth is caused by the emphasis given to 
sequencing technologies, due to:

 1. Reduced costs and increased throughput of current sequencing technology
 2. Support for novel technologies that can significantly improve sequencing 

technologies
 3. Newly developed effective methods that introduce new sequencing 

technologies

	e consequent technological innovations in the recent past have brought 
about a decline in the per-base cost of DNA sequencing at an exponential rate. 
	ese innovations are attributed to the improvement in the read length and accu-
racy of sequencing traces and have resulted in the consequent exponential growth 
of the genome databases (Shendure et al. 2008). 	e introduction of instruments 
capable of producing millions of DNA sequences read in a single run provides 
the ability to answer questions with unimaginable speed. 	ese technologies are 
aimed at providing inexpensive, genome-wide sequence readouts as endpoints to 
applications.

	ere are six distinct techniques for DNA sequencing: (1) dideoxy sequencing, (2) 
cyclic array sequencing, (3) sequencing by hybridization, (4) microelectrophoresis, 
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Figure 1.8 T he five key areas that have been formed since the completion of the 
human genome project (HGP).
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(5) mass spectrometry, and (6) nanopore sequencing. 	e primary objective of 
these sequencing technologies is to identify the primary nucleotides, such as ade-
nine (A), guanine (G), cytosine (C), and thymine (T), in the content of the DNA 
strands. 	e following sections provide an overview of these various sequencing 
strategies used.

1.4.1.1  Dideoxy Sequencing

Dideoxy sequencing was initially proposed by the Sanger Institute. 	e process 
proceeds by primer-initiated, polymerase-driven synthesis of DNA strands comple-
mentary to the template with the determined sequence. Numerous identical copies 
of the sequencing template undergo the primer extension reaction within a single 
microliter-scale volume.

Generating sufficient quantities of a template for a sequencing reaction is typi-
cally achieved by either (1) miniprep of a plasmid vector into which the fragment 
of interest has been cloned, or (2) polymerase chain reaction (PCR) followed by a 
cleanup step.

In the sequencing reaction, both the natural deoxynucleotides (dNTPs) and the 
chain-terminating dideoxynucleotides (ddNTPs) are present at a specific ratio. 	e 
ratio determines the relative probability of incorporation of dNTPs and ddNTPs 
during the primer extension. Incorporation of a ddNTP instead of a dNTP results 
in the termination of a given strand. 	erefore, for any given template molecule, or 
strand, elongation will begin at the 3’ end of the primer and will terminate upon 
the incorporation of a ddNTP. In older protocols for dideoxy sequencing, four 
separate primer extension reactions are carried out, each containing only one of 
the four possible ddNTP species (ddATP, ddGTP, ddCTP, or ddTTP), along with 
template, polymerase, dNTPs, and a radioactively labeled primer. 	e result is a 
collection of many terminated strands of different lengths within each reaction. As 
each reaction contains only one ddNTP species, fragments with only a subset of 
possible lengths will be generated, corresponding to the positions of that nucleotide 
in the template sequence. 	e four reactions are then electrophoresed in four lanes 
of a denaturing polyacrylamide gel to yield size separation with single nucleotide 
resolution. 	e pattern of bands (with each band consisting of terminated frag-
ments of a single length) across the four lanes allows researchers to directly interpret 
the primary sequence of the template under analysis.

Current implementations of dideoxy sequencing differ in several key ways from 
the protocol described above. Only a single primer extension reaction is performed. 
	is reaction includes all four species of ddNTP, which are labeled with fluorescent 
dyes that have the same excitation wavelength but different emission spectra, allow-
ing for identification by fluorescent energy resonance transfer (FRET).

To minimize the required amount of template DNA, a cycle sequencing reaction 
is performed, in which multiple cycles of denaturation, primer annealing, and primer 
extension are performed to linearly increase the number of terminated strands.
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1.4.1.2  Cyclic Array Sequencing

All of the recently released or soon-to-be-released non-Sanger commercial sequencing 
platforms, including systems from 454/Roche, Solexa/Illumina, Agencourt/Applied 
Biosystems, and Helicos BioSystems, fall under the rubric of a single paradigm, called 
cyclic array sequencing. Cyclic array platforms are cheap because they simultaneously 
decode a 2D array bearing millions (potentially billions) of distinct sequencing fea-
tures. 	e sequencing features are “clonal,” in that each resolvable unit contains only 
one species of DNA (as a single molecule or in multiple copies) physically immobi-
lized on the array. 	e features may be arranged in an ordered fashion or randomly 
dispersed. Each DNA feature generally includes an unknown sequence of interest 
(distinct from the unknown sequence of other DNA features on the array) flanked by 
universal adaptor sequences. A key point in this approach is that the features are not 
necessarily separated into individual wells. Rather, because they are immobilized on a 
single surface, a single reagent volume is applied to simultaneously access and manip-
ulate all features in parallel. 	e sequencing process is cyclic because in each cycle an 
enzymatic process is applied to interrogate the identity of a single base position for all 
features in parallel. 	e enzymatic process is coupled to either the production of light 
or the incorporation of a fluorescent group. At the conclusion of each cycle, data are 
acquired by charge-coupled device (CCD)-based imaging of the array. Subsequent 
cycles are aimed at interrogating different base positions within the template. After 
multiple cycles of enzymatic manipulation, position-specific interrogation, and array 
imaging, a contiguous sequence for each feature can be derived from an analysis of 
the full series of imaging data covering its position.

1.4.1.3  Sequencing by Hybridization

	e principle of sequencing by hybridization (SBH) is that the differential hybrid-
ization of target DNA to an array of oligonucleotide probes can be used to decode 
the target’s primary DNA sequence. 	e most successful implementations of this 
approach rely on probe sequences based on the reference of a genome sequence of a 
given species, such that genomic DNA derived from individuals of that species can 
be hybridized to reveal differences relative to the reference genome (i.e., resequenc-
ing, rather than de novo sequencing). 	e difference between SBH and other geno-
typing array platforms that use similar methods is that SBH attempts to query all 
bases, rather than only bases at which common polymorphisms have been defined. 
In resequencing arrays developed by Affymetrix and Perlegen, each feature consists 
of a 25 bp oligonucleotide of a defined sequence. For each base pair to be rese-
quenced, there are four features on the chip that differ only at their central position 
(dA, dG, dC, or dT), while the flanking sequence is constant and is based on the 
reference genome. After hybridization of the labeled target DNA to the chip and 
the imaging of the array, the relative intensities at each set of four features targeting 
a given position can be used to infer the target DNA’s identity.
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1.4.1.4  Microelectrophoresis

As mentioned above, conventional dideoxy sequencing is performed with 
microliter-scale reagent volumes, with most instruments running 96 or 384 
reactions simultaneously in separate reaction vessels. The goal of microelectro-
phoretic methods is to make use of microfabrication techniques developed in 
the semiconductor industry to enable significant miniaturization of conven-
tional dideoxy sequencing. A key advantage of this approach is the retention 
of the dideoxy biochemistry, which has proven robustness for >1,011 bases of 
sequencing. Until alternative methods achieve significantly longer read lengths 
than they can today, there will continue to be an important role for Sanger 
sequencing. Microelectrophoretic methods may prove critical to continue to 
reduce costs for this well-proven chemical process. There may also be a key role 
for lab-on-a-chip integrated sequencing devices that will provide cost-effective, 
clinical point-of-care molecular diagnostics.

1.4.1.5  Mass Spectrometry

Mass spectrometry (MS) has established itself as the key data acquisition platform 
for the emerging field of proteomics. 	ere are also applications for MS in genom-
ics, including methods for genotyping, quantitative DNA analysis, gene expression 
analysis, analysis of indels and DNA methylation, and DNA/RNA sequencing.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 
(MALDI-TOF-MS) is an MS sequencing technique that relies on the precise mea-
surement of the masses of DNA fragments present within a mixture of nucleic 
acids. De novo sequencing using MALDI-TOF-MS read lengths are limited to 
<100 bp. Applications of MS sequencing include:

 1. Deciphering sequences that appear as compression zones by gel 
electrophoresis

 2. Direct sequencing of RNA (including for identification of posttranslational 
modifications of ribosomal RNA)

 3. Robust discovery of heterozygous frameshift and substitution mutations 
within PCR products in resequencing projects

 4. DNA methylation analysis

1.4.1.6  Nanopore Sequencing

Nanopore sequencing is an approach for single-molecule sequencing that 
involves passing single-stranded DNA through a nanopore. 	e nanopore is 
a biological membrane protein or a synthetic solid-state device. As individual 
nucleotides are expected to obstruct the pore to varying degrees in a base-
specific manner, the resulting fluctuations in electrical conductance through 
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the pore can, in principle, be measured and used to infer the primary DNA 
sequence. Published examples of the nanopore-based characterization of single 
nucleic acid molecules include:

 1. 	e measurement of duplex stem length, base pair mismatches, and loop 
length within DNA hairpins (Vercoutere et al. 2001)

 2. 	e classification of the terminal base pair of a DNA hairpin, with approxi-
mately 60 to 90% accuracy with a single observation, and >99% accuracy 
with 15 observations of the same species (Winters-Hilt et al. 2003)

 3. Reasonably accurate (93 to 98%) discrimination of deoxynucleotide mono-
phosphates from one another with an engineered protein nanopore sensor 
(Astier et al. 2006)

Significant pore engineering and technology development may be necessary 
to accurately decode a complex mixture of DNA polymers with single-base pair 
resolution and useful read lengths. Provided these challenges can be met, nanopore 
sequencing has the potential to enable rapid and cost-effective sequencing of popu-
lations of DNA molecules with comparatively simple sample preparation.

1.4.2  Next-Generation Sequencing
With the advancements made in sequencing technologies, there has also been 
recent advancement in the form of a new generation of sequencing instruments. 
	ese instruments cost less than the techniques described in the previous section 
and promise faster sequence readings, as they require only a few iterations to com-
plete an experiment. 	ese faster reads foster the potential to add to the exponen-
tial increase of sequence data. 	e expected increase of data is also attributed to 
the next-generation sequence technology’s ability to process millions of reads in 
parallel, rather than the traditional 96 reads. 	us, with the introduction of next-
generation sequencing technology, large-scale production gene sequence data may 
require specialized use of robotics and high-tech instruments, computer databases 
for storage of the huge data, and bioinformatics software for analysis.

An added advantage of the proposed next-generation sequence reads is that they 
are generated from fragment libraries that have not been subjected to conventional 
vector-based cloning and Escherichia coli-based amplification stages used in capillary 
sequencing rendering the sequences of any prevalent biases caused by cloning.

	ree commercially used and commonly cited next-generation sequencing plat-
forms include the Roche (454) GS FLX Sequencer, the Illumina Genome Analyzer, 
and the Applied Biosystems SOLiD Sequencer (refer to Table 1.2 for a detailed 
comparison). 	e generic work flow for creating a next-generation sequence library 
is simple. Fragments of DNA are prepared for sequencing by ligating specific adap-
tor oligos to both ends of each DNA fragment. Typically, only a few micrograms of 
DNA are needed to produce a library. Each of these platforms applies a unique or 
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modified approach to sequence the paired ends of a fragment, the scope of which is 
not covered in this book. For details refer to Mardis (2008).

Since next-generation sequencing technology is relatively new, there is little 
insight on the accuracy of the reads, and the quality of the results obtained have 
yet to be understood. When compared to the more traditional capillary sequencers, 
next-generation sequencers produce shorter reads, ranging from 35 to 250 base pairs 
(bp), than the traditional 650 to 800 bp created by other methods. 	e length of the 
reads could impact the utilization of the generated data. Efforts are being pursued 
currently to benchmark the reads with the traditional capillary electrophoresis.

Although next-generation sequence technology provides many advantages over 
traditional methods, it also poses several computational challenges. Many storage and 
data management systems cannot handle the amount of data generated. 	e data stor-
age must be scalable, dense, and inexpensive to handle the exponential growth. Various 
centers of bioinformatics around the globe are investing heavily in high-performance 
disk systems and data pipelines to overcome the challenge of handling the large num-
ber of files that are expected to be accessed when the demand arises.

Software pipelines are also required to provide the necessary analysis and visu-
alization of the data generated. More importantly, software has to be in place to 
provide annotations of the sequences generated.

1.4.2.1  Challenges of Handling NGS Data

	e challenges of handling the deluge of NGS data stem from two key concepts that 
are used to analyze the sequence reads. 	ese concepts focus on de novo assembly 

Table 1.2  Comparison of Metrics and Performance of Next-Generation 
DNA Sequencers

Platform

Roche (454) Illumina AB SOLiD

Sequencing chemistry Pyrosequencing Polymerase-based 
sequencing by 
synthesis

Ligation-
based 
sequencing

Amplification approach Emulsion PCR Bridge 
amplification

Emulsion 
PCR

Mb/run 100 Mb 1,300 Mb 3,000 Mb

Time/run (paired ends) 7 h 4 days 5 days

Read length 250 bp 32–40 bp 35 bp

Source:	Mardis, E.R., Trends Genet 24, no. 3 (2008): 133–141.



Introduction to Bioinformatics  ◾  19

and alignment. 	e following sections describe the computational algorithms used 
to handle the massive amounts of Illumina sequencing data for both de novo assem-
bly and alignment of reads (Paszkiewicz and Studholme 2010).

1.4.2.1.1  De Novo Assembly

De novo sequence assembly is the process whereby we merge individual sequence 
reads to form long contigs (continuous sequences) that share the same nucleotide 
sequence as the original template DNA from which the sequence reads were 
derived.

Two algorithms are prominently used to assemble sequence reads: (1) algorithms 
based on the overlap-layout-consensus (OLC) approach (Huang and Madan 1999) 
and (2) algorithms based on a de Bruijn graph (Simpson et al. 2009). 	ese have 
been well-reviewed techniques and have been implemented in effective genome-
assembly software packages. However, these genome sequence assembly programs 
are not well suited to short sequence reads generated by Illumina and AB SOLiD 
platforms (Paszkiewicz and Studholme 2010).

1.4.2.1.2  Alignment

Once the assembly is performed, the contigs are subject to alignment algorithms 
(Li and Homer 2010), which focus on the creation of auxiliary data structures 
called indices for the sequence reads and the reference sequence. We can categorize 
these structures into three algorithms: (1) hash table-based algorithms, (2) suffix 
tree-based algorithms and (3) algorithms based on merge sorting.

1.4.2.1.2.1 Hash Table-Based Algorithms — 	ese algorithms create a hash 
table index that can be used to trace back to specific basic local alignment search 
tool (BLAST) matches as they rely on a seed-and-extend paradigm. In the first 
phase of the algorithm, BLAST maintains the position of each k-mer subsequence 
of the query in a hash table with the k-mer sequence being the key, and scans the 
database sequences for k-mer exact matches called seeds. Once this phase is com-
plete, BLAST extends and joins the seeds without gaps. Further refinements are 
carried out using Smith-Waterman alignment to refine the seeds, which achieves 
statistically significant results. 	e tools that are prominently using the hash table-
based algorithms are MAQ, the SOAP family of alignment tools, viz., SOAP, 
SOAP2, and SOAP3/GPU, and Abyss (Simpson et al. 2009).

1.4.2.1.2.2 Suffix-Based Trees — With the short sequence reads it is a challenge 
to obtain the exact matches of the reads using BLAST. 	us researchers tend to 
favor inexact matches of sequence for alignments. 	e suffix-based approaches aim 
to essentially reduce the inexact matching problem to the exact matching problem 
using two steps: (1) identifying exact matches and (2) building inexact alignments 
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supported by exact matches. To find exact matches, these algorithms use a certain 
representation of suffix trees. 	e advantage of using suffix trees is that alignment to 
multiple identical copies of a substring in the reference is only needed once because 
these identical copies collapse on a single path in the tree, whereas with a typical 
hash table index, an alignment must be performed for each copy. 	e tools that 
prominently use the suffix-based trees for alignment of sequences are MUMmer and 
REPuter (Paszkiewicz and Studholme 2010).

1.4.3  Sequence Variation Studies
Nature retains diversity in a population of organisms living in varied environ-
mental conditions. 	is diversity is the result of genetic variations: traits that vary 
and are coded in the genes of the population. Since the inception of the HGP, 
several studies have been conducted to understand the effect of genetic variations 
between individuals.

Natural sequence variation is the fundamental property of all genomes. It is 
believed that any two haploids exhibit multiple kinds of genetic variations and 
polymorphisms (see Figure 1.9). 	ere are three basic forms of genetic variations: 
mutations, gene flow, and sex. Not all of these genetic variations have functional 
implications. Sequence polymorphisms also include duplications, rearrangement, 
insertions, and deletions. 	e most common polymorphism in the human genome 
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Figure 1.9  A schematic representation of a single nucleotide polymorphism 
between two haploids.
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is the single-base pair difference, better known as a single nucleotide polymor-
phism (SNP). When two haploid human genomes are compared, it is observed 
that SNPs occur at every kilobase of the gene sequence. SNPs are abundant, stable, 
and widely distributed across the genome. Because of these properties, SNPs can 
be used for the mapping of complex traits such as cancer, diabetes, and mental 
illness. However, the occurrences of these variations across the entire genome are 
rare, making it a challenge to challenge to identify and understand these variations 
(Figure 1.9).

Keeping this challenge in mind, the objective of sequence variation studies is 
to provide dense maps of SNPs that will make genome-wide association studies 
possible. 	ese maps are powerful means for identifying genes that contribute 
to disease risk. 	ey will also permit the prediction of individual differences 
in drug responses. When the maps are made available to the public, maps of a 
large number of SNPs distributed across the entire genome come together with 
technology for rapid, large-scale identification. 	e scoring of SNPs must be 
developed to facilitate this research. 	e HGP envisioned the following goals 
concerning genetic variation analysis. First, the goal is to develop technologies 
for rapid, large-scale identification or scoring, or both, of SNPs and other DNA 
sequence variants. In order to achieve this goal, the following objectives had to 
be met:

 1. 	e creation of an SNP map of at least 100,000 markers
 2. 	e development of concepts and methods to study multigene traits and map 

DNA sequence variations to phenotypic variations such as complex disease
 3. 	e creation of public resources containing DNA samples and cell lines to 

enable SNP discovery using the public resources

To this end, large bodies of works have been conducted through primary data 
sources that contain SNP data, including the dbSNP (current build 134) contain-
ing approximately 6,961,883 human reference SNP clusters, the Human Gene 
Mutation Database (HGMD) containing 113,247 entries (professional release 
2011.2), and the disease-specific Online Mendelian Inheritance in Man (OMIM) 
(September 2011) that contains approximately 2,648 genes with disease-causing 
mutations. Several tools are available for the analysis of SNPs, of which SNPper is 
prominently used. Furthermore, BioPerl provides an API for the analysis of SNPs 
and Genewindow provides visualization technology. Other online resources that 
enable effective visualization of SNP data include the UCSC Genome Browser (see 
Figure 1.10) and the Ensembl Genome Browser (Table 1.3).

1.4.3.1  Kinds of Genomic Variations

HGP focuses on the creation of a repository of all known SNPs derived from a 
diverse population across the United States and the creation of appropriate tools to 
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analyze SNPs. 	e HGP suggests that approximately 95% of the discovered SNPs 
belong to the noncoding regions of the genome. Furthermore, it is still an open 
challenge to determine the functional aspect of the SNPs found near or in genes. 
However, it is still believed that based on their location on the genome, SNPs can 
potentially alter the functions of DNA, RNA, and proteins alike. A general cat-
egorization of SNPs based on their location is shown in Table 1.4 (Mooney 2005; 
Rebbeck et al. 2004).

Generally, nonsynonymous SNPs (nsSNPs) cause a change in the amino 
acid sequence of the resultant protein sequence, either by substituting amino 
acids or introducing a nonsense/truncation mutation (Ng and Henikoff, 2006). 
Table 1.4 shows variants that affect the expression of a gene translation by inter-
rupting a regulatory region known as a regulatory SNP. Similarly, those vari-
ants that interfere with normal splicing and mRNA functions are categorized 
as intronic SNPs or synonymous SNPs. Due to increasing research efforts, the 
molecular effects of variations are becoming better understood, which allows us 
to shed more light on genetic diseases.

1.4.3.2  SNP Characterization

To understand the patterns of sequence variations in coding regions of genes, bio-
informatics strategies have been focused on analyzing disease-associated mutations 
that focus precisely on where diseased alleles occur with respect to their corre-
sponding protein structures. It is important to understand the underpinnings of 
these mutations and what properties guide such mutations.

Figure 1.10  A screenshot of the UCSC Genome Browser, a tool to visualize 
SNP data.
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Table 1.3  SNP Resources Widely Used

Description

Genome Resources

dbSNP The primary repository for SNP data

Ensembl Genome database

GoldenPath Genome database

HapMap Consortium Haplotype block information

JSNP Japanese SNP database

Mutation Repositories

HGVBase Public genotype-phenotype database

HGMD Mutation database with many annotations

Swiss-Prot Protein database with extensive variant annotations

List of Locus-Specific Databases

CGAP-GAI Cancer Gene Anatomy Project at the National 
Cancer Institute

Other databases and tools Tools for SNP analysis and gene characterization

Tools

SNPper Novel software for SNP analysis

BioPerl A programming application program interface 
(API) for bioinformatics analysis

Genewindow Interactive tool for visualization of variants

Table 1.4 E xisting SNP Categorization

Coding SNPs cSNP Positions that fall within the coding regions of 
genes

Regulatory SNPs rSNP Positions that fall in regulatory regions of genes

Synonymous SNPs sSNP Positions in exons that do not change the 
codon to substitute an amino acid

Nonsynonymous SNPs nsSNP Positions that incur an amino acid substitution

Intronic SNPs iSNP Positions that fall within introns
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It is hypothesized that mutations on the gene sequence (position specific) are 
conserved through evolution and are reflected to the protein structure (Ng and 
Henikoff 2002; Krishnan and Westhead 2003).

One of the tasks of SNP analysis is to gauge the impact of each nsSNP on 
protein function. Due to the size of the SNP data, this task is experimentally 
infeasible. 	us, researchers have looked into computational methods to predict 
changes in protein function if an amino acid changes. 	is technique, also known 
as amino acid substitution (AAS), focuses on disease-causing mutations that are 
likely to occur at positions that are conserved through evolution. It is further 
believed that disease-causing AASs affect the structural characteristics of the 
resulting protein, suggesting that protein structural information can be used to 
analyze these mutations (Table 1.5).

1.4.4  Functional Genomics
With the entire human genome sequence publicly available, a new approach to 
address biological challenges has taken form. 	is approach, called functional 
genomics, entails the functional understanding of the human DNA on a genome 
scale. Functional genomics is viewed as an intermediate step that brings biologi-
cal research to being applied in medicine (from bench-side to bedside). Based on 
successes of previous studies of sequences within organisms, it is inferred that the 
function of genes and other functional elements of the genome can be inferred 
more accurately only when the genome is studied in its entirety.

Table 1.5  Strategies That Have Been Used for Analysis of AAS

Method Algorithm

SIFT (Ng and Henikoff 2002) Sequence homology and position-
specific scoring matrices

PolyPhen (Stitziel et al. 2004) Sequence conservation, structural 
information modeling

SNPs3D (Yue and Moult 2005) Structure-based support vector 
machines (SVMs) and sequence 
conservation-based SVMs

PANTHER PSEC (Thomas et al. 2003) Sequence homology and scores obtained 
from PANTHER hidden Markov models of 
protein families

TopoSNP (Stitziel et al. 2004) Characterization of residues based on 
topological information such as buried, 
on-surface, or pocket information
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At the end of the HGP, knowledge about a gene’s structure and other elements 
was only the tip of the iceberg. Further insights about the function of a gene can be 
derived from its interaction with the environment.

Existing methods for analyzing DNA function at a genomic scale include the 
comparison and analysis of sequence patterns, large-scale analysis of mRNA, vari-
ous approaches of gene distribution, and the analysis of protein complexes (for gene 
products). Despite these methods, there is still a need for novel strategies to eluci-
date the function of genes. 	us, functional genomics focuses on the development 
of technology that can be used for the large-scale analysis of the human genome in 
its entirety rather than in parts. In functional genomics, emphasis is given to gene 
transcripts and their protein products, including the identification and sequencing 
of full-length cDNAs that represent the entire human genome. 	us, the following 
were the objectives of functional genomics:

 1. Extend support for the creation of global approaches, improved technolo-
gies, and the creation of relevant libraries for the comparative and computa-
tional analysis of noncoding sequences: It is imperative to understand these 
sequences, as they are noncoding and carry out other functions, such as 
RNA splicing, sequences that are responsible for the formation of chroma-
tin domains, sequences that maintain chromosome structure, sequences that 
are responsible for recombination and replication, and sequences that specify 
numerous functional untranslated RNAs.

 2. Enable and support the creation of technology for the comprehensive analysis 
of gene expression so that it is possible to analyze spatial and temporal pat-
terns of gene expression in both human and model organisms, thereby pro-
viding a means to understand the expression of genes: To make this analysis 
possible, cost-effective and efficient technology that measures the parameters 
of gene expression in a reliable manner and can be easily reproduced must be 
developed. In addition to the required technological innovations, comple-
mentary DNA (cDNA) sequences and validated sets of clones with unique 
identifiers are also needed to analyze gene expression data. Other required 
developments include novel methods to quantify, represent, analyze, and 
archive the resulting gene expression data.

 3. Investigate alternate means of studying functions, like methods for genome-wide 
mutagenesis: 	is step includes the creation of mutations that cause loss or altera-
tion in gene functions. Associated technologies for large-scale in vivo and in vitro 
are also required to generate and find mutations in each gene and phenotype.

 4. Understand protein functions on a genome-wide scale to develop technol-
ogy for global protein analysis to provide a comprehensive understanding 
of genome functions: 	e development of computational and experimental 
models to analyze both spatial and temporal patterns of protein expression, 
protein-ligand interactions, and protein modification is required.
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1.4.4.1  Splicing and Alternative Splicing

Splicing, the first step to understanding the functions of genes and the roles they play in 
an organism, is the alteration of the primary transcript RNA after transcription. In this 
process, introns are removed, and the remaining exons are joined (see Figure 1.11). It is 
necessary for the mature transcript (of the mRNA) to be subject to splicing, as it enables 
the production of the correct protein during translation. However, it is commonly 
observed that a set of unique proteins can be created by varying the exon composition 
of the mRNA through the process of splicing. 	is process is referred to as alternative 
splicing. Alternative splicing can occur in many ways using different combinations of 
exon units. Moreover, exons can be skipped, or introns can be retained, creating a com-
plex system requiring the need for computational modeling and interpretation.

	e sequencing of the human genome has raised the importance of alternative 
splicing as an RNA regulatory mechanism. Furthermore, alternative splicing has 
provided a means for researchers to explain why there is such a large repertoire of 
proteins. It has also potentially helped identify and explain defects that occur in the 
splicing mechanism and that result in complex diseases such as cancer.

Bioinformatics has played a key role in cataloguing splice variations in humans 
and other eukaryotic genomes (Modrek et al. 2001). Tools and algorithms have also 
been developed to characterize splice regulatory elements that control the expres-
sions of genes (Florea 2006). Instead of focusing on an organism’s total number 
of genes to explain its functional and behavioral complexity, researchers are now 
interested in determining how each gene can be “reused” to create multiple func-
tions and new modes of regulation. To this end, studies on both human and mouse 
sequence data have resulted in algorithms that have clustered genes and samples 
based on their alternative splicing patterns, indicating the importance of alternative 
splicing to differentiate between genes (Lee and Wang 2005).

1.4.4.1.1  Types of Alternative Splices

Alternative splicing of pre-mRNA is an important regulatory mechanism to modu-
late genes and their corresponding protein complexes within a cell. It is believed 

Primary Transcript (RNA)
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Mature Transcript (mRNA)
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Exon 2 Exon 3 Exon 4

Figure 1.11 T he process of splicing, in which the introns are removed from the 
primary transcript (RNA) and the exons are combined to form the mature tran-
script (mRNA).
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that the proteins obtained from alternative splices can be used to regulate a gene 
expression within a cell. It is therefore necessary to understand and catalog all pos-
sible combination of exons obtained from a gene.

With the perspective of gene structure, alternative splicing is categorized into 
four types of events (see Figure  1.12). It should be noted that due to the data’s 
intrinsic property of being noisy, the identification of gene boundaries is difficult. 
	erefore, it is an open challenge to identify and characterize the 5’ and 3’ alterna-
tive untranslated regions (UTRs), as shown in Figure 1.12e–f.

1.4.4.1.2  Alternative Splicing for Gene Annotation

	e role of bioinformatics in alternate splicing is prevalent in areas of gene annota-
tion and splice regulation (Lee and Wang 2005). Traditional gene discovery, bet-
ter known as gene prediction (Birney et al. 2004), has been performed through a 
combination of ab initio and comparative methods for the identification of linear 
exon-intron models of genes. With the completion of the HGP and the resultant 
large-scale annotation projects such as the Ensembl (Hubbard et al. 2002) and 
UCSC Genome Browser database (Fujita et al. 2010) with different data, depen-
dent models came into existence. 	ese models are based on different prediction 
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Figure 1.12  Schematic representation of the types of alternative splicing events. 
Alternatively, spliced elements (exons or portions of exons) are shown in red, 
and those constitutively spliced are shown in blue. The exons are represented as 
boxes, and the introns by straight lines connecting the exons. (From Florea, L., 
Briefings Bioinformatics 7, no. 1 (2006): 55–69. With permission.) 
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methods that create the “evidence” of the existence of a gene and use a combiner 
algorithm to associate the collected evidences into a unified representative model of 
a gene. With the inclusion of alternative spliced transcripts or alternative splicing 
events as part of the annotation process through manual curation, these databases 
improve the quality of their datasets.

	ere are four prominent approaches used in gene prediction:

 1. Ab initio programs: 	ese programs do not require any prior or addi-
tional information to predict a gene for a given DNA sequence. 	ey 
rely on the hidden Markov model (HMM) framework to provide the 
parameterization and decoding of a probabilistic model of gene structure 
(Zhang 2002).

 2. Evidence-based techniques: 	ere are two classes of evidence-based tech-
niques for gene prediction. 	e first class uses the well-known pairwise 
HMM methods. 	e second class uses external evidence to score potential 
exons (Parra et al. 2003; Birney et al. 1996; Alexandersson et al. 2003).

 3. Informant approach: 	is technique predicts a gene based on informa-
tion of exons derived from two or more sample genomes (Pedersen and 
Hein 2003).

 4. Feature-based approaches: 	ese approaches do not rely on a probabilis-
tic model or prior knowledge from the underpinning DNA. However, the 
framework facilitates the integration of multiple component features derived 
from the DNA sequence (Howe et al. 2002).

1.4.4.1.3  Regulation of Alternative Splicing

To regulate splicing, it is important to identify what causes or controls the variation 
in splicing. 	e control of alternative splicing affects the abundance, structure, and 
function of transcripts and encoded proteins from a gene through the modification 
of their properties, such as its binding affinity, intracellular localization, stability, 
and enzymatic activity (Stamm et al. 2005). Furthermore, exon selection in alterna-
tive splicing is tissue specific, and is determined based on the developmental stage, 
or disease specific (Florea 2006). 	us, the regulation of alternative splicing is more 
specific and case driven than transcriptional regulation.

	ough little is known about splicing regulation through regulatory proteins, 
there is an alternative form of regulation that focuses on splice regulation that is not 
part of the basal spliceosome function. 	e basal spliceosome function is regulated 
by families of splicing regulatory proteins. 	ese proteins bind to the RNA in the 
surrounding regions of exons, thereby catalyzing the exon’s inclusion or exclusion 
by activating or inhibiting the function of the splice site. Little is known about the 
characteristics of regulatory proteins and the corresponding RNA binding sites, 
and these issues are being actively investigated.
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1.4.4.1.4  Splice Variants

Gene annotation using alternative splicing and the regulation of alternative splic-
ing form the crux of research that relies on computational methods. 	e resulting 
bioinformatics techniques focus mainly on cataloging the various splice variants.

Despite the tendency of genomes to remain the same for different tissues or cell 
types in an organism, their transcriptomes (set of all RNAs of the tissues/cell) can 
be significantly different.

	e motivation for using splice annotation is to identify and catalog all mRNA 
transcripts of a cell at different stages, using both spatial and temporal expression, 
along with functional information of the splices. 	is objective is difficult, if not 
impossible to achieve, considering the incomplete and fragmented nature of the 
data along with insufficient experimental characterization.

Several computational approaches have been suggested to overcome these limi-
tations and identify splice variants. 	ese techniques rely on characterizing splicing 
patterns obtained from partial cDNA or protein sequences, or exon-level alternative 
splicing events to analyze and characterize transcriptomes. 	e varying splice pat-
terns can be applied in the design of diagnostic markers that can be validated using 
either in vitro microarray and proteomic experiments or in silico via the identifica-
tion and annotation of splice forms.

Bioinformatics techniques used for the annotation of full-length alternative 
spliced transcripts include:

 1. Gene indices: Gene indices refer to gene- or transcript-oriented collections of 
express sequence tags (ESTs) and micro-RNA (mRNA) sequences grouped by 
sequence similarity (Lee et al. 2005; Liang et al. 2000). 	is method employs 
a pairwise sequence similarity for comparison between two sequences. Here, 
all the EST and mRNA sequences are subject to a one-to-one comparison to 
identify overlaps between each other. 	ese sequences are then grouped and 
assembled into disjointed clusters (a consensus sequence) based on a threshold 
of overlaps.

  	e creation of a gene index is complex and suffers from two drawbacks: 
(a) overclustering, in which different paralogs (similar sequences belonging to 
different genes) are put into the same cluster creating a false overlap, and (b) 
underclustering, in which several clusters are produced for a single gene.

 2. Genome-based methods for clustering spliced alignments: In this 
approach, unlike gene indices, the spliced alignments of cDNA or protein 
sequences are clustered at a point of reference along the reference genome 
sequence (loci) (Florea et al. 2005). Splice graphs are one such technique that 
is prominently used in alternative splicing annotation for capturing splice 
variants in a gene (Kim 2005). Using the concept of directed acyclic graphs, 
with each node representing an exon and edge that connects two exons 
representing an intron, a splice variant corresponds to the paths obtained 



30  ◾  Data Mining for Bioinformatics

through the graph traversal from a predetermined source vertex (vertex with 
no incoming edges) to a sink vertex (vertex with no outgoing edges). 	e 
advantage of this technique is that it results in all possible combinations of 
exon-intron combinations. However, not all of the combinations are biologi-
cally significant. Several filtering strategies prioritize the combinations and 
rank splice variants that are biologically significantly higher.

1.4.4.2  Microarray-Based Functional Genomics

Microarray technology has been an important contribution to functional genomics 
as it provides a means to analyze the expressions of hundreds of thousands of genes 
that belong to an organism for a specific reaction at a given instance, simultane-
ously. 	is technology has facilitated an understanding of the fundamental aspects 
of growth and development. Moreover, it has aided in the exploration of the genetic 
causes of complex genetic diseases such as cancer. Typically, microarray data are 
classified into three categories, based on the types of the samples used to construct 
the microarrays (see Table 1.6, Figure 1.13).

Gene regulatory network analysis (Huang et al. 2007) is an analytic technique 
that is used to extract gene regulatory features (i.e., activation and inhibition) from 
gene expression patterns. Changes of gene expression levels across samples provide 
information that allows reverse engineering techniques to construct the network of 
regulatory relations among those genes (Lockwood et al., 2006).

For instance, the expression of a gene is regulated by a transcriptional control 
mediated by a complex cis-regulatory system. Transcriptional factors activate or 
repress gene expression by binding to their respective binding sites: comparatively 
short sequences (several hundred to several thousand base pairs, depending on the 
species) upstream, downstream, or far away from the transcriptional start sites. 
Specific sites within such regions, which are generally composed of dense clusters, 
are recognized by the regulatory proteins (transcription factors (TFs)) that control 
the rate of gene transcription.

Table 1.6 T he Categorization of Microarrays and Their Associated Applications

Microarray Type Application

CGH Tumor classification, risk assessment, and 
prognosis prediction

Expression analysis Drug development, drug response, and 
therapy development

Mutation/polymorphism analysis Drug development, therapy development, 
and tracking disease prognosis

Source:	NCBI, NCBI: A Science Primer, July 27, 2007, http://www.ncbi.nlm.nih.
gov/About/primer/microarrays.html#ref1 (accessed September 13, 2011).
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1.4.4.2.1  Types of Regulatory Regions

Regulatory regions of higher eukaryotes can be subdivided into proximal regula-
tory units—promoters—which are located close to the 5’ end of the gene, and distal 
transcription regulatory units called enhancers or cis-regulatory modules (CRMs). 
CRMs may be located far upstream or downstream of the target gene, and are 
much more difficult to recognize because they lack proximal specific transcriptional 
signals, such as position relative to coding sequence, the TATA box, the CAAT box, 
the transcription start site consensus, etc. 	erefore, recognition of CRMs is even 
more difficult than recognition of promoters (Abnizova and Gilks 2006).

1.4.4.2.2 � Experimental Determination of 
Regulatory Region Function

Biochemical characteristics can identify binding sites precisely and are the only 
way to determine whether consensus sequences differ among species. 	ere are sev-
eral methods available for producing DNA-protein interaction data. Nitrocellulose 
binding assays, electrophoretic mobility shift assay (EMSA), enzyme-linked immu-
nosorbent assay (ELISA), DNase footprinting assays, DNA-protein cross-linking 
(DPC), and reported conducts are examples of in vitro techniques that are used to 
determine DNA binding sites and analyze the difference in binding specificity for 
different protein-DNA complexes. 	e major disadvantage of these methods is that 
they are not suited to high-throughput experiments.

A microarray-based assay called chromatin immunoprecipitation (ChiP) was 
developed for genome-wide determination of protein binding sites on DNA. 

Patient DNA Control DNA

Microarray

Hybridization

Figure 1.13  Schematic representation of the microarray-based comparative 
genomic hybridization (CGH) process.
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Other types of experiments are systemic evolution of ligands by exponential 
enrichment (SELEX) and phage display (PD), which offer a high-throughput pos-
sibility to select high-affinity binders, DNA and protein targets, respectively. Both 
SELEX and PD suffer the same disadvantage: most sequences obtained from these 
experiments are good binders, but it is hard to say anything about their relative 
affinities. It is assumed that the best binders occur more frequently.

In dsDNA microarrays are presented for exploring sequence-specific pro-
tein-DNA binding. 	e major advantage over the aforementioned methods is 
that it is a high-throughput method resulting in data with associated relative 
binding affinities.

Finally, x-ray crystallographic and NMR spectroscopic data provide a base for 
studying the structural details of protein-DNA interactions. Protein-DNA com-
plexes have successfully been co-crystallized, and the data have been deposited into 
the protein data bank and nucleic acid database (NDB). However, these experi-
ments are time-consuming.

Unfortunately, for technical reasons, the numbers experimentally verified, 
binding sites are nearly always underestimated, and the physical length of regu-
latory regions is rarely well defined.

1.4.5  Comparative Genomics
Due to evolution, all organisms are believed to be related. 	us, the study of one 
species could lead to valuable information about another species. Molecular genetics 
enables researchers to understand the genes of one species based on the genetic makeup 
of related genes in other species. To this end, several experiments provide insights into 
the universality of biological mechanisms, through comparisons between genomes. 
	us, valuable insights relating to the gene structure and function of closely related 
species are brought to the forefront using comparative genomics.

	e comparative analysis of the human genome with a variety of modeled 
organisms is advantageous and is an important field of research. 	e underpin-
ning rationale that governs cross-species sequence comparative genomics, as stated 
above and in Pennacchio and Rubin (2003), is based on the observation that 
sequences and functions are conserved across evolutionary distant species. 	is 
conservation enables researchers to identify and distinguish between functional 
and nonfunctional genetic sequences in both gene sequence data and protein 
sequence data. 	is rationale lays the impetus for gene expression, regulation, and 
control experiments.

It has also been shown that the inverse also holds true in orthologous genomic 
sequences from different vertebrates. 	us, the comparative analysis of evolutionary 
conserved sequences is a viable strategy to identify biologically active regions over 
the human genome.

Various genomic visualization, annotation tools, and databases are available to 
the biomedical research community and are publicly available. 	ese tools have 
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been successfully used to identify biologically important genes and sequences 
involved in gene regulation.

1.4.6  Functional Annotation
Supporting the above genomic research is one of the keystones of the HGP. 	is 
support includes the effective recoding, distribution, and analysis of all results and 
discoveries. Bioinformatics and computational biology are core components that 
are targeted toward satisfying this goal. 	us, the services that bioinformatics offers 
can be categorized into two areas: (1) databases and (2) analytical tools.

	is section is devoted to the effective collection, analysis, annotation, and stor-
age of sequence data that is exponentially growing. For effective use of the data 
generated in the public domain, it is important to provide effective mapping of 
all gene sequence data to expression data and protein sequence data. User-friendly 
interfaces and user-friendly databases are imperative to the success of the genome 
project. Additionally, a range of computational algorithms that allow researchers to 
extract, view, and annotate gene and protein sequences effectively will benefit the 
research community. Such algorithms address the following objectives:

 1. Improve the content and utility of databases.
 2. Develop better tools for data generation, capturing, and annotation.
 3. Develop and improve tools and databases for comprehensive functional studies.
 4. Develop and improve tools for representing and analyzing sequence similar-

ity and variation.
 5. Create mechanisms to support effective approaches for explorative and robust 

software that can be widely used in different applications.

	e successes of these objectives have been documented primarily in the cre-
ation and maintenance of large databases such as the PDB, Ensembl, and SwissProt. 
However, bioinformatics and computational biology has been actively pursued as 
an area of research for the creation of better analysis techniques, algorithms, and 
tools in fields like gene sequence analysis, microarray analysis, protein sequence and 
structural analysis, and functional annotation.

1.4.6.1  Function Prediction Aspects

One of the problems arising from the completion of the HGP was the functional 
annotation of generated sequences. Biologists were then and are now faced with the 
challenge of analyzing the functional significance of genes with traditional statisti-
cal techniques. Not only is the volume of sequence and structure data growing, but 
the diversity of the sources that generate the data also poses significant challenges 
that require computational expertise and has led to a disproportionate growth in 
the number of uncharacterized gene sequences.
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	e established and traditionally used method for gene and protein annotation 
is based on homology modeling in which new sequences are assigned functions 
based on the similarity they share with sequences of known annotations. However, 
homology modeling amplifies existing erroneous annotations. Because of this prob-
lem, the efficacy of this method is questionable considering the constant growth of 
sequence information. 	us, there is a need for standardized, large-scale sequence 
annotation tools that use machine learning and are free of manual curation. 	is 
automated function prediction of sequences could be incorporated into larger work 
flows. 	is section explains some computational protein function prediction tech-
niques (Friedberg 2006).

	e definition of biological function is ambiguous, and the exact meaning of 
the term varies based on the context in which it is used. Further, there is a multiper-
spective view of protein function that is categorized into three classes:

 1. �e biochemical aspect: In this class, the protein function is derived from 
the specific substrate information. 	is definition requires only a disembod-
ied protein performing alone in vitro.

 2. �e physicological aspect: In this class, function is defined in respect to the 
function of a protein within an organism from the subcellular level to the whole 
organism. Here, sequences could derive functional information from the signal 
pathways that the protein is a part of or from their interacting partners.

 3. �e phenotypic (medical) aspect: In this class, the functional information 
is derived from the mutations that occur in the sequence of the protein.

Keeping these aspects in mind, there are several methods proposed in the auto-
mated functional annotation of sequences, and the following section enumerates them.

1.4.6.1.1  Computational Functional Annotation

	e basic challenge faced in the computational annotation of sequences is deter-
mining what constitutes functional information and how that function should be 
described in a computationally interpretable manner. Two forms of information 
can be adopted to define protein function. From a data mining perspective, these 
forms of information include protein sequence information and protein structure 
information that can be included as features of interest in the algorithm.

Protein sequences are represented as character strings that are used in an array 
of tasks: pairwise and multiple sequence alignments and motifs, all of which can 
easily be included as features for analysis using computational algorithms. Protein 
structural information, on the other hand, is more complex. Here, the PDB files 
(.pdb) have vast amounts of information, in the form of 3D coordinates, which can 
be exploited to find similarities between two proteins.

Apart from features of interest, there is also a need for controlled vocabulary, or 
keywords that can be used to annotate functionally significant regions of a protein, 
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and well-defined relationships in describing functions. 	e Enzyme Commission 
Classification (EC) (Webb 1992) is one such annotation system that classifies reac-
tions based on a four-level hierarchy (represented using a four-position identifier) 
that moves from a general to a specific categorization.

For example, the hierarchy starts with a generalized lyase (4.-.-.-), in the first 
position and moves through a more specific nitrogen lyase (4.3.-.-) or to ammo-
nia lyases (4.3.1.-) to the more specific histidine-ammonia lyase (4.3.1.3) in the 
fourth position.

Several other such annotation schemes provide a controlled vocabulary to 
annotate sequences; the most prominently used annotation scheme is that of Gene 
Ontology (GO). 	e adopted controlled vocabulary is based on three aspects of 
gene product function: molecular function, biological process, and cellular location.

	e primary purpose of the GO Annotation (GOA) project is to annotate 
genomes and their by-products using GO terms. When GO terms are assigned 
to a gene product, an evidence code stating how the annotation was obtained is 
assigned as well, so that the source of the annotation is noted. 	us, GO provides a 
standard means for programs to describe their functional predictions.

1.4.6.1.1.1 Sequence Homology-Based Functional Annotation — Traditional 
means of predicting the function of sequences rely on homology. 	ese techniques 
are also known as the homology transfer technique, as they traverse databases of 
sequences to find matches between sequences and the query sequence. From the 
reported matches, a transfer of relevant functional information takes place in the 
query sequence.

A commonly adopted tool, basic local alignment search tool (BLAST), matches 
significant sequence similarity to other sequences in a database of experimentally 
annotated sequences. 	e biological rationale for using homology transfer is that if 
two sequences have a high degree of similarity, then they have evolved from a com-
mon ancestor and hence have similar, if not identical, functions.

However, this rational does not seem to hold with growing databases and fails 
in three conditions:
 1. High sequence similarity does not guarantee accurate annotation transfer: 

When two sequences share functional similarity, it is observed that only 
certain regions of the sequences (subregions) contribute to the functional 
characterization of sequences. 	us, if two sequences share a higher degree 
of similarity, it does not imply that the subregions contribute to the exact 
matches or are being conserved. Moreover, it has been shown that enzymes 
that are supposedly analogous due to undetectable sequence similarity are 
in fact similar. It is believed that 35% sequence identity and 60% aligned 
enzymes share four EC numbers.

  Domain shuffling also contributes to the failure of homology transfer by 
adding, deleting, or redistributing domains of the sequence between homolo-
gous sequences.



36  ◾  Data Mining for Bioinformatics

 2. Growing databases exhibit greater diversity in sequences that affect sequence-
based tools to discover similarity between proteins: Here, with the evolu-
tion of databases, categorization of sequences is constantly changing. 	ese 
changes make homology transfer more challenging, as the number of clus-
tered similar proteins for which there is no reference sequence is also growing 
at the same rate.

 3. Chances of propagating erroneous annotations throughout the database: As 
more sequences enter the database, errors in annotation are often propagated 
and amplified based on a single erroneous annotation.

	e Pfam database is the most commonly used database for protein sequence 
analysis. A slew of other databases, such as InterPro, SMART, CDD, and 
PRODOM, use the annotations at the domain level derived from Pfam and provide 
the user multiple alignments of protein domains. Users of these programs need to 
take into consideration that Pfam does not address domain shuffling, and thus the 
results obtained could not be as accurate as anticipated.

1.4.6.1.1.2 Structure-Based Functional Annotation — Protein structural infor-
mation is represented by a collection of 3D coordinates that correspond to the amino 
acids that make up the protein. 	is representation is computationally expensive; thus, 
algorithms have been designed to find ways of reducing this 3D representation while 
preserving the spatial and physicochemical information.

	e functional annotation of proteins using the 3D structural information of 
proteins is built on the pretext that more information can be extracted from the 
structure than just the sequence information. 	at is, knowing the structure can 
yield better insight into the biochemical mechanism of how proteins function. 
	e underlying hypothesis in structural methods is that if the 3D structure is of a 
known fold, then that protein may possess the function of proteins processing the 
corresponding fold. Moreover, structure is better conserved than sequence; thus, 
proteins with little or no sequence similarity still have structural similarity.

Traditional structural methods are dependent on structural alignment, which 
entails aligning a novel protein with other proteins from its fold. Functional 
transfer is performed by verifying whether the aligned proteins share the same 
catalytic sites that are believed to be conserved by amino acid content and side-
chain orientations.

With proteins of unknown structural folds and low similarity to any known 
fold, functional annotation is still possible by analyzing structural patterns of the 
protein. Here, just like sequence-based patterns, the program looks for shared 
structural patterns between a novel protein and a protein of a known function.

Structural patterns are best described as 3D shapes completely dissociated from 
the amino acids or a string of characters representing amino acids and their physi-
cal environment. For example, one can look for 3D motifs to describe the function 
of a protein. Here, an algorithm creates a library of 3D motifs with associated 
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functions. A search algorithm scans the library, attempting to match extracted 3D 
motifs from the protein molecule. 	e result is a map of potential functional sites 
for a given protein to a library of existing function sites.

1.5  Conclusion
In this chapter we highlight the accomplishments made after the completion of the 
HGP that have led to the formation of key areas of research. 	ough bioinformatics 
and computational biology has created a niche for itself, its applications can be felt 
in other areas, such as comparative genomics, functional genomics, and sequence 
variation analysis. With new technological innovations being made in these areas, 
there has been a volume of data that require analysis. To this end, this book is 
dedicated to understanding the principles of data mining and its applications in 
the area of bioinformatics.
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Chapter 2

Biological Databases 
and Integration

Since the beginning of the Human Genome Project (HGP), as described in 
Chapter 1, the numbers of published results on bioinformatics experiments have 
grown substantially, and datasets and refined computational models have been 
created to solve critical biological problems. However, these models and results 
seldom reach the depth and breadth of the biomedical community and are seldom 
interpreted correctly. 	is challenge is even more apparent in integrative approaches, 
in which data inflows from disparate sources and several models are used to analyze 
a single problem (Reich et al. 2006). In this chapter we wish to familiarize the 
readers with prominent databases and BioMarts used in bioinformatics.

2.1 �I ntroduction: Scientific Work Flows 
and Knowledge Discovery

Scientific work flows, formal descriptions of a process or processes, aimed at address-
ing this challenge have been applied (Deelman et al. 2009). Advances in research 
and technologies have resulted in an explosion of information and knowledge. 	e 
ability to characterize and understand diseases is growing exponentially based on 
information obtained from genetic and proteomic studies, clinical studies, and 
other research endeavors. 	e depth and breadth of information already available in 
the research community at large presents an enormous opportunity for individual 
care. Because our knowledge of this domain is still rudimentary, investigations 
are now moving away from hypothesis-driven research and are moving toward 
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data-driven research, in which an analysis is based on a search for biologically 
significant patterns (Potamias et al. 2007; Ng and Wong 2004).

By definition, knowledge discovery is “the non-trivial process of identifying 
valid, novel, potentially useful, and ultimately understandable patterns in data” 
(Fayyad 1996). It is important for the user to know that data mining is an interac-
tive and iterative process. It is due to this interactive and iterative nature that data 
mining finds its place as an experimental approach and that researchers are able to 
try various possibilities before discovering a single solution.

With the advent of high-throughput technologies such as microarrays and 
next gene sequencing, one predicted application lies in the areas of genome-wide 
association studies (GWASs). Bioinformatics is seen to be vitally important in the 
storage, analysis, and distribution of the data generated from such analysis.

	us, the challenges of analyzing biological data differ significantly from the 
challenges of analyzing traditional data. 	erefore, it is common in bioinformatics 
that work flows work on smaller datasets. It is equally challenging to validate tests 
by domain experts, and make the discovered knowledge known to a wide audience. 
	us, any work flow associated with knowledge discovery should adequately satisfy 
the following constraints.

 1. Share knowledge about the semantics of the data: It is well known that, in 
data mining, finding an optimal representation of data is critical for obtain-
ing good results. 	at is, care must be taken during preprocessing techniques, 
e.g., feature selection and construction.

	 2. �e plausibility of results: When there is not enough statistical information 
about the validity of a hypothesis, one can look for external evidence for or 
against this hypothesis in scientific literature, which usually contains much 
more knowledge than what is encoded in the specific dataset. To make use of 
this knowledge, the interpretability of the models must be ensured.

Data integration, through work flows, can only be adequately performed if the 
user knows what services exist and where to find those services. With the large num-
ber of existing services in bioinformatics and the operations they perform, it is a 
challenge to integrate data using work flows. Moreover, this challenge is exacerbated 
by the arbitrary nomenclature followed and the lack of documentation available.

To effectively integrate data using knowledge discovery in databases (KDD), 
the following points of contrast are required:

	 1. Data centric: In typical work flows, the functions associated with analysis 
are treated as primary and the data used for analysis are treated as second-
ary. 	at is, data are treated as a variable, and the functions associated with 
the analysis of the data are important. 	e KDD process, to the contrary, 
treats the data as primary or central to the analysis, and the methods associ-
ated with analysis are considered to be secondary. 	is perspective renders 
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various functions to be applied to the data to solve research questions. Here, a 
researcher would typically execute myriad functions on the same dataset and 
readily rule out any function that fails to answer the research question.

	 2. Iterative and interactive: 	e KDD process as described previously is an 
iterative and interactive process. As such, a user is given the flexibility to 
choose appropriate functions on a trial-and-error basis based on how the 
data analysis is handled. 	e KDD process is structured so that the results 
obtained at every step enable decision making to proceed or restart at any step 
of the process.

	 3.	Dependencies between discovered knowledge: Typically, bioinformatics 
involves the analysis of data from multiple datasets and their associated trans-
formations. It is imperative that the researcher keep track of the transforma-
tions applied and results obtained. 	is procedure is a challenge at times due 
to the magnitude of data handled and hypothesis-driven work style used by 
researchers in bioinformatics.

	 4. Handling of data types: Several challenges arise in the handling of data 
types from disparate sources. It is thus imperative that researchers map the 
results to the metadata and their associated descriptions, especially while 
handling data from disparate sources (Figure 2.1).

In this chapter, we describe the intricacies involved in handling prevalent data-
bases used in bioinformatics. Descriptions of the tools used in data mining for 
bioinformatics are detailed in the following sections.

Data Base

Datasets

Data Selection

Data Preprocessing

Data Transformation

Data Mining

Interpretation

Figure 2.1 T he steps involved in the KDD process.
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2.2  Biological Data Storage and Analysis
	e areas of data quality, cleaning, and integration are discussed below. Data qual-
ity refers to challenges pertaining to the characteristics of data stored in large bio-
informatics databases and their associated schemas. Data quality usually addresses 
whether or not the records within the database are accurate, timely, complete, and 
consistent. 	ree methods for managing data quality are data cleaning, data recon-
ciliation, and data integration.

Before we understand the three methods of data quality, we first enlist the char-
acteristics of biological databases that are frequently referred to in the bioinformat-
ics literature (Li 2006).

2.2.1  Challenges of Biological Data
Most, if not all, biological databases are created by biologists who have limited 
knowledge of how to effectively store data. As a result, data stored in these biological 
databases are often arranged in a hierarchical fashion. 	is hierarchical fashion of 
storing data mimics the evolutionary relationships between organisms. Moreover, 
it is also observed that the data types are tightly coupled to the specific technologies 
used for data acquisition. 	ese factors attribute to the inconsistencies that plague 
many of these databases. 	ese inconsistencies have far-reaching effects, as these 
databases have a large scope of applicability. For example, biological data pertain-
ing to the human species in the hierarchy encompasses organisms from the highest 
level to the lowest level in the hierarchy, for example, organs, tissues, cells, organ-
elles, and pathways or networks. 	e applications of these data include genomics, 
proteomics, phenomics, localizomics, ORFeomics, pharmacogenomics, and phar-
macogenetics clinical trials (Li 2006).

	e evolutionary nature of the biological data renders unique characteristics that 
are described as highly heterogeneous, large in data volume, dynamic, hierarchical, 
not standardized, lacking database management applications and data access tools 
for biological databases, and data integration and annotation (Table 2.1).

Highly heterogeneous: Brought about by the inherent complexity of biology 
and the array of technologies associated with the generation of data. 	e 
resultant databases are diverse in the associated data types and data sche-
mas that are closely coupled with bioinformatics. Examples include genome 
databases, gene expression databases, protein databases, and protein-protein 
interaction databases.

Large data volume: With the unique data types and data accumulation wit-
nessed over the past decade, data volume is expected to grow further. 
Considering the number of genes in the human body (20,000 to 25,000), the 
completed gene expression profiling of all genes, for all organs and tissues, 
along with cell types across development stages and timelines, will result in 
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large amounts of data. Similarly, while considering the sequences of DNA 
and proteins, the volume of biological data has and will continue to expand 
in the number of sequences and in related graphics, images, and two-
dimensional (2D) gel experiments.

�e dynamic nature of sources of bioscience: To capture the complexity of 
the DNA and proteins, new technologies are rapidly increasing the number 
of dimensions (ways to analyze a problem) in biosciences. To keep up with 
the changes, new databases are created, and existing databases are constantly 
being updated with new data structures and features at every release.

�e hierarchical structure of biological data: 	ough common, the hierar-
chical characteristics create a bottleneck for modeling and querying in tradi-
tional data models, such as relational or object-oriented models. For example, 
the DNA contained within the nucleus of a cell contains coded fragments 
(an integral part of the chromosome) called genes. Each gene will encode one 
or more proteins through one or more mRNAs. Each protein, in turn, will 
function in one or more pathways of various tissues. Modeling this flow of 
information is highly complex.

Lack of standardization in data formats and in controlled vocabularies 
in scientific domains: 	e vocabularies used to describe many biological 
objects are ambiguous. 	is ambiguity has been attributed to the fact that 
these databases vary in origin and history, resulting in widely used synonyms 
and homonyms. Another important aspect to consider while handling the 
databases in bioinformatics is the different formats used to represent the data. 
	is diversity in data formats makes it difficult to use standard querying 
software in these databases. Moreover, it is observed that these databases lack 
explicit database schema, in which data are stored in relational tables consist-
ing of a well-defined set of attributes that describe the data stored. 	us, it is 
also a challenge to index stored data. For example, the data formats and types 
adhered to for gene expression profiling using Affymetrix oligonucleotide 
arrays will be different than those of cDNA arrays.

Lack of database management applications and data access tools for bio-
logical databases: 	e lack of standardization in both data formats and 
data types inhibits the development of application tools in biological data-
base management systems that are comprehensive and usable to a large com-
munity. 	e effects of the lack of standardization are also felt in retrieval 
efficiency, which is complicated, and heterogeneous applications need to be 
developed to handle information extraction and analysis.

Data integration and annotation: 	e advances made in web technology and 
the use of hypertext have enabled data integration of diverse domains. 	us, 
hypertext constitutes a part of the database contents and provides added 
annotation or meaning to biological entities. Nonetheless, hypertext does not 
provide the required standardization among databases, as it is vulnerable to 
the ambiguity in the identifiers or terminology system.
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2.2.2  Classification of Bioscience Databases
According to Li (2006), databases can be classified based on two criteria, the goals 
with which they were designed and built, and their content. 	is classification of 
databases provides both computer scientists and biologists with an idea of what 
functions the database has to offer. Moreover, it also provides an abstraction of the 
application tools and database management systems these databases provide.

	e major classifications of molecular databases are primary versus secondary 
databases, deep versus broad databases, and point solution versus general solution 
databases, each of which is described below.

2.2.2.1  Primary versus Secondary Databases

	is distinction between databases is based on the original goals that were laid out 
during the inception of the database. As proposed by 3rd Millennium, Inc. (2002), 
primary databases are considered to be mainly data repositories and serve as data 
archives. 	eir functionality is defined by the two basic operations of storage and 
retrieval with limited or no complexity. 	ese databases, apart from storage of pri-
mary data, allow a limited degree of freedom in the form of additional annotation 
information. GenBank is an example of such a database. 	e GenBank database 
primarily stores nucleotide sequences and their corresponding functional informa-
tion pertaining to associated experimental labs and projects. 	e standardization 
enforced by GenBank on its input information and taxonomy enables effective 
internal interpretation. Secondary databases, on the other hand, store data from 
several publically available sources. 	e Pfam data are an example of such a second-
ary database, in which information regarding protein sequences is extracted from 
related primary databases or archives. 	e extracted information in the Pfam data-
base is performed both manually (PfamA) and automatically (PfamB) and provides 
for a bifurcation of the holistic database.

2.2.2.2  Deep versus Broad Databases

In this classification, the databases are categorized into deep databases and broad 
databases based on the scope of the data contained in them. As proposed by Cornell 
et al. (2003), the scope of the databases is defined by the key features of the data-
bases, the source of the databases, and the formats by which the data are defined. 
For example, the SwissProt database is a protein sequence database that contains 
protein sequences from all known species; thus it is considered a broad database. In 
contrast, the deep databases contain information specific to species. For example, 
the Saccharomyces Genome Database (SGD) contains all known information per-
taining to the Saccharomyces genome. 	e primary purpose of these databases is to 
provide browsing and visualization for discovered data, along with complex query 
processing through limited data integration.
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2.2.2.3  Point Solution versus General Solution Databases

Proposed by Wong (2002), this categorization aims to differentiate biological 
databases into two categories, systems point solution and general solution data-
bases. As the name suggests, the goals of a system point solution database are 
specific to a predefined biological problem or question. Hence, these databases 
are small and have limited scalability. In comparison, a general solution database 
has neither predefined data sources nor questions that are addressed during its 
design. 	us, a general solution database can be flexibly extended by incorporat-
ing additional data sources to answering general queries during its design. 	e 
applications of such databases are described in Li (2006) and are provided in 
Table 2.2.

	e following section encapsulates the aforementioned characteristics of data-
bases and the issues entailed in determining quality data for mining in light of 
commonly used databases for data mining. 	e following databases are described 
below: the Gene Expression Omnibus (GEO) (Edgar et al. 2002) database and the 
Worldwide Protein Data Bank (PDB) (Berman et al. 2003).

	e following sections highlight some commonly used databases and their 
related types.

Table 2.2  All Databases: Classification of Molecular Databases
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Table 2.2  All Databases: Classification of Molecular Databases (Continued)
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2.2.3  Gene Expression Omnibus (GEO) Database
In this section, we cover the important characteristics that gene expression databases 
possess (Do et al. 2003). Some characteristics of the data may be omitted or may be 
only partially included in the database. Importance is given to specific characteristics, 
while other characteristics are derived (implied) from the specific characteristics. 	us, 
due consideration needs to be given to analyze and segregate the characteristics of data.

In gene expression data, raw data are obtained in the form of microarray chip 
images, a product of the microarray experiment. Typically, a record in a gene expres-
sion database consists of three parts, image data, expression data, and annotation data. 
Image data are a scanned image of the microarray chip. Expression data are the nor-
malized version of the image scanned. It is a sequence of numbers that represents the 
expression of a gene for a given sample. 	is information constitutes the core of the 
gene expression database and is accessed frequently. Taking into consideration the high 
volume of data and the frequency of references made to it in the database, it is desirable 
to apply effective indexing and store schemas for quicker and more effective access of 
these data. 	e third component to a record is the annotation data. Annotation data 
are the metadata that are appended to the microarray data. 	ese data add additional 
information to the record and consist of textual descriptors that help interpret the 
detected gene expression levels or keywords that describe the associated gene function. 
	e annotation information can be further categorized as follows.

Gene annotation: Annotation information pertaining to the gene sequence’s 
place on the microarray is categorized in this section. Annotations pertaining 
to the gene name, its known functions, and location over the chromosome 
are found here. 	ese annotations are collected over time and are publically 
accessed from different databases.

Table 2.2  All Databases: Classification of Molecular Databases (Continued)

Name Pri. Sec. D B PS GS Rep. Bro. Vis. Query Ana.
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Note:	 The classifications are based on design goals and the contents of the 
databases, as well as the applications on the databases.

	 Abbreviations: Pri., primary database; sec., secondary database; D, deep 
database; B, broad database; PS, point solution; GS, general solution; 
rep., repository; bro., browser; vis., visualizing; ana., analysis; transc., 
transcripts; expr., expression; nome., nomenclature; PPI, protein-protein 
interaction; and annot., annotation.
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Sample annotations: Similar to the gene annotation, annotation pertaining 
to the sample studied is stored in this section. Information pertinent to the 
hybridization used to extract the targets, the corresponding biological descrip-
tions pertaining to source and sample characteristics, like information that 
describes whether the sample is normal or diseased, and information that 
describes if there are any in vitro or in vivo treatments that have been applied 
are found here.

Experiment annotations: Experiment annotations contain the information 
regarding the protocols followed during the experiment and parameter 
settings used by the associated tools and software during hybridization.

	e data stored in the databases have associated descriptors that add value to 
the data. 	ese annotations are manually entered or derived from external data-
bases. 	us, it is imperative to organize annotation data in a uniform manner to 
improve its effectiveness for analyzing gene expression data.

	e current standard used to capture annotation data renders two challenges 
that must be addressed. 	e first challenge is that of standardization. As anno
tation information is entered manually through free text, different sources have 
adhered to different vocabularies. 	e discrepancies that arise due to varied 
vocabularies affect the integration and matching of records. 	e second challenge 
stems from the lack of standards in the use of vocabularies. Many terms may 
be used to describe the same things, making the querying of these databases a 
challenge.

As a solution to the above challenges, the use of free text to describe anno
tations should be avoided. 	e advent of ontologies to this end, and more spe-
cifically, the Gene Ontology, created by the GeneOntology (GO) Consortium, 
is a specialized hierarchy of categories that provides the basis for standardizing 
annotation vocabulary in gene expression data storage.

Initiated by the need of a public repository for high-throughput gene expres-
sion data, the Gene Expression Omnibus (GEO) project (Edgar et al. 2002) was 
designed to provide a flexible and open design to store, retrieve, and insert data 
from high-throughput gene expression and genomic hybridization experiments. It 
is intended to act as a central data distribution hub of gene expression data derived 
from coherent datasets.

As seen in Figure 2.2, GEO segregates data into three principal components, 
platform, sample, and series stored and accessed in a relational database model. 
Here, the data are not fully granulated within the database. Instead, a tab-delimited 
ASCII table is stored for each platform and each sample. 	e resultant tables of 
the GEO database are shown in Figure 2.3. 	ese tables consist of multiple col-
umns with accompanying column header names. 	e data within this table are 
partially extracted for indexing, but may be further extracted for more extensive 
search and retrieval.
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Similar to the GEO database, there are several other publically available data-
bases that provide the necessary information regarding genes and their expressions. 
Table 2.3 enumerates a few popularly referenced software tools, packages and data-
bases in this area.

2.2.4  The Protein Data Bank (PDB)
	e PDB is one of the largest repositories of known protein structures in the world. 
It contains information of all experimentally determined structures of proteins, 
nucleic acids, and complex assemblies and their corresponding 3D coordinates. 
As of March 2010, the database contained an estimated 63,956 known structures, 
publically accessed over the Internet. 	e growth of this database has been expo-
nential, and the number of known structures doubled between 2005 and 2010, as 
shown in Figure 2.4 and Table 2.4.

Formerly referred to as the Brookhaven Protein Database, this steady and sub-
stantial growth in the number of protein structures is because data are pooled to 

User

Platform Sample Series

Figure 2.2 T he entity relationship diagram of the GEO database. (From Edgar, R., 
et al., Nucl Acids Res 30, no. 1 (2002): 207–210. With permission.)

Title:
Description:
Platform Type:

Platform GPL9 Series

Title:
Experiment Type:
mRNA Source

Sample GSM169

Title:
Experiment Type:
mRNA Source

Accession:
Title:
Samples:

Sample GSM379

Title:
Experiment Type:
mRNA Source

Sample GSM415

Figure 2.3  An example of three samples referencing one platform and contained 
in a single series.
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Table 2.3 O ther Publically Available Software Tools, Packages, and High-
throughput Gene Expression and Genomic Hybridization Data Resources

Software Tools Description

Agile Protein Interaction 
Data Analyzer (APID)

Provides exploratory analysis of protein-protein 
interactions

Database of Interacting 
Proteins (DIP)

Provides data integration from various sources to 
create single, consistent set of protein-protein 
interactions

GeneXPress Provides a visualization and analysis tool for gene 
expression data, integrating clustering, and gene 
annotation

Gapasi This is a software package for modeling 
biochemical systems

GOstat A tool used to identify statistically overrepresented 
GO terms within a group of genes

Data Resources Institution

ExpressDB Harvard-Lipper Center for Computational Genetics

Global Gene Expression 
Group

Science Park-Research Division, University of Texas 
M.D. Anderson Cancer Center

MAExplorer National Cancer Institute, NIH

Microarray Center Public Expression Profiling Resource

Microarray Project National Human Genome Research Institute, NIH

SAGENET Johns Hopkins University School of Medicine

Yeast Microarray Global 
Viewer

Laboratoire de genetique moleculaire, Ecole 
Normale Superieure

RNA Abundance 
Database (RAD)

Computational Biology and Informatics Laboratory, 
University of Pennsylvania

Gene Expression Omnibus National Center for Biotechnology information, NIH

Code Environment

MetageneCreator MATLAB• package used to identify overlapping 
clusters of genes in arbitrarily large datasets.

Deal R package used to create Bayesian networks with 
both continuous and/or discrete variables
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the database from various organizations. 	ese organizations act as deposition, data 
processing, and distribution centers for PDB data. 	e organizations constitute what 
is now known as the Worldwide Protein Data Bank (wwPDB), consisting of Research 
collaboratory for structural Bioinformatics (RCSB) PDB in the United States, PDBe 
in Europe, and PDBj in Japan. 	e Biological Magnetic Resonance Data Bank 
(BMRB) group from the United States joined the wwPDB in 2006. 	e mission of 
the wwPDB is to maintain a centralized Protein Data Bank Archive of macromo-
lecular structural data that are freely and publicly available to the global community.

With the substantial growth in the number of proteins, efforts of the PDB are 
focused on data cleaning and data integration, and eliminating data inconsisten-
cies. To make this data integrating and cleaning possible, it is important to under-
stand the relation database model of the PDB.

A relational database is, in essence, a set of related tables (entities), each of which 
is uniquely identified by a primary key. One table may contain a field/attribute 
that is a primary key in another table. Records may not be added to a table unless 
there is a corresponding record in the related table. 	is dependency between tables 
is known as referential integrity and ensures that changes made to one table are 
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Figure 2.4 E xponential growth of the PDB (as of March 15, 2010).
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reflected in the other table. As all tables should be related to at least one other table, 
there should be no stand-alone tables in a relation model.

Relational databases are created through a process of normalization, during 
which redundant data are removed and data consistency and integrity is enforced. 
Formal methods for staging normalization are called normal forms.

	e PDB has been recently reengineered to become a rational database based on 
the macromolecular Crystallographic Information File (mmCIF) schema. 	e adhered 
mmCIF dictionary, to this end, has been viewed as an ontology that details key con-
cepts and relationships in functional genomics experiments.

By definition, an ontology is a representation of a preexisting domain of real-
ity that (1) reflects the properties of the objects within its domain in such a way 
that it obtains a systematic correlation between reality and representation and 
(2) is intelligible to a domain expert (3) if formalized in a way that allows it 
to support automatic information processing. Generally speaking, an ontology 
consists of four components: classes, a hierarchical structure (is-a relations), rela-
tions (other than is-a relations), and axioms. Unfortunately, the mmCIF does 
not meet this definition. 	e failure to follow ontology standards has resulted in 
many poor design failures in mmCIF, and this in turn has resulted in a poor PDB 
relational database design.

Table 2.4 T he Growth in the Number of Sequences in the PDB 
from 2000 to 2010

Year
Yearly Increase in 

Number of Sequences
Cumulative Increase in 
Number of Sequences

2010 (March) 1,612 63,956

2009 7,439 62,344

2008 7,004 54,905

2007 7,232 47,901

2006 6,492 40,669

2005 5,372 34,177

2004 5,192 28,805

2003 4,172 23,613

2002 3,004 19,441

2001 2,832 16,437

2000 2,628 13,605
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	e mmCIF dictionary of the PDB is written in the Self-Defining Text Archive 
and Retrieval (STAR) language, which consists of a set of data names with associ-
ated data values. Multiple values for one data name are allowed. Identifying the 
data names that may appear in a loop construct is important for the first stage of 
normalization. 	ese are the fields that would be a repeating group and would then 
be removed at this stage. 	e International Union of Crystallography (IUCr) states 
that only items that need to be repeated should appear in a looped list and gives 
guidelines to the mmCIF categories that are normally represented in this format.

One of the most difficult aspects of basing a relational database on mmCIF is 
the lack of consistency in the recording of experiments. 	e majority of the mmCIF 
data items for the individual protein structures are omitted. mmCIF labels these 
items as optional, and as a result, sometimes only the minimum amount of experi-
mental information has been provided. Other problems include the amount of data 
repetition in mmCIF and data redundancy; for example, protein entry ID assesses 
most mmCIF categories but is not indicative of a dependent repeating group. 	us, 
care has to be taken when normalizing.

	e simplest way to familiarize oneself with the associate relational database is 
by studying its associated schema diagram. As the PDB is both complex and large, 
its associated schema is also large. A centralized table containing a reference to the 
PDB entry and all the other tables relates to it directly, rendering a donut shape to 
the schema. It is also observed that there are no table-to-table relationships, which 
thereby exhibit a hierarchical model to the data stored.

	e following are characteristics of tables in the PDB:

 1. 	e primary key for every table is the same, and the key name changes when 
it is involved in a relationship. 	is change in primary key name adds confu-
sion when tracking relationships.

 2. Several stand-alone tables are derived and are not part of the database.
 3. Inconsistencies in field size show that the fields of any record in a table of the 

PDB could have varied lengths.

Every category in the mmCIF is allocated a table in the relational database, and 
no normalization is applied. 	is allocation attributes to the unusual shape of the 
PDB schema. 	ough the schema is equivalent to the database STAR schema, the 
PDB has been intentionally denormalized, and therefore does not meet the require-
ments of a data warehouse.

Data repetition among the mmCIF categories is not resolved, which implies 
that every relationship in the database is the same, and interdependencies between 
other tables have been ignored. 	us, the PDB does not satisfy the requirements of 
a successful relational model.

On the other hand, the Pfam database (Bateman et al. 2002) follows all the 
requirements of a relational database.
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2.3 T he Curse of Dimensionality
With the advent of massive storage and rapid-throughput technologies to gener-
ate data, recent decades have witnessed data analysis transform to a realm that 
is beyond the scope of traditional statistical approaches. However, the belief that 
these developments in information technology will solve any structural problems 
for data analysis is not true. Over the last 30 years data mining in particular has 
been formalized in the form of software packages, and has been the key in trans-
forming the paradigm of hypothesis-driven research into a data-driven paradigm. 
	is data-driven paradigm has been brought about by addressing the fundamental 
problems that are omnipresent and require additional support of data analysis, to 
convert raw data into information for effective decision making (Donoho 2000).

More specifically, the inherent large number of dimensions, called the curse 
of dimensionality, has ubiquitous effects throughout the sciences, specifically in 
bioinformatics. 	e curse of dimensionality refers to the large number of features 
p  (dimensions) that describe each record n in the database, that is, large n and 
small p. Hence, the curse of dimensionality is also referred to as the small n big p 
problem. Standard statistical approaches do not hold true in such scenarios. 	ey 
are based on the assumption that p < N and N → ∞. Many of the methods used in 
statistical data analysis are derived from linear algebra and group theory to develop 
close to exact distribution results. 	ese results all fail when p > N. 	ey are also 
based on the assumption that N → ∞ with fixed p, which does not always hold true 
in reality; on the contrary, p could tend to ∞ and N being fixed, as in the case of 
many genes describing relatively few samples of genetic diseases.

	e effect of large dimensions on modeling data in high-dimensional space is 
best captured when we take into consideration data points in a 10-dimensional 
space. 	e distance between independent data points increases with the inclusion 
of more dimensions. 	e density or distribution of the points becomes sparse, 
making it difficult to apply traditional approaches to fit a model to these points 
in 10 dimensions. 	e application of traditional approaches is especially difficult 
when we consider p > N, where the number of points are smaller than the dimen-
sions analyzed.

	ough statistically challenging, the curse of dimensionality has opened up 
many avenues to help researchers understand the role of features in describing the 
data. It was observed that many identical dimensions, dimensions that represent 
redundant information, existed. 	is redundant information laid the founda-
tion for numerous feature selection and feature extraction techniques. A detailed 
description of these techniques is given in Chapter 4.

	e section below includes descriptions of dimensions and their roles in data 
integration and data cleaning. Many biological databases cross-reference data that 
are derived from external databases. 	is cross-referencing renders challenges for 
effectively representing data. 	us, the following section is dedicated to addressing 
these issues.
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2.4  Data Cleaning
Biological data are rich with issues, such as data inconsistencies and data dupli-
cations that can be addressed with data cleaning and integration methodologies. 
Data cleaning in biological data is an important function necessary for the analy-
sis of biological data. 	is step can standardize the data for further computation 
and improve the quality of the data for quicker search and retrievals. 	e primary 
purpose of most biological databases is to create repositories that integrate work 
from numerous scientists. 	is use requires sophisticated data cleaning strategies. 
Chapter 3 provides the various data cleaning strategies that encompass data from 
single sources/databases. However, in this section, we provide the description of 
data cleaning strategies designed to overcome traditional problems that can be 
avoided using data mining techniques.

As discussed in previous sections, biological data are evolutionary in nature. 
Most of the well-known databases mimic this inherent property by storing the data 
in a hierarchical fashion (as a phylogenetic tree). 	is hierarchical fashion of data 
storage possesses the following problems:

 1. As emphasized in the previous sections, nomenclature and vocabulary used 
in data annotation do not adhere to a set of standards.

 2. It is frequently observed that the data from biological databases lack a 
consistent format, especially when performing operations on data from 
phylogenetic systems.

 3. Data from legacy phylogenetic systems require cleaning and extensive 
modification.

 4. It is a challenge to find duplicates within the structural data (trees) and 
recodes within the dataset.

 5. It is difficult to remove duplicates when required.
 6. Finding clusters similar to structural data (trees) and records, merging similar 

records, and finding anomalous structural data (trees) and data are also difficult.

Data cleaning, also called data cleansing or scrubbing, is the process of detect-
ing and removing errors and inconsistencies from data in order to improve data 
quality. 	e above-mentioned data quality problems are present in most biological 
data collections, such as files and databases, e.g., in data warehouses, federated 
database systems, or global web-based information systems traditionally used in 
bioinformatics. Table 2.5 contains a list of popular data cleaning methodologies 
applied on biological databases.

2.4.1  Problems of Data Cleaning
	e quality of data is gauged by the number of errors, discrepancies, redundancies, 
ambiguities, and the degree of incompleteness therein that diminishes the quality 



60  ◾  Data Mining for Bioinformatics

results obtained from data analysis or data mining. 	us, data cleaning is the pro-
cess of detecting and removing the above-mentioned factors to improve the overall 
quality of the data for mining purposes. 	e problems associated with data clean-
ing tend to fall into two categories. 	e first category is the detection of erroneous 
data. Problems from erroneous data usually stem from, but are not limited to, errors 
caused by user inputs such as inconsistency in input, missing values, misspelling, 
improper generation of data, and differences between input data and legacy data. 
	e second category is the detection of duplicate records. In the past, duplicate 
detection has been applied to large databases where duplication control is not very 
strong. 	e associated algorithms were used to detect similarity between strings for 
file-based systems and similarity between records in rational databases. However, 
in large databases with complex schemas, the feasibility of the same logic failed to 
detect duplicate records and files. 	is problem reduces the quality of data in large 
databases with complex schemas. 	ese problems are magnified in databases that 
evolve with time, as is the case with biological databases.

In addition, these problems are more prevalent in biological databases. Most 
biological databases are fueled by the data generated by experiments from around 
the world. 	e sources of these data include large submissions by high-throughput 
sequence and gene expression experiments. Based on the global scale of bioinfor-
matics, it has been a challenge to ensure adequate quality control of the submission 
process.

Moreover, according to the 2008 annual review of databases, the number of 
molecular biology databases increased by 95 in 2008 (McLeod et al. 2009). Most of 
these databases have their own data formats, nomenclatures, and schemas. 	is dis-
parity in database characteristics requires standardization. Some of these databases 
derive or replicate their content from well-known archives such as GenBank. 	is 
replication has its own negative implications, as it fosters propagation of resubmis-
sion of the same sequence if not monitored or regulated.

In addition, the sequences in the databases are manually curated. For example, 
the SwissProt section of the UniProtKB/SwissProt database is manually curated by 
experts from the Swiss Institute of Bioinformatics. It is known that errors do seep 

Table 2.5 T able of Popular Data Cleaning Methodologies

Methodology  Example System

ETL Talend—an open source data integration tool

Multi-pass sorted 
neighborhood

Merge/Purge (Hernandez and Stolfo 1995)

Disambiguation methods ConQuer (Fuxman et al., 2005)

Knowledge-based technique IntellicleanTM (Low et al., 2001)
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in despite stringent quality control mechanisms. 	ese errors are further magnified 
when automated systems use the erroneous annotations caused unintentionally.

2.4.2  Challenges of Handling Evolving Databases
	e challenges in handling evolving databases can be divided into two catego-
ries, as shown in Figure 2.5 (Rahm and Do 2000). 	ese problems can be solved 
using data cleaning and data transformations techniques. Data transformations 
techniques include changing the data types and various summarization schemes, 
and are used to enforce changes in the structure and representation of data content. 
Data transformations help map the data from their given formats into the format 
expected by the application (Muller and Freytag 2003). 	ese transformations are 
important for handling evolving databases, especially those that help in the migra-
tion of a legacy system to a new information system or those that integrate multiple 
data sources.

Data quality problems (Rahm and Do 2000) consist of two categories, sin-
gle-source and multisource problems. 	ese two categories are further divided 
into schema and instance-related problems. Instance-related problems refer to 
errors and inconsistencies in the actual data contents that are not visible at the 
schema level. 	ey are the primary focus of data cleaning. Schema-level problems 
are the problems found at the schema level. 	ese errors are also reflected on 
data instances. 	ey can be addressed by incorporating changes into the schema 
design, i.e., evolving the schema by performing schema translation and schema 
integration operations.

Data Quality
Problems

Categorise of problems

Multi-Source
Problems

Schema Level

Database

Database

Database

Database

Instance Level

Single Source
problems

Figure 2.5  Categorization of data quality problems in data sources. 
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2.4.2.1  Problems Associated with Single-Source Techniques

In single-source techniques, problems of data quality pertain to the integrity con-
straints that are applied to the data during the schema design. 	e integrity con-
straints control the fields and their associated data types that are allowed to be 
entered into the database. Since biological databases consist of databases that are 
based on file systems and loosely defined relational schemes, the sources without 
schema, such as file systems, have few restrictions on what data can be entered and 
stored. 	is lack of restrictions gives rise to inherent inconsistencies and results 
in a high probability of errors. Sources that are based on relational models spec-
ify data constraints during schema design or inception. 	e constraints enforce 
attribute restrictions that prevent values that do not confine to a specific range or 
format. Similarly, uniqueness constraints enforce uniqueness of values entered in 
a field of the record, if desired. Most of these constraints are application specific. 
Data quality violations that are associated with the data schema are categorized as 
schema-related issues. 	ey occur because of poor schema design or lack of proper 
constraints during schema inception. On the other hand, problems that are associ-
ated with errors and inconsistencies that cannot be prevented at the schema level, 
such as typographic errors, missing values, duplicate records, and misspellings, are 
defined as instance-specific problems.

2.4.2.2  Problems Associated with Multisource Integration

Typically, bioinformatics databases require data from two or more data sources. 	e 
inherent problems of data cleaning databases of single sources are magnified when 
data from two or more sources are integrated. In multisource integration, the problems 
faced are derivatives of the problems of each independent source. 	ese problems stem 
from the fact that data from different sources can be represented differently, overlap, 
or contradict each other because the databases are tailored to suit specific applications. 
	e differences in the ways that the databases are deployed and maintained results in 
heterogeneity in data models, schema designs, and data management systems.

	e differences at the schema level are addressed by schema translation and 
schema integration. 	e specific problems at the schema level are the naming and 
structural conflicts in the databases. When an attribute or feature is assigned the 
same name in different databases to represent the same object (synonyms), or when 
different names are used to represent different objects (homonyms), the errors that 
are associated with this conflict are known as naming conflicts. Conflicts that arise 
due to variations in representation of the same object in different sources are called 
structural conflicts. 	ese conflicts can occur with different component structures 
and different data types.

Conflicts at the instance level stem from differences in the representation of 
data in different sources. 	ese conflicts typically result in duplicate and contra-
dicting records. Moreover, the attributes or features with the same name and data 
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types could follow different standards and interpretations. Time is also an impor-
tant factor when considering data from different sources. In such a case, care should 
be taken, as data could refer to different points of time.

	us, the main challenge of cleaning data from different sources is iden-
tifying overlapping data. 	ese overlapping data enable effective matching of 
records between sources. 	e problem is also referred to as the object iden-
tify problem, the merge/purge problem, or the duplicate elimination problem 
(Rahm and Do 2000). In an ideal scenario, the data from different sources may 
complement each other and add information about the entity. To make this hap-
pen, it is important to filter out duplicate information and retain complement-
ing information by merging them to existing information, thereby providing a 
consistent view of the real-world entities. Figure 2.6 provides a categorization 
of the errors that are typically found in biological databases. Again, the cat-
egorization is described for the attribute, record, single-database, and multiple-
database problems.

2.4.3  Data Argumentation: Cleaning at the Schema Level
By definition, data reconciliation is the process of comparing data from multiple 
sources for creating consistency in the data. As mentioned in the previous section, 
the number of databases for molecular biology has grown. In addition, changes 
have been made to 68 previously existing databases (McLeod et al. 2009). 	ese 
data sources are riddled with feature inconsistencies and incomplete information. 
Moreover, the data, at times, contain conflicting information. With the abundance 
of Internet-based tools to analyze the data, newer inferences are being derived 
from these databases on a regular basis. Any inconsistencies in the data exacer-
bate misleading conclusions, emphasizing the need for better quality data. To this 
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Figure 2.6 T he classification of errors in biological databases provided by Judice 
(2007).
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end, there is a need for techniques that evaluate the datum before it is used. Data 
reconciliation plays a vital role in removing conflicts between data sources.

	e method of argumentation for data reconciliation has been proposed by 
McLeod et al. (2009). An argument is a reason to believe something is true; it is 
used to support or attack a conclusion. Arguments can also attack and defeat each 
other. Once defeated, an argument can be reinstated if the argument that defeats it 
is defeated. When presented with the arguments for/against a conclusion, the user 
can evaluate the evidence and make a decision as to whether or not to believe it. As 
time passes, new information becomes available, and new arguments can be cre-
ated. 	ese new arguments may defeat existing arguments, thus reinstating other 
arguments. When presented to users, these changes may alter their perspective and 
so alter their opinion of the conclusion.

Argumentation was implemented by McLeod and Burger (2008) over two 
gene in situ expression databases. An in situ database consists of 3D images of 
organisms that highlight the areas where a particular gene is expressed. In the 
analysis of in situ gene expression data, two images of samples (mouse or zebraf-
ish) are compared to obtain a spatial processing of where genes are expressed. 
Figure 2.7 provides a brief conceptual view of the process of argumentation fol-
lowed in this study.

Commonly used databases for the mouse genes are GXD (Smith et al. 2007) and 
EMAGE (Venkataraman et al. 2008). 	ese databases are complementary, as they 
publish the same information and are based on the same ontology— Edinburgh 
Mouse Atlas Project (EMAP). When these databases are queried independently for 
a specific gene, the results vary in regard to the displayed records. To resolve this 
issue and obtain a more accurate result, biologists typically treat the results from the 
databases as mutually exclusive and based on laborious related research in published 
paper surveys, and decide whether the results obtained are conclusive. 	is issue is 
prevalent in most biological analyses and studies that involve biological databases.

USER User Interface
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GXD Scheme EMAGE Scheme
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Figure 2.7  Conceptual schematic of the process of argumentation.
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A closer analysis of the databases GXD and EMAGE reveals that some 
of the experiments present in GXD are not present in EMAGE and vice versa. 
Furthermore, EMAGE maps some of its embryo 2D images onto its 3D embryo 
model of EMAP. 	is mapping entails both textual annotation and spatial trans-
formation. GXD contains results that are mapped to the EMAP ontology, laying 
the basis for applying argumentation to resolve the inconsistencies between the two 
biological databases.

	e process of argumentation involves the use of an argumentation engine 
(Fox et al. 2007). Using domain information and expert knowledge in the form 
of inference rules, the argumentation engine interprets these rules to create argu-
ments by backward chaining through the rules in response to a query from the 
user. Expert knowledge is provided by a domain expert. All information from the 
domain expert is recorded using a natural language. Argument schemes are then 
employed to act as an interface between the domain expert and the argument 
engine (Verheij 2003).

Another important aspect of the arguments generated by the argument engine 
is to resolve conflicts between arguments. 	is conflict resolution is brought about 
using a ranking scheme that allows the domain expert to further provide weights 
to different schemes based on the order of importance. 	ese scores are then propa-
gated back to the rules that generated them, and thus establish an order of impor-
tance to the rules.

When a query needs to be processed, for example, the user specifies a specific 
gene and a corresponding structure through a specialized client interface. 	e cli-
ent first pulls up all relevant data, and then transforms it to a format that can be 
used by the argumentation engine. Simultaneously, both domain data and expert 
knowledge is loaded into the argumentation engine knowledge base. Once this 
network is set up, the query (Is the gene expressed in the structure?) is sent to the 
argumentation engine, and the results are displayed to the user.

2.4.4 � Knowledge-Based Framework: 
Cleaning at the Instance Level

Data cleaning that uses domain knowledge to duplicate record identification and 
for de-duplication is a necessary component of data preprocessing. 	is method, 
in contrast to the previous method of argumentation, uses data from a single 
source.

As the title of this section suggests, data cleaning at the instance level uses 
domain knowledge as the key ingredient for cleaning. 	us, the proposed frame-
work employed by the system IntelliClean™ (Lee et al. 2000; Low et al. 2001) pro-
vides a viable representation and utilization of domain knowledge for data cleaning. 
	e framework, as seen in Figure 2.8, also supports effective record standardiza-
tion, duplicate elimination, anomaly detection, and removal of unclean data.
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	e framework is composed of three stages, preprocessing, processing, and veri-
fication and validation.

�e preprocessing stage: In this stage, data from a single source are subjected to 
various standardization and format checks to free the data from inconsisten-
cies like variations in abbreviations and formats. 	is process is called record 
scrubbing. Record scrubbing is brought about through the use of reference 
functions and lookup tables. 	e lookup tables are used to compare all the 
abbreviations used in the applications with their occurrence in the records. 
If differences are observed, the equivalent from the lookup table is used to 
replace the incorrect abbreviation in the record. 	e result of this stage is a set 
of conditioned instances that is subjected to the next stage.

�e processing stage: In this stage, the conditioned instances are compared 
to a set of rules that enable the effective identification of inconsistencies 
between instances. Rules in this system are generated using the Rete algo-
rithm (Rete 1982) that is implemented using the Java® Expert System Shell 
(JESS) (Friedman-Hill 1999). 	e rules used for this algorithm are further 
classified as follows:

	 1. Rules for duplicate identification: 	ese rules are specifically used to 
identify duplicate instances in the conditioned data.

	 2.	 Rule to merge/purge: Once the rules have been identified or detected, 
these rules are used to delete the duplicate records. For example, a rule 
could specify the deletion of one of the records, depending on the degree 

Original Instances

Preprocessing

Duplicate Instance Detection

Merge/Purge of Duplicates

Instance Updates

Cleansed Instances Update Log

Rules

Domain
Knowledge

Look-Up Tables

Reference Functions

Similarity
Functions

JESS EXPERT

Figure 2.8  Schematic representation of the IntelliClean framework.
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of match or prevalence of the rule. 	e duplicate instances are deleted 
throughout the database.

 3.	 Rules for updates: 	ese rules help modify or update an instance, but 
may not be required.

 4.	 Rules to generate alerts: If there are instances that violate certain con-
straints of functional dependence or integrity constraints, then these 
rules are useful to generate the corresponding alerts.

Generating and comparing the rules to instances is a time-consuming process. 	ere 
are variations in the implementation of the system to make it time-effective.

�e validation and verification stage: 	e validation and verification stage 
requires human intervention to manipulate duplicate instances for which 
the merge/purge rules do not work or have not been defined. 	e entire sys-
tem is log based, meaning that there is record of all corrections or updates 
to the data maintained in a log file. 	is file allows the users or domain 
experts to verify whether the corrections carried out in the preprocessing 
and processing stages are accurate and enable these experts to undo any 
incorrect actions. It also helps gauge the correctness of the rules. Rules that 
perform incorrect updates and duplicate detection could be removed from 
the system.

2.4.5  Data Integration
Let us consider a typical challenge faced by biologists attempting to collect data 
from multiple databases. Typically, when searching for evidence linking pheno-
types to genes, data are gathered based on phenotype differences and allelic vari-
ants between the strains, genotypes, and pathways in which these genes belong. 
	is process involves the gathering of data from multiple sources. With myriad 
databases available, it becomes a challenge for anyone to identify the corresponding 
databases and what services they offer.

	e laborious steps in this process allow the users to learn how to utilize these 
databases based on what each one has to offer. Typically, such data collection 
includes copying the data from these databases into Microsoft Word® or Excel® files 
for further analysis. 	is process is error-prone and leads to computational bottle-
necks, as the method does not scale up to the magnitude of the data.

	ese bottlenecks call for data integration approaches. Data integration has 
been a constant endeavor since the early 1990s and the inception of the HGP, in 
which data were generated on a large scale by sources being geographically distrib-
uted across the globe. With the geographically distributed sources, it was important 
then to find a way of integrating this data. To this end, Kleisli (Wong 2000), a pow-
erful query system, was developed by the University of Pennsylvania to solve this 
predicament. 	is system consists of a nested relational data model, a high-level 
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query language, and a powerful query optimizer. It can handle multiple source 
databases and can withstand the issue of heterogeneity among these source data-
bases. 	is heterogeneity allows the user to create structured query language (SQL)-
like queries that are independent of the location of the data, its format (relational/
flat file), and the disparate access protocols implemented at the sources. Moreover, 
it can store, update, and manage complex nested data through application program 
interfaces (APIs) available in Java and Perl®.

Several other approaches have been proposed since Kleisli. 	ese include 
Ensembl (Hubbard et al. 2002), SRS (Etzold and Argos 1996), and DiscoveryLink 
(Haas et al. 2001).

2.4.5.1  Ensembl

	e Ensembl software technology is the outcome of a joint venture between the 
European Bioinformatics Institute and the Sanger Institute (http://www.ensembl.
org). Ensembl, though not an ideal example of data integration, provides a feel 
of the benefits of integrating data from different sources. 	is tool provides for 
query processing of all eukaryotic genomic sequence data. It gathers and assem-
bles sequences from various data sources to their corresponding locations on the 
genome. Based on these derived sequence assemblies and using GenScan, the tool 
automatically predicts genes in these data. 	ese predictions are then made publi-
cally available. Moreover, Ensembl also has tailor-made functions that enable com-
plex operations of annotation of these sequences.

2.4.5.2  Sequence Retrieval System (SRS)

	e Sequence Retrieval System (SRS) tool is marketed by LION biosciences and 
is known for its query and navigation system (http://srs.ebi.ac.uk). It is one of the 
most widely used data traversal systems in life science, as it provides access to sev-
eral biological databases that include sequence databases, metabolic pathway data-
bases, and literature abstracts. SRS is built using a programming language called 
Interpreter of Commands and Recursive Syntax (Icarus) (Wong 2002). SRS allows 
its users the facility to add their own databases to be traversed and compared if 
desired. 	e addition of new databases into SRS requires the submission of both 
the new database in the flat file format and its corresponding schema or structure; 
both must be available as an Icarus script that acts as a wrapper to the data submit-
ted. 	ese Icarus script wrappers constitute a wrapper programming language of 
SRS, which is responsible for creating indexes for each of the parsed flat files that 
are described by the Icarus script. By doing so, a biologist can access the data using 
keywords and constraints in the SRS query language.

	e SRS query language is an information retrieval language, which means 
that the results obtained after query execution are simple data aggregates that 
match the specific constraints. SRS processes limited data joining and restructuring 
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capabilities. 	e SRS frontend offers users accessibility to the multiple data sources 
independently without the hassles of handling these sources independently. 	us, 
SRS, though popularly perceived as a data integration tool, is an interface integrat-
ing tool.

2.4.5.3  IBM’s DiscoveryLink

Proposed by IBM and based on IBM’s DB2 database management system, 
DiscoveryLink (http://www.ibm.com/discoverylink) stands out due to its 
explicit relational data model that acts as an intermediary between the data 
sources and the end user. 	is intermediate data model enables the user to query 
it when required. 	is feature is in line with the SRS system. However, the data 
model supports most SQL queries if it follows the relational model, allowing 
the user to process complex queries in contrast to SRS limited join and retrieval 
operations. However, DiscoveryLink suffers from the complexities that biologi-
cal databases possess with respect to complex nested data. For example, it is not 
straightforward to add new databases to DiscoveryLink, taking into consider-
ation the laborious task of making legacy biological databases into relational 
data models. According to Wong (2002), if SwissProt were subjected to the third 
normal form, each record would be split into 30 pieces. 	is large number of 
possible splits exposes how infeasible it is to use DiscoveryLink considering the 
join operations required to process a query. However, considering the flexibility 
of SQL queries processes, it does seem feasible to utilize DiscoveryLink as a data 
integration solution.

With the evolution of database stands XML has become the de facto standard 
for data formatting and exchange over the Internet. 	ough not a solution to the 
data integration problem, it is appreciated for its flexibility in formatting hierarchi-
cally nested documents and its uncanny data modeling using tag definitions. 	ese 
features make it ideal to model the complex and evolving nature of biological data 
with the flexibility it offers. Moreover, it has fueled the creation of semistructured 
data processing languages such as XQL and XQuery. 	ese languages help query 
across multiple data sources and transform the results into a form that supports 
further processing. It is thus evident that the biomedical community is adhering to 
the standards of XML, as in the case of databases such as PIR and Entrez.

With the advances in data integration, the different data integration strategies 
are categorized as wrappers and warehouses. Both of these categories of integration 
schemes are prevalent in the bioinformatics community. 	e wrapper strategy is 
considered to support both flexible and loosely coupled models. In this strategy, 
different resources are combined dynamically, and generic features of data are mod-
eled and queried using query-based logic in the form of API abstractions.

	e warehousing strategy is fixated at creating a centralized architecture to store 
data from distributed sources in a locally stored data warehouse. 	us, in the ware-
housing strategy, data from different sources are moved to a centralized data model. 
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	is method requires considerable effort, as not all sources can be altered. It is also 
challenging to keep this warehouse up-to-date considering that biological databases 
constantly evolve, and data structures vary simultaneously at the sources.

We describe these two categories with the following two well-known approaches 
in the biomedical community.

2.4.5.4  Wrappers: Customizable Database Software

As an example of the wrapper category of integration strategies, MOLGENIS (Swertz 
et al. 2004) is an open-source package that is dedicated to providing backend storage 
solutions, graphical frontends, and a programmable environment for users to tailor mul-
tiple data sources. Intended to design and generate database software for new research 
projects, this process has become increasingly useful in easy access to known databases. 
It also facilitates the storage, navigation, and location of data across multiple databases, 
and has an API that can integrate software services, processing tools, and web services 
that are written in R®, Java, or HTTP. It is controlled by a domain-specific language 
(DSL) that helps map data types to their outputted form to create user-defined software.

All these functions are provided through a graphical programming interface 
to help users to use this tool with ease. Moreover, the DSL provides an abstrac-
tion to the actual work that needs to be carried out. For example, a single change 
in the source DSL helps control the multiple changes across the software code. 
	us, making it more user-friendly only enhances its usability within the biomedi-
cal community.

2.4.5.5 � Data Warehousing: Data Management 
with Query Optimization

Data warehousing has been proven successful when used with commercial data-
bases. However, due to the descriptive nature of biological databases, it is a challenge 
to apply data warehousing in biological databases. 	e integration of information 
from disparate biological data sources and reconciling frequently conflicting data in 
an efficient, yet scalable manner have proven to be major bottlenecks for the applica-
tion of data warehousing in the biomedical community (Aberer and Hemm 1996). 
	e majority of biological databases are designed to facilitate the unambiguous stor-
age and update of large amounts of data, and therefore have complex, normalized 
schemas that are specific for a given type of data. Consequently, large-scale querying 
of the stored data is computationally expensive, must be designed specifically for a 
given database, and requires domain-specific software solutions. However, efforts 
are being pursued to make data warehousing a reality for the entire biological com-
munity. One such effort is known as BioMarts (Smedley et al.).

BioMarts was initially called EnsMart (Kasprzyk et al. 2004). EnsMart was 
capable of organizing data from individual databases into one query-optimized 
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system using a data warehousing technique specifically designed for descriptive bio-
logical data. 	e impetus of creating a data warehousing technique was to provide 
an integration mechanism to integrate data from disparate sources, along with an 
effective querying mechanism that is unified yet domain independent. 	e key fea-
tures of the provided solution were used to increase the scalability in large datasets 
and provide rapid and flexible data access and support for easy integration with 
third-party data and programs and intuitive user interfaces.

EnsMart provides a consistent genome annotation across a variety of meta-
zoan genomes using an automated pipeline system to predict genes and to carry 
out cross-species analysis. EnsMart uses the data derived from the numerous data-
bases that constitute the Ensembl genome database (relating predominantly to 
genes and single nucleotide polymorphisms (SNPs)), functional annotation, and 
expression. Table 2.6 contains the list of datasets that constitute the EnsMart.

A web-based tool known as MartView helps to query EnsMart. A query is exe-
cuted in MartView in three stages: the start, filter, and output stages.

In the start stage, the data are selected based on the species and focus of the 
query. 	e start stage is followed by the filtering stage, in which the user is provided 
with the flexibility to narrow his search to a subset with characteristics of interest. 
	e tool feature for region filtering allows a search to be carried out on the full 
genome, on a single chromosome (as determined by markers, bands, or base pairs). 
	e availability of other filter options depends on the data content for a particular 
species and focus.

Finally, we have the output stage. In this stage, the data that satisfy the filter 
criteria are organized into a number of topics reflecting the kinds of data that 
are most likely to be required in different types of analyses. Again, the topics 

Table 2.6  Datasets of EnsMart

Species Category Dataset Primary Source

Homo sapiens Genomic Ensembl genes Ensembl

EST genes Ensembl

Vega genes VEGA

SNP dbSNP/HGVbase

Markers UCSC

Disease OMIM morbid map OMIM

Expression eVOC SANBI

GNF Novartis

(Continued)
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Table 2.6  Datasets of EnsMart (Continued)

Species Category Dataset Primary Source

EST dbEST

Protein annotation InterPro Ensembl

Pfam Ensembl

Prosite Ensembl

PRINTS Ensembl

PROFILE Ensembl

FAMILY clusters Ensembl

Mus musculus Genomic Ensembl genes Ensembl

EST genes Ensembl

SNP dbSNP

Markers MGI

Protein annotation As for Homo sapiens Ensembl

Rattus 
norvegicus

Genomic Ensembl genes Ensembl

EST genes Ensembl

SNP MDC

Markers RMR/WTCHG

Disease QTL RGD

Protein annotation As for Homo sapiens Ensembl

Caenorhabditis 
elegans

Genomic WormBase genes AceDB

Protein annotation As for Homo sapiens Ensembl

Caenorhabditis 
briggsae

Genomic Ensembl genes Ensembl

Protein annotation As for Homo sapiens Ensembl

Danio rerio Genomic Ensembl genes Ensembl

Markers EMBL STS

Protein annotation As for Homo sapiens Ensembl
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available will depend on the species and focus. A variety of output formats are 
supported.

Built on the success of EnsMart, BioMart (http://www.ebi.ac.uk/biomart) is an 
open-source data management system that comes with a range of query interfaces 
that allow users to group and refine data based on many criteria. In addition, the 
software features a built-in query optimizer for fast data retrieval. BioMart instal-
lation can provide domain-specific querying of a single data source or function 
as a one-stop shop (web portal) to a wide range of BioMarts, as the central portal 
does. All BioMarts have the same look and feel, which has obvious advantages to 
users moving between resources. However, the power of the system comes from 
integrated querying of BioMarts. If any datasets share common identifiers (such 
as Ensembl gene IDs or UniProt IDs), or even mappings to a common genome 
assembly, these can be used to link BioMarts in integrated queries. Additionally, 
these datasets do not have to be located on the same server or even at the same 
geographical location. 	is distributed solution has many advantages, not least of 
which is the fact that each site can utilize its own domain expertise to deploy its 
own BioMart.

 1. BioMart enables scientists to perform advanced queries on biological data 
sources through a single web interface.

 2. It performs integrated querying of data sources regardless of their geographi-
cal locations.

 3. BioMart capabilities are extended by integration with several widely used soft-
ware packages, such as BioConductor (Gentleman et al. 2004), DAS (Dowell 
et al. 2001), Galaxy (http://galaxy.psu.edu/), Cytoscape®, and Taverna®.

Table 2.6  Datasets of EnsMart (Continued)

Species Category Dataset Primary Source

Fugu rubripes Genomic Ensembl genes IMCB

Protein annotation As for Homo sapiens Ensembl

Anopheles 
gambiae

Genomic Ensembl genes Ensembl

SNP Ensembl

Markers Anobase

Protein annotation As for Homo sapiens Ensembl

Drosophila 
melanogaster

Genomic FlyBase genes FlyBase

Protein annotation As for Homo sapiens Ensembl



74  ◾  Data Mining for Bioinformatics

 4. BioMart is now an integral part of large data resources such as Ensembl 
(Flicek et al. 2008), UniProt (UniProt Consortium 2010), and HapMap 
(International HapMap Consortium 2007), to name a few.

Biologists need to ask complex queries of these data to test and drive their 
research hypotheses. Typically, each data source provides an advanced query inter-
face on its site. However, each site has its own solution, and subsequently, the user 
must overcome a learning curve before he or she can start interacting with data 
(Table 2.7).

2.4.5.6  Data Integration in the PDB

In integrating information for the proteins in the PDB, information pertaining to 
structure, biological function, cellular location, and associated disease is integrated 
and presented to the user. 	is information for each protein molecule is derived 
from a wide spectrum of sources and presented to the user. 	ereby, the RCSB 
PDB fully exposes the features of each protein. 	is process is achieved through 
weekly updates of integrated information from sources such as the Gene Ontology 
(GO), Enzyme Commission (EC), KEGG pathways, and National Center for 
Biotechnology Information (NCBI) resources that include sources such as the 
OMIM, SNP, and BookShelf.

Table 2.7  All Publicly Accessible BioMarts to Date

Name of BioMart Description of Contents Location of BioMart

Ensembl genes Automated annotation of over 40 
eukaryotic genomes

EMBL-EBI, UK

Ensembl 
homology

Ensembl Compara orthologs and 
paralogs

EMBL-EBI, UK

Ensembl 
variation

Ensembl variation data from dbSNP 
and other sources

EMBL-EBI, UK

Ensembl genomic 
features

Ensembl markers, clones, and 
contigs data

EMBL-EBI, UK

Vega Manually curated human, mouse, 
and zebrafish genes

EMBL-EBI, UK

HTGT High-throughput gene targeting/
trapping to produce mouse 
knockouts

Sanger, UK

Gramene Comparative grass genomics CSHL, United States
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Table 2.7  All Publicly Accessible BioMarts to Date (Continued)

Name of BioMart Description of Contents Location of BioMart

Reactome Curated database of biological 
pathways

CSHL, United States

Wormbase C. elegans and C. briggsae genome 
database

CSHL, United States

Dictybase Dictyostelium discoideum 
genome database

Northwestern 
University, United 
States

RGD Rat model organism database Medical College of 
Wisconsin, 
United States

PRIDE Proteomic data repository EMBL-EBI, UK

EURATMart Rat tissue expression compendium EMBL-EBI, UK

MSD Protein structures EMBL-EBI, UK

UniProt Protein sequence and function 
repository

EMBL-EBI, UK

Pancreatic 
Expression 
Database

Pancreatic cancer expression 
database

Barts and the 
London School of 
Medicine, UK

PepSeeker Peptide mass spectrometer data for 
proteomics

University of 
Manchester, UK

ArrayExpress Microarray data repository EMBL-EBI, UK

GermOnLine Cross-species knowledge base of 
genes relevant for sexual 
reproduction

Biozentrum/SIB, 
Switzerland

DroSpeGe Annotation of 12 Drosophila 
genomes

Indiana University, 
United States

HapMap Catalog of common human 
variations in a range of populations

CSHL, United States

VectorBase Invertebrate vectors of human 
pathogens

University of Notre 
Dame, United States

(Continued)
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PDB structure mapping is performed by enabling accurate assignment of ref-
erences (identifiers) to external databases; these identifiers include those from the 
GenBank (Benton et al. 2009), PubMed, EC (Webb 1992), and SwissProt, now 
referred to as UniProt (UniProt Consortium 2010) databases, along with the tax-
onomy of the source organism (see Figure  2.9).* All structural information for 
the sequence is obtained from the Structural Classification of Proteins (SCOP) 
database. However, information relating to structure often exhibits a one-to-many 
relationship, as structure consists of one or more components, such as multiple 
polypeptide chains. 	is representation of structures as a number of constituent 
components, each with external data assignments, is an ongoing process at the 
RCSB PDB (Deshpande et al. 2005).

Relevant information from external databases is retrieved by parsing related 
files to identify related information and is stored in the database. For example, 
KEGG pathways associated with a given EC number are retrieved by issuing a web 
service call to the KEGG database at query runtime. Under an agreement with the 
U.S. National Library of Medicine, PubMed identifiers for the primary citation 
associated with a structure are used to load PubMed abstracts into the RCSB PDB 
database. 	ese abstracts can then be searched by keyword(s) as an alternative 
means to find structures of interest.

	is structure results in the creation of a single consolidated report for every 
protein and is presented in Table 2.8.

2.5  Conclusion
With the exponential growth of biological data, this chapter is aimed at creat-
ing an awareness of the challenges of handling biological data. It highlights the 

* For more information on GenBank, refer to http://www.ncbi.nlm.nih.gov/genbank/. For more 
information on PubMed, refer to http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed. For 
more information on EC refer to http://www.chem.qmul.ac.uk/iubmb/enzyme/. For more 
information on UniProt (SwissProt) refer to http://www.uniprot.org/.

Table 2.7  All Publicly Accessible BioMarts to Date (Continued)

Name of BioMart Description of Contents Location of BioMart

Paramecium DB Paramecium tetraurelia model 
organism database

CNRS, France

Eurexpress Mouse in situ expression data MRC Edinburgh, UK

Europhenome Mouse phenotype data from high-
throughput standardized screens

MRC Harwell, UK
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Figure 2.9 T he primary and secondary references assigned to structures. The 
primary references are assigned during structure annotation/data curation. 
Secondary references are collected from external databases using the primary ref-
erence identifiers and accession numbers. This process is rerun on a weekly basis 
to find new structures or update information on existing structures to store in the 
database. (From Deshpande, N., et al., Nucl Acids Res 33, no. 1 (2005): D233–
D237. With permission.)

Table 2.8 I nformation from the PDB: Sections of a Typical PDB File

Summary Reports Features

Primary citations A list of all PubMed citations of specific structure, 
along with brief abstracts

Molecular description Information pertaining to existing classification and 
molecular characteristics

Derived data Searchable features of protein from SCOP, CATH, 
Pfam, GO

Structure explorer Navigation breadcrumbs, Print PDF, Toggle 
asymmetric and biological unit images, Ligand and 
ligand-structure interaction viewer, Ensemble and 
refinement information for NMR structures

Materials and methods Reports customized for x-ray and NMR structures

Biology and chemistry Detailed information including taxonomy, 
genome and locus, SNPs, enzyme pathways, 
disease, and function

Structural features Detailed chemical bond information
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KDD process and the computation techniques that are applied to data clean-
ing and data integration, and brings forth the concepts of data warehousing. 
It explains the commonly used databases in bioinformatics and the inherent 
design flaws and success. 	e chapter is also aimed at creating awareness of the 
degree of data integration that is used to maintain these data repositories and the 
need for effective integration schemes required in the future. Data warehousing 
is a requirement in organizations that handle vast amounts of data; however, the 
application of data warehousing has found limited success. 	is chapter enu-
merates the attempts to implement data warehousing for biological databases. 
Chapter 3 highlights the need for data transformation in high-dimensional 
databases and the various data transformation techniques as dimensionality 
reduction techniques and feature selection strategies commonly employed in 
data mining.
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Chapter 3

Knowledge Discovery 
in Databases

In Chapter 2, we provided a synopsis of the various databases and BioMarts promi-
nently used in the area of bioinformatics. 	e chapter also sheds light on the role 
of knowledge discovery in databases (KDD) in bioinformatics. In this chapter, our 
objective is to familiarize the reader with key data mining techniques that can be 
used to clean and preprocess the data obtained from these databases for analysis.

3.1 �I ntroduction
In the last 20 years, genomic and proteomic databases have grown exponentially, 
causing existing computational systems to suffer from the constantly evolving 
nature of the data. In such cases, the data changes can result in legacy data not con-
forming to newly added information in databases. Further challenges arise when 
data from various sources are integrated into a common schema, as witnessed in 
data warehousing.

In this chapter, we introduce the process known as knowledge discovery in 
databases (KDD). KDD is used to develop methods, techniques, and tools that aid 
analysts in discovering useful information and knowledge in databases (Fayyad et al. 
1996). Like data, KDD is constantly evolving as research from pattern recognition, 
databases, statistics, artificial intelligence, machine learning, data visualization, and 
high-performance computing is incorporated into the schema. In nonprofessional 
terms, the KDD process is interactive and iterative and provides an abstraction of 
low-level data (datasets) that enable better understanding (knowledge) for better 



82  ◾  Data Mining for Bioinformatics

decision support. 	us, KDD is used to discover information from data (Han and 
Kamber 2006). 	is information includes data storage and access records, such as 
how the data are stored and accessed, and algorithm data, such as how algorithms 
can be scaled for use on massive datasets (Fayyad et al. 1996). KDD is a multistep 
process that is best described as shown in Figure 3.1.

As shown in Figure 3.1, KDD is a five-step process that begins with data selec-
tion, includes data processing, data transformation, and data mining, and ends 
with data interpretation. Also note the emphasized interactive nature of KDD. 
Below, we provide a general outline of KDD as a systematic process captured using 
the following steps:

 1. As a prelude to the initial steps of the KDD process, it is imperative that 
the user/developer have a clear understanding of the application domain. A 
large amount of time is invested in identifying and laying out the goals and 
objective(s) of the process.

  Apart from outlining the goals and objectives of the KDD process, the 
user/developer should create or identify the data over which discovery is to 
be performed. 	e data can be an entire database, a targeted dataset, or a 
large subset of variables that are part of a larger database. 	e selection of 
these data forms the first step of the KDD process.

 2. Once the goals and datasets have been identified, the second objective of the 
KDD process is to perform data cleaning and data preprocessing. In data 
cleaning, the data are subjected to operations that remove the noise that is an 
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Figure 3.1 T he process of KDD and the steps involved.
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integral part of large real-world datasets. 	ese cleaning operations include 
creating models that account for the overall noise in the data, handling miss-
ing values of data features (attributes), and predicting changes in the data. As 
part of the data preprocessing, the data after cleaning are subject to normal-
ization and standardization strategies that are vital when using from dispa-
rate sources.

 3. With the completion of data preprocessing, the resultant data are then sub-
ject to data transformation operations. Typically, large databases/datasets are 
plagued with data (records) that have a large or small number of features 
(attributes). Traditional computational techniques are deemed computation-
ally expensive when handling any data that possess a large number of features. 
	us, as part of the third step of the KDD process, dimensionality reduction 
and transformation techniques are applied to the data to reduce the number 
of features in the data without altering the data quality. In situations where 
there are fewer features, feature extraction techniques are applied to extract 
features that are inherent in the data.

 4. Once the data are transformed, the fourth step of the KDD process is the 
mining of data, or data mining. Data mining requires a model for min-
ing. 	ere are several mining strategies from which the user/developer can 
choose. 	ese strategies include unsupervised, supervised, and semisuper-
vised techniques. Apart from determining the data mining scheme, the user/
developer is expected to create a hypothesis for mining. 	is step is vital, as 
it helps the user/developer decide which models and features (of the data) fit 
the overall criteria of the KDD process. In this way, the user/developer can 
understand the model and its predictive capabilities. Typically, data mining 
involves searching patterns in an abstraction of the transformed data. For 
example, supervised classification approaches can find similar patterns in 
rules or trees.

 5. 	e fifth and final step of the KDD process is the interpretation of mined 
patterns. Here, statistical and visualization techniques are applied to validate 
the knowledge discovered from the data mining models applied. Typically, if 
the results are not as good as anticipated, the KDD process, which is iterative, 
enables the user/developer to repeat steps 1 through 4.

Much of the time, the results obtained either support or conflict with previously 
held beliefs and inferred notions. 	us, the user/developer is expected to document 
and validate the discovered knowledge before incorporating the knowledge into 
another system to avoid conflicts.

	e KDD process can involve a significant number of iterations and can 
contain loops between any two steps. 	e basic flow of steps (although not the 
potential multitude of iterations and loops) is illustrated in Figure 3.1. Relevant 
literation that use KDD in bioinformatics has focused on step 4, data min-
ing. However, the other steps are also important for the successful application 
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of KDD. Having defined the basic notions and introduced the KDD process, 
we will now focus on the data mining component, which has received the most 
attention in the literature.

3.2 � Analysis of Data Using Large Databases
Data quality is primarily used to characterize database data and associated schemas. 
Data quality is the mapping of the data to its corresponding conceptual model. It 
determines whether the data in a database or databases are accurate, complete, and 
consistent. 	e three methods of ensuring data quality include data cleaning, data 
quality monitoring, and data integration. In this chapter, we elaborate on the dif-
ferent data cleaning and data integration methods and steps.

3.2.1 � Distance Metrics
Before we address the steps and problems associated with data cleaning and data 
integration, we will introduce commonly used distance measures in data mining. In 
this chapter, we refer to each data record as a data point, in which the attributes of a 
data record are coined as features. 	us, data record x consisting of n attributes can 
be viewed as data point x in an n-dimensional feature space. To measure the simi-
larity between two data points, various distance metrics are employed. 	e com-
monly used distance metrics are Euclidian distance and Mahalanobis distance and 
are defined as follows:

Euclidian distance: 	is distance metric is also referred to as vector distance. 
To measure the distance between two data points x and y each having the 
same n features, Euclidian distance is given by the following equation:
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Mahalanobis distance: Unlike Euclidean distance, Mahalanobis distance cal-
culates the distance of a data point from a common reference point in the 
n-dimensional space, and is represented by the following equation:

 ( ) ( ).1x C xT− µ − µ−  (3.2)

Here, the common reference point on which the distance is measured is the cen-
troid (µ). 	e Mahalanobis metric utilizes the correlation between features using a 
covariance matrix (C). 	is metric is thus more effective in capturing the distance 
between points based on the distribution of data. However, Mahalanobis distance 
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requires a complete pass of the entire dataset to estimate correlation between fea-
tures, before determining the distance between points. It is thus computation-
ally more expensive for large high-dimensional datasets than Euclidean distance 
(Figure 3.2).

3.2.2 � Data Cleaning and Data Preprocessing
Data cleaning improves the quality of data to make them fit for use (Chapman 
2005). 	e objective of data cleaning is to reduce errors in data before the data are 
used in processing. 	is cleaning invariably helps to increase the learning compo-
nent of the KDD process. 	e cleaning also makes the data easier to document, 
present, and interpret (see Chapman 2005).

Data stored in large databases are error-prone; a user/developer can expect a field 
error rate of 1–5%, and it is important to decrease this error rate. 	e uncertainties 
of data, especially in biological databases, lay the foundation to understanding the 
effects of error propagation in data. 	us, it is imperative that the steps of data clean-
ing should actively manage and improve overall data quality. 	is improvement is 
sometimes difficult to achieve because correcting and eliminating erroneous data is a 
tedious and time-consuming process that cannot be overlooked. 	e simple deletion 
of erroneous records is not the solution. Rather, the correction and documentation of 
corrections is suggested; this documentation ensures the tracking of changes.

Data cleaning is the outcome of a twofold process, in that it is used to identify 
inaccurate, incomplete, or unreasonable data, and it improves the quality of data by 
correcting identified errors and inconsistencies. Good data cleaning requires good 
existing data. Apart from replacing faulty data records, the process entails format 
checks, completeness checks, limit checks, outlier detection, and the assessment 
of data by domain experts or end users. Validation checks may include applicable 
standards, rules, and conventions. 	ese processes usually result in flagging, docu-
menting, and the subsequent checking and correction of suspect records.

µ

(b)(a)

µ
A A

B
B

Figure 3.2  (a) The representation of Euclidean distance and (b) Mahalanobis 
distance between points A and B that belong to a distribution with mean μ.
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Data cleaning, in the field of data warehousing, is applied when data from 
different sources need to be merged. Here, records that refer to the same entity but 
are represented differently in their formats require cleaning before being stored in 
the data warehouse. 	e merge/purge problem refers to the issues faced in the iden-
tification and elimination of such duplicate records.

Data cleaning requires data decomposition and data reassembly. 	e process is best 
described in six steps: tokening of data, standardizing, verifying, matching, house-
holding, and documenting (Maletic and Marcus 2000). 	e activities of data cleaning 
are domain specific, and thus have many forms. 	ough there are several approaches 
for data cleaning, the generalized framework is as follows (Maletic and Marcus 2000):

 1. Define and determine error types.
 2. Search and identify error instances.
 3. Correct the errors.
 4. Document error instances and error types.
 5. Modify data entry procedures to reduce future errors.

While the efforts of data integration and data warehousing are heavily depen-
dent on the success of data cleaning, it is difficult to identify errors that involve 
relationships between fields. 	us, various methods identify errors in databases also 
referred to as outlier detection techniques and described briefly below.

3.3 � Challenges in Data Cleaning
	e problem of errors in data stems from but is not limited to user input errors. 
	erefore, the first problem encountered with data cleaning is the detection of erro-
neous data. User input errors could be attributed to inconsistency in input values, 
misspellings, missing values, improper generation of data, and data differences 
that are transferred from legacy databases. 	ere are also errors attributed to the 
presence of duplicate records. 	us, the second problem with data cleaning is the 
need to detect duplicate/redundant records. Typically, the duplication of records 
in very large relational databases is regulated using duplication control algorithms 
(Williams et al. 2002). 	ese duplication control algorithms are based on string 
matching and identity matching records in relational database schemas. However, 
as the databases have evolved and grown more complex, these duplication control 
algorithms have failed, as duplication becomes harder to identify. Typically, large 
databases are not confined to relational database schemes and include a mixture 
of file systems that contain legacy data along with relational models. 	e ques-
tions concerning whether two similar documents are duplicates is also pressing. 
Similarity detection, performed alone by sorting and joining records within a data-
base, has facilitated the detection of more complex duplications in relational data-
bases. 	us, duplication errors can occur, but they are not easy to detect.
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To overcome this problem, outlier detection has been proposed. Outliers are 
defined as patterns (records) that do not conform to an expected behavior. 	us, 
outlier detection approaches must be able to define a region representing the nor-
mal behavior and declare an observation as an outlier (anomaly) if it does not con-
form to the normal behavior (Chandola et al. 2009). 	ese methods are challenging 
to implement because of the following factors:

 1. It is difficult to define a normal region because of the diversity of databases. 
Capturing the boundary between a normal region and an outlier is a fur-
ther challenge and is not precise. An observation close to a boundary can be 
termed an outlier when it is actually normal and vice versa.

 2. In large evolutionary databases, such as biological databases, normal behav-
ior cannot be assumed to be constant and keeps evolving. 	us, the normal 
behavior might not be sufficient to represent the future.

 3. An outlier needs prior definition. Defining an outlier requires domain knowl-
edge that is not always available or straightforward.

 4. In many cases, the quality of data affects what areas are determined normal 
and what areas are determined outliers. In large, noisy databases, the detec-
tion of outliers is a challenge.

 5. Keeping these challenges in mind, effective outlier detection poses its chal-
lenges in the KDD.

However, there are three fundamental approaches of outlier detection (Hodge and 
Austin 2004): determining the outliers with no prior knowledge of the data, model-
ing both normal and abnormal data, and modeling only normal or abnormal data.

To determine outliers with no prior knowledge of the data, a learning approach 
that is analogous to unsupervised clustering is required. As in all clustering algo-
rithms, this kind of outlier detection algorithm considers each record as a point 
in an n-dimensional space. It then groups the points into clusters based on their 
proximity and flags the remote points as outliers. 	ose methods that are depen-
dent on the distance metric used and the distance of each point from a reference 
point (the mean or median) are categorized into this approach. In these approaches, 
points that are separated by large distances from the reference point are treated as 
outliers. 	e algorithms in this category require that all the data are available before 
processing. 	us, each data point is treated as static (Hodge and Austin 2004) and 
compared with every other data point in the dataset. 	is approach can be further 
divided into two methods, diagnosis and accommodation, based on the way in 
which the researchers choose to treat outliers.

Once the outliers are identified, the diagnosis approach iteratively prunes the 
outliers until no more outliers are identified, and the system model is fitted to 
the remaining data that represent the normal data distribution. On the other hand, 
the accommodation approach uses all the data points, including the outliers. It then 
uses a robust classification approach that induces a boundary of normal data around a 
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majority of data points that represents normal behavior. 	e goodness of the accom-
modation method thus depends on the robustness of the classification approach 
used and determines the flexibility of the boundaries obtained. It is believed that 
more flexible boundaries lead to less computationally expensive classifiers.

In contrast to the previous approach, modeling both normality and abnormality 
for outlier detection is analogous to supervised classification, and thus each data point 
for this approach is required to possess class labels. Modeling normality and abnor-
mality for outlier detection is best suited for online classification in which the classi-
fier learns from a portion of the data and classifies new records as outliers. If the new 
record falls into the region of normality, it is treated as normal; otherwise, it is flagged 
as an outlier. Since the technique is a classification approach that requires classifier 
training, the training data should contain an equal representation of both normal 
data and outliers to enable generalization by the classifier. New records may be clas-
sified correctly if the classifier is limited to a known distribution, and records from 
unknown regions may be classified incorrectly unless the training set is generalized.

Modeling only normal or abnormal data in a few cases is better known as nov-
elty detection or novelty recognition. 	e methods in this category are analogous 
to semisupervised detection. Here, the algorithm is trained based on samples that 
are believed to be normal. 	e algorithm uses the information from the normal 
samples to detect outliers. 	ese approaches thus require training data that are 
preclassified as normal. 	e methods are suited for both static and dynamic data, 
as learning is based on only one class (i.e., the normal class). In these approaches, 
the learning is considered incremental. As new data arrive, the model is tuned to 
improve the fit of the normal boundary. Since this approach is semisupervised, it 
requires all the data for training its normal class to permit generalization. However, 
the need for data belonging to the abnormal class is not required.

Generally, all records in the database are treated as vectors. 	ese vectors consist 
of both numeric and symbolic attributes that represent continuous, discrete (ordinal), 
categorical (unordered numeric), and ordered symbolic or unordered symbolic data. 
Vectors can be monotypes (single data types) or multitypes (mixed data types). 	e 
following list contains the categorizations of outlier detection techniques. All of these 
techniques are governed by suitable distance matrices that are used to measure the 
closeness of vectors. 	e two fundamental considerations when selecting an appro-
priate methodology for an outlier detection system are the accuracy of modeling the 
data distribution and defining an appropriate neighborhood of interest for an outlier.

 1. Accuracy of modeling the data distribution: While selecting an algorithm 
for outlier detection, it is imperative to select an algorithm that can accu-
rately model the distribution of the data studied. Typically, the algorithm 
should be able to scale up or scale down depending on the number of data 
points processed.

 2. Defining an appropriate neighborhood of interest for an outlier: Selecting 
a neighborhood of interest is a nontrivial task. Typically, algorithms model 
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data distributions with the pretext of defining boundaries around the points 
that form a cluster, by inducing a threshold. However, these approaches are 
parametric; i.e., they often force a predefined distribution (model) over the 
points or require the number of clusters to be defined in advance. Other 
approaches require predefined parameters of size or density of neighborhoods 
for outlier thresholding. 	us, choosing the exact values of the parameters 
that define the neighborhood should be applicable for all density distribu-
tions likely to be encountered and can potentially improve or weaken the 
effectiveness of the method.

Popular approaches include statistical, neural network, machine learning, and 
hybrid system models. 	ese approaches, described below, encompass distance-based, 
set-based, density-based, depth-based, model-based, and graph-based algorithms.

 1. Statistical models use derived statistical variables of mean and standard devia-
tion to detect outliers. Based on Chebyshev’s theorem of inequality (Amidan 
et al. 2005), the upper bounds and lower bounds of the confidence interval 
around the mean are calculated. If a data point falls out of bounds, it is 
treated as an outlier.

 2. Neural network models are generally nonparametric models that use neural net-
works (Haykin 1998) for training to create boundaries around data points. 
Data points that do not fall within the boundaries are flagged as outliers. 
Since they are neural network-based algorithms, they require both phases of 
training and testing, and thus are also considered supervised models.

 3. Machine learning models use categorical data, unlike statistical and neural 
network models, which are heavily dependent on the data types of the data-
sets (mainly continuous real-valued or ordinal data). 	e methods of this 
category are generally tree-based algorithms used for outlier detection.

 4. Hybrid system models are used to overcome the limitations of the above three 
categories. Hybrid system models are typically a combination of any two of the 
above three categories (statistical, neural network, or machine learning based).

3.3.1 � Models of Data Cleaning
One of the first outlier detection models is the statistical models. 	e models in this 
category are applicable to 1D datasets (univariate models) as well as to datasets that 
have multiple dimensions (multivariate models). 	e foundation for these models 
is based on the Chebyshev theorem of inequality and is suited for datasets of real-
valued data and ordinal data.

	e Chebyshev’s inequality theorem, or simply Chebyshev’s theorem, was 
designed to determine the lower bound of data with k number of standard devia-
tions from the mean of the data. Typically, datasets are assumed to possess a normal 
distribution (bell shaped), for which it is known that 95% of the data will fall 
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between two standard deviations from its mean. In this assumption, 5% of the data 
will fall outside of the two standard deviations. Information such as the mean and 
standard deviation are extracted from the dataset studied.

	e simplest and one of the oldest statistical outlier detection techniques is 
box plot analysis. Proposed by Laurikkala et al. (2000), box plot analysis provides 
graphical representation to pinpoint outliers using box plots. 	is technique can be 
applied to both univariate and multivariate data. Using box plots, a user/designer 
can plot both the upper and lower extremes of the data. 	e parameter of the 
lower quartile, median, and upper quartile are derived from analysis of the box 
plots. Points that fall out of the upper and lower extreme values of the box plots are 
flagged as outliers. 	e upper and lower bounds of the limits in this method are 
dependent on the datasets and vary with the number of records in the dataset. It is 
noteworthy that this method does not make any assumptions about data distribu-
tion; however, it is heavily dependent on human interpretation of the outliers.

Moreover, outlier detection models are susceptible to the curse of dimensional-
ity, and it is therefore imperative that the outlier detection models scale up to the 
large number of dimensions. 	e curse of dimensionality is based on the observation 
that the computational time of algorithms scales up exponentially as the number 
of dimensions increases. It is believed that as the dimensionality increases, the data 
points are spread through a larger volume and the data distribution becomes less 
dense. 	e most effective statistical techniques focus on the selection of salient 
dimensions (or attributes) and, by doing so, process a larger number of data points 
at a time. 	e process of attribute selection is a precursor to outlier detection. It is 
believed that a subset of attributes contributes to the deviation of data, while the 
other attributes are believed to add to the inherent noise in the dataset. An alternate 
technique is to project the data onto a lower-dimensional subspace, thereby con-
taining the density of the distribution of data points.

Statistical techniques can be further divided into the following categories.

3.3.1.1 � Proximity-Based Techniques

Proximity-based techniques are simple to implement and make no prior assump-
tions about the data distribution model. 	ey are suitable for both unsupervised 
and supervised methods of outlier detection. In these techniques, each record 
of the dataset is treated as an independent point in an n-dimensional space, 
and the distance between each point and every other point in the dataset is 
computed (see Figure 3.3). Points that fall within a specified threshold of a ref-
erence point are considered neighbors to the point for which the threshold was 
calculated. An example of such an algorithm is the k-nearest neighbor (kNN) 
algorithm. 	ough reliable, proximity-based techniques suffer from exponential 
computational growth, as they are based on the calculation of the distances 
between all data points. 	e computational complexity of the algorithms in 
this technique is directly proportional to both the dimensionality of the data m 



Knowledge Discovery in Databases  ◾  91

and the number of data points n, and their complexity is of the order O(n2m). 
	is computational complexity indicates that they are not feasible with high-
dimensional data.

3.3.1.2 � Parametric Methods

Many of the methods in the proximity-based techniques do not scale well unless 
modifications and optimizations are made to the standard algorithm. In this sec-
tion, we introduce a new category of techniques known as parametric methods. 
	ese methods allow the rapid evaluation of models for every new instance of data 
and are well suited for large databases, as the complexity of the model is indepen-
dent of the data size. However, the drawback of this technique is that a predefined 
model distribution is enforced to fit the data. 	eoretically, if the data fit the model, 
then the results obtained are accurate. However, this condition does not always 
hold true for real-life datasets. An example of this technique is minimum volume 
ellipsoid (MVE) estimation. 	e objective of this algorithm is to fit the smallest 
possible ellipsoid around a maximum number of data points in an n-dimensional 
space. It is believed that the points within the ellipsoid represent a densely popu-
lated region.

An alternate approach that is similar to MVE is the convex peeling (CP) algo-
rithm. In this approach, a convex hull is placed around all the data points so that 
the hull covers the maximum points (see Figure  3.4). Each data point is then 
assigned a weight (known as depth) that corresponds to the distance of the point 
from the mean of the data distribution. 	e points closest to the boundary (defined 
by a convex hull) are considered to have the lowest depth and are peeled away; 
i.e., points further away from the distribution are considered outliers. 	e process 
of convex hull generation and peeling is iteratively carried out until a predefined 
number of data points are retained within the convex hull. 	is method is suitable 
for both unsupervised clustering outlier detection techniques. Unfortunately, this 
method is susceptible to peeling away a large number of points that form a chunk 
of normal data points.

Y

X

Figure 3.3  A representation of the kNN algorithm in 2D space. In this illustra-
tion, k is set at 14, which results in a cluster of 14 closely populated points and 2 
outliers (in blue) that do not satisfy the distance criteria.
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	e robustness of both MVE and CP to fit a convex hull around the data points 
is not dependent on the sparseness of the outlying region, and thus does not skew 
the boundary formed. However, the fit of the convex hull around the data points is 
dependent on the data point distribution. 	e fitting of the convex hull around the 
data points implies that both MVE and CP suffer from the curse of dimensionality 
and work best with datasets that have only a few dimensions, as more dimensions 
add to the sparseness of the data.

To overcome the curse of dimensionality, principal component analysis (PCA) 
is used for high-dimensional data. 	e principal components extracted using PCA 
have the highest variance as the corresponding eigenvalues, which have magnitudes 
that correspond to the variance of the points from the principal components. 	e 
extracted principal components ensure that the subspaces determined are compact, 
and thereby overcome the limitations of MVE and CP in their applicability, par-
ticularly for sparse distributions.

Hierarchical approaches such as decision tree and cluster trees are also included 
in this category. 	e representation of data distributions in a hierarchy provides for 
a multilevel abstraction of data. 	is hierarchy enables data points to be compared 
for novelty at different levels of the hierarchy—from a coarse grain (higher up in 
the hierarchy) to a fine grain (lower down the hierarchy). Expectation maximization 
(EM), in conjunction with deterministic annealing (DA), is an example of the 
algorithms that fall into this category. Using the maximum likelihood and infor-
mation theory, the DA constructs a hierarchy using divisive clustering of data 
points. In this method, nodes are split into subnodes, until a top-down hierarchy is 
created. Outliers in this case are detected by the hierarchy, when new data points 
are added that do not conform to any of the existing clusters. When EM is used in 
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Figure 3.4  An illustration of convex hull peeling of points distributed in 2D 
space. Convex hulls are placed at varied depths around the data points to facili-
tate removal of outliers in a layered fashion from lowest depth (outermost hull) to 
highest depth (innermost hull).



Knowledge Discovery in Databases  ◾  93

conjunction with DA, the computational efficiency of the algorithm is improved by 
removing some initialization dependencies. DA can also avoid the local minima, 
which plague the EM problem. However, avoiding the local minima can produce 
suboptimal results.

3.3.1.3 � Nonparametric Methods

	ough effective, the methods in the above two categories are controlled by param-
eters or are data specific. In the case of kNN, the algorithm is dependent on the 
parameter k, and in the case of PCA, it is dependent on the number of principal 
components p. 	e algorithm is confined by assumptions in the initial iteration 
of processing, which is not feasible in real-world datasets and could turn out to 
be computationally infeasible. To overcome these generic limitations, we can use 
nonparametric approaches. 	ese approaches are more practically applicable for 
outlier detection, especially when data are expected to grow in time and when lim-
ited computational resources are required, thereby providing more autonomy and 
flexibility. Algorithms in this section include multilayer perceptrons (MLPs) and 
adaptive resonance theory (ART) for outlier detection.

3.3.1.4 � Semiparametric Methods

Semiparametric methods are used to build on the speed and complexity of paramet-
ric methods using the model flexibility of nonparametric methods. 	ese methods 
are brought about by the application of local kernel methods instead of a common 
global distribution model. Kernel-based methods, such as Gaussian mixture mod-
els (GMMs), estimate the density distribution of the input space to identify outliers 
as data points that lie in regions of low density.

3.3.1.5 � Neural Networks

Approaches in the second group are known as neural network approaches. 
	ese approaches are nonparametric (Reif et al. 2008) and model based, as they 
generalize to unseen patterns and can learn complex class boundaries. 	ese 
methods, though susceptible to the curse of dimensionality, are far less likely to 
suffer from such problems than statistical approaches are. Since these methods 
are supervised, each method requires a training dataset that is spread across 
both normal and outlier samples to effectively fine-tune the model and deter-
mine necessary thresholds. Moreover, these approaches require the entire data-
set to be traversed numerous times to allow the network to settle and model 
the data correctly. Just as in previous methods, the models in this category 
attempt to fit a surface over the data points. For effective surface generation, 
there must, however, be sufficient data density. By default, neural networks 
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reduce the feature space by using only key features. Nonetheless, it is beneficial 
to use feature selection or dimensionality reduction techniques to make the 
algorithms more effective.

3.3.1.5.1 � Supervised Neural Methods

Supervised neural networks use the classification of the data to drive the learning 
process. 	e class labels enable the neural network to adjust its weights and thresh-
olds to correctly classify new input data (Rumelhart et al. 1986). 	e input data are 
effectively modeled by the whole network, as they are distributed across all nodes, 
and the output represents the classifications as shown in Figure 3.5. For example, 
the multilayer perceptron is a supervised neural network, which interpolates well 
but performs poorly for extrapolation, and thus is ineffective in classifying points 
that fall outside of the boundary of a class defined by the training set.

3.3.1.5.2 � Unsupervised Neural Methods

Learning in supervised neural networks is driven by a predefined training set that 
contains equal representation of both normal and outlier data points. In situa-
tions where the training set is unavailable, unsupervised neural networks provide 
an alternative. In unsupervised neural networks, nodes compete with each other 
to represent distribution characteristics of the data points. Multilayer perceptron-
based neural networks that consist of three layers with the same number of output 
and input neurons are trained to create a model (Williams, Baxter et al. 2002), as 

Hidden Layer

Input Layer

Output Layer

C2 Outlier Class

C1 Normal Class

Figure 3.5  Supervised multilayer perceptron, with three layers: input, hidden, 
and output.
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seen in Figure 3.6. 	en, this network autonomously clusters the input data points 
based on the data distribution modeled, which enables the differentiation of points 
as normal or outlier based on how close a point resembles a modeled distribution. 
Assuming that related data points share common features, these features are used 
to topologically model the data distribution.

Self-organizing maps (SOMs) (Muruzalbal and Munoz 1997) are effective for 
the clustering and visualization of high-dimensional data. SOM is equivalent to a 
two-dimensional (2D) neural network, where each node in the network is assigned 
a weight vector that points to data in the input space. 	us, for a given data matrix 
consisting of n rows and p features, the pointers in the SOM capture the distribu-
tion of the data and are constrained by the relation between the data features. As 
with the k-means algorithm, self-organizing maps rearrange the points within dis-
tribution based on their proximity to the input point, as each data point is fed into 
the network. In this manner, the SOM consists of pointers with a density that is 
equal to the overall distribution of the data. 	us, in the case of outlier detection, 
each data point is gauged by its proximity to its immediate neighbors.

3.3.1.6 � Machine Learning

Much outlier detection has only focused on continuous real-valued data attributes; 
there has been little focus on categorical data. Both statistical and neural approaches 
require cardinal or, at the least, ordinal data types to enable the calculation of dis-
tances between data points. 	ey do not have any mechanism to handle categorical 
data with no implicit ordering. To this end, machine learning algorithms can han-
dle categorical data as well. Of the machine learning approaches that are used in 

Hidden Layer

Input Layer Output Layer

Figure 3.6  Unsupervised multilayer perceptron consisting of three layers having 
the same number of input and output nodes.
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outlier detection, the decision tree algorithm C4.5 (John 1995; Reif et al. 2008) is 
the most reliable. Initially proposed in 1995, decision tree-based outlier detection is 
not governed by fitting a model over the data distribution, and thus is immune to 
the curse of dimensionality. Decision tree algorithms define simpler class boundar-
ies and work well on noisy data. Decision tree-based outlier detection is supervised 
and dependent on the training set. It is scalable for handling larger datasets with 
high dimensionality. However, decision trees are susceptible to overfitting, as their 
ability to generalize is inferior to other neural network or statistical techniques that 
can be overcome by feature selection or pruning.

As with decision tree-based outlier detection, rule-based machine learning 
techniques can be exploited for outlier detection (Chandola et al. 2007). 	ese rule-
based techniques are similar to decision trees, as they test a series of conditions 
known as antecedents before determining the conclusion or appropriate class. 	e 
flexibility of adding new rules without disturbing existing rules proves advantageous 
in this technique, especially for outlier detection. Typically, the rule-based technique 
can be treated as a classification scheme, with both normal and abnormal instances 
used for training, and the scheme distinguishes between data points located in nor-
mal areas and outliers. 	e scheme could consist of rules generated by the rule-based 
classifiers that capture the behavior of the normal data points, and any instance that 
does not confine to the rules of the normal class are treated as outliers.

Other machine learning outlier detection strategies include those based on clus-
tering. Clustering algorithms such as BIRCH (Zhang et al. 1996) and DBSCAN 
(Ester et al. 1996) that are robust in handling large datasets can be exploited for 
outlier detection. 	e BIRCH clustering algorithm uses a hierarchical tree struc-
tured index called a clustering feature tree (CFt) to cluster data points dynamically. 
In this method, all the data points are first scanned and inserted into the CFt. 
When all the data points are scanned, a global clustering scheme is employed to 
condense the CFt to a desired size. At this point, clusters are merged to other clus-
ters in a hierarchical fashion, which can be effectively used to remove the outliers. 
	e time complexity of BIRCH is of the order O(n2) and operates incrementally but 
is limited to handling numeric data.

A more elaborate clustering scheme, such as the density-based DBSCAN clus-
tering algorithm, can also be employed for outlier detection. Here, outliers are 
estimated based on the density of data points within a predefined neighborhood. 
	e extension of the DBSCAN clustering algorithm for outlier detection is found 
in the DB-outlier algorithm (Berunig et al. 2000). Its time complexity is of the 
order O(n log n) and is based on the R* tree structure to cluster and identify kNN.

3.3.1.7 � Hybrid Systems

	e most recent development in outlier detection technology is hybrid systems. 
	ese systems incorporate algorithms from at least two of the statistical, neu-
ral, and machine learning methods. Hybridization is used variously to overcome 
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deficiencies with one particular classification algorithm to exploit the advantages of 
multiple approaches while overcoming their weaknesses or using a meta-classifier 
to reconcile the outputs from multiple classifiers.

3.4 � Data Integration
Now that we have covered an overview of the different outlier detection strategies 
employed in data cleaning, in this section we describe the process of data integration, 
by which data from disparate sources are integrated to enable mining for information.

Data integration is viewed as the process that entails the merging of data from 
various sources that correspond to an entity of interest. In reality, it is difficult to 
find information pertaining to an entity in a single database; it is therefore vital to 
consolidate information from various databases. 	is need for specific information 
poses a challenge as different databases adopt diverse schemas and formats to store 
their data. Methods for overcoming these challenges are described below.

3.4.1 � Data Integration and Data Linkage
	e need for joining data from multiple heterogeneous databases into a single coher-
ent data warehouse is of growing importance in the KDD process (Figure 3.7).

In reality, information pertaining to an entity of interest is found in multiple 
databases. 	us, we are forced to resort to integrating information from an array of 
databases to create a consolidated representation of an entity. 	e key to integrat-
ing two heterogeneous databases is to find commonalities between records in the 
database. Integration, in this step, is similar to performing a simple join operation; 
however, it is not a trivial task due to the complexity of heterogeneous databases. 

Data IntegrationFile Systems

Data Warehouse

Entity Relational
Models

Object Oriented
Models

Figure 3.7  Data integration is considered to be a precursor of data warehousing. 
Typically data integration entails the integration of data obtained from disparate 
sources categorized based on the nature by which data are stored, namely: file 
systems, objected-oriented databases, and relational databases.
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With the differences in syntax and nomenclatures adopted, finding methods of 
identifying similarities is still an open challenge.

Record linkage in files is used to identify duplicate identifiers in situations where 
the unique identifiers are unavailable. 	is technique works by matching the attri-
bute fields and other fields that are not unique identifiers of entities. Record linkage 
is synonymous with object identification, data cleaning, approximate matching or 
approximate joins, fuzzy matching, and entity resolution.

	ere are two types of data heterogeneity, structural heterogeneity and lexical 
heterogeneity. Structural heterogeneity occurs when the fields of the data records 
in the database are structured differently in different databases. Lexical heterogene-
ity occurs when the data records have identically structured fields across databases 
but the data use different representations to refer to the same real-world object 
(Elmagarmid et al. 2007).

Data mining challenges have been surveyed in order to help identify lexical 
heterogeneity. Record linkage is also referred to as a record matching problem in 
statistics. 	e motivation for using record linkage is to identify records in the same 
or different databases that refer to the same real-world entity, even if the records are 
not identical. 	e same problem may have multiple names across research commu-
nities, such as the merge/purge problem, data duplication, or instance identification 
in the data database community.

3.4.2 � Schema Integration Issues
	e difficulties in integrating different database schemas stem from commonly 
observed problems. For example, the same attribute may have different names in 
different schemas, or an attribute may be derived from another attribute, different 
attributes might represent the same information causing redundancy, values in 
attributes might be different, and records may be duplicated (under different keys).

Various data integration and record linkage schemes have been proposed to 
handle these issues.

As an illustration of data integration, let us consider data from different rela-
tional databases. 	e objective here is to ensure that the data entries or records are 
stored in a uniform manner in a common database, resolving (at least partially) 
the structural heterogeneity problem by considering only relational databases. To 
achieve uniformity, the data are subject to parsing and data transformation and 
standardization. Extraction transformation loading (ETL) broadly describes these 
processes. 	e steps in this process ensure improvement in the quality of the in-flow 
data and make the data records comparable and more usable.

	e first step of the ETL process is parsing. Parsing aids in the identification and 
isolation of individual data elements in the source data tables or files. It enables easier 
correction and standardizing and matching of data, as it allows for comparison of 
individual components, rather than of long complex strings of data. Multiple pars-
ing methods are currently available, and parsing remains an active field of research.
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	e second step of the ETL process is data transformation, the simple conversion 
applied to the data to conform them to standard data types. Data transformation 
involves manipulating one field of the data record at a time and treating it indepen-
dently without taking into account the values of the related fields. 	is step is generally 
applied to conform legacy data to specific data types pertaining to specific applications. 
Renaming a field is also a form of data transformation. Range checking is yet another 
kind of data transformation, which involves examining data in a field to ensure that 
they fall within the expected range. Dependency checking is a slightly more evolved 
form of data transformation, since it requires comparing the value in a particular field 
to the values in another field to ensure a minimal level of consistency in the data.

Finally, data standardization refers to the standardizing process involved in con-
verting the data from one format to an application-specific format. Standardization is 
applied to data fields that are stored in different formats across different data sources, 
such that they are converted to a uniform representation before being subjected to the 
duplicate detection process. Standardization drastically reduces errors by reducing 
duplicate entries in the databases. Once the data have been standardized, the next 
step of data preprocessing is to identify which fields should be used for comparison. It 
is desirable to identify fields that have limited redundancy in their records.

Human errors that result in misspellings and different conventions for record-
ing data result in multiple representations of a unique object in the database. 	us, 
significant research has been pursued for identifying techniques for measuring 
the similarity of individual fields, and techniques for measuring the similarity of 
entire records.

3.4.3 � Field Matching Techniques
Duplicate detection is an important step in the data integration. 	e objective for using 
this step is to identify redundant fields or whole records across different databases. 
Mismatches caused by human typographical variations of string data are the most 
common source of errors in databases. Accurately completing this step invariably affects 
the outcome of duplicate detection techniques, as they rely on string comparison. To 
this end, various string matching techniques have been developed over the past decade. 
	ese techniques include character-based similarity metrics and token-based similarity 
metrics. Various methods within these techniques are explained below.

3.4.3.1 � Character-Based Similarity Metrics

Character-based similarity metrics have been designed to handle typographical 
errors. Typically, the following distance metrics are used to measure the degree of 
similarity or dissimilarity between two strings (the objective of this section). 	ey 
could also be modified and used to find similarity between different complex data 
structures, such as trees, graphs, etc. 	e following sections describe the different 
metrics that are prominently used in the field of bioinformatics.
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Edit distance: 	e edit distance is one of the simplest algorithms for deter-
mining the similarity between two strings. Given strings σ1 and σ2, the edit 
distance measure is the similarity between them as the least number of single 
character edit operations required to transform the string σ1 into σ2 (Ristad 
and Yianilos 1998). 	e edit operations are confined to the following:

 1. Insert a character into a string.
 2. Delete a character from a string.
 3. Replace one character with a different character.

  In the simplest form, the edit distance is also referred to as Levenshtein 
distance (Ristad and Yianilos 1998), in which each edit operation is assigned 
a cost of zero. Typically, the computational complexity of measuring the edit 
distance of two strings is of the order ( . )1 2O σ σ , with |σ1| and |σ2| represent-
ing the length of the two strings.

Affine gap distance: An extension of the edit distance is the affine gap distance. 
It is believed that the edit distance metric is not effective when one of the two 
strings compared is truncated or shortened. 	e extension to edit distance 
includes the addition of two new operations:

 1. Open gap operation
 2. Extend gap operation

  A solution for comparing strings of unequal length is to align the two 
strings. By aligning two strings, gaps are inserted into either of the two 
strings to ensure that the strings are of the same length, enabling easy com-
parison. 	e incorporation of gaps in strings for comparison is treated differ-
ently in different methods. 	e insertion of gaps is a weighted operation, in 
which a weight is assigned for every insertion of a gap—known as a penalty. 
It is not desirable to have a high gap score or alignment score. 	e affine gap 
distance metric has a variation in assigning weights to the gaps. 	e cost of 
extending the gap is usually smaller than the cost of opening a gap, which 
results in smaller cost penalties than the cost obtained using the edit dis-
tance metric. 	e time complexity of the affine gap algorithm is of the order 
( . . )1 2O a σ σ when the maximum length of a gap is a min{ , }1 2� σ σ . In 

general, the algorithm runs approximately ( . . )2
1 2O a σ σ  steps.

Smith-Waterman distance: Smith and Waterman (1981) described an exten-
sion of edit distance and affine gap distance, in which mismatches at the 
beginning and the end of strings have lower costs than mismatches in the 
middle. 	is metric allows for better local alignment of the strings. 	e algo-
rithm requires O( .1 2σ σ ) time and space for two strings of length 1σ  and 

2σ . Several improvements have thus been proposed, as in the case of the 
BLAST algorithm.
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Jaro distance metric: 	e Jaro distance metric is the basic algorithm for the 
comparison of two strings, σ1 and σ2, and is based on the following steps. 
First, compute the string lengths 1σ  and |σ2|. Second, find the “common 
characters” c in the two strings. By common, we refer to all the characters 

1 j[ ]σ  and 2 j[ ]σ  for which 1 2i j[ ][ ]σ = σ  and min{ , }1
2 1 2i j− ≤ σ σ . 

	ird, find the number of transpositions t. 	e number of transpositions is 
computed as follows: we compare the ith common character in σ1 with the 
ith common character in σ2. Each nonmatching character is a transposition. 
	e Jaro comparison value is
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  	e Jaro algorithm requires O( .1 2σ σ ) time for two strings of length 
1σ  and 2σ  due to step 2, which computes the common characters in the 

two strings.
q-Grams: 	e q-grams are short character substrings of length q of the database 

strings. 	e purpose of using q-grams as a foundation for approximate string 
matching is that when two strings σ1 and σ2 are similar, they share a large 
number of q-grams. Given a string σ, its q-grams are obtained by “sliding” 
a window of length q over the characters of σ. Since q-grams at the begin-
ning and the end of the string can have fewer than q characters from σ, the 
strings are conceptually extended by padding the beginning and the end of 
the string with q – 1 occurrences of a special padding character, not found 
in the original alphabet. With the appropriate use of hash-based indexes, the 
average time required for computing the q-gram overlap between two stings 
σ1 and σ2 is O(max { , }1 2σ σ ). Letter q-grams, including trigrams, bigrams, 
and unigrams, have been used in a variety of applications.

3.4.3.2 � Token-Based Similarity Metrics

	e different character-based similarity metrics defined above aid in the detection 
of typographical errors. However, databases often use varied conventions that lead 
to the rearrangement of words. In such cases, we use the token-based metrics to 
measure the similarity between varied conventions.

Atomic strings: An atomic string is a sequence of alphanumeric characters 
delimited by punctuation characters. Two atomic strings match if they are 
equal, or if one is the prefix of the other. Otherwise, they do not match. 	e 
similarity of two fields is the number of their matching atomic strings divided 
by their average number of atomic stings.
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WHIRL: An alternate to the atomic strings similarity metrics is the WHIRL 
algorithm (Cohen 1998). 	e WHIRL algorithm is based on the vector space 
model. A vocabulary T of atomic terms that can include words, phrases, or 
word stems (word prefixes) is built. A text document is represented as a docu-
ment vector, and each component corresponds to terms t ∈ T denoting the 
component of v that corresponds to t ∈ T by vt.

In this algorithm, the weighting scheme used is the term frequency-inverse doc-
ument frequency (TF-IDF) weighting that is normalized between 0 and 1. Once 
the document is represented by vector

 
ˆ log 1 . log( ),( )( )= +v TF IDFt

V t t  (3.4)

where the term frequency TFV,t is the number of times the term t occurs in the 

document represented by v, and the inverse document frequency IDFt is 
C
Ct

, where 
Ct is the subset of documents in the collection of documents C that contains the 
term t.

	e similarity between two documents u and v is computed using
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which is interpreted as the cosine of the angle between u and v, and which ranges 
between 0 and 1, as every document is of unit length.

	e magnitude of the vector vt corresponds to the related importance of the 
term t in the document represented by v. Two documents are similar when they 
share many important terms. 	e TF-IDF weighting scheme assigns lower weights 
to frequently occurring terms in the collection C. However, the drawback of this 
method is that the vectors tend to be sparse, i.e., if a document contains only 
k-terms, then all but k components of the vector representation will have zero.

3.4.3.3 � Data Linkage/Matching Techniques

	is section addresses methods that are used to match records with multiple 
fields. 	ese methods, according to Elmagarmid et al. (2007), are broadly divided 
into two categories: learning approaches and distance-based approaches.

 1. Learning approaches use training data to learn how to match records from dif-
ferent sources. 	ey include probabilistic approaches and supervised machine 
learning techniques.

	 2. Distance-based approaches match records using domain knowledge or generic 
distance metrics. In these approaches, special declarative languages are used 
to detect duplicate records.
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Of the above two categories, this section focuses on the first category. For exam-
ple, let us assume that tables A and B, each having n comparable fields, are expected 
to be matched. To this end, we define two classes M and U, where class M contains 
record tuples 〈α,β〉, (α ∈ A,β ∈ B) that represent the same entity (match), and class 
U contains the record tuples that represent different entities (nonmatch).

For matching, a pair of tuples, 〈α,β〉, is represented as a vector ˆ [ , , ]1x x xn T= …  
with n components that correspond to n comparable fields of A and B. With each xi 
showing the degree of agreement between the ith field of records α and β. Typically, 
the matches are represented by binary values 0 and 1 for the values of xi, where 
xi = 1 if field i agrees and xi = 0 if field i disagrees.

3.4.3.3.1 � Probabilistic Matching Models

	e initial mathematical model based on Bayesian inference (Newcombe and 
Kennedy 1962) was proposed by Fellegi and Sunter (1969). In this model, two 
tables A and B, are matched using a vector ˆ [ , , ]1x x xn T= …  as input for the cre-
ation of a decision rule. 	is decision rule assigns x̂  to either class M or U. In the 
probabilistic approach, we assume that x̂  is a random vector that has a density 
function that is different for each of the two classes M and U. If the density func-
tion for the classes M and U is known, the duplicate detection problem can be 
equated to the Bayesian inference problem, where observations are used to update 
or newly infer what is known about underlying parameters or hypotheses.

From the following equation,
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vector x̂  is classified to class M, if the probability of class M is greater than the 
nonmatch class U, and vice versa. On applying Bayes’ theorem, the above equation 
can be expressed as
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where ˆl x( )  is the likelihood ratio with a threshold p(U)
p(M)  for the decision.

However, this approach is true only when the posterior probabilities p x̂|M( ),
p x̂|U( )  and the prior probabilities p(M) and p(U) are known, which is rarely the 
case.

To overcome this problem, the naïve Bayes approach to compute the posterior prob-
abilities based on a conditional independence is used. 	e conditional independence 
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assumes that p x |Mi( )  and p x |Mj( )  are independent if i ≠ j. 	is assumption results 
in the following:
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and
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where the values of ( | )p x Mi  and ( | )p x Ui  can be computed using a training set 
of known class labels.

3.4.3.3.2 � Supervised and Semisupervised Learning

In supervised and semisupervised learning, probabilistic models base the classifica-
tion of records using Bayesian approaches on classes M and U. Other commonly 
used duplication techniques are based on traditional classification techniques, 
where the system relies on the existence of training data in the form of record pairs, 
labeled as matching or not matching.

Similar to the probabilistic approach defined in the previous section, the 
Classification as Regression Trees (CART) classification algorithm could be 
extended to match records. For this function, the algorithm generates regression 
trees, based on which a linear discriminant algorithm generates all possible com-
binations of parameters to separate the data into their respective classes. Grouping 
records is brought about using the vector quantization approach. Similarly, support 
vector machines (SVMs) can be extended to match records.

3.5 � Data Warehousing
A data warehouse is a subject-oriented, time-varying, nonvolatile collection of data 
used primarily in organization decision making.

As the information stored in a warehouse is focused on one subject related to an 
organization, a warehouse is termed subject oriented. When a warehouse is being 
built, useful pieces of this information from disparate data sources are gathered in 
one universally accepted format for storage. 	e data are integrated as per require-
ments and not simply transferred from source to warehouse. A data warehouse 
is time varying, as every piece of data has a time stamp associated with it that is 
derived from the source. 	e data from the source vary with time, as appropriate 
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modifications and updates take place. However, the data warehouse is nonvolatile, 
and once it is stored in the warehouse, it will not change. 	is static status means 
that the data in the warehouse do not reflect the changes made to the data at the 
source. For the changes to be reflected, the data warehouse must be refreshed at 
regular intervals. For every refresh cycle, the updates are incorporated into the 
warehouse and outdated information is purged.

	ough the data in the warehouse do not store updated information, their pri-
mary function is to enable high-level decision making, rather than store day-to-day 
information. Because of the difficulty of updating information, data warehousing is 
not applicable to all fields of applications where up-to-date information is required 
(Figure 3.8).

3.5.1 � Online Analytical Processing
As previously discussed, data warehouses emphasize integration and decision sup-
port. 	us, the overall focus of these storage systems is on consolidating informa-
tion so that it is available at a glance, rather than on clarifying the specific details of 
individual transactions. Using data warehousing is like visualizing a forest, rather 
than the individual trees in the forest. 	us, the performance metrics in data ware-
housing are be related to query throughput and response times. 	e technology 
well suited to these metrics is online analytical processing (OLAP). OLAP per-
forms data consolidation and complex analysis of information and is apt for use in 
warehouse creation.

Aggregation

Feature 3

Feature 1
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e 2

Figure 3.8 T he representation of a data warehouse in three dimensions.
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3.5.2 � Differences between OLAP and OLTP
Online transaction processing (OLTP) is a system that is used in clerical processing 
tasks that emphasize fast query processing times. 	ese systems are characterized 
by a large volume of short online transactions, such as data entry, deletion, update, 
and retrieval in typical databases. In contrast, OLAP systems are characterized by 
a low volume of transactions. In OLAP, the queries are complex and involve aggre-
gations of data from multiple data sources. 	ese queries are performed ad hoc. 
Differences between these two systems are elaborated in Table 3.1.

3.5.3 � OLAP Tasks
Since OLAP tasks do not require constant updates for transactions, it is assumed 
that the data required by OLAP systems are stored in a data warehouse, which sepa-
rates the input from both the operational databases and the output. 	is separation 

Table 3.1  Comparison between OLTP and OLAP

Characteristic OLTP OLAP

Main purpose To support day-to-day 
operations; control and 
run fundamental business 
tasks

To support managerial, 
strategic planning, and 
problem solving; 
decision support

Queries Short transactions; 
relatively simple structured 
query language (SQL)

Longer transactions; 
complex SQL with analysis

Updates Random updates; few 
rows accessed

Sequential/bulk updates; 
many rows accessed

Processing speed and 
response times

Subsecond response time Seconds to minutes 
response time

Database model ER modeling; minimizes 
redundancy

Dimensional modeling; 
okay to have redundancy

Data normalization Normalized data (5NF); 
minimizes duplicates

De-normalized data (3NF); 
duplicates are okay

Indexes Few indexes; avoids index 
maintenance cost in 
writes

Okay to have more 
indexes; mostly read-
only operations

Workload 
predictability and 
tuning

Precompiled queries; 
repeated execution of 
queries

Ad hoc queries; 
unpredictable load
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renders a structured approach to storing information in a systematic timely fashion. 
However, to suit a more realistic model of evolving data, the OLAP systems are 
required to be more dynamic, and their design is continuous. 	e following are the 
tasks that make this possible.

Roll-up task: 	e roll-up task is the process of getting a higher level of aggre-
gation in the integration process, i.e., reducing detail. Here the aggregation 
function provides an abstraction of the data by reducing the lower-level details.

Drill-down task: 	e drill-down task is the opposite of the roll-up task. In the 
drill-down task, emphasis is given to highlighting the lower-level details of 
the data. It can be visualized as the process of drilling down an aggregation 
of data, implying an increase in detail.

Slice and dice task: 	e slice and dice task is analogous to the select and project 
operations in regular databases.

Pivot task: 	e pivot task enables the transformation of data to enable easy 
interpretation. 	is task involves reorientation and visualization of data.

Based on the above operations, we can see that OLAP functions at a higher level. In 
order to implement OLAP technology, relational OLAP (ROLAP) is used as the origi-
nal model. ROLAP uses the simple relational database management system (RDBMS) 
model, where data are stored in tuples, and bears attributes. However, in warehousing, 
there is also a trend toward multidimensional OLAP (MOLAP). MOLAP adds more 
dimensions in which to store information, so we are not restricted to 2D tuples. We now 
have more sophisticated data structures, for example, 3D data cubes, complex arrays, 
and more. 	e emphasis in MOLAP is on multiple facts and multiple dimensions.

3.5.4 � Life Cycle of a Data Warehouse
Now that we have briefly covered the concepts of OLAP and its operations, in this 
section we describe the life cycle of a data warehouse to enable its functioning. 
A warehouse is an extensive structure that has several phases of development. A 
fully developed warehousing system typically has the following parts: information 
sources, wrappers, integrators, and warehouses, each of which is described below.

◾◾ Information sources are the building blocks of the warehouse. 	ey are the 
original sources of the data, like flat files, RDBMS, and object-oriented data-
base management system (OODBMS). 	e raw data that exist here must be 
integrated into the final warehouse.

◾◾ Wrappers are responsible for data transformations prior to data integration. 
Each information source has a wrapper. 	e functions of a wrapper during 
warehouse creation include data gathering from the sources, data cleaning, 
and format conversions. Once the data are available in the generic format 
required by the warehouse, they can be consolidated. After the warehouse 
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is functional, periodic updates are needed to refresh the information. 	e 
wrapper is also responsible for the tasks involved in obtaining these updates.

◾◾ An integrator is a filter within the warehouse. Each warehouse has one inte-
grator module that filters, summarizes, and merges the data from the indi-
vidual wrappers and then dumps the desired information into the warehouse.

◾◾ A warehouse is the actual storage of integrated information.

	e above are the necessary components of a warehouse. 	e data warehousing life-
cycle includes warehouse creation and warehouse maintenance. 	e modules required 
for these steps include requirement analysis, architecture, data modeling, layout, meta-
data, extraction, transformation, and load, monitoring, and administration, user inter-
face, view maintenance, and purging. Each of these modules is explained below.

 1. Requirement analysis is similar to the initial step in any software life cycle 
model, where facts are collected, needs are outlined, and detailed specifica-
tions are documented, so as to serve as a guideline for development.

 2. Architecture indicates whether a data warehouse is centralized or distributed 
and whether it requires a dedicated server, among other issues. Users/design-
ers often select servers and tools using architectural information.

 3. Data modeling helps users to logically analyze raw data. 	ese data models 
help in identifying the entities in the system and their relationships with 
each other, their properties, common features, and the like. Data modeling 
includes terminology, like E-R diagrams, star and snowflake schemas, and 
materialized views.

 4. Layout is determined after the logical analysis is performed. Users/designers 
identify the individual information sources and apply open database connec-
tivity (ODBC) connections in this step.

 5. Meta-data are data about data. An example of meta-data is a library where the 
books form the data and the catalog forms the meta-data giving information 
about the books, i.e., about the data. In a data warehouse, meta-data are cru-
cial, because the focus is on analysis rather than transactions. 	erefore, we 
need to identify a meta-data repository, find a suitable location for it (central-
ized, distributed, etc., depending on warehouse architecture), and proceed to 
build access mechanisms for it.

 6. Extraction, transformation, and loading are the three steps involved in the 
physical data transfer. In these steps, data are extracted from the underlying 
information sources in a raw form, transformed to the desired format by the 
wrapper module, and then loaded to the warehouse by the integrator module 
in a consolidated manner.

 7. Monitoring and administration are the first steps in warehouse maintenance. 
	e above steps all dealt with warehouse creation. Once the warehouse is 
built, users/designers set up support to keep it running. Users/designers have 
DWAs (data warehouse administrators) that are analogous to DBAs (database 
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administrators). Users/designers have to develop mechanisms for fault detec-
tion and correction, recovery from breakdown, and the like to ensure func-
tional reliability.

 8. A user interface is integral to a data warehousing system. A warehousing sys-
tem could have a simple character interface, but such an interface would make 
access cumbersome, thus defeating the purpose of a warehouse. 	erefore, a 
considerable amount of time and effort is spent on building an interface to 
cater to the needs of the user.

 9. View maintenance is the way in which updates are reflected in a warehouse. In 
regular databases, this updating happens automatically, but in a warehouse, 
the updates need to be physically transferred. We refresh the warehouse in 
batches at certain intervals. During such updates, the warehouse ceases to 
be functional. 	e system is shut down, updates are performed, and then the 
system is restored. On the other hand, the system could reflect the changes as 
they occur without causing a system shutdown. 	is change has to be done 
one transaction at a time. 	e former approach is called batch updates, and 
the latter is incremental updates. Each method has pros and cons.

 10. Purging helps keep information in the warehouse up-to-date. Once the ware-
house data get old, they have to be driven out to make room for new infor-
mation. In addition, users need the latest up-to-date information for correct 
analysis and decision making. 	is process of removing the old data is essen-
tial for effective functioning of the warehouse.

3.6 � Conclusion
In this chapter we have provided a description of the challenges in handling bio-
logical databases with respect to data cleaning, data integration, and data ware-
housing through the various techniques used. In the following chapters we provide 
an overview of the different data transformation techniques and their implications 
on specific research endeavors in the area of bioinformatics.
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Chapter 4

Feature Selection and 
Extraction Strategies 
in Data Mining

In Chapter 4 we focus on the different data preparation and transformation strate-
gies in the knowledge discovery in databases (KDD) process. 	e chapter contains 
a list of widely used data normalization strategies for processing raw data and lists 
various data transformation techniques. We explain feature selection and feature 
extraction/construction strategies in lieu of their application to biological data. We 
contain our discussion to a selected set of algorithms that encapsulate the diver-
sity of the various feature selection techniques of filter-based and wrapper-based 
approaches. We also describe the various feature construction/extraction tech-
niques that are described in the following sections.

4.1 �I ntroduction
	e purpose of data preparation in the KDD process is to potentially improve the 
quality of real-world data that are potentially incomplete, noisy, and inconsistent 
(Zhang et al. 2003). 	ese inconsistencies reduce the discovery of useful patterns. 
Missing values contribute to a large percentage of issues in databases; thus it is 
imperative to define methods that address the missing values. Problems associ-
ated with missing values are amplified when attributes are missing or datasets 
have attributes in the form of aggregates (i.e., attributes that are a combination 
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of other attributes). As stated above, biological data are considered noisy, as they 
are plagued by noise and outliers (Furey et al. 2000). 	ese errors and outliers are 
attributed to data inconsistencies in codes and nomenclature (refer to Chapters 2 
and 3 for data cleaning strategies).

Data transformation and preparation result in a refined form of the origi-
nal data that is smaller and free of noise. 	ese methods are used with the 
objective of improving both the accuracy and the computational efficiency of 
data mining. Data transformation strategies listed in this chapter are used to 
ensure that all the data are free of noise and inconsistencies. 	ese strategies 
thus enhance the effective comparisons between data points. Data preparation 
includes strategies of feature/attribute selection in which various filtering and 
wrapper approaches are used to select relevant features/attributes that enhance 
the prediction accuracy of the learning algorithm applied in the data mining 
step later in the KDD process.

To avoid learning biases and simultaneously overcome computational bottle-
necks with respect to resources and algorithm efficiency, data-nested validation 
strategies play an important role in preparing data in which various iterative 
sampling and instance selection strategies have been applied to handle the large 
number of data effectively, avoid learning biases, and estimate the performance of 
feature selection. 	us, data transformation and preparation is viewed as a guided 
process focused on generating quality data, which leads to the discovery of relevant 
patterns.

4.2 �O verfitting
In the quest of fitting a statistical or learning model to the data, we typically run 
in to the problem of overfitting. Overfitting occurs when the intended learning 
model captures the inherent noise in the data instead of the underlying relation-
ship between attributes of the data. Overfitting can be correlated to the learning 
algorithm’s ability to give more importance to redundant and irrelevant attributes 
than to the amount of data available, making it overly complex and decreasing its 
predictive capacity.

	us, the data must be subjected to data preparation to overcome overfitting. 
Data preparation can be used to select features that exhibit a causal relation to the 
class labels (target function) of the data records. 	is process is called dimensional-
ity reduction. In addition to increasing the predictive accuracy, there are two goals 
for performing dimensionality reduction: to increase the speed of the algorithm 
and to utilize space effectively. Typically, dimensionality reduction falls into the 
third step of data transformation (see Chapter 2, Figure 2.1). 	us, in this chapter, 
we elaborate on the various data transformation techniques and the various feature 
selection and feature extraction schemes.
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4.3 � Data Transformation
Data transformation, a key concept of data preparation, ensures that data are trans-
formed or consolidated (prepared) into a form in which learning can be applied. 
Typically, data transformation includes smoothing, a process in which noise and 
inconsistencies are removed from data. 	is process typically involves discretization 
of data features/attributes. Data generalization is another strategy of data transforma-
tion, which is applied to data when abstraction of data is required. In such cases, the 
low-level raw data are generalized to higher-level concepts such that resultant knowl-
edge after mining can provide a better understanding of data. Just like data smoothing 
and generalization, data normalization is important in data transformation, as it facili-
tates an effective comparison of data points. Typically, real-world data are recorded at 
different scales, and through normalization, those data are converted to a universal 
form for comparison. 	ese techniques are detailed as follows.

4.3.1 � Data Smoothing by Discretization
Data smoothing is a data transformation strategy that is based on data discretization. 
In this method, data are categorized into intervals or bins to capture characteristics that 
could potentially be used to handle data inconsistencies. 	is process of dividing the 
data into intervals is commonly referred to as data discretization. Data discretization 
employs various binning strategies to remove inherent noise present in the data. 	is 
noise in data takes many forms, specifically the form of missing and inconsistent data 
values. Simple alternatives can be employed for handling missing values without going 
through the tedious procedure of manual updates. 	ese include substituting all miss-
ing values with a global constant. 	ough easy to implement, these methods do affect 
the learning from data, and thus we do not recommend using them. Other strate-
gies include substituting the missing values with the feature/attribute mean for a given 
class. Other approaches fill missing values based on inference derived from probabilistic 
Bayesian approaches or induction-based decision trees such as C4.5 and CART.

In this section, we explain how binning methods are used to handle noisy data 
that are present as inconsistent values for a given feature/attribute. Binning meth-
ods can be categorized as unsupervised or supervised methods. Unsupervised bin-
ning includes sorting data for a specific feature/attribute and dividing them into 
equal-sized intervals called bins. Using these bins, one can transform or smooth data 
smoothing by bin means, smoothing by bin median, or smoothing by bin boundaries.

Unsupervised binning methods include equi-width and equi-depth binning, 
which is controlled only by a predetermined number of bins N. 	e equi-width 
binning strategy is described in the following steps:

 1. Sort the values of attribute/feature f in ascending or descending order.
 2. Determine the range of values of f, and divide the range into N intervals of 

equal size.
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 3. Determine the width of each bin by finding max( f ) and min( f ) of f, using 
the following relation:

 

(max( ) min( ))
width

f f
N

= −

 4. Allocate values to their corresponding bins based on the range in which they 
fall into.

 5. Smooth by means, median, or boundaries.

	ough equi-width binning is most straightforward, it is sensitive to outliers and 
cannot handle skewed data. 	e alternative unsupervised approach is equi-depth 
binning, which is based on frequency partitioning. In this approach, the range is 
determined by the number of data samples in the dataset and a predefined number 
of bins. For example, if a dataset consists of 30 samples and 3 bins, then each bin 
is populated by 10 samples per bin. 	is method effectively handles data scaling.

4.3.1.1 � Discretization of Continuous Attributes

	e discretization of continuous attributes requires slicing a domain into a finite 
number of intervals. 	e minimum description length (MDL) principle is an origi-
nal approach used to minimize the quantity of information contained in both the 
model and the exceptions to the model.

Unlike the equi-depth and equi-width discretization approaches, Khiops discri-
tization (Boulle 2004) is a supervised approach that discretizes attributes using the 
chi-square ( χ2) test.

In brief, the Khiops discretization is a bottom-up approach to discretization 
that searches for the best place to merge adjacent intervals by minimizing the χ2 cri-
terion applied locally to two adjacent intervals; i.e., they are merged if they exhibit 
statistical similarity. 	e χ2 threshold is user defined, and χ2 statistics are param-
eterized by the number of explanatory values (related to the degrees of freedom). To 
compare two discretizations with different interval numbers, we use the confidence 
level instead of the χ2 value.

Considering the contingency table as shown in Figure 4.1, let . /. .e n n Nij i j=  
be the expected frequency for cell (i,j), if the explanatory and class attributes are 
independent. In this case, the χ2 value is a measure of the contingency table of 
the difference between observed frequencies and expected frequencies and can be 
interpreted as a distance to the hypothesis of independence between attributes. 	e 
numerical representation is shown below:

 

( )2
2n e

e
i j

ij ij

ij
∑∑χ =

−
 (4.1)
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	e Khiops algorithm minimizes the confidence level between the discretized 
explanatory attributes by using χ2 statistics. 	e χ2 value is not reliable for testing 
the hypothesis of independence if the expected frequency in any cell of the con-
tingency table falls below a defined minimum value. 	e algorithm is described 
by the following steps:

 1. Initialization:
 1.1. Sort the explanatory attribute values.
 1.2. Create an elementary interval for each value.
 2. Optimization of the discretization:
 2.1. Repeat the following steps.
 2.2. Search for the best merge. Search among the merges with at least 

one interval that does not meet the frequency constraint if one exists; 
merge. Otherwise, merge interval that maximizes the χ2 value.

 2.3. Evaluate the stopping criterion. Stop if all constraints are respected 
and if no further merge decreases the confidence level.

 2.4. Merge and continue if the stopping criterion is not met.

	e Khiops method is based on a greedy bottom-up algorithm. It starts with 
initial single-value intervals and then searches for the best merge between adjacent 
intervals that contain two levels of merging. At the first level of merging, the Khiops 
method merges with at least one interval that does not meet the constraint; at the 
second level of merging, it merges with both intervals, fulfilling the constraint. 	e 
best merge candidate (with the highest χ2 value) is chosen from among the first 
level of merges (in which case the merge is accepted unconditionally). Otherwise, 
if all minimum frequency constraints are respected, the merge candidate is selected 
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Figure 4.1  A schematic representation of the contingency table used to compute 
the X2 value.
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from among the second level of merges (in which case the merge is accepted under 
the condition of improvement of the confidence level). 	e algorithm is reiterated 
until all minimum frequency constraints are respected and no further merge can 
decrease the confidence level. 	e computational complexity of this algorithm is of 
the order O(Nlog(N)) with some optimization.

4.3.2 � Normalization and Standardization
According to Guyon and Gunn (2006), data transformation is an integral part of 
model selection. 	us, data preparation in this chapter refers to the selection of 
the best normalization strategies and mathematical transformations of the feature 
space in the perspective of the learning machine used for processing the data.

Normalization and standardization strategies are applied to data to remove cer-
tain systematic biases that are inherent to the data. 	ese biases are brought about 
by the dependencies between attributes and do not have to deal with the normal 
or Gaussian distribution of the data. In normalization, each attribute is treated 
independently. Normalization methods include min-max normalization, z-score 
normalization, and normalization by decimal scaling.

4.3.2.1 � Min-Max Normalization

According to Han and Kamber (2006), min-max normalization is a linear trans-
formation of the original data. Min-max normalization maps the value v of an 
attribute A in a record within a user-defined minimum and maximum (new_minA 
and new_maxA) for the given attribute using the following expression:

 
( _ _ ) _v

v min
max min

new max new min new minA

A A
A A A′ = −

−
− +  (4.2)

where minA and maxA represent the minimum and maximum values of the attribute 
A across the entire dataset and v′ is the normalized value of v.

Since the values of new_minA and new_maxA are arbitrarily set by the user to 0 
and 1, respectively, the min-max normalization is known as zero-one normalization.

4.3.2.2 � z-Score Standardization

Instead of the user specifying the range through new_minA and new_maxA in z-score 
standardization, the range for an attribute is determined by the mean and standard 
deviation possessed by the attribute across the dataset. 	e z-score standardization 
is brought about by the following expression:

 
,v

v A

A
′ = − µ

σ
 (4.3)

where μA and σA represent the mean and standard deviation of the attribute A. 
It is advantageous to use z-score standardization when it is difficult to determine 



Feature Selection and Extraction Strategies in Data Mining  ◾  119

the minimum and maximum values of a given attribute and when the dataset is 
plagued by outliers (Han and Kamber 2006).

4.3.2.3 � Normalization by Decimal Scaling

Another prominently used normalization technique is normalization by decimal 
scaling. In this normalization strategy, normalization is carried out by proportion-
ally reducing the value of each attribute in a record to a value of less than 1 using 
the following criteria, as presented in Equation 4.4:

 10
v

v
j′ = , (4.4)

where j is the smallest integer such that max(|v |) 1′ <  (Han and Kamber 2006).
Supervised learning is typically presented with a set of training instances in 

which each instance is described by a vector of features (or attributes), values, and 
a class label. 	e task of the machine learning algorithm is to obtain the highest 
possible classification accuracy given a set of features. However, this objective is 
rarely achieved given a real-world scenario in which a large number of features 
describe a given instance, since the classification accuracy decreases proportionally 
as the number of features rises. For example, the accuracy for detecting data points 
in n-dimensional space decreases if there are a large number of features. Feature 
selection and feature extraction techniques are used to overcome such inherent big 
N small p problems. Feature selection selects an optimal subset of features from 
an existing set of features, while feature extraction constructs features from an 
existing set of features. In this chapter, we elaborate on the problems faced in fea-
ture selection and feature extraction and explain the techniques available for both. 
Before we delve into the various feature selection and feature extraction strategies, 
let us first describe the significance of features and their relevance to a dataset.

4.4 � Features and Relevance
A feature ( f ), also referred to as an attribute, is a descriptor data point of instance. 	e 
relevance of a feature ( f ) is always measured by its ability to distinguish instances of 
the dataset with respect to the target class to which the instance belongs. Features 
can therefore be categorized into two types: those that are strongly relevant to the 
dataset/distribution and those that are weakly relevant to the dataset/distribution 
(Figure 4.2) (Kohavi and John 1997).

4.4.1 � Strongly Relevant Features
A feature f is strongly relevant to dataset S if two instances A and B in S belong to 
different classes (or have different distributions of labels if they appear in S multiple 
times) and differ only in their value of f. Moreover, f is strongly relevant to target c 
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and distribution D if data points A and B have nonzero probability over D that 
differs only in their assignment to f and satisfy c(A) ≠ c(B), in which case, A and B 
are now required to be in S (or have nonzero probability).

4.4.2 � Weakly Relevant to the Dataset/Distribution
A feature f is weakly relevant to sample X (or to target c and distribution D) if it is 
possible to remove a subset of the features so that f becomes strongly relevant.

4.4.3 � Pearson Correlation Coefficient
Now that we know the characteristic difference between the kinds of features, it is 
a challenge to design algorithms to choose a set of strong features for a given data-
set. Based on the definition of a strong feature above (Guyon and Elisseeff 2003), 
use Pearson’s correlation to rank features with respect to the target outcome y. 	e 
Pearson correlation coefficient is defined as
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where cov designates the covariance and var the variance. 	e estimate of R(i) is 
given by
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where the bar notation stands for an average over the index k.

Totally
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Relevant
Features

Strongly
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Figure 4.2  A view of feature set relevance. (From Kohavi, R., and John, G.H., 
Artif Intell 97, no. 1–2 (1997): 273–324. With permission.)
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As in linear regression, the coefficient of determination represents the fraction 
of the total variance around the mean value y  that is explained by the linear rela-
tion between xi and y. 	erefore, using R(i)2 enforces a variable ranking criterion 
according to how well the variable fits the linear model.

However, the correlation criteria, such as R(i)2, can only detect linear dependen-
cies between the variable and target and fail to fit a nonlinear model.

4.4.4 � Information Theoretic Ranking Criteria
Many algorithms for variable selection use information theoretic criteria in the 
literature. Mutual information between variables and target classes is prominently 
expressed as

 

( ) ( , ) ( , )
( ) ( )

i p x y log
p x y

p x p y
dxdy

x y

i
i

i
i

T ∫∫=  (4.7)

where p(xi) and p(y) are the probability densities of xi and y, and p(xi, y) is the joint 
density. ( )iT  is the criterion that measures the dependency between the density of 
variable xi and the density of the target y.

However, the densities p(xi), p(y), and p(xi, y) are all unknown and are hard to 
estimate from data. To this end, it is simpler to convert the integral to a sum as below:
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	e above formulation of T  makes it easier to implement in a code as comput-
ing probabilities simplified to frequency counts. However, the estimation becomes 
harder with larger numbers of classes and variable values.

In the case of continuous variables (and possibly continuous targets), this esti-
mation becomes even more challenging. Discretization of variables provides an 
immediate solution. However, using the normal distribution to estimate densities 
will allow us to estimate the covariance between Xi and Y, thus creating a similar 
criterion for the correlation coefficient.

Keeping these challenges in mind, we look into the various feature selection 
and feature extraction strategies available. We detail the mathematical principles 
involved and highlight the challenges they pose.

4.5 �O verview of Feature Selection
	ere are four steps to feature extraction and feature selection: (1) feature construc-
tion, (2) feature subset generation, (3) evaluation criterion definition, and (4) evalu-
ation criterion estimation.
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Feature extraction uses feature construction, and feature selection schemes use 
the steps generating feature subsets, defining evaluation criterion, and estimating 
evaluation criterion. Based on these four steps, feature selection is further charac-
terized into filter and wrapper techniques (Das 2001).

In wrapper approaches of feature selection, a feature subset selection algorithm 
is wrapped around the learning algorithm. 	e subset selection algorithm searches 
for an optimal subset using the learning algorithm that is independent from the 
final evaluator. 	is subset selection algorithm performs all the necessary evalua-
tion of feature subsets. 	e wrapper approach is run on a dataset, which is usually 
partitioned into internal training and holdout sets, with sets of features removed 
from the data. 	e feature subset with the highest estimated value is chosen as the 
final set on which to run the classifier (Saeys et al. 2007). 	e resulting classifier 
is then evaluated on an independent test set that was not used during the search.

An important component of any feature selection technique is the projection 
matrix. 	e projection matrix is used to store weights of features that generally 
reflect the importance of each feature in the dataset. 	is matrix is multiplied by 
the feature vectors in order to optimize the base criterion function. Typically, the 
off-diagonal elements of a projection matrix are all set to zero and the diagonal 
elements of the projection matrix are set to {0,1} in feature selection. Given the 
criterion function, feature selection is equated to an exhaustive search problem. As 
the complexity of the search is directly proportional to the number of features in 
the dataset, feature selection is empirically based on forward or backward selection 
schemes (Pudil et al. 1994).

Alternatively, as an improvement to the feature selection schemes is feature 
weighting. In feature weighting, the diagonal elements of the projection matrix are 
not confined to just {0,1}, but rather are allowed to take real values. 	is modifica-
tion to the projection matrix allows for the employment of more well-known opti-
mization schemes. In this chapter, we elaborate on some of the well-known feature 
selection and feature extraction schemes.

4.5.1 � Filter Approaches
	is category of methods is closely associated with feature-ranking techniques 
(see Figure 4.3). Filter approaches rank features based on the correlation (degree 
of dependence) of individual features with respect to the target (class) label of the 
dataset. 	is process is called the relevance index.

Feature subset generation entails a category of algorithms that include, but are 
not limited to, a heuristic or stochastic search, exhaustive searches of features, a 
nested subset strategy for feature selection, forward selection/backward elimina-
tion, and single-feature ranking. 	e evaluation criteria for these filter methods 
include single-feature relevance, relevance in context, and feature subset relevance. 
Evaluation criteria estimation typically entails statistical tests.
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4.5.2 � Wrapper Approaches
In wrapper methods, the performance of a learning algorithm is used to evaluate 
the goodness of selected feature subsets by their information content rather than 
by optimizing the performance of a learning algorithm directly (see Figure 4.4). 
	ough filter methods are computationally more efficient, wrapper methods yield 
better results (Yijun and Dageng 2008).

Feature subset generation entails a category of algorithms that include but are 
not limited to a heuristic or stochastic search, an exhaustive search of features, a 
nested subset strategy for feature selection, forward selection/backward elimina-
tion, and single-feature ranking.

Evaluation criteria estimation involves various cross-validation and perfor-
mance bounds techniques.

Feature Subset
Selection

Learning
Algorithm

Validation

Training
Set

Training
Set

Feature
Set

Estimated
AccuracyTest Set

Figure 4.3 T he filter approach to feature subset selection.

Feature Selection Search

Feature Evaluation

Learning Algorithm

Learning
Algorithm

Validation

Training Set
Training

Set

Feature Set

Estimated
AccuracyTest Set

Figure 4.4 T he wrapper approach to feature subset selection. The learning algo-
rithm is used as a black box by the subset selection algorithm. (From Kohavi, R. 
and John, G. H., Artif Intell 97, no. 1–2 (1997): 273–324. With permission.)
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4.6 � Filter Approaches for Feature Selection
Filter approaches for feature selection use the predictive power of many features 
collectively rather than independently. 	is process is driven by features that are 
irrelevant individually but become relevant when used in combination with one 
another. 	us, feature selection is the problem of choosing a small subset of features 
that is necessary and sufficient to describe a class (or target).

4.6.1 � FOCUS Algorithm
As an example of the filter approach to feature selection we describe the FOCUS 
algorithm. In the FOCUS algorithm (Almuallin and Dietterich 1992), the features 
describing a data point are a set of Boolean features and are conceptualized to work 
on a binary class scenario. 	us, let {x1, x2, … , xn} be a set of n Boolean features and 
{C +, C −} represent the associate classes that each data point belongs to. 	e ultimate 
goal of the algorithm is to select features based on a sufficiency test. 	e sufficiency 
test is a procedure for checking whether the selected features (Q) are sufficient to 
form a consistent hypothesis or are sufficient to differentiate between the two classes.

Let ,1X C〈 〉+  and ,2X C〈 〉−  represent two independent samples from classes C + 
and C −, respectively. 	e sufficiency test determines whether the samples have the 
same values for all selected features of Q. If the pair of samples has all feature 
matches in Q, then the selected features Q cannot discriminate all of the positive 
examples from all of the negative examples. On the contrary, the feature set Q is 
sufficient if no such matching pairs appear in the training set.

As a working example, for the two samples ,1X C〈 〉+  and ,2X C〈 〉− , we define 
a conflict vector a of length n, 1 2a a an〈 … 〉 , where ai = 1 if X1 and X2 have differ-
ent values for the feature xi and ai = 0 otherwise. We say that a is explained by 
xi if ai = 1. Using this terminology, a set Q of features is sufficient to construct a 
hypothesis consistent with a given training sample if every conflict generated from 
the sample is explained by some feature in Q.

For example, let the training sample be

 

010100, 011000,

110010, 101001,

101111, 100101,

C C

C C

C C

〈 〉 〈 〉
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+ −

	en, the set of all conflicts generated from this sample is

 

001100 101010 110111

111101 011011 000110

110001 010111 001010
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2 5 8

3 6 9
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= 〈 〉 = 〈 〉 = 〈 〉

= 〈 〉 = 〈 〉 = 〈 〉
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Double-check to ensure that subset {x1.x3, x4} is sufficient to form a consistent 
hypothesis (e.g., ( )1 3 3 4x x x x∨ ⊕ ), and that all subsets of cardinality less than 3 are 
insufficient.

Despite the ease of using this method, there is one disadvantage to using the 
FOCUS algorithm. 	e algorithm tries all subsets of features of increasing size 
until a sufficient set is encountered. As seen in the above example, the FOCUS

algorithm tests the 
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does not exploit all the information given in the training sample. For example, it 
does not accurately exploit 0011001a = 〈 〉 , where any associated sufficient set must 
contain x3 or x4 to elucidate the conflict. 	us, none of the sets {x1}, {x2}, {x5}, {x6}, 
{x1, x2}, {x1, x5}, {x1, x6}, {x2, x5}, {x2, x6}, {x5, x6} can be solutions. 	erefore, all of 
these sets can immediately be ruled out of the algorithm’s consideration. Many 
other subsets can be similarly ruled out based on the other conflicts.

	e FOCUS-2 algorithm is presented in Figure 4.5 (Almuallin and Dietterich 
1992). 	is algorithm proposes the use of a first-in/first-out data structure, in 
which each node of the data structure represents a subspace of all feature subsets. 
Each node is of the form MA,B, which denotes the space of all feature subsets that 
include all the features in the set A and the node of the feature in the set B. 	us, 
MA,B, is formally represented as

 | , , { , , , }, 1 2M T T A T B T x x xA B n{ }= ⊇ ∩ = φ ⊆ …  (4.9)

M{x3,x5},{x4}

M{x4,x5},{x3}

M{x3,x4,x6},{x1,x2}

M{x2,x3,x4},{x1}

M{x1,x3,x4},φ

{x1, x3, x4} is Sufficient

Figure 4.5 T he working of the FOCUS algorithm. (Modified from Almuallin, 
H., and Dietterich, T.G., in Proceedings of the Ninth Canadian Conference on 
Artificial Intelligence. Vancouver, BC: Morgan Kaufmann, 1992, pp. 38–45.)
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	e objective of using FOCUS is to retain only the portions of the space of 
feature subsets that could contain a solution. Initially, the data structure contains 
only the element ,Mφ φ , which represents the power set. In each iteration of the 
algorithm, the space represented by the head of the queue is partitioned into dis-
joint subspaces, and those subspaces that cannot contain solutions are pruned from 
the search.

In respect to the conflict 0011001a = 〈 〉  and the power set of features ,Mφ φ , we 
know that any sufficient feature subset must contain either x3 or x4. 	is structured 
approach helps further refine ,Mφ φ  into the two subspaces: { },3M x φ , those feature 
subspaces that contain x3, and { },{ }4 3M x x , all feature subspaces that contain x4 and 
not x3. 	us, conflicts with fewer 1s in them provide more constraint for the search 
than conflicts with more 1s. 	erefore, if the head node of the queue is MA,B, then 
the algorithm searches for a conflict a such that (1) a is not explained by any of the 
features in A, and (2) the number of 1s corresponding to features that are not in B 
is minimized.

	e algorithm of FOCUS, given ,Mφ φ , is described by the following steps: 
Given the conflict 0011001a = 〈 〉 , ,Mφ φ  is replaced by { },3M x φ  and ,{ }4 3M x x{ } . Next, 
for { },3M x φ , the conflict 0001108a = 〈 〉  is selected, and , ,3 4M x x{ } φ  and , ,3 5 4M x x x{ } { } 
are added to the queue. ,4 3M x x{ }{ }  is then processed with 0010109a = 〈 〉  and 

, ,4 5 3M x x x{ } { } is inserted.

 1. If all the examples in the sample have the same class, then return ϕ.
 2. Let G be the set of all conflicts generated from the sample.
 3. Queue = { },Mφ φ .
 4. Repeat.
 a. Pop the first element in queue. Call it MA,B.
 b. Let OUT = A.
 c. Let a be the conflict in G not explained by any features in A, such that 

|Za − B| is minimized, where Za is the set of features explaining a.
 d. For each x Z Ba∈ − ,
 i. If sufficient ( { })A x∪ , return ( { })A x∪ .
 ii. Insert { },MA x OUT∪  at the tail of queue.
 iii. { }OUT OUT x= ∪ .

Finally, when , ,3 4M x x{ } φ  is processed with 1100013a = 〈 〉 , the algorithm termi-
nates before adding , , ,1 3 4M x x x{ } φ  to the queue since { , , }1 3 4x x x  is a solution.

4.6.2  �RELIEF Method—Weight-Based Approach
Other feature selection methods assign weights to features that have a high degree 
of relevance. One the most prominent such methods, the RELIEF algorithm, takes 
into consideration inherent relations between features. In this section, we describe 
the RELIEF algorithm.
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Given a training dataset, the RELIEF algorithm (Kira and Rendell 1992; Yijun 
and Dageng 2008) iteratively estimates feature weights according to the weight’s abil-
ity to discriminate between neighboring patterns. 	e approach used in RELIEF is 
based on instance-based learning (Kira and Rendell 1992). For the given training set 
T, consisting of samples of length m, the algorithm aims to detect relevant features 
that correlate to the target class (binary class). 	e training set T is initially split into 
positive and negative samples. 	e iterative RELIEF algorithm then uses a weight 
vector W of length m equal to the number of features in a sample. 	is weight vector 
W is initialized to zero before the first iteration of the algorithm. 	e following steps 
are performed iteratively for each attribute m. At first, a random instance X is chosen. 
For comparison, two of the closest samples are chosen, one from the class of positives 
(T +) and the other from the class of negatives (T –). Using Euclidean distance, the 
RELIEF algorithm selects either T + or T – as its near hit (NH) or near miss (NM). 
Once the NH and NM have been determined, the weight vector W is updated to 
reflect the weight of each attribute. 	e weight vector is averaged and then used to 
identify the relevance of each attribute based on the values of W. 	e algorithm selects 
those features that have a weight above threshold τ. 	e following are the steps of the 
RELIEF algorithm, for the given dataset T, with m attributes and threshold τ.

 1. Separate T into {positive instances}T =+  and {negative instances}T =− .
 2. Initialize the weight vector W = 〈0, 0, …, 0〉.
 3. For i = 1 to m,
 a. Pick at random an instance X ∈ T.
 b. Pick at random one of the positive instances closest to , .X t T∈+ +

 c. Pick at random one of the positive instances closest to , .X t T∈− −

 d. If X is a positive instance,
 i. 	en near hit  = T +; near miss = T −, 
 ii. otherwise near hit  = T −; near miss = T +.
 e. Call Update − Weight(W, X, Near hit, Near miss)
 4. Compute Relevance = (1/m).W.
 5. For i = 1 to p,
 a. If (relevancei ≥ τ)
 i. 	en featurei is a relevant feature.
 ii. Otherwise featurei is an irrelevant feature.
	 6. Update − Weight(W, X, Near hit, Near miss)
 a. For i = 1 to p,
 i. ( , ) ( , )2 2W W diff x Near hit diff x Near missi i i i i i= − +

Based on the above algorithm, there are two important components of the 
RELIEF algorithm, the relevance (averaged weight vector) and the threshold τ 
(Kira and Rendell 1992). Relevance is the averaged value of the weight vector W 
having the values ( , ) ( , )2 2W diff x Near hit diff x Near missi i i i i− +  for each feature 
featurei over m sample triplets. Each element of a relevance vector corresponds to a 
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feature that shows its relevance with respect to its corresponding target class. 	e 
relevance threshold τ is used to determine whether the feature should be selected. 
	e RELIEF algorithm is valid only when (1) the degree of relevance is large for rel-
evant features and comparatively small for irrelevant features, and (2) the relevance 
threshold τ retains relevant features and discards irrelevant features.

4.7 � Feature Subset Selection Using Forward Selection
Many high-throughput bioinformatics applications are required for computational 
techniques in order to handle high-dimensional datasets. In such situations, meth-
ods like FOCUS and RELIEF are not computationally effective. Nested feature 
subset selection approaches have shown computational prowess in handling these 
high-dimensional datasets that give FOCUS and RELIEF. 	ere are two kinds 
of nested approaches: (1) forward selection approaches and (2) backward elimina-
tion approaches. It is often argued that forward selection is computationally more 
efficient than backward elimination for generating nested subsets of variables. 
However, the defenders of backward elimination argue that weaker subsets are 
found by forward selection because the importance of variables is not assessed in 
the context of variables that have not been included yet (Guyon and Elisseeff 2003). 
In this section, we focus on the forward feature subset selection approach for select-
ing the most discriminatory features.

Forward selection refers to a search that begins with an empty set of features 
and thus has a maximum error. At each step, the feature that decreases the error 
the most is added one at a time until any feature addition does not significantly 
decrease the error. On the contrary, backward elimination proceeds initially with 
all the features and iteratively eliminates features that are least useful. Both tech-
niques are robust toward overfitting and provide a nested subset of features.

4.7.1 � Gram-Schmidt Forward Feature Selection
	is feature selection method was intended to be applied directly to models that 
have linear parameters that are independent of the learning machine method 
employed. It is based on the Gram-Schmidt orthogonalization (Chen et al. 1989; 
Stoppiglia et al. 2003) procedure for ranking variables.

Consider a dataset that consists of N data points and their associated classes, 
represented as a vector consisting of Q features. We represent a data point in the 
dataset X as a vector { , , , }1 2x x x xi i i i

Q= … , with the associated class label yi. Similarly, 
the vector { , , , }1 2x x x xi i i

N
i T= …  represents feature i across the dataset and is con-

sidered the input to this algorithm. 	us, dataset X is represented as a matrix of 
dimensions (N, Q).

	e Gram-Schmidt procedure is an iterative process; in the first iteration, we 
search for the feature vector that best explains the concept, i.e., the feature vector 
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that has the smallest angle with the process output vector in the N-dimensional 
space of observations. To this end, the following quantities are computed as
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and the vector xk of largest magnitude is selected. Once the largest vector is selected, 
the remaining vectors (that represent other features) are projected onto a null sub-
space of the selected feature. In that subspace, the projected input vector that best 
explains the projected output is selected, and the Q – 2 remaining feature vectors 
are projected onto the null space of the first two ranked vectors. 	e procedure 
terminates when all Q input vectors are ranked or when a stopping criterion is met.

To determine an effective stopping criterion, the algorithm proceeds with the 
computation of a cumulative distribution function of the squared cosine of the 
angle between a given vector and a random vector. 	is cumulative distribution 
function is used to determine the rank of the feature.

	e first step in this method is to compute the probability distribution function 
of the squared cosine of the angle φ between a fixed vector and a vector that has 
components that are normally distributed, in a space of dimension v. 	e step can 
be expressed as
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where (.)Γ  is the gamma function, with x cos ,v 2 and 0 x 12= ϕ ≥ ≤ ≤ . ( )f xv  is a 
beta function with a = 1/2 and b = (v − 1)/2.

	e cumulative distribution function ( )2F cosv ϕ  is obtained using the above 
relation (Equation 4.11). From this function, the probability that the angle between 
a random vector and a fixed vector is smaller than a given angle φ is easily derived as

 ( ) 1 ( ),2 2P cos F cosv vϕ = − ϕ  (4.12)

for v ≥ 2 (Figure 4.6).

u

u

v

Figure 4.6  Gram-Schmidt process.
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Finally, the cumulative distribution function of the rank of a random vector 
can be derived as follows. At iteration n, n candidate features have been ranked, 
and a new feature is chosen among the Q – n remaining features. Using φn, we 
denote the angle (in a space of dimension v = N − n) between the selected pro-
jected feature and the projected output, and by Πn the probability that the angle 
between a realization of the random feature and the projected output is smaller 
than : ( )2P cosn n N n nϕ Π = ϕ− . We denote by 1Gn−  the probability that a realization 
of the random feature is less relevant than one of the n – 1 previous features, which 
is equal to 1 1Gn− − . 	erefore, the probability that the probe will be more relevant 
than the n – 1 previous features but less relevant than the nth  feature is equal to

 ( )(1 ).2
1P cos GN n nϕ −− −  (4.13)

Hence, the probability that a realization of the random feature is more significant 
than one of the n features selected after iteration n is given by

 ( )(1 ),1
2

1G G P cos Gn n N n n= + ϕ −− − −  (4.14)

with G0 = 0.
Taking the cumulative distribution function into consideration, at each step of 

the Gram-Schmidt orthogonalization, four steps must be performed:

 1. After orthogonalization, pick the projected candidate feature (not selected 
during previous steps) that has the smallest angle with the projected output.

 2. Compute the value of the cumulative distribution function as described previously.
 3. If the value is smaller than the rank, retain the feature and perform the next 

step of the Gram-Schmidt orthogonalization.
 4. If that value is larger than the rank, discard the feature under consideration 

and terminate the procedure.

	e choice of rank is problem dependent; i.e., if data are sparse, the model 
should be as parsimonious as possible. Hence, a low value of the rank should be 
chosen to make sure that only relevant inputs are present (but some features with 
low relevance might be missed); conversely, if data are abundant, a higher rank may 
be acceptable (but some irrelevant features might be kept).

4.8 �O ther Nested Subset Selection Methods
In feature selection, the number of subsets considered is usually very large, and a dif-
ferent method must be used not to overpenalize large subsets (Guyon 2009). 	e 
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optimum number of features N is assessed using a cross-validation method, which 
includes a separate feature ranking in each fold. 	en, a final ranking is performed 
using the entire training set and the first set of N features is selected. 	is method is 
less biased than using the ranking produced with the entire training set and selecting 
the best subset directly using cross-validation. 	e eight steps of this method are listed 
below:

 1. Choose an algorithm A  to create nested feature subsets.
 2. Choose a learning machine M  to evaluate the feature subsets.
 3. Split the m available training samples into K training and validation subset 

pairs { , }D Dt
j

V
j  of dimension t and v, t + v = m, j = 1:K.

 4. For j = 1:K,
 a. Using A  and only the Dt

j  examples, create nested subsets of the n avail-
able features:

 1 2S S S Sj j
i
j

n
j� �⊂ ⊂ ⊂  

 b. For i = 1:n, train M  on subset Sij  using Dt
j , and test it using Dv

j . Call 
[ , ]r i jval  the resulting estimation of performance.

 5. Compute the CV scores of the nested feature subsets: [ ] [ , ]1R i r i jCV j
K

val= ∑ =

 6. Select the best number of features: ( [ ])N argmin R ii CV=
 7. Using all m training examples, create nested subsets of the n available features:

 1 2S S S Si n� �⊂ ⊂ ⊂  
 8. Select Sn.

Now that we have covered the gamut of feature selection strategies, the follow-
ing sections focus on the different feature extraction strategies in data mining.

4.9 � Feature Construction and Extraction
It is a common practice to represent large datasets in the form of matrices, in which 
rows represent individual features/attributes and columns represent the data points 
(Berry et al. 1995). Matrix factorization has played a key role in many dimensional-
ity reduction methods and is thus the focus of this section. To explain the relation-
ship between dimensionality reduction and matrix factorization, let us consider 
a data matrix A, with d data points represented by t features, resulting in a t × d 
matrix. Each column of the data matrix A is thus a vector of t dimensions. 	e 
rank rA of matrix A in linear algebra is the maximal number of linearly independent 
columns of A. 	e rank rA of matrix A is considered to be the basis set if the rank 
can represent every vector in the vector space of A. 	us, the rank rA of the data 
matrix A, which is equal to the size of the basis of the linear space it spans, is equal 
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or near to min(t,d). 	e aim of a dimensionality reduction technique is to find A′, 
which is a good approximation of A and has a rank of k, where k is significantly 
smaller than rA. For this reason, the A′ matrix is often referred to as the k-rank 
approximation of A.

4.9.1 � Matrix Factorization
Matrix factorization (Oh 2006), or decomposition, of matrix A is the process of 
breaking A into a product of two matrices U and V such that .≈ ≈ ′A U V AT , 
with dimensions of the matrix U = t × k and the matrix V = d × k, respectively. 	e 
columns of the U matrix are the basis vectors of the extracted lower-dimensional 
space, and the rows of V correspond to the coefficients that allow the approximate 
reconstruction back to the original data. In Equation 4.15, we show the commonly 
used LU decomposition of the data matrix A.
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4.9.1.1 � LU Decomposition

Data matrix A and its associated class labels are represented by vector b. 	e LU 
decomposition method is employed to decompose the matrix without depending 
on elaborate computation of the inverse of A.

	us, considering the data matrix and its associated class/target information, 
we can represent the data matrix as a linear form A = b. Since A needs to be fac-
torized, we assume it is invertible and thus has a unique factorization. 	e LU 
decomposition works on the philosophy of splitting the data matrix A into upper 
and lower triangle matrices, as represented in Equation 4.16.
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where L is a unit of the lower triangle matrix (in which all diagonals are one) 
and U is the upper triangular matrix. LU decomposition employs the principle 
of Gaussian elimination to derive both L and U. 	us, we can substitute A by its 
equivalent L and U as LU = b. Various other methods that focus on decomposing a 
matrix are out of the scope of this book, but the motivation of matrix decomposi-
tion is to make computation with large matrices easier to handle. Once the matrices 
are decomposed, the next objective is to extract a set of vectors that capture a basis 
that is lower in number than the original set of vectors, and yet retains maximum 
information equivalent to the original matrix.

4.9.1.2 � QR Factorization to Extract Orthogonal Features

Based on LU decomposition of a matrix, we introduce the QR factorization of a 
matrix, which is used to find the orthogonal basis vector set for a given matrix (sub-
space) A described by n features. QR factorization is based on the Gram-Schmidt 
process, which transforms a given matrix A to its orthogonal set of column vec-
tors Q and the set of corresponding coefficient R.

	is process is explained by assuming matrix A be an n × m (n > m) matrix with 
m linearly independent columns (which is the basis set for the subspace A). In this 
process, A can be expressed as
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where Q represents the n orthonormal columns of dimensions m × n and R is the 
corresponding upper triangular matrix, containing the coefficients.

Using the Gram-Schmidt process, the given matrix A, its orthogonal matrix Q, 
and its corresponding n columns of orthonormal basis are obtained. Similarly, the 
coefficient matrix R = QTA is obtained. Other factorization techniques are based on the 
concept of eigenvalues and vectors. 	e remainder of this section elaborates on them.

4.9.1.3 � Eigenvalues and Eigenvectors of a Matrix

Some properties of eigenvalues and eigenvectors are important in feature extrac-
tion, as they provide certain properties of a matrix A and determine whether a given 
matrix can be factored based on a certain choice of properties.
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 1. A matrix with zero eigenvalues cannot be inverted.
 2. Invertible matrices have all λ ≠ 0, whereas singular (noninvertible) matrices 

include zero among their eigenvalues.
 3. Eigenvectors that have distinct eigenvalues are linearly independent.
 4. A full-rank matrix has a nonzero determinant, and thus has nonzero eigenvalues.
 5. A triangular matrix has eigenvalues on its main diagonal.
 6. For any integer n, λn is an eigenvalue of An with corresponding eigenvector x 

(negative integer n works when A is invertible).

We consider the above properties when we explore the use of eigenvalues and 
eigenvectors for the factorizations of a given matrix.

4.9.2 � Other Properties of a Matrix
While employing feature extraction on a matrix of dimension m × n when n >> m, 
it is important to reduce the matrix to its square form (i.e., map the matrix to its 
equivalent n × n matrix). 	e following section emphasizes the need for a square 
matrix and the properties that a square matrix entails.

4.9.3 � A Square Matrix and Matrix Diagonalization
	e relationship between a diagonalized matrix, eigenvalues, and eigenvectors of a 
square matrix A of dimension n × n is as follows:

 1A E DE= −  (4.18)

where D is an n × n matrix that denotes a diagonal matrix, E represents a matrix of 
eigenvectors of matrix A, and 1E −  represents the inverse of E. 	e diagonalization 
is feasible under the following three equivalent conditions:

 1. n distinct eigenvectors are linearly independent.
 2. 	e union of the basis of the eigenspace of A contains n eigenvectors.
 3. 	e algebraic multiplicity of each eigenvalue equals its geometric multiplicity 

(algebraic multiplicity >= geometric multiplicity).

Above, the diagonal elements of the diagonal matrix D are the eigenvalues of A, 
and the rows of the matrix E represent the corresponding distinct eigenvectors. 	e 
diagonalized form of A can be used to speed up the computation of 1A E D Ek k= − , 
respectively. 	e remaining problem is to obtain the (eigenvalue, eigenvector) pairs.

Note that an n × n full-rank matrix A does not necessarily have n linearly inde-
pendent eigenvectors.
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4.9.3.1 � Symmetric Real Matrix: Spectral Theorem

One of the great achievements of linear algebra is the proof that a real n × n sym-
metric A has n distinct orthogonal eigenvectors (not necessarily distinct eigenvalues) 
if it satisfies: (1) a real symmetric matrix has real eigenvalues, and (2) in the case 
of symmetric matrices, the eigenvectors that correspond to distinct eigenvalues are 
orthogonal.

In such symmetric real matrices, we may encounter eigenvalues with multi-
ple associated eigenvectors. In such cases, we can transform the eigenvalues into 
an orthogonal basis of the corresponding eigenspace using the Gram-Schmidt 
process (where the real matrix is transformed to its corresponding eigenvectors). 
Additionally, it has been proven that a real symmetric matrix has a complete set 
of eigenvectors, which implies that a real symmetric matrix always has a complete 
orthogonal basis.

Hence, the following decomposition is always possible for a symmetric real 
matrix, known as the spectral theorem:

 .A Q DQT=  (4.19)

Above, the diagonal matrix D in Equation 4.19 has eigenvalues on its diagonal, 
and matrix Q has eigenvectors as its rows. 	e spectral decomposition (Equation 
4.19) is a special case of the diagonalization (Equation 4.18) in which the most 
strict orthogonality is enforced in symmetric matrices. Also, the inverse matrix in 
Equation 4.18 is replaced with a transpose matrix in Equation 4.19 because the 
inverse of an orthogonal matrix is its transpose. 	e spectral decomposition form in 
Equation 4.19 is often expressed as follows as well (which is also called the projec-
tion form of the spectral theorem):
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Now that we know how a symmetric matrix is decomposed to its correspond-
ing eigenvalues and eigenvectors, the remainder of the sections describe key feature 
extraction strategies that use the extracted eigenvalues and eigenvectors.

4.9.3.2 � Singular Vector Decomposition (SVD)

Factorization methods such as QR and matrix diagonalization, as discussed in pre-
vious sections, are applicable to only limited classes of matrices with linearly depen-
dent columns and real symmetric squares. Singular value decomposition (SVD) 
(Laudauer et al. 1998) breaks an m × n matrix A into its components, as shown 
below, and can be applied to all kinds of matrices.
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here the rows of VT are the eigenvectors of a product (symmetric) matrix ATA. 	e 
elements of diagonal matrix D in the middle are the square roots of the correspond-
ing eigenvalues of ATA. Finally, the columns of the first factor matrix U are defined 
as follows:

 

1 .u
d

Avi
i

i�  (4.22)

It is also important to note that the factor matrices U and V are both orthogonal.

4.9.4 � Principal Component Analysis (PCA)
Principal component analysis (PCA) (Maitra and Yan 2008) is a linear dimension-
ality reduction technique. Linear techniques result in each of the k ≤ p components 
of the new variable being a linear combination of the original variables:

 , 1, , ,,1 1 ,s w x w x for i ki i i p p�= + + = …

or

	 s = Wx

where Wk p×  is the linear transformation weight matrix, expressing the same rela-
tionship as

	 x = As. (4.23)
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With Ap k× , we note that the new variables s are also called hidden, or the latent 
variables. In terms of an n × p observation matrix X, we have

 , 1, , , 1, , ,, ,1 1, , ,S w X w X for i k and j ni j i j i p p j�= + + = … = …  (4.24)

where j indicates the jth realization, or equivalently, ,= =× × × ×S W X Xk n k p p n p n

× ×A Sp n p n . Such linear techniques are simpler and easier to implement than more 
recent methods that consider nonlinear transforms.

A traditional multivariate statistical method (Anderson 1984), PCA is com-
monly used to reduce the number of predictive variables and finds linear com-
binations of variables, thereby summarizing the data without losing too much 
information. 	is method of dimensionality reduction is also known as parsimo-
nious summarization of the data.

Considering a data matrix Xn p× , with n observations as rows represented by p 
predictive variables, , ,..1 2X X X p  represent a random observation from this data 
matrix. 	e objective here is to select the subset of the above variables (columns) 
that holds most information for matrix X.

Let σij denote the covariance between two observations Xi and Xj of data 
matrix X. 	e covariance between all observations of X and the resultant cova-
riance matrix is denoted as Σ. 	e σijs may be estimated by observations of 
standard deviation sij calculated from the data. If standard deviations are used 
in the matrix, then the matrix is denoted by S. 	e resultant Σ or S is a p × p 
square and symmetric matrix.

A linear combination of a set of vectors { , ,.. }1 2X X X p  is the sum of the prod-
uct of the vectors with scalar constants i∝  given through the following expression:

, 1X i to pi iΣα = . 	e absolute sum of the scalars in a linear combination is set to 
be equal to 1, i.e., | | 1iΣ α = , which normalizes or standardizes the linear combi-
nation. In cases in which | | 0 0i iΣ α = → α = , the set of vectors { , ,.. }1 2X X X p  is 
thus said to be linearly independent. In such cases the set of vectors can be written 
as a linear combination of any other vectors in the set. Statistically, correlation 
is a measure of linear dependence among variables, and the presence of highly 
correlated variables indicates a linear dependence among the variables. 	e rank 
of a matrix, as discussed previously, denotes the maximum number of linearly 
independent rows or columns of a matrix. As our data matrix will contain many 
correlated variables that we seek to reduce, the rank of data matrix Xn p×  is less 
than or equal to p.

4.9.4.1 � Jordan Decomposition of a Matrix

Now that we have the covariance matrix p pΣ × , a square symmetric matrix repre-
senting the covariance between n input vectors, we decompose this matrix using 



138  ◾  Data Mining for Bioinformatics

Jordan decomposition, a well-known spectral decomposition technique formalized 
as follows:
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where Dp p×  is a diagonal matrix and p pΓ ×  is an orthonormal matrix, i.e., IΓ ′Γ = .
	e diagonal elements of D are denoted by (i 1 to )piλ =  and the columns of Γ are 
denoted by ( 1 )( ) i to piγ = . In matrix algebra, ′λ si  represents the eigenvalues of X, 
and ( )′γ si  represents the corresponding eigenvectors.

It should be noted that if X is not a full-rank matrix, i.e., ( ) ,rank X r p= <  then 
there are only r nonzero eigenvalues in the above decomposition, with the rest of 
the eigenvalues being equal to zero.

4.9.4.2 � Principal Components

	e objective of using principal component analysis (PCA) is to obtain a suitable 
linear combination of the data matrix X. 	is objective is met using the Jordan 
decomposition of the covariance matrix Σ of X (or the correlation matrix S of X ). 
	us, a random vector in the data matrix X is represented as ( , , , )1 2x x x xi p p= …×  
having mean i pµ ×  and covariance matrix Σ.

A principal component in the PCA is a transformation of the form

 ( ) ,x y xi p i p i p p p→ = − µ Γ× × × ×  (4.26)

where Γ is obtained from the Jordan decomposition of Σ, i.e., TΓ ∑Γ =
D ( , , , )1 2diag p= λ λ … λ , with si′λ  being the eigenvalues of the decomposition.

Each element of yi p×  is a linear combination of the elements of xi p× . Also, each 
element of y is independent of the other elements of y.

	us, we obtain p independent principal components corresponding to the p 
eigenvalues of the Jordan decomposition of Σ. Generally, we use the first few of these 
principal components.

4.9.5 � Partial Least-Squares-Based Dimension Reduction (PLS)
Now that we have discussed PCA in detail, it is worth noting that PCA follows 
an unsupervised approach to determining the linear correspondence between vari-
ables. However, at times it is desirable to determine the dependence between vari-
ables by taking into consideration the target variable. Partial least squares (PLS) 
is one such dimensionality reduction technique that was initially proposed as a 
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matrix decomposition technique and then was adopted as a multivariate regres-
sion algorithm. However, more recently PLS has also been found to be an effective 
dimension reduction technique.

	e underlying assumption of PLS is that the observed data are generated by a 
system or process that is driven by a small number of latent (not directly observed 
or measured) features. 	erefore, PLS aims at finding uncorrelated linear transfor-
mations (latent components) of the original predictor features, which have high 
covariance with the response features. Based on these latent components, PLS pre-
dicts response features y, the task of regression, and reconstructs the original matrix 
X, the task of data modeling, all at the same time.

Assume X is an n × p matrix and its corresponding class label Y is an n × 1 
matrix. 	e PLS technique successively extracts factors from both X and Y such 
that covariance between the extracted factors is maximized.

According to (Maitra and Yan 2008), PLS attempts to find a linear decomposi-
tion of X and Y such that X TP ET= +  and Y UQ FT= + , where
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	e decomposition is terminated when the covariance between the X_scores 
and  Y_scores is maximized or until X is reduced to a null matrix. Generally, 
the PLS algorithm is an iterative algorithm used to extract the X_scores and 
Y_scores, where the number of extracted factors (r) depends on the rank of X and 
Y, respectively.

4.9.6 � Factor Analysis (FA)
Like PCA, factor analysis (FA) (Fodor 2002) is also a linear method. FA assumes 
that the measured variables depend on some unknown, and often unmeasurable, 
set of common factors. 	e motivation for using FA is to uncover hidden rela-
tions, and thus it can be used to reduce the dimension of datasets following the 
factor model.

According to the k-factor model, a p-dimensional random vector 1x p×  with 
covariance matrix Σ satisfies the k-factor model if

	 x = Λf + u	 (4.27)

where p kΛ ×  is a matrix of constants, 1fk×  represents random common factors, and 
1up×  represents specific factors, respectively. Moreover, according to the k-factor 

model, the factors are all uncorrelated and the common factors are normalized such 
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that variance is equal to 1:
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Given these conditions, the covariance matrix Σ can be decomposed as

 ,TΣ = ΛΛ + ψ  (4.29)

and the diagonal covariance matrix of u can be written as ( )Cov u = ψ =
( , , )11diag ppψ … ψ , where xi can be written as
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Furthermore, the variance may be decomposed as

 1

2
ii

j

k

ij ii∑σ = λ + ψ
=

 (4.31)

where the first part, 2
1

2hi j
k

ij= ∑ λ= , is called the communality and represents the 
variance of xi common to all variables, while the second part, iiψ , is called the 
specific or unique variance, and it is the contribution in the variability of xi due to 
ui, not shared by the other variables.

	e term 2
ijλ  measures the magnitude of the dependence of xi on the com-

mon factor fj. If several variables xi have high loadings ijλ  on a given factor fj, the 
implication is that those variables measure the same unobservable quantity, and are 
therefore redundant.

4.9.7 � Independent Component Analysis (ICA)
Similar to PCA, the ICA is a higher-order method that finds linear projections 
of data. 	e components found by ICA are not necessarily orthogonal to each 
other; i.e., they are as nearly statistically independent as possible. Statistical inde-
pendence has a much stronger correlation (Fodor 2002) that depends on higher-
order statistics.

To explain the difference between correlation and independence, we define a 
lack of correlation among random variables, as x = {x1, … ,xp} are uncorrelated. If 
for ∀I ≠ j, 1 ≤ i, j ≤ p, we have

 ( , ) {( )( )} ( ) ( ) ( ) 0.Cov x x E x x E x x E x E xi j i i j j i j i j= − µ − µ = − =  (4.32)
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On the contrary, independence requires that the multivariate probability density 
function factorizes, and can be written as

 ( , , ) ( ) ( ).1 1 1f x x f x f xp p p… = …  (4.33)

Typically, independence among variables always implies no correlation, but not 
vice versa; only if the distribution ( , , )1f x x p…  is multivariate normal are the two 
equivalent. For Gaussian distributions, the PCs are independent components.

	e objective of the ICA model for the p-dimensional random vector x is to esti-
mate the components of the k-dimensional vector s and the full-rank matrix Ap k× :

	 ( , , ) ( , , )1 1

x As

x x A s sp
T

p k k
T

=

… = …×

 (4.34)

such that the components of s are as independent as possible, based on the defini-
tion of independence above.

Noisy ICA, an extension to the typical ICA, contains an additive random noise 
component u as below, where its estimation is still an open research challenge, as 
explained in the following equation:

 ( , , ) ( , , ) ( , , ) .1 1 1x x A s s u up
T

p k k
T

p
T… = … + …×  (4.35)

From the above discussion, it is clear that the objective of ICA is not dimension-
ality reduction. 	us, to reduce the number of dimensions using ICA, one has to 
resort to using PCA to find k < p, and then use ICA to estimate the independence 
of the selected features. It should also be noted that there is no specific ordering of 
independent components as in the case of PCA. To order the components once they 
are estimated, one can use the norm of the columns or some non-Gaussian measure.

We reiterate that PCA is aimed at finding uncorrelated variables, while ICA is 
aimed at finding independent variables. ICA finds its applications in various fields, 
including, but not limited to, exploratory data analysis, blind source separation, 
natural image processing, and feature extraction. We further emphasize that in 
the context of feature extraction, the columns of matrix A represent features in the 
data, and the components si give the coefficient of the ith feature in the data.

4.9.8 � Multidimensional Scaling (MDS)
Unlike PCA and ICA used to obtain the linear projections of data, the main objec-
tive of MDS is to represent the dissimilarities between pairs of objects as distances 
between points in a low-dimensional space (Groenen and van de Velden 2004). 
Given the data matrix Xn p× , consisting of n instances, each instance is defined 
by p distinct features (dimensions). We defined the dissimilarity between a pair of 
instances i and j of X as δij. 	e dissimilarity between instances of X is measured 
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using the Euclidean distance and is defined as
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In Equation 4.36, dij is the shortest line joining instances i and j.
As mentioned above, the objective of MDS is to find a matrix X̂  of the lower 

dimension, as compared to X, such that ( ˆ )d Xij  matches δij as closely as possible. 
Various methods can achieve this objective. Users should, however, refrain from 
using the definition of raw stress ( )2 Xσ  (J. B. Kruskal 1964a, 1964b), as shown 
below:
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	e method above is better known as the least-squares MDS model. As 
the dissimilarities between instances are symmetric, the summation only 
involves the pairs i and j, where i > j. wij is a user-defined weight that must be 
nonnegative.

	e objective of MSD is to minimize the stress function ( )2 Xσ , which 
is rather complex to solve using closed systems. To this end, MDS algorithms 
employ various iterative techniques to find a matrix X̂  for which ( )2 Xσ  is 
minimum.

As Euclidean distance is not susceptive to change in rotation, translation, 
and reflection, orations on the matrix dij may be applied freely without altering 
the raw stress ( )2 Xσ . 	us, many of the MDS algorithms exploit this property 
so that the dimensions coordinate to zero, and the solution is oriented on the 
principal axis. 	at is, the axes are rotated in such a way that the variance of X is 
maximal along the first dimension, the second dimension is uncorrelated to the 
first and has maximal variance as well, and so on.

4.10 � Conclusion
In conclusion, Chapter 4 provides the description of various data preparation and 
data transformation techniques. Aptly titled “Feature Selection and Extraction 
Strategies in Data Mining,” the chapter provides the application of these tech-
niques to bioinformatics data. 	e reader should familiarize himself or herself with 
the workings of these techniques, as they lay the foundation for data mining and 
knowledge discovery techniques described in future chapters.
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Chapter 5

Feature Interpretation 
for Biological Learning

Feature selection techniques have become an integral part of many bioinformatics 
applications and have thus added to the collection of existing well-known tech-
niques discussed in Chapter 4. 	is chapter provides an overview of the application 
of the various feature selection and feature extraction techniques commonly used 
in bioinformatics. 	e key areas touched upon describe the issues and challenges 
faced during the analysis of high-dimensional data, whether gene expression data, 
protein sequence, or structural data.

5.1 I ntroduction
	e objectives of using feature selection and extraction are manifold. 	e most 
important of these objectives are:

 1. To avoid overfitting and improve the model performance, i.e., prediction per-
formance in the case of supervised classification and better cluster detection 
in the case of unsupervised clustering

 2. To provide faster and more effective computational models
 3. To gain a deeper insight into the underlying process that generated the data

Apart from the above-mentioned benefits of using feature selection techniques 
in bioinformatics, feature selection and extraction techniques can be used to find 
an optimal set of features that performs best with the chosen learning technique.
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As described in Chapter 4, feature selection strategies are subdivided into filter-
based and wrapper-based approaches. 	e focus of this chapter is to enable the 
reader to understand how different data preprocessing techniques are applied to 
address the challenges of bioinformatics data (Kuonen 2003).

5.2 �N ormalization Techniques for 
Gene Expression Analysis

High-throughput real-time quantitative reverse transcriptase polymerase chain 
reaction (qPCR) is widely considered to be the gold standard for the analysis of 
micro-RNA (miRNA) expression (Ach et al. 2008). qPCR is useful for acquiring 
and profiling (50 to a few thousand) expression patterns on a microarray. Because 
of the large number of genes available, qPCR is considered to be highly susceptive 
to noise. In this section we therefore focus on the use of appropriate normalization 
techniques for qPCR expression data.

Nearly all normalization techniques are based on the assumption that one or 
more control genes are constitutively expressed at near-constant levels under all 
experimental conditions. 	e most widely used control genes are those selected from 
among an assumed set of housekeeping genes. Housekeeping genes are those that 
are constantly expressed through different samples so as to maintain basic cellular 
function. 	e expression levels of remaining target genes in a sample are adjusted 
with respect to the selected control genes. In most qPCR experiments, a single house-
keeping gene is chosen and added to the collection of experimental target genes to 
be assayed for each sample. 	e control gene is then compared between samples and 
a sample-specific scaling factor is calculated to equalize their expression (Robinson 
and Oshlack 2010). 	is sample-specific scaling factor is applied to all genes in the 
sample. However, this approach has numerous limitations. 	e primary limitation 
is that many of the experimental conditions may alter the expression of the control 
genes. Moreover, evidence postulates that housekeeping genes may not always be 
expressed constantly across all samples. 	erefore, more sophisticated normalization 
techniques are needed. 	ese techniques use multiple housekeeping genes where 
each of their expressions is combined to represent a virtual housekeeping gene. It 
is believed that this approach is more robust than a single-control gene approach. 
However, it is important to note that this virtual housekeeping gene is also con-
founded by the same assumption that its expression does not vary across samples.

5.2.1  Normalization and Standardization Techniques
Microarray technology provides researchers with the ability to measure the expres-
sions of thousands of genes for a given sample. Biologically relevant expression 
patterns between these genes are identified by comparing the expression levels of 
genes between samples of different states on a one-on-one (gene-by-gene) basis.
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	e selection of a significant set of differentially expressed genes between sam-
ples obtained from different states is sensitive to errors brought about by measure-
ment of intensity values of genes. It is therefore important to eliminate questionable 
or low-quality measurements of intensity values of genes through appropriate trans-
formations on the data.

To facilitate this process, it is imperative to understand how the microarray is 
generated. Typically, RNA is first isolated from different tissues, developmental 
stages, disease states, or samples that have been subjected to appropriate treatments. 
	e RNA is then labeled and hybridized to arrays. After hybridization, the arrays 
are measured. 	ese measurements enable the conversion from raw data to pro-
cessed data through the implementation of three steps.

First, the arrays are scanned to create grayscale images (Chen et al. 1997). Once 
the images are generated, then image analysis is performed to identify the arrayed 
spots and to measure their corresponding relative fluorescence intensities. 	e quanti-
fication of florescence intensities is brought about using quantification matrices based 
on image analysis. Several commercial and freely available software packages generate 
high-quality, reproducible measures of hybridization intensities (see Figure 5.1).

Second, these images are subjected to various image preprocessing techniques, 
such as mean, median, or average difference operations, to provide the required 
background correction, thereby reducing possible equipment errors. Finally, the 
obtained quantified data from the images are consolidated into a matrix of expres-
sion values that are then subjected to normalization.

Several normalization strategies are used to normalize microarray data. 	ese 
normalization strategies are categorized into global normalization strategies and 
intensity-dependent normalization strategies (Park et al. 2003).

Array Scans

Quanti�cation Datum

Gene
Expression

Level

Quanti�cations Samples
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ot

s

G
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Figure 5.1  Microarray gene expression data processing. (From Brazma, A., et al., 
Nature Genet 29 (2001): 365–371.)
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5.2.1.1  Expression Ratios

Every gene within a sample in a microarray is represented by a ratio (T ) of the 
intensities of the colors R (red) and G (green). 	erefore, the ratio Ti of the ith gene 
in a sample is represented as follows:

 
T R

G
i

i

i
= . (5.1)

	ough the ratio T provides a measure of expression change of a gene with respect 
to its R and G intensities, it is ineffective in capturing if the gene is upregulated or 
downregulated. For instance, if a gene is upregulated (R) by a factor of 2, its resultant 
expression ratio will have a value of 2, whereas if the gene is downregulated (G) by a 
factor of 2, the resultant expression ratio will have the value of –0.5.

To overcome this drawback, the most widely used alternative transformation 
of the ratio of the logarithm base 2 is used. 	e logarithm base 2 has the advantage 
of producing a continuous spectrum of values and treating up- and downregu-
lated genes.

We know that logarithms treat numbers and their reciprocals symmetrically: 
(1) 0, (2) 1, 12 2 2

1
2log log log ( )= = = − . 	e logarithms of the expression ratios are 

also treated symmetrically, and those that are expressed at a constant level have a 
( )2log T  equal to zero.

5.2.1.2  Intensity-Based Normalization

Analysis involving gene expression data is sensitive to the changes in fluorescent 
dyes between samples of the analysis. Moreover, measurements from different 
hybridizations may occupy different scales, and to ensure meaningful and effec-
tive comparisons of thousands of genes, it is common to adjust the expression val-
ues of the genes between samples using normalization (Kreil and Russel 2005). 
Normalization strategies that focus on normalizing the intensity values of the genes 
on a single slide are referred to as within-slide normalization. However, before 
explaining within-slide normalization of gene expression, we denote the common 
assumptions made about the samples and genes of microarray data.

 1. �e number of genes in each sample is the same: All the samples in the 
study have the same number of genes.

 2. �ere are equal quantities of RNA for the two samples being compared: 
Given millions of individual genes in each sample, we assume that, on aver-
age, equal quantities of RNA (the mass of each molecule) use approximately 
the same quantities of RNA for each gene.
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 3. Arrayed elements represent a uniform random sampling of genes across 
samples: Nearly all normalization strategies are based on the assumption that 
one or more genes are expressed at near-constant levels under all experimental 
conditions, and the expression levels of all genes in a sample are adjusted to 
satisfy that assumption.

5.2.1.3  Total Intensity Normalization

Considering the above assumptions, we ensure that approximately an equal number 
of genes from each sample are hybridized. 	erefore, the total hybridization inten-
sities summed over all elements in the array should be the same for each sample.

For total intensity normalization (Quackenbush 2002), we compute a normal-
ization factor by summing the measured intensities (both R and G) as follows:
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where Gi and Ri are the measured intensities for the ith array element and Narray is 
the number of genes represented in the microarray. Once the total intensity Ntotal is 
computed, we use this value to normalize the expression ratio of a gene as follows:
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	is total intensity normalization in effect adjusts Ti  such that the mean is 
equal to 1, rendering the mean ( )2log ratio  equal to 0. 	us, the various normaliza-
tion strategies in microarray data analysis, including scaling the individual intensi-
ties, are aimed at rendering the mean or median intensities uniform within a single 
array or across all arrays. 	ese strategies include linear regression analysis, log cen-
tering, ranking invariant methods, and Chen’s ratio statistics (Quackenbush 2002).

5.2.1.3.1  Global Normalization (LOWESS)

Microarray data are plagued by inconsistencies in the way data are recorded. 	ese 
inconsistencies are manifestations of noise in the form of inconsistencies in inten-
sity values of the spots on the microarray chip. 	ough there are several methods 
of intensity normalization, these methods do not take into consideration sys-
temic biases that are inherent in the data (Yang et al. 2002). 	ese systemic biases 
include the ( )2log ratio  values that represent low-intensity spots on the microarray 
that appear as a minor deviation from zero. Researchers use the log *10 R G( ) by 
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log /2 R G( ) plot, better known as the ratio-intensity (R-I) plot, to visualize the 
intensity-dependent effects of the genes in a microarray.

As shown in the Figure 5.2, the R-I plot is a plot of the ( )2log ratio  on the y-axis 
to the ( )10log intensity  (i.e., the product of intensities R and G) on the x-axis for each 
gene in the microarray. 	is R-I plot can reveal intensity-specific artifacts in the 

( )2log ratio  measurements.
Locally weighted linear regression (LOWESS) analysis has been used as a normal-

ization approach to remove intensity-dependent effects in the ( )2log ratio  values (Hijum 
et al. 2008). Using the R-I plot, LOWESS detects systemic deviations for each point 
in the R-I plot. Using a local weighted linear regression function of ( )10log intensity , the 
correction of intensity values is carried out by subtracting the calculated best-fit aver-
age ( )2log ratio  from the experimentally observed ratio for each data point.

By performing this function, the LOWESS deemphasizes the contribution of 
genes that are far (on the R-I plot) from densely populated data clusters. We illus-
trate the process as follows:

Let ( )10x log R Gi i i= ×  and ( / )2y log R Gi i i= . We then use LOWESS to create a 
function ( )y xk  that estimates the dependence of the ( )2log ratio  on the ( )10log intensity . 
Using this functional estimate, each ( )2log ratio  of every point in the R-I plot is sub-
ject to the following correction:

	
( ) ( ) ( ) (2 )2 2 2 2

( )( )′ = − = −log T log T y x log T logi i i i
y xi 	 (5.4)

or equivalently,

	
( ) 1

2
1

2
.2 2 ( ) 2 ( )log T log T log

R
Gi i y x

i

i
y xi i

= ×



 = ×





	 (5.5)

2

1
lo

g 2
 (R

/G
)

0

–1

–2

log10 (R * G)

Figure 5.2 T he distribution of genes using the R-I plot.



Feature Interpretation for Biological Learning  ◾  151

	e application of the LOWESS correction normalizes the intensity of values 
of each gene closer to the new mean set at ( / )2log R G  values at zero, as reflected in 
Figure 5.3.

Similar to the R-I plot, we have the M-A plot, which is used to identify spot arti-
facts and detect intensity-based patterns. 	e M-A plot, first proposed by Dudoit 
et al. (2002), is a plot of intensity values of independent spots with the x-axis repre-
senting M, the log ratio, on the overall log intensity, and the y-axis representing A, 
where ( / )2M log R G=  and ( )2A log R G= × , as shown below in Figure 5.4.
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Figure 5.3 T he normalized representation of the spots, where the new mean is 
normalized to zero.
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Figure 5.4 T he distribution of genes using an M-A plot.
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5.2.1.3.2  Local Normalization

	e above-described normalization strategy can be applied either globally or 
locally. By local normalization, we refer to the application of a normalization 
strategy to a subset of array elements deposited by a single spotting pen. Local 
normalization proves advantageous, as it can aid in the simultaneous correction 
of spatial variations in a microarray chip, for example, local differences in hybrid-
ization conditions across the microarray. As in the case of global normalization, 
the satisfaction of all assumptions must be satisfied. For example, a sufficiently 
large number of elements should be included in each pen group for the approach 
to be validated.

Local normalization strategies take into consideration subsets of array ele-
ments; normalization is then performed on independent subsets. During this 
stage, we encounter variations in the ( )2log ratio  measurements across the different 
subsets.

As all normalization strategies are aimed at establishing a uniform global mean 
across all elements of the array, it is imperative that local normalization strategies 
take the variance between the subsets of array elements. Numerous computational 
approaches address this challenge of regulating variance between subsets of array 
elements (Workman et al. 2002; Papana and Ishwaran 2006).

Variance regularization is accomplished by adjusting the ( )2log ratio  measures 
of each subset such that the global variance is the same throughout the array 
(Quackenbush 2002).

Let us consider a single microarray that is divided into distinct subgrids (sub-
sets). Figure 5.5 provides a schematic representation. Let each subgrid be normalized 
independent of each other (i.e., local normalization is performed). Our objective is 
therefore to determine a factor that can be used to scale the measurements within 
each subgrid. A commonly used scaling factor is the geometric mean of the inde-
pendent variances of all subgrids.

Single Microarray Subgrids for Local Normalization

Figure 5.5 T he division of a single microarray into subgrids, to carry out local 
normalization. Here, normalization is carried out on each grid independently.
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If we assume that each subgrid has M elements, because we have already 
adjusted the mean of the ( )2log ratio  values in each subgrid to be zero, each subgrid 
variance in the nth subgrid is

	

( )2

1

2
2∑σ =  

=

log Tn

j

M

j 	 (5.6)

where the summation runs over all the elements in that subgrid.
If the number of subgrids in the array is N grids, then the appropriate scaling 

factor for the elements of the kth subgrid on the array is
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We then scale all of the elements within the kth subgrid by dividing by the same 
value ak computed for that subgrid,
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	is step is equivalent to taking the akth root of the individual intensities in the 
kth subgrid,

 [ ] .
1 1

G G and R Ri i
a

i i
ak k[ ]′ = ′ =  (5.9)

It should be noted that other variance regularization factors have been sug-
gested, and a similar process can be used to regularize variances between normal-
ized arrays.

5.2.1.4  Intensity-Based Filtering of Array Elements

Due to the large number of array elements on a microarray, it is often required 
that array elements be removed if their measured intensity is indistinguishable 
from background noise (Jenssen et al. 2002). 	is method is commonly referred 
to as filtering.

On close examination of the representative R-I plots, it is observed that as the 
variability in the measure ( )2log ratio  values increases, the corresponding intensity 
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values decrease (Chen et al. 2005) (Figure 5.6). 	is variability in the measured 
( )2log ratio  is attributed to the relative error in measurement increases when the 

intensities are low (i.e., when the intensity of a spot on the microarray matches the 
intensity of the background).

It is therefore a common practice to use only array elements with intensities 
that are statistically significantly different from the background. 	us, as a simple 
filtering strategy, we first measure both the average local background near each 
array element and its corresponding standard deviation. As a rule of thumb, it is 
believed that the elements with respectably good intensity values fall in the 95.5% 
confidence range and have intensities of more than two standard deviations above 
the background (refer to Figure 5.7 for more information). By following this rule, 
we ensure that we increase the reliability of the measurements. 	is measurement 
is represented using the following relation:

	
2 2 .G G and R Ri

spot
i
background

i
spot

i
background( ) ( )> × σ > × σ 	 (5.10)

Similar approaches to filter out elements of low-intensity values include abso-
lute lower thresholding for acceptable array elements (also referred to as floors) and 
percentage-based cutoffs in which a fixed fraction of elements is discarded.

	is strategy can also be applied to filter out elements that have a very high 
saturation of fluorescence intensity. Typically, when elements have reached their 
highest intensity, the comparisons are no longer meaningful. In such situations, it is 
viable to filter out those elements using the similar approach by setting a maximum 
acceptable value (also referred to as a ceiling).
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Figure 5.6  R-I plot that represents the elements that could be filtered out as 
outliers.
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5.2.2  Identification of Differentially Expressed Genes
One of the primary applications of microarray technology is to analyze genes 
from different samples and identify differentially expressed genes between samples. 
Considering the sheer amounts of data, data mining analysis has played a piv-
otal role in the endeavor of identifying differentially expressed genes over the past 
decades. Several clustering approaches (as described in Chapters 6 and 7) have 
achieved considerable success (Qin et al. 2008; Zhu et al. 2008). 	e objective of 
using these clustering techniques has been motivated by the hypothesis of reducing 
the number of genes to those that are variably expressed across samples.

Based on the above object of identifying differentially expressed genes, researchers 
traditionally rely on filtering genes using a statistical derived fixed-fold-change cutoff 
on expression values. In general the default number of folds is set to two, as this is 
where genes that satisfy this fold change are believed to be the most significant.

Similarly, the global filtering approach computes the mean and standard devia-
tion of the distribution ( )2log ratio  of all microarray values. Using the computed 
mean and standard deviation, the global fold-change difference and confidence 
are computed and used to filter out genes that are not differentially expressed. 	is 
global filter is equivalent to using a z-score for the dataset. However, this approach 
may be inaccurate in capturing the inherent spatial differences in microarray data. 
Specifically, in low intensities, where the data vary more, the technique runs the 
risk of wrongly identifying genes as differentially expressed and vice versa.

Localized approaches take into consideration the local structure of the dataset 
to identify differential expressed genes. 	ey use a sliding window and calculate 
the mean and standard deviation of data points within a window to define an 
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Figure 5.7 T he variation of intensity and the differentiation brought about using 
z-score normalization.
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intensity-dependent z-score threshold and identify differential expression. In this 
step, z measures the number of standard deviations a particular data point is from 
the mean.

	e following relation is used to calculate a localized standard deviation ( )2log T
local

iσ  
of the ( )2log ratio  of a region in the R-I plot.

	us, the normalized value of a particular array element i is

 

( ) .2

( )2

Z
log T

i
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log T
local

i

=
σ

 (5.11)

It is believed that all differentially expressed genes fall in the 95% confidence 
level and would be within a value of | | 1.96Zi

local > . 	is approach enables the dis-
cretization of the elements of a microarray for the identification of differentially 
expressed genes that are naturally more variable.

For a more refined discretization process, the quantile normalization algorithm 
(Mar et al. 2009) can be used. 	is quantile normalization approach makes the 
distribution of elements of each sample the same across many arbitrary samples. 
Each quantile of intensities is projected to lie along a unit diagonal in the M-A plot.

	e following procedure generates the quantile normalization:

 1. Let X(i,k) be the gene expression intensity of the ith gene and the kth sample.
 2. Each sample set of intensities X(.,k) is first sorted by a permutation kπ  accord-

ing to intensity values. 	is permutation is then sorted, and the resultant 
sorted sample is represented as ’(., ).X k

 3. 	e intensity value ’( , )X i k  is then substituted by the mean across all sam-
ples ( ’( ,.))mean X i .

 4. 	e inverse permutation ( )inv kπ  is then applied to each sample set to pro-
duce the normalized set of gene expression intensities.

5.2.3  Selection Bias of Gene Expression Data
In gene expression analysis, we face the problem of constructing an accurate pre-
diction rule R using a dataset consisting of a relatively small number of microar-
ray samples, with each sample containing the expression data of many (possibly 
thousands of) genes (Ambroise and McLachlan 2002). For data miners, this large 
sample reinstates the challenges that the small n large P problem poses on classifica-
tion and prediction.

Traditional statistical approaches for prediction, such as standard discriminant 
analysis, are used to determine an optimal prediction rule R. However, these sta-
tistical approaches work well when the number of training observations n is much 
larger than the number of feature variables p (i.e., large n small p). In the context 
of microarray data, the number of tissue samples n is far lower than the number of 
genes p. 	is small n large p situation presents a number of problems.



Feature Interpretation for Biological Learning  ◾  157

First, it may not be possible to form the prediction rule R by using all p available 
genes. In the case of Fisher’s linear discriminant function, the pooled within-class 
sample covariance matrix would be singular when .n p<<

Second, the discriminatory power of the rule R would be negligible. Let us consider 
a situation in which we use all the genes to create a prediction model using a sup-
port vector machine (SVM). As previously discussed, not all the genes have the 
discriminatory potential to aid in classification. In fact, using all the genes allows 
the noise associated with genes of little or no discriminatory power to inhibit and 
degrade the performance of the rule R in its application.

	is problem increases the generalization error of R when a sufficiently large 
number of genes are used. 	erefore, researchers rely on feature selection to reduce 
the number of genes to be used in constructing the rule R.

Several approaches have been proposed to feature subset selection (Díaz-Uriarte 
and Alvarez de Andrés 2006). 	ese approaches use either wrapper or filter tech-
niques of feature selection to search for an optimal or near-optimal subset of fea-
tures that can be used to generate the most discriminatory rule R.

As discussed in Chapter 4, feature subset selection can be classified into two 
categories based on the use of a learning algorithm used to construct the prediction 
rule. If a subset of features is chosen independently of a learning algorithm, the 
method is said to follow a filter approach, and if the feature subset selection depends 
on a learning algorithm, the method is said to follow a wrapper approach.

Regardless of how the performance of the rule is assessed during the feature 
selection process, it is common to assess the performance of the rule R for a selected 
subset of genes by its leave-one-out cross-validation (CV) error. However, if R is 
calculated within the feature selection process, then there will be a selection bias in 
it when it is used as an estimate of the prediction error. Cross-validation should be 
undertaken subsequently to the feature selection process to correct for this selection 
bias. Alternatively, the bootstrap can be used.

5.3  Data Preprocessing of Mass Spectrometry Data
In this section we focus on the data transformation strategies used in the data-rich 
field of mass spectrometry (MS). MS is a prominent technique that biologists use 
for studying the role of various proteins in a biological sample (Veltri 2008). MS 
consists of generating a signal (spectrum) of values that represent the presence of a 
protein measured by the mass-to-charge ratio (m/z) and abundance (intensity) in 
the sample.

Myriad tools exist to analyze a sample and generate its corresponding MS. 	e 
analysis of samples using MS is, however, challenging, as each spectrum potentially 
occupies a gigabyte of memory. Apart from the sheer volume of data generated from 
these experiments, the analysis of MS signals is affected by errors introduced during 
sample curation that take the form of noise in the MS. 	e different manifestations 
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of noise are attributed to peak broadening, instrument distortion and saturation, 
miscalibration, and contaminants in the samples. Considering these two chal-
lenges, it is not surprising to see the importance of data preprocessing and data 
transformation techniques before the analysis of the MS from different samples.

In the following sections, we would highlight the predominantly used data pre-
processing schemes applied to MS data (datasets). 	ese include various binning, 
alignment, and baseline subtraction techniques that are used to improve the quality 
of raw MS data prior to their analysis.

5.3.1  Data Transformation Techniques
	e effect of data analysis on MS data across multiple samples entails the use of data 
preprocessing. 	e objective of using data preprocessing on MS data is to (1) reduce 
the spectral noise that manifests itself in a single sample and (2) reduce the number 
of dimensions across multiple samples. 	erefore the data preprocessing strategies 
used in MS data preprocessing focus on correcting the intensity and m/z values in 
order to reduce noise, reduce the amount of data, and enable effective comparison 
of spectra across different samples. Noise in MS takes the form of variations along 
the m/z axis across different fractions of the spectra. 	is very nature of the noise 
requires specialized normalization strategies that can be applied on MS data. 	ere 
are different noise reduction and normalization strategies that are used on MS data. 
	e following sections describe the data preprocessing steps applied to MS data.

5.3.1.1  Baseline Subtraction (Smoothing)

Baseline subtraction or smoothing is the first step of data preprocessing applied to 
MS data. 	e objective of applying baseline subtraction is to remove systematic arti-
facts that are caused by clusters of ionized matrix molecules that hit the detector at 
the early portions of the experiment. Baseline subtraction entails the use of an itera-
tive algorithm to remove the baseline slope and offset from a spectrum by iteratively 
calculating the best-fit straight line through a set of estimated baseline points. 	e 
baseline points are determined by fitting the line through the spectrum and then 
discarding all data points with intensities above a threshold from the fitted line. 	e 
number of points above and below the line is then counted. If there are fewer points 
above the line than below, they are considered peaks and discarded. 	en, a new line 
is fit through the remaining data points. 	is process is repeated until the number of 
points above the line are less than or equal to those below the line. 	is final line is 
subtracted from the spectrum to get the baseline-corrected spectrum.

5.3.1.2  Normalization

	e next step of data preprocessing of MS data is normalization. 	e objective of 
performing normalization is to correct systematic differences in the total amount 
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of protein desorbed and ionized from the sample plate. Furthermore, normalization 
is done to make the data independent of experimental variations. 	us, normaliza-
tion facilitates the comparison of different samples since the absolute peak values of 
different fractions of the spectrum may be incomparable. Spectrum normalization 
identifies and removes sources of systematic variation between spectra due to, for 
instance, varying numbers of samples or variation within instrument detector sen-
sitivity. 	ere exist different normalization techniques as suggested by Bachmayer 
(2007), of which the following intensity-based normalization techniques are prom-
inently used.

Direct normalization: 	is normalization technique is similar to the min-max 
normalization technique suggested in Chapter 4. It is formulated as follows: 
the direct normalization primarily rescales the intensity values (I) of every 
expression value in a sample based on its corresponding minimum (Imin ) and 
maximum (Imax ) values.
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Inverse normalization: Similar to the direct normalization, the inverse normal-
ization considers the inverse of the rescaled intensity value by subtracting the 
direct normalization from 1. 	is is represented as follows:
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Canonical normalization: 	is normalization strategy is the simplest form 
of normalization, where the intensity values are rescaled by the sum of the 
intensity values in a sample. 	erefore canonical normalization ensures that 
the rescaled values are relative to all the intensity values in that sample.
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Other normalization strategies commonly used include the logarithmic normaliza-
tion, to transform the values if the distribution of intensity values in a sample is skewed.

5.3.1.3  Binning

	e next data preprocessing step of MS data is binning. 	e objective of perform-
ing binning on MS data is to bring about a reduction in the volume or dimensions 
inherent in the data. Dimensionality reduction is performed by grouping measured 
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data into bins. During this process adjacent values are grouped, and a representative 
member is elected for each group. 	e binning algorithm takes a subset of N peaks 
from a spectra, represented by the couples [ , / , , / , ,( , / )]1 1 2 2I m z I m z I m zN N( ) ( ) …
, and substitutes all of them with a unique peak (I,m/z). 	e unique peak has an 
intensity I, which is an aggregate function of the N original intensities (e.g., their 
sum), and the mass m/z is usually chosen among the original mass values (e.g., the 
median value or the value corresponding to the maximum intensity). Such a basic 
operation is conducted by scanning all spectrums using a sliding window.

5.3.1.4  Peak Detection

With the completion of normalization and binning, researchers rely on the detec-
tion of peaks to compare samples. Peak detection is therefore one of the most impor-
tant steps in MS analysis (Barla et al. 2008). 	e methods used for peak detection 
focus on identifying those peaks that are clearly detectable in a sample (spectra). It 
is believed that these clearly detectable peaks correspond to those peptides/proteins 
in the sample that have the most discriminatory potential to distinguish between 
samples. In order to achieve the effective identification of these peaks, the method 
should account for the variation in the m/z location and heights of the same peak 
across different samples; i.e., it should be able to be stable enough to manage sys-
temic variations brought about by the instrumentation used.

However, the detection of peaks is not trivial, as the result is greatly affected 
by severe spectrum variations (Zhang et al. 2009). Most of the techniques of peak 
detection rely on peak alignment to identify and quantify the discriminatory power 
of all peaks across samples.

5.3.1.5  Peak Alignment

Peak alignment focuses on aligning corresponding peaks across samples. 
Without alignment, the same peak (e.g., the same peptide) can have different 
values of m/z across samples. To allow an easy and effective comparison of dif-
ferent spectra, peak alignment methods find a common set of peak locations in 
a set of spectra, in such a way that all spectra have common m/z values for the 
same biological entities.

Several methods have been proposed for peak alignment, as in the case by 
Tibshirani et al. (2004), who effectively used complete linkage hierarchical clus-
tering to align peaks across samples. 	ey effectively used a distance function 
along the log m/z axis to retain location information of the peaks across the 
samples. 	e idea is that tight clusters should represent the same biological peak 
that has been horizontally shifted in different spectra. 	e centroid (mean posi-
tion) of each cluster will therefore represent the consensus position for that peak 
across all spectra.
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5.3.2 � Application of Dimensionality Reduction 
Techniques for MS Data Analysis

In the previous section we provide an overview of the various data preprocessing 
strategies used on MS data for effective peak alignment. In this section we provide 
an overview of the use of the knowledge discovery (KD) process for the analysis MS 
data, as seen in Figure 5.8 (Hilario and Kalousis 2008).

Dimensionality reduction strategies, both feature extraction and feature selec-
tion, have played a key role in the analysis of MS data. Driven by the objective of 
identifying the most discriminatory peaks across multiple samples (spectra), there 
are several techniques presented in this area of bioinformatics. For instance, the 
feature extraction technique principal component analysis (PCA) is the most com-
monly used method on MS data. PCA aims to find the best linear transformation 
that captures the variance in the data (as described in Chapter 4) (Bair et al. 2006). 
Other popular feature extraction schemes include the Fourier and wavelet transfor-
mations that depict a signal as a linear combination of prespecified basis functions 
like the Debauches wavelet functions (Qu et al. 2003).

As shown in Figure 5.8, another important component of the KD process to 
analyzing MS data is the supervised classification techniques. 	e preprocessed 
data are split into train and test sets. 	e train set is then subject to both dimen-
sionality reduction and learning. Typically the dimensionality reduction is kept 
independent of the class labels of the train set. One of the drawbacks of having the 
dimensionality reduction independent of class labels is that they fail to exploit the 
information provided by class labels. As a result, the transformations these tech-
niques generate may not reflect the underlying class structure, as the maximum 
variance directions do not guarantee maximum discrimination.

On the contrary, techniques that take into consideration the class labels to reduce 
the dimensions are known as supervised feature extraction schemes. 	e  most 
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Figure 5.8  A schematic representation of the knowledge discovery (KD) process 
in analyzing MS data.
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popularly used supervised feature extraction scheme is Fisher’s linear discriminant 
analysis (LDA) (Lilien et al. 2003). 	ough viewed as a classification method, LDA 
projects the initial data onto a k − 1 linear subspace, where k represents the number 
of classes. Like PCA, LDA effects a linear transformation of the form Z = XW, 
where the projection dimensions, i.e., the linear discriminants, simultaneously 
maximize between-class distance and minimize within-class variance.

	is projection results in the solution of a generalized eigenvalues problem:

 . .S W S WB i i W i= λ  (5.15)

where SB is the between-class scatter matrix, SW the within-class scatter matrix, and 
the ith column, W.i of W represents the generalized eigenvector that corresponds 
to the ith largest eigenvalue λi. Note that scatter matrices are essentially unscaled 
covariance matrices.

	e resultant solution of LDA requires the inversion of the within-class scatter 
matrix SW; however, when p > n − k, as is typical with mass spectral data, the scatter 
matrix is not invertible. One way to solve this problem is to reduce the feature set 
size to less than n − k prior to LDA, using feature selection or other feature extrac-
tion techniques such as PCA.

Similar to LDA, an alternate supervised feature extraction technique is the 
partial least squares (PLS) (Boulesteix and Strimmer 2006). PLS is a regression 
method that incorporates feature extraction, but it is equally applicable to classifi-
cation problems. Contrary to LDA, PLS is not bound by any p < n constraint and 
is therefore better adapted to high-dimensional small samples. Furthermore, it can 
handle highly correlated features.

Like PCA, PLS finds linear combinations of the input features that maximize 
variance. However, unlike PCA, PLS finds the linear combinations of the input 
features while simultaneously maximizing correlations with the class labels. 	us, 
PLS usually performs better than PCA for prediction problems. Furthermore, PLS 
is considerably more efficient than PCA with its computational cost O(np), i.e., 
linear in the number of cases n and the number of original predictors p, whereas 
that of PCA is on the order of ( , )2 3 2 3min np p pn n+ + , i.e., cubic in n or p, which-
ever is smaller.

5.3.3  Feature Selection Techniques
Just as feature extraction techniques have played a prominent role in MS data anal-
ysis, there is a gamut of feature selection techniques that have achieved considerable 
success. Typically, feature selection techniques for MS data analysis are categorized 
as univariate or multivariate, based on whether they evaluate individual features 
or feature subsets. Both univariate and multivariate methods can be used as filters 
prior to learning or can be embedded in the learning algorithm.
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5.3.3.1  Univariate Methods

	ese methods assume that all the features are mutually independent of each other. 
In univariate methods each feature is scored or ranked based on its individual rel-
evance, i.e., in isolation from all other features. 	e final feature subset is deter-
mined by a user-defined threshold (cutoff) on the computed scores or ranks. In MS 
data each feature (representing a peptide or protein) is selected when it is shown to 
be differentially expressed at a statistically significant level in the classes of interest 
(e.g., diseased versus controlled). Standard statistical tests (such as the 2χ  test) have 
been widely used to gauge the significance levels. 	ese statistical tests rely on an 
iterative procedure to evaluate each feature independently as follows: first partition 
the sample according to classes (e.g., healthy versus diseased), then compute a test 
statistic for an independent feature, and check for significant differences in the 
value of the test statistic. 	ese standard statistical tests are categorized into para-
metric tests and nonparametric tests. Parametric tests assume a specific probability 
distribution of the data, and on the contrary, nonparametric tests do not depend 
on the probability distribution of the data and have been used in a filter and an 
embedded setup.

Parametric statistical tests have been prominently used as filters in bioinformat-
ics applications due to the flexibility they offer. Examples of parametric tests that 
have been used in proteomic analyses are the t-test, F-ratio, 2χ -test, Kolmogorov-
Smirnov test, and Wilcoxon rank test. Another parametric statistic is based on 
the measure of mutual information that is derived on the concepts of information 
theory. 	is measure quantifies the reduction in class entropy brought about by 
the inclusion of a specific feature. 	us, mutual information provides an effective 
feature ranking criterion used in MS features ranking.

Univariate methods have been used in conjunction with supervised learning 
schemes for effective identification of discriminatory features sets. 	ese simple 
learning schemes are aimed at exploiting known class labels information along with 
univariate methods. Centroid shrinkage is one such feature selection method that is 
embedded in the nearest centroid classification algorithm (Tibshirani et al. 2004). 
In this learning scheme, the training samples are used to compute the class cen-
troids; a test sample is assigned to the class with the closest centroid. Class centroid 
computation is strictly univariate: the ith component of the centroid of a given class 
k is /1x x nik j

n
ij k

k= Σ = , where xij is the value of the ith variable when j ∈ k and nk is 
the number of cases in class k. Similarly, the ith component of the overall centroid 
is /1x x ni j

n
ij= Σ = , where n is the total number of cases. To reduce the number 

of features, the distance between the class centroids and the overall centroid is 
shrunk by an amount determined by Δ, a user-tuned parameter; the class centroids 
move more rapidly to the overall mean when the shrinkage parameter is higher. 
Centroid shrinkage can reduce the distance between the class mean and the over-
all mean to zero for noisy or nondiscriminatory features, which are eliminated 
(Tibshirani et al. 2002).
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	e main advantage of using univariate methods is that they are computation-
ally efficient. 	is computational efficiency is based on the fact that they are driven 
by the computing of p scores. However, these methods have a number of draw-
backs, such as they cannot detect correlated or redundant features or interacting 
features (i.e., features that are irrelevant by themselves but highly discriminatory 
when combined with others).

5.3.3.2  Multivariate Methods

Multivariate methods assess the predictive power of feature subsets rather than 
individual features. Multivariate methods take feature dependencies into account 
in the feature subset selection process. 	e major difficulty encountered when using 
this method is that the number of possible subsets increases exponentially with the 
growth in the number of features.

Multivariate methods of feature selection are based on exhaustive search strate-
gies that test the effectiveness of different combinations of features (i.e., the strate-
gies of generating and evaluating all 2p – 1 possible subsets of p features). 	is is a 
daunting task for all but trivial datasets and is considered to be the limitation of 
multivariate methods. Forward selection and backward elimination in conjunction 
is a prominent heuristic search strategy that has been proposed to overcome the 
limitation of multivariate methods.

Forward selection starts with an empty feature subset S and selects the feature 
that maximizes a predefined scoring function. 	ereafter, it searches the remaining 
features and selects that feature X that, when added to set S, maximizes the score of 
the resulting subset. 	e process continues until a predefined criterion is met, e.g., 
until the score of S ceases to improve. Once this criterion is met, backward elimi-
nation proceeds in the reverse direction; it starts with the full variable set and at 
each step removes the variable with the elimination that yields the highest score for 
the remaining subset. Both forward selection and backward elimination are greedy 
search strategies that are not guaranteed to achieve optimal results.

As a partial remedy to this challenge of greedy search, researchers use floating 
strategies that allow forward and backward selection to eliminate or add previously 
selected or eliminated features. Alternatively, stochastic search methods use random-
ization to overcome a second pitfall of greedy methods, being trapped in local optima. 
Among these stochastic search methods, biologically inspired techniques, which 
mimic mechanisms underlying the behavior or evolution of living populations, have 
proved to be effective strategies for finding discriminatory feature subsets.

A number of variable subset selection strategies have been used as filters prior to 
supervised learning. 	e RELIEF algorithm, as described in Chapter 4, computes 
the relevance of each predictive variable using a method based on k-nearest neigh-
bors. In a binary classification problem, this method repeatedly picks a case at ran-
dom and identifies the case’s nearest neighbor from the positive class and its nearest 
neighbor from the negative class. It then adjusts feature weights by rewarding 
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features that discriminate neighbors from different classes while penalizing those 
with different values for neighbors of the same class. Although feature weights are 
updated separately, the RELIEF algorithm is a multivariate method that computes 
the distance of underlying nearest-neighbor identification and takes into account 
all features. 	e RELIEF algorithm can be used as a feature selection filter for any 
learning algorithm.

5.3.3.2.1  Multivariate Embeddings

Rather than having a feature selection strategy prior to the supervised learn-
ing, several supervised learning algorithms have multivariate filters embedded as 
part of their model building process. Decision trees (DTs) like CART and C4.5 
are classical examples of learning algorithms that have embedded heuristic fea-
ture selection as part of their model building process. A DT is constructed by 
a sequential forward search of the features in the dataset that is used to find the 
most discriminatory feature subset. At each leaf node of the partially built tree, 
the algorithm selects the feature that maximally reduces the class impurity (or 
entropy) of the examples associated with that node. Chapter 8 provides a descrip-
tion of the construction of a DT.

Information gain (IG) is a measure used by the DT C4.5 that is defined 
as I(X;C) = H(C) − H(C|X ), where C is the class variable, X is a feature, and H(.) 
is their corresponding entropy. In other words, IG is the decrease in class entropy 
brought about by the feature X.

	ough DTs are constructed by gauging the entropy of independent features, 
DTs are multivariate rather than univariate. DTs measure the cumulative reduction 
in entropy brought about by the feature subset consisting of all features along the 
path from the root to the current node. 	ough DTs are sufficient for the identifica-
tion of feature subsets, it is common practice to precede DT learning by a feature 
selection method, such as the t-test (or any of the univariate methods).

Another embedded multivariate technique consists of building ensembles or 
communities of univariate classifiers, which are then combined to yield a single 
prediction (refer to Chapter 8 for details). A widely used ensemble learning method 
is boosting, which builds a sequence of classifiers from adaptively generated data. 
	is method builds a classifier at each iteration, and the classifier’s accuracy on the 
training data is estimated.

5.4  Data Preprocessing for Genomic Sequence Data
An important aspect to bioinformatics is the analysis of sequence data, in the 
form of genomic sequence data or proteomic sequence data. 	e objective of 
sequence data is the identification of motifs (short sequence signals) that are 
embedded in the sequence composition. It is believed that some or all of a set 
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of promoters from coexpressed or orthologous genes may contain binding sites 
(signals) for the same transcription factor. Similarly, a set of proteins that interact 
with a single host protein may do so via similar domains (the signal). Both types 
of sequence signals can often be represented as motifs that are ungapped, approx-
imate subsequence patterns. 	is section aims to describe the several techniques 
that have been proposed to identify statistically significant motifs for a given set 
of sequences.

Motif discovery algorithms look for a set of similar short sequences in a set of 
much longer sequences. 	is problem is easier when the motif instances are long 
and very similar to each other. It gets much harder when the motif instances are 
short or when the input sequences are very long (Bailey et al. 2006).

5.4.1  Feature Selection for Sequence Analysis
With the exponential growth of genome sequence data, there is a need for com-
putationally effective and accurate tools to automatically identify genes from the 
sequences. 	is objective poses a challenging problem, as only a fraction of the 
genome sequence (miniscule in number) actually contains coded information. 
	is makes several statistical techniques unreliable and inaccurate in identifying 
informational parts in the sequence (Saeys et al. 2006). 	erefore, while analyzing 
sequences in bioinformatics, feature selection has played a key role in recent times. 
According to Saeys et al. (2007), there are two types of sequence analysis: content 
analysis and signal analysis.

Content analysis: 	e prediction of subsequences that code for proteins 
(coding potential prediction) has been a focus of interest since the early 
days of bioinformatics. Because many features can be extracted from 
a sequence and most dependencies occur between adjacent positions, 
many variations of Markov models have been developed (Eddy 2004). 
Addressing the high number of possible features and the often limited 
amount of samples led to the introduction of the interpolated Markov 
model (IMM) through the implementation of the GLIMMER system 
(Salzberg et al. 1998). Using a two step process, the GLIMMER system is 
used to find coding regions in microbial genome sequences. First, it uses 
the IMM to interpolate between different orders of the Markov model to 
deal with a small number of samples. And then a filter method ( χ2 filter) 
is used to select only relevant features.

Signal analysis: Many sequence analysis methodologies involve the recognition 
of short, more or less conserved signals in the sequence, representing mainly 
binding sites for various proteins or protein complexes. A common approach 
to finding regulatory motifs is to relate motifs to gene expression levels using a 
regression approach (Guyon et al. 2002). Feature selection is then used to search 
for the motifs that maximize the fit of the regression model (Keles et al. 2002).
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Sequence features: Commonly used sequence features represent only the nucle-
otide or amino acid at each position in a sequence. However, there are many 
other features, such as higher-order combinations of the nucleotides or amino 
acids (e.g., k-mer patterns), that can be derived, and their number is grow-
ing exponentially with the pattern length k. Such higher-order features are 
described as follows (Saeys et al. 2006):

 1. Frame-dependent k-mers: For each of the three possible reading frames, 
k-mer frequencies (1 ≤ k ≤ 3) can be extracted. 	ese frame-dependent 
features would result in 252 [= 3 × (4 + 16 + 64)] features.

 2. In-frame k-mers: Assuming the sequence is in reading frame 1 (the start 
of the sequence coincides with the start codon), in-frame k-mer frequen-
cies (4 ≤ k ≤ 6) can be extracted. 	ese in-frame k-mer features can result 
in a set of 5,376 possible features.

 3. Frameless k-mers: For each possible k-mer (1 ≤ k ≤ 3), the global fre-
quencies of occurrence are calculated (i.e., without taking into account the 
reading frame). 	ese frameless k-mers will result in possible 84 features.

 4. Fourier transform features: 	is is the most common application of 
Fourier analysis on DNA sequences. 	e features, derived from the 
Fourier transform, include (1) the magnitude of the peak at frequency 
1/3 in the Fourier spectrum, (2) the global magnitude at frequency 1/3, 
which is the sum of all four magnitudes of the sequence, and (3) the 
signal-to noise ratio of the peak frequency 1/3. 	is results in a possible 
six features.

 5. ORF feature: Given a sequence and an assumed reading frame, this fea-
ture denotes whether there is an in-frame stop codon present.

 6. Run features: For each of the nontrivial subsets of {A, T, G, C}, a new 
sequence is constructed by replacing each base present in the subset with 
1 and replacing each base not in the subset with 0. Using this transform 
of the sequence, the number of runs of 1s of length 1, 2, 3, 4, 5, and 
greater than 5 are then counted. 	is results in a set of 84 features.

With the numerous features listed above, it is observed that many of these are 
irrelevant or redundant. 	is therefore requires feature selection techniques, which 
will be applied to focus on the subset of relevant features.

5.5 O ntologies in Bioinformatics
In data mining, it is common to use conceptual hierarchies to provide a certain 
degree of data abstraction, to describe complicated concepts that require a cer-
tain degree of heterogeneity in the data types used to describe them. To this end, 
conceptual hierarchies have been extensively used in various applications of data 
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mining, and take the form of ontologies in bioinformatics. 	ese ontologies are 
then used to integrate data from heterogeneous sources.

According to Bodenreider and Stevens (2006), ontologies are techniques or 
technologies used to represent and share knowledge about an entity by model-
ing the features of the entity and the relationships between those features. 	ese 
relationships describe the properties of those features in the entity being modeled. 
	us, the ontology represents a conceptualization of reality, or simply reality. 	e 
labels used for the features and their properties in an ontological model can pro-
vide a common language for a community to talk about their entity. By agreeing 
on a particular ontological representation, a common vocabulary can be used to 
describe and analyze data.

Newer technologies such as microarrays and the ever-changing volumes of 
data have necessitated the ability of computational services or algorithms to 
automate gene calling, the identification of individual genes across a genome. 
Gene calling entails using algorithms to identify biologically functional regions 
or exons of sequences that explicitly code for proteins commonly referred to as 
coding regions. 	ese algorithms are based on machine learning, which predicts 
unique signatures of the genetic spectrum. Once the genes have been located, 
the tasks of assimilating the biological functions of the resulting proteins have 
to be determined. 	e prediction of protein functions is then determined by the 
sequence alignment of sequences from their homologs. 	is process is plagued 
by errors, as it is time-consuming and dependent on the accuracy of previously 
discovered sequences. New alternative approaches of functional genomics aim at 
identifying functionally significant gene sequences through the use of knowledge 
gained from annotated functionality, pathways, and protein-protein interactions. 
	ese approaches, however, necessitate the resolution of semantics, i.e., the dif-
ferences in meaning and naming conventions between heterogeneous sources.

Semantic incompatibility: 	ough data from conflicting database schemas 
can be pooled together using simple queries, the semantics between heteroge-
neous biological data is not as transparent. For example, a gene is defined dif-
ferently in different databases. According to the Human Genome Database 
(HGD) a gene is defined as a DNA fragment that is analogous to a protein, 
whereas in GenBank and the Genome Sequence Database (GSDB), a gene is 
considered to be a region of biological interest that carries a genetic trait and 
has an associated name. 	us, these databases are built using two theories of 
what a gene is. As a result, the retrieval of data from semantically different 
databases on the basis of the keyword gene would typically propagate an error. 
Moreover, problems also arise when two variables in disparate databases are 
semantically equivalent; it must be noted that their relations to other knowl-
edge objects in the data repository may not be equivalent. 	ese conflicts are 
commonly referred to as schematic incompatibility.
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Context: To facilitate both semantic and schematic differences inherent in bio-
logical data, the context from which biological data originates is given more 
importance at the database level. 	ese differences are elucidated by the fact 
that functional prediction hinges on the need to find similar cellular compo-
nents that participate in similar biological processes rather than the sequence 
homologs. To connect sequence and cellular components, it is imperative to 
depend on additional data sources that support information about the diverse 
components entailed in a biological process. 	us, to explore the vast num-
ber of databases, it is required that the biological context of sequences be 
adequately encoded and machine readable.

5.5.1  The Role of Ontologies in Bioinformatics
To resolve the issue of semantics in bioinformatics databases, ontologies have pro-
vided better biological interoperability. By definition an ontology is a machine-
readable model of the objects (allowed into a formal universe) and the associations 
(or relationships) between these objects, upon which some automated reasoning 
(or task) can be performed (Schuurman and Leszczynski 2008). Typically scien-
tific ontologies contain three levels of formalization. 	e first level is conceptual 
description of elements, which is then translated into the second level, a formal 
model of the data elements in the ontology (e.g., proteins) and the possible rela-
tionships between the data elements. 	e final level is the development of code that 
can be run by computers that use the outputs of the second level. Ontologies like 
biological taxonomy are a hierarchy of concepts, with the general concepts placed 
at the top of the hierarchy, and the specificity of the concepts increases as we tra-
verse down the hierarchy. Ontologies are populated by domain knowledge in the 
form of semantics that allows all entities declared into the ontology to be defined 
and for their interrelationships to be given strict parameters, enabling realistic bio-
logical models (Baker et al., 1999).

	erefore semantics enables the distinction of concepts declared into the model. 
To satisfy the strict criteria of formal ontology building, the semantics used to 
instantiate an ontology should be based on formally defined logics. 	ese formally 
defined logics can be based of logical algebra such as description logics (DLs). 	ese 
DLs should accommodate predetermined rules for (1) when two concepts are the 
same, (2) when the two concepts are one of a kind, and (3) how two concepts dif-
fer from each other. 	ese rules must furthermore be expressed in some machine-
readable syntax, such as a knowledge representation language like Web Ontology 
Language (OWL). Such rules govern the expression and processing of relations 
between concepts in the hierarchy. It should be noted that these relational expres-
sions between concepts in a hierarchy form the basis for all modeling tasks for using 
any ontology (see Figure 5.9).
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5.5.1.1  Description Logics

Ontologies differ from data integration by their ability to define relationships 
between concepts. Typically, relationships are developed using a natural language 
that is an expression of context. In other words, relationships between concepts 
are captured so that they convey some semantics. Similarly, content semantics 
are expressed by identifying how concepts relate to each other in the hierarchical 
knowledge space.

	e very hierarchical nature of an ontology brings about a parent-child ordering 
of semantic granularity of the relation between any two concepts. 	e hierarchical 
structure establishes a hyponymic (is-a) relationship between terms by their rela-
tive position to each other in the hierarchy on the basis of subsumption (where a 
concept is a subclass or member of the other concept) and specialization (where a 
concept is the superclass of or contains another concept). 	e semantic edges of the 
tree are the relationships referred to as properties that reflect the meaning of data 
elements by providing the context of their usage.

Ontological expressions are stated in the form of propositional triplets. 	e 
triplets consist of concepts (real-world entities that populate the model), their 
properties (or relationships between entities), and instances (particular occur-
rences of a concept) in a hierarchical model. A triplet is considered to be a 
definitive statement about the world. 	us, if an ontology is represented using 
a description logic (DL), the axioms of the logic can be used to impose restric-
tions on the concepts in which domains logically participate in relationships with 
each other. 	ese logics thus form a content specification. Using the descrip-
tion logic makes implementing an ontology simpler, where each propositional 
triple describes a knowledge base (Schuurman and Leszczynski 2008). 	e fol-
lowing sections contain descriptions of the most prominently used ontology in 
bioinformatics: the Gene Ontology (GO), a derivative of the Open Biomedical 
Ontologies (OBO).

5.5.1.2  Gene Ontology (GO)

	e Gene Ontology has been one of the most successful ontologies in the area of 
bioinformatics. 	e success of this ontology can be enumerated as follows (Bada 
et al. 2004):

 1. Community involvement: 	e development of the GO is an open process; 
response is welcomed from the community that it seeks to serve. 	e GO is 
built by and for biologists, and groups join the GO because it suits their needs. 
Such activity is less likely than in a dictated, unresponsive organization.

 2. Clear goals: 	e GO promotes consistent annotation for gene products for 
the three major functional attributes. While GO has been used for many 
other purposes, this narrow, clear goal enables focus to be maintained.
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 3. Limited scope: An ontology for the whole of biology would be useful. 
However, it would be impractical to develop such an ontology. A limited but 
useful scope was able to demonstrate utility.

 4. Simple structure: 	e GO’s use of a simple directed acyclic graph (DAG) is 
sufficient to capture the relationships between concepts derived from biology.

 5. Continuous evolution: Our understanding of biology changes and expands. 
Part of the community engagement is to respond to and put in place the 
apparatus to cope with change.

 6. Active curation: In addition to community input, the continuous evolution 
and necessary maintenance require curators to implement changes.

 7. Early use: 	e evolutionary nature of genomics enabled early use and evolu-
tion of the GO. A relatively small number of gene products and consistent 
annotation enabled its use.

	e GO is a global ontology that is a central knowledge proxy to which 
other ontologies or knowledge representations may be aligned. 	e alignment 
of derived knowledge representation is brought about by ontology mapping. 
Ontology mapping is the process of defining associations between ontologies. 
	is method involves the formal declaration of relational links between entities, 
much like those involved in relating concepts in a hierarchical ontological struc-
ture. Ontologies can be either aligned, whereby the formalisms remain separate 
entities but are related, or merged, wherein a singular ontology is generated from 
the cross-products of two input ontologies. Mapping is thus unidirectional and 
always from the constituent database to the GO. Figure 5.10 illustrates the role 
that GO plays in the development of global biological ontology and the mechan-
ics involved.

5.5.1.3  Open Biomedical Ontologies (OBO)

	e success of the GO in meeting its objectives, its wide use by other databases for 
attributing gene product functionality, and finally the use of the GO outside its 
intended purpose have led to many other groups developing ontologies for database 
annotation. In order to provide some coordination to these efforts, the OBO con-
sortium was established.

OBO is guided by a set of principles that are used to give coherence to wider 
ontological efforts across the community.

 1. Openness: All the OBO ontologies are freely available to the community as 
long as the ontologies are properly attributed.

 2. Common representation: Both the OBO format and the Web Ontology 
Language (OWL) provide common access via open tools. Although not men-
tioned as part of the criteria, this common access offers common semantics 
for knowledge representation.
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 3. Independence: Lack of replication across separate ontologies encour-
ages combinatorial reuse of ontologies and the interlink of ontologies via 
relationships.

 4. Identifiers: Each term should have a semantic-free identifier, the first part 
of which identifies the originating ontology. 	ese identifiers promote easy 
management.

 5. Natural language definitions: Terms are often ambiguous, even in the con-
text of their ontology, and definitions help ensure appropriate interpretation. 
Arguments over terms are often bitter and long, while arguments over defini-
tions are shorter and more useful.

	rough these simple criteria, the ontology community is attempting to avoid 
repeating the errors their ontologies have been developed to resolve, primarily the massive 
syntactic and semantic heterogeneity extant in bioinformatics resources. Many resources 
fall under the OBO umbrella, and most of these resources are shown in Figure 5.11, in 
which OBO have been arranged along a spectrum of genotype and phenotype.

	e most significant OBO are the GO (Gene Ontology Consortium 2008) and 
the Sequence Ontology (Eilbeck et al. 2005). 	e former is used to annotate the 
principal attributes of gene products. 	e latter provides a vocabulary to describe 
the features of biological sequences.

Moving along the spectrum toward phenotype (refer to Figure  5.11), we see 
increasing numbers of species ontologies on the same subject: development and anat-
omy. While the descriptions of sequence features and major attributes of gene products 
might be core to molecular biology, these descriptions need to be placed in a context.

Other OBO ontologies include some that describe experiments that gener-
ate biological data. Foremost among these ontologies is the Microarray Gene 
Expression Data (MGED) ontology (Whetzel et al. 2006). 	is ontology provides a 
vocabulary for describing a biological sample used in an experiment, the treatment 
the sample receives in the experiment, and the microarray chip technology used in 
the experiment.

5.6  Conclusion
In this chapter we have described the interpretation of features obtained from 
bioinformatics data in context to the various data transformation and data pre-
processing strategies. We have emphasized the role of various normalization 
techniques with their application to high-throughput gene expression data. 
Furthermore, this chapter describes the role of data preprocessing strategies and 
data transformation strategies with respect to mass spectrometry data analysis 
and genomic sequence data. 	is chapter concludes by describing the importance 
of ontologies and concept hierarchies that are necessary in interpreting the role of 
features in a computational perspective.
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Chapter 6

Clustering Techniques 
in Bioinformatics

We covered the different data preprocessing and transformation techniques in data 
mining in Chapter 4. We also described the different application areas and the sig-
nificant role these techniques play in the field of bioinformatics. In this chapter we 
list and describe different unsupervised learning techniques in data mining, better 
known as clustering techniques.

6.1 I ntroduction
Clustering is used to divide or partition objects (or data) into groups based on 
their similarity or dissimilarity to one another, called clusters. It is an unsupervised 
learning method, as class labels or class information is not present in the begin-
ning. 	erefore clusters obtained in the output can be called classes. 	e quality of 
clustering will depend on many factors:

 1. Similarity measure used by the method and its implementation
 2. Ability to discover some or all of the hidden patterns

Objects in the same cluster should be similar to one another, and thus have 
high intraclass similarity. However, objects between other clusters should be dis-
similar to each other, and thus have low interclass similarity. A good clustering 
method will result in a high intraclass similarity, and a low interclass similarity will 
produce quality clusters. A dataset may have different kinds of data points, which 
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may belong to unknown clusters. By using unsupervised learning such as a cluster-
ing algorithm one can find potential clusters in the dataset (Cooper and Newman 
2010). In Figure 6.1 data points have been sorted into three clusters where similar 
data points are grouped together, and dissimilar data points are separated.

Clustering consists of four steps: relevant feature selection, algorithm design, 
cluster validation, and visualization and evaluation (Wunsch and Xu 2005). 	ese 
steps are shown in Figure 6.2.

6.2  Clustering in Bioinformatics
Clustering and cluster analysis are important techniques for bioinformatics 
experimentation and discovery. Clustering is widely used in microarray analy-
sis to negate the limitations of class discovery. As mentioned above, classes are 
often unknown when experiments begin. For example, if a researcher is trying 
to determine whether a disease in a particular tissue or in a particular condi-
tion can affect a gene expression, he or she may not know whether gene expres-
sion differs between two groups (Lippert 2010). In addition, he or she may not 
know whether a class contains interesting subclasses until clustering is performed 

Dataset Unsupervised
Learning

Figure 6.1  Using unsupervised learning data points, datasets are sorted into 
three clusters based on similarity of shape.

Data Pre- 
processing 

Clustering 
Algorithm – 

Identify 
Clusters 

Cluster 
Validation 

Cluster 
Interpretation 

Dataset 

Figure 6.2  Clustering procedure. (Modified from Wunsch, D., and R. Xu, IEEE 
Trans Neural Networks 16, no. 3 (2005): 645–678.)
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(Lippert 2010). For example, a subtype of a disease or a hierarchy of subclasses 
within a disease may not be known at implementation (Lippert 2010). For this 
chapter, we will present clustering methods used in gene expression. Gene expres-
sion is defined as the synthesizing of a functional gene product found in either the 
RNA or a protein. Gene sequence is important because genes are the fundamen-
tals of biological inheritance in living organisms to build and maintain organism 
cells; genes hold the necessary information. Time series gene expression data is 
used to analyze underlying temporal response patterns to simplify work with 
nonuniform samples.

6.3  Clustering Techniques
For bioinformatics research, students and researchers can choose from a variety of 
clustering techniques, including distance-based clustering, hierarchical cluster-
ing, self-organizing maps, fuzzy clustering, graph clustering, kernel clustering, 
and model clustering. Because of the importance of these techniques, we describe 
each below.

6.3.1  Distance-Based Clustering and Measures
Distance-based clustering is used to find similarity or dissimilarity in terms of 
distance between data points of the same cluster or data points of other clusters. 
Distance can be found by using distance measures such as Mahalanobis distance, 
Minkowski distance, and Pearson correlation. Selection of these measures will 
depend on the characteristics or properties of attributes such as binary, continuous-
ness, nominality, and ordinality. For example, if an attribute is numeric, one can 
use Mahalanobis or Mikowiski distance. Below, we outline the differences between 
these two methods.

6.3.1.1  Mahalanobis Distance

Mahalanobis distance is based on finding correlation between variables to measure 
distance, which helps classify future data belonging to a specific class. Mahalanobis 
distance works in the following ways:

 1. Mahalanobis distance computes the covariance matrix of each class from the 
training data.

 2. It sorts future or test data into their respective classes based on mini-
mal Mahalanobis distance. 	is sorting is performed by computing  the 
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Mahalanobis distance for each class. Mahalanobis distance can be 
mathematically expressed as ( , ,...., )1 2=z z z zN T  from a group of values with 
a mean of ( , , ,..., )1 2 3 4µ = µ µ µ µ T , and covariance matrix S is

 ( ) ( ) ( ),1= −µ −µ−D z z S zM
T  (6.1)

 where DM is Mahalanobis distance.

6.3.1.2  Minkowiski Distance

	e Minkowiski distance between two points or tuples, for example, 
=X x x x n( , ,.., )1 11 12 1  and =X x x x n( , ,..., )2 21 22 2 , is

 
∑= −

=

d X X x x
i

n

i i
t( , ) ( ) ,1 2

1

1 2  (6.2)

d X X( , )1 2  is the distance between two points or tuples X1 and X2. In Equation 6.2, 
when t = 1, distance is called a city block distance. When t = 2, distance is called 
Euclidean distance.

	e Euclidean distance is used to find distance between two points that is a line 
segment connecting them. For example, the distance between two points A(6,3) 
and B(3,2) is calculated by using the Euclidean distance formula found in Equation 
6.2, which is shown in Figure 6.3.

 = − + − =d A B( , ) (6 3) (3 2) 102 2  (6.3)

Y

A (3, 2)

B (6, 3)

X

Figure 6.3  Points A and B lie in a two-dimensional plane.
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6.3.1.3  Pearson Correlation

Pearson correlation is another method of finding similarity by measuring the cor-
relation that ranges from +1 to 1 between two variables. 	us, it can be found 
between two variables, for example, x and y, in following way:

◾◾ For value 1: Whenever y increases, x also increases.
◾◾ For value –1: Whenever y decreases, x increases.
◾◾ For value 0: No correlation or relationship.

	e Pearson correlation coefficient is symmetric and can be represented as

 ( , ) ( , ).corr x y corr y x=  (6.4)

	e Pearson correlation of genes x and y of n samples, where x  is the mean of 
x and y  is the mean of y, is
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where rxy is the correlation between two samples x and y, and dxy is the distance 
between two samples x and y.

	e correlation coefficient ( )( )− −x x y yi i  is positive if xi and yi are greater or 
less than their respective means or if they are located on the same side of their 
respective means. Similarly, the correlation coefficient is negative if either xi or yi is 
less than its respected mean or is located on an opposite side of its respective mean.

6.3.1.4  Binary Features

Binary features are those features that have binary values of either 0 or 1. Given 
two attributes, X and Y, having binary values of either 0 or 1, the total number 
of combinations for attributes X and Y is specified as shown in Table 6.1. In 
the table:

◾◾ a indicates that attributes X and Y have a value of 1.
◾◾ b indicates that attribute X is 0 and attribute Y is 1.
◾◾ c indicates that attribute X is 1 and attribute Y is 0.
◾◾ d indicates that both attributes X and Y have a value of 0.

A distance measure D for symmetric binary variables can be determined using

 
= +

+ + +
D A B b c

a b c d
( , ) .  (6.6)
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Likewise, a distance measure D for asymmetric binary variables can be deter-
mined using the Jaccard coefficients, which measure similarity between sample sets 
and are as follows.

	e Jaccard similarity coefficient, D(A, B), is given as

 
=

+ +
D A B a

a b c
( , ) , and  (6.7)

	e Jaccard distance, D(A, B), is given as

 
= +

+ +
D A B b c

a b c
( , ) .  (6.8)

6.3.1.5  Nominal Features

Unlike binary features, nominal features can have more than two states. 	us, 
either nominal features must be transformed into binary, or matching criterion 
must be utilized to minimize the number of states. 	e features can be classified 
using the two methods below, binary transformation and simple matching.

As the name suggests, binary transformation modifies nominal features so that they 
can be read as binary code. For each of the M nominal states, this method will create 
a new binary variable that uses a 1 to indicate the occurrence of a category and a 0 to 
indicate the absence of a category or a nonoccurrence (Shyu 2005). 	us, for a nominal 
feature with C states, a set of C indicator variables can be generated as shown below.
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 (6.9)

Table 6.1  Sample Binary Matrix

Object X

1 0 Sum

Object Y 1 a b a + b

0 c d c + d

Sum a + c b + d P
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Simple matching distance methods can simplify nominal features by com-
bining feature groups. 	ese methods are used when two objects, for exam-
ple, i and j, carry equal information. For example, marital status (married and 
unmarried) has a symmetry attribute because the number of married respon-
dents and the number of unmarried respondents provide equal information. 
Similarly, the same information is given whether heads or tails land face up 
when tossing a coin.

Equation 6.10 represents simple matching as

 
= −d i j p m

p
( , ) ,

 (6.10)

where m is the number of matches and p is the number of variables.

6.3.1.6  Mixed Variables

A database may contain different types of features or mixed features. 	ese features 
can be symmetric binary, asymmetric binary, nominal, ordinal, interval, and ratio. 
When objects consist of mixed variables, we can combine the variables and transform 
them into an interval such as (0, 1). We can then use measures such as Euclidean 
distance, or we can transform the variables into binary for similarity functions.

6.3.2  Distance Measure Properties
In order for a distance or similarity function to be a distance measure, it should 
follow all four properties, as indicated below:

 1. Symmetry:

 ( , ) ( , )=D x x D x xi j j i  (6.11)

 2. Positivity:

 ( , ) 0≥D x xi j  for all xi and xj (6.12)

 3. Triangle inequality:

 ( , ) ( , ) ( , ),≤ +D x x D x x D x xi j j k k i  (6.13)

 4. Reflexivity:

 ( , ) 0,= =D x x if x xi j i j  holds; it is also called a metric (6.14)
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where D x xn m( , ) is the distance between two points xn and xm such that n = i, j, 
k, …, and m =i, j, k, ….

	e distance measures explained in the above sections all satisfy these four 
conditions. 	ese distance measures will be helpful in clustering algorithms that 
are described below.

6.3.3  k-Means Algorithm
k-Means clustering partitions n instances into k clusters by assigning each data 
point to the partition with the nearest centroid. 	e k-means algorithm can be 
performed as follows:

 1. Initialize the value of k or number of partitions. 	is step is shown in 
Figure 6.4, where the value of k initialized is 3. 	ese points which are shown 
in bold (◻ ○ ◺) represent initial group centroids.

	 2. Assign each data point partition with the nearest centroid, as shown in 
Figure 6.5.

 3. Calculate the positions of the k centroids again to measure the movement of 
objects, as shown in Figure 6.6.

 4. Repeat steps 2 and 3 until movement of the centroid does not change. 	e 
final clustering results are shown in Figure 6.7.

Although the k-means algorithm is a popular and useful method, it has 
limitations, which are overcome by using the k-modes algorithm explained in 
Section 6.3.4.

Figure 6.4 I nitial group centroids.



Clustering Techniques in Bioinformatics  ◾  189

Figure 6.5 O bjects in partitions.

Figure 6.6  Recalculate centroids.

Figure 6.7  Clusters.



190  ◾  Data Mining for Bioinformatics

6.3.4  k-Modes Algorithm
Since the k-means algorithm works only for numerical data, its variant, the 
k-modes algorithm, can be more useful (Chiang et al. 2006). 	is method can 
be extended by calculating the median instead of the mean (Chiang et al. 2006). 
Using the median, k-means can produce accurate results for categorical data, as 
well as numerical data. 	e k-modes algorithm is described below.

Assume X and Y are two categorical objects with m attributes, i.e., 
=X x x xm( , ,..., )1 2  and =Y y y yn( , ,..., )1 2 . Define the distance between X and Y as

 

( , ) ( , ),
1

∑=
=

d X Y dt x yj j

j

m

 (6.15)

where dt is a function that depends on xj and yj, and can be represented as
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In the above examples, d(X, Y ) is the distance between two objects X and Y.
	is algorithm is performed as follows:

Step 1: Randomly select k-modes for k clusters.
Step 2: Allocate an object to a cluster with the nearest mode according to 

Equation 6.16 so that

 

( , ) ( , ).
1

∑=
=

d X Y dt x yj j

j

m

 (6.17)

Step 3: Update the modes of the cluster.
Step 4: Repeat steps 2 and 3 until all points in the clusters are stable.

For binary attributes, the k-modes algorithm, which uses the binary form for dis-
tance computation, can represent the same or different conditions corresponding to the 
distance values of 0 or 1. However, it is difficult to change categorical attributes into 
numeric form. 	erefore, genetic distance measure, which can measure the distance or 
similarity between categorical attributes using similarity measures and is described in 
next section, is a preferable measure for making calculations. In Table 6.2, A, B, and C 
are three objects that have binary attributes, and their values are either 0 or 1.

6.3.5  Genetic Distance Measure (GDM)
	e k-medoids algorithm can be used in the place of binary distance in a tradi-
tional k-modes algorithm to measure continuous distance in the genetic algorithm 
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(Chiang et al. 2006). Given two categorical datasets with m attributes X and Y, 
such as =X x x xn( , ,..., )1 2  and =Y y y yn( , ,..., )1 2 , we define the continuous distance 
between X and Y as

 
∑=

=

d X Y T x yj j j

j

m

( , ) ( , ),
1

 (6.18)

where T x yj j j( , ) is the continuous distance table for the jth attribute under the train-
ing of genetic algorithm.

Given T objects, =X i Ti , 1,2,... , which belong to the partitioned set Si, and 
k-modes Q1, Q2, …, Qk, which represent the corresponding clusters, the fitness 
function Ft is
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Maximizing fitness function Ft is similar to minimizing the distance between 
the object and its corresponding mode in its cluster and maximizing the distance 
between the object and the modes in the other clusters (Chiang et al. 2006).

6.4 � Applications of Distance-Based 
Clustering in Bioinformatics

◾◾ A new distance metric in gene expressions for coexpressed genes
◾◾ Gene expression clustering using the mutual information distance measure
◾◾ Gene expression data clustering using a local shape-based clustering

Each of these applications is described below.

Table 6.2  Distance for 
Conventional k-Modes Algorithm

A B C

A 0 1 1

B 1 0 1

C 1 1 0
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6.4.1 � New Distance Metric in Gene Expressions 
for Coexpressed Genes

Cluster analysis has been used to determine gene functions, but many clustering 
algorithms ignore the functionality of genes that are already known. 	us, the 
objective for using a distance metric in gene expression for coexpressed genes is to 
incorporate known gene functions and to find whether common gene functions 
can be shared between genes or not (Huang and Pan 2006). If common gene func-
tion can be shared, then they shrink a gene expression-based distance toward 0. 
	e new distance metric ∗dij  is based on the expression-based distance metric dij and 
gene functional annotations, as shown in Equation 6.20:
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where ≤ ≤r0 1 is a shrinkage parameter, and the function r = 1 causes cluster-
ing techniques to ignore gene functions (Huang and Pan 2006). A two-step 
method is used to perform this equation. First, genes with known functions are 
clustered using a distance-based clustering method, e.g., k-medoids. Second, 
genes with unknown functions are clustered using an expression-based distance 
metric and can be assigned to clusters that are either obtained in the first step 
or assigned to the new cluster. An algorithm is described below to implement 
these two steps:

Step 1: Apply the k-medoid algorithm, using the shrinkage distance matrix D* to 
the genes { 1,..., }0 +n n , with known functions G GF{ ,..., }1 , having k0 clusters.

Step 2: Apply the k-medoid algorithm, which uses expression-based distance 
matrix D, to genes n{1,..., }0  with unknown function in G0 to create k1 new 
clusters while retaining information about the k0 clusters obtained in step 1.

Step 2 can be further divided into substeps, as outlined below:

Step 2.1: Select k1 genes from {1,…, n0} as medoids at random.
Step 2.2: Update centroids and calculate cluster membership for each gene in 

the k1 new clusters.
Step 2.3: Update the k1 medoids.
Step 2.4: Repeat the above two mentioned steps until convergence.

G0 genes are assigned to k0 + k1 clusters in step 2.1, whereas in the k0 clustered 
genes in G1 … GF, remains are obtained using the shrinkage distance matrix.



Clustering Techniques in Bioinformatics  ◾  193

For this algorithm, the original expression-based distance matrix D is used 
instead of a shrinkage distance matrix D* for step 2 due to incomplete biological 
knowledge.

	e above method allows multiple known functions for genes because it uses only 
shrinkage distance matrix D*, and shrinkage distance ∗dij  is well defined when one 
gene belongs to two or more functional groups. For example, if genes i and j belong to 
two or more groups, then ∗dij  does not change.

In conclusion, a result of k1 > 0 indicates that the expressed gene has an unknown 
functionality and may not be assigned to clusters because of undiscovered gene 
functions or lack of evidence from expression profiles.

6.4.2 � Gene Expression Clustering Using Mutual 
Information Distance Measure

A mutual information (MI) measure can be taken from different dataset sizes to 
provide important information for finding positive, negative, and nonlinear corre-
lations between data (Priness et al. 2007). To accurately classify these correlations, 
the expression patterns should be in the form of discrete random variables. Given 
two random variables X, Y, such that X has a range ∈x Ai x  and probability distri-
butions functions ( )= ≡P X x Pi i , whereas Y has a range ∈y Aj j  and probability 
distributions functions = ≡P Y y Pj j( ) , the MI between two random variables X 
and Y is given by

 
∑∑=I X Y p

p
p p

ij
ij

i jji
( ; ) log .  (6.21)

If the MI is zero, then X and Y are not dependent on each other. In such a case, 
there is no relationship between X and Y, but it is difficult to achieve such a condi-
tion using the Pearson correlation or the Euclidean distance (Herzel 1995).

Let us assume that there are N samples in a dataset that have been correctly 
clustered into two groups, and l samples are misclassified. In order to find the 
error in clusters, samples will move from their respective clusters or true clusters. 
When the error increases, different solutions also increase. Hence, different pos-
sible solutions are randomly selected that have more than a single error. 	en, 
different clustering solutions are gathered based on the number of errors in the 
cluster. 	e average homogeneity and separation scores are computed for each 
cluster to define the robustness of similarity measures and validate these infor-
mation nodes based on the assumptions that homogeneity and separation scores 
are dependent on the number of errors in a solution, and that statistical methods 
differentiate between high-quality and low-quality clustering solutions based on 
statistical error. 	ese criteria are important because homogeneity and separation 
scores are dependent on the number of errors in a solution. For example, if the 
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number of errors in a solution is fewer than a threshold, then homogeneity and 
separation scores in the solution are good. Likewise, if the number of errors in a 
solution is above a threshold, then the homogeneity and separation scores are bad. 
Homogeneity, then, helps differentiate high-quality and low-quality clustering 
solutions based on their scores. Statistical methods, such as standard deviation 
and mean values, are more rigorous, and differentiate high-quality and low-quality 
clustering solutions based on statistical error. 	is smaller probability helps separate 
high-quality clustering solutions from low-quality clustering solutions based on 
statistical scores.

6.4.3 � Gene Expression Data Clustering Using 
a Local Shape-Based Clustering

Clustering with local shape-based similarity (CLARITY) is used to analyze 
microarray time course experiments. Balasubramaniyan et al. (2005) devel-
oped CLARITY, based on Spearman rank correlation, which uses a local 
shape-based similarity measure and is robust toward noise. It finds similarities 
between gene expression profiles and includes the probability of time shifts into 
these relationships. CLARITY was developed using the following method. Let 
two gene expression profiles, X and Y, be represented by sequences (x1,…, xn ) 
and (y1,…, yn ), respectively. X and Y are similar if their respective subse-
quences, X [i, j] and Y [k, l ], are also similar, where X[i, j] = def (xi, xi + 1,…, xj ) 
for 1 ≤ i ≤ j ≤ n.

6.4.3.1  Exact Similarity Computation

Exact similarity is defined as when all possible alignments are used to compute local, 
time-shifted relationships between two profiles. 	us, the similarity SIM( X,Y ) 
X and Y of length is computed as

 
=

≤ ≤
SIM X Y def SIM X Y

k k n
k( , ) max ( , ),

min
 (6.22)

where SIMk( X,Y ) measures the similarity of the best alignment of length k given by

 
+ − + −

≤ ≤ − +
S X i i k y j j k

i j n k
max ( [ , 1], [ , 1])

1 , 1
 (6.23)

6.4.3.2  Approximate Similarity Computation

	e exact computation of SIM(X,Y ) is expensive for longer gene expression profiles. 
	erefore, approximate similarity computation, which is based on the basic local 
alignment search tool (BLAST) method, is used. 	e BLAST method is used to 
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find optimal sequence alignments. 	en, these optimal alignments are extended in 
both directions. 	ese steps are outlined below.

Hit: Compute SIMk (X, Y ) for k = kmin. 	is similarity degree is obtained for the 
best match X a b Y a bx x y y[ , ], [ , ], i.e.,

 ( , ) ( [ , ], [ , ]).SIM X Y S X a b Y a bk x x y y=  (6.24)

 Next, determine whether the best match is unique. If it is not unique, then go 
to the next step, “extend.”

Extend: Derive the similarity degrees S(X[ax − u, bx + v], Y [ay − u, by + v]) for 
all 0 ≤ u ≤ min{d, ax − 1, ay − 1}, 0 ≤ v ≤ min{d, n − bx, n − by}, and find the 
best match. If more than one match meets these criteria, then choose the 
randomly optimal longer match.

Iterate: Update the optimal local alignment by replacing *← −a a ux x , 
*← +b b vx x , *← −a a uy y , *← +b b vy y , and and repeat the second step. 

Repeat this process until the optimal alignment does not change.

6.5 I mplementation of k-Means in WEKA
Numerous datasets are available for applying k-means using the GenePattern tool 
(Reich et al. 2006). Of these datasets, we have selected the acute lymphoblastic leu-
kemia (ALL)/acute myeloid leukemia (AML) dataset to run our experiments. 	e 
ALL/AML data are available through the GenePattern tool (Reich et al. 2006). 	e 
dataset consists of 71,29 gene expression profiles of two acute cases of leukemia: (1) 
acute lymphoblastic leukemia (ALL, 47 samples, ALL-B, 38 samples, and ALL-T, 
9 samples) and (2) acute myeloblastic leukemia (AML, 25 samples, AML-BM, 21 
samples, and AML-PB, 4 samples). To implement k-means using the opensource 
data mining software WEKA (Hall et al. 2009), we use four input parameters: 
distance measure, number of clusters, seed points, and terminating point.

In WEKA, we have chosen Euclidean distance to compute distances between 
instances and clusters. Two clusters are selected by default, but we can change the 
number based on individual requirements.

k-Means is limited in its sensitivity to how clusters are initially assigned and 
in its inability to determine a termination point. 	e seed value is used to assign 
instances to clusters. 	e terminating point may occur if there is no change in the 
position of the centroid. Figure 6.8 shows the clustering instances obtained for six 
clusters, clusters 0 to 5, with the following parameters.

	ere are 10 seed points and 44 iterations. In addition, the missing values were 
globally replaced with a mean/mode. Figure 6.8 shows six clusters. 	e number of 
samples are divided into these six clusters. Cluster 0 has 206 samples, cluster 1 has 
77 samples, cluster 2 has 72 samples, and so on.
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6.6  Hierarchical Clustering
In hierarchical clustering, a series of steps are performed to partition the data into 
a cluster. Based on the similarity/dissimilarity of the objects, this technique may 
begin with one cluster that contains n objects, or with n clusters that each contain 
one object.

Hierarchical clustering consists of two methods: agglomerative or bottom-up hierar-
chical clustering techniques and divisive or top-down hierarchical clustering techniques.

6.6.1  Agglomerative Hierarchical Clustering
For agglomerative or bottom-up hierarchical clustering techniques, as shown in 
Figure  6.9, each object begins as a cluster. At each successive step, objects are 

Clustered Instances

0 206 (3%)

1 77 (1%)

2 72 (1%)

3 8 (0%)

4 1193 (17%)

5 5573 (78%)

Figure 6.8  Six clusters (0 to 5) with number of samples in each cluster.

Divisive

Agglomerative

a, b, c, d, e

a, d, e

a, e

a e d b c

b, c

Figure 6.9  Hierarchical clustering.
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combined into larger clusters based on their similarity, until a terminating point 
is reached or all the objects have been reassigned into one cluster. Divisive or top-
down hierarchical clustering, as shown in Figure 6.9, is used as a reverse approach 
of the agglomerative technique. In this method, all objects are first assigned to one 
cluster, and then are divided into subclusters at each successive step until each point 
becomes a cluster, or a terminating point is reached (e.g., the required number of 
clusters is attained).

6.6.2  Cluster Splitting and Merging
Cluster splitting and cluster merging in hierarchical clustering, as discussed in 
Section 6.6.1, consist of two steps, a min-max cut algorithm and cluster merging 
using a Gaussian mixture, respectively (Ding and He 2001). 	ese steps, which 
include merging nodes in agglomerative hierarchical clustering and splitting nodes 
in divisive hierarchical clustering, are described below.

	e min-max cut algorithm is based on the min-max clustering principle that 
data should be assigned to clusters in such a way that intercluster similarity is 
minimized while intracluster similarity is maximized. For example, assume there 
are n data objects and the pairwise similarity matrix is =W wij , where wij is the 
similarity between i and j.

By using the min-max clustering principle, we divide the n data objects into two clus-
ters C1 and C2. 	e similarity between C1 and C2 is defined as ( , )1 2 1 2≡ ∑ ∑∈ ∈s C C wi C j C ij , 
which is also called the overlap between C1 and C2. 	e similarity within a clus-
ter C1 is the sum of pairwise similarities within : ( , )1 1 1C s C C . Using the cluster-
ing principle, s(C1, C2) is minimized while s C C( , )1 1  and s C C( , )2 2  are maximized.

Some data points are located near the boundaries of multiple clusters. 	ese 
points are assigned to different clusters using probabilistic models. Based on the 
membership values, points are assigned to their natural cluster using Gaussian 
mixtures.

Splitting nodes in divisive hierarchical clustering is a three-step process in 
which cluster labeling, size priority cluster splitting, and average similarity must 
be performed. Cluster labeling is performed so that users can collect information 
about the clusters. Feature selection methods, such as mutual information (MI), 
information gain, and the chi-square method, can be used to identify cluster labels 
that characterize one cluster in contrast to other clusters. Size priority cluster split 
is the process in which the cluster with the largest split is selected. However, this 
approach is not optimal, as clusters are not of similar sizes. Average similarity is 
based on the min-max clustering principle, which requires that s(C1, C1) be maxi-
mized. 	erefore, clusters with high average similarity imply that data points in 
a cluster are similar. If we assume similarity is inversely proportional to distance, 
then data points in a cluster are similar to each other in Euclidean space. 	erefore, 
the goal is to split clusters to increase the average similarity for all clusters.
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6.6.3  Calculate Distance between Clusters
Four measures, single link distance, complete link distance, centroid distance, and 
medoid distance, are commonly used to compute the distance between clusters.

¦e first measure is single link distance. It is the smallest or minimum distance 
between an object in one cluster and an object in the other cluster, i.e.,

 =dis k k t ti j ip jq( , ) min( , ),  (6.25)

where t tip jqmin( , ) is the minimum distance between two objects or points p in cluster 
i and q in cluster j. Single link distance is shown in Figure 6.10. In this figure, the 
minimum distance between elements of clusters 1 and 2 is shown. In Figure 6.10, dots 
are the data points within the clusters and the arrow indicates the distance between 
two data points. On left side of the arrow, the set of data points is called cluster 1, and 
similarly, on the right side of the arrow, the set of data points is called cluster 2.

¦e second measure is complete link distance. It is the largest distance between an 
object in one cluster and an object in the other cluster, i.e.,

 ( , ) max( , ),=dis k k t ti j ip jq  (6.26)

where t tip jqmin( , ) is the distance between two objects or points, p in cluster i and 
q in cluster j. Figure 6.11 shows the complete link distance between cluster 1 and 
cluster 2. 	e figure also shows the maximum distance between elements of these 
clusters.

¦e third measure is centroid distance. It is the distance between the centroids of 
two clusters, i.e.,

 =dis k k dis c ci j i j( , ) ( , )  (6.27)

where ci is the centroid for cluster ki, and cj is the centroid for cluster kj. Figure 6.12 
shows a centroid distance.

Cluster 1 Cluster 2
Minimum
Distance

Figure 6.10  Single Link distance.
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¦e fourth measure is medoid distance. It is the distance between the medoids of 
two clusters, i.e.,

 =dis k k dis m mi j i j( , ) ( , )  (6.28)

where mi is the medoid for cluster ki and mj is the medoid for cluster ki.

6.6.4 � Applications of Hierarchical Clustering 
Techniques in Bioinformatics

Researchers use hierarchical clustering techniques in bioinformatics to find 
the appropriate number of clusters or cluster stability estimation for microar-
ray data. 	ree applications of distance-based clustering in bioinformatics are 
described below:

 1. Hierarchical clustering based on partially overlapping and irregular data
 2. Cluster stability estimation for microarray data
 3. Comparison of gene expression sequences using pairwise average linking

Cluster 1
Cluster 2

Maximum
Distance

Figure 6.11  Complete link distance.

Figure 6.12  Centroid distance.
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6.6.4.1 � Hierarchical Clustering Based on Partially 
Overlapping and Irregular Data

Hierarchical clustering based on partially overlapping and irregular data is used to 
overcome the limitations of a clustering algorithm. 	e most important of these 
limitations are listed below:

 1. It is difficult to select the appropriate number of clusters.
 2. It is essential to distinguish partially overlapping and irregular data (Qu 

et al. 2007).

Similarity measures between subclusters can perform two roles:

 1. 	ey can control the merger process of hierarchical clustering.
 2. Based on overlap similarity measure, these types of algorithms stop clustering 

automatically and cluster the overlapping data.

Hierarchical clustering algorithms perform well with data that are irregular or 
have overlapping partitions. However, these algorithms are usually unable to inter-
pret the structures of partially overlapping data, for, e.g., those found in the IRIS 
dataset. Generally, for overlap, a similarity threshold value is set to control the num-
ber of clusters. However, it is not easy to select a global threshold for a dataset.

Qu et al. proposed the HCOSM clustering algorithm to merge overlapped sub-
clusters. 	ere are two phases to this algorithm: initialization into subclusters and 
merging pairs of subclusters. Each of the phases contains steps. 	ese phases and 
their corresponding steps are described below.

In the first phase, data are partitioned into subclusters, following steps 1 and 2 
below. In the second phase, these subclusters are merged, following steps 3–6.

Phase I: Initialization into subclusters
Step 1: Use the k-means algorithm to partition the data into clusters.
Step 2: Find pairs of subclusters that satisfy the conditions, so they can be 

merged in phase II.
Phase II: Merging pairs of subclusters

Step 3: Use the COSM algorithm to determine overlap similarity between 
each pair of clusters and find the maximum overlap similarity measure.

Step 4: Select and merge all possible candidate cluster pairs, and select a can-
didate that satisfies a certain threshold for merging. 	en, combine sub-
clusters into one subset and calculate their mean.

Step 5: Update the number of clusters, and if the number of clusters is less than 
the maximum number of clusters, repeat steps 3–5; otherwise, go to step 6.

Step 6: Output the number of clusters.
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6.6.4.2  Cluster Stability Estimation for Microarray Data

Clustering output will depend on a number of factors, such as the number and 
stability of clusters in a dataset. However, most of the clustering is performed by 
analyzing or finding the number of clusters. 	is problem can be addressed with 
cluster stability scores using the subsampling technique, which can work for both 
known and unknown clusters (Smolkin and Ghosh 2003).

Clustering is performed by calculating the number of clusters using the Ben-
Hur method and computing the random subspace measures (Smolkin and Ghosh 
2003; Ben-Hur et al. 2002). 	e number of clusters can be determined using four 
steps, as described below:

Step 1: Estimate the number of clusters.
1a: Partition samples into k clusters.
1b: At each iteration, select samples and group subsamples into k clusters.
1c: For each subset, calculate pair correlation between the clusters using the 

Jaccard coefficient.
1d: If n correlations are computed for each cluster, and if the distributions of 

correlation coefficients are mapped, then distributions obtained from the 
correlation coefficients help determine the number of clusters (Fowlks 
and Mallows 1983).

	e random subspace-based sensitivity measures can be computed as 
described below.

Step 2: Compute random subspace-based sensitivity measures.
2.1: Perform the random subspace method if the number of clusters is 

known.
2.1a: Partition the samples into k sets.
2.1b: Randomly choose a subset (for example, 65% samples).
2.1c: Create a dissimilarity matrix and follow the hierarchical cluster-

ing procedure.
2.1d: Get k clusters.
2.1e: Determine whether Ai ⊂ Aj, then randomly select a subspace and 

repeat B times.
2.1f: Determine the sensitivity measure by calculating the proportion of 

B samples in which a set appears for each of the original sets A1, A2, 
…, Ak.

2.1g: If the value of the sensitivity measure is close to 1, then the cluster is 
more stable than sensitivity measure that is not close to 1.

2.2: Randomly subspace for an unknown number of clusters.
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2.2a: Estimate the number of clusters using the Ben-Hur method (Ben-
Hur et al. 2002).

2.2b: Once the number of clusters in the above step is estimated, use the 
above-mentioned random subspace method to calculate sensitivity 
measures of the clusters. Follow the above steps.

Finally, to estimate the reliability of individual clusters: the R-index and the cluster 
scoring method can be used (Ray and Bandyopadhyay 2007; Tsai et al. 2004).

6.6.4.3 � Comparing Gene Expression Sequences 
Using Pairwise Average Linking

Sokal and Michener (1958) applied a pairwise average linking cluster analysis to 
gene expression to compare the sequences. 	e gene similarity measure is based on 
a correlation coefficient that is found by computing a similarity score. A similarity 
score can be calculated for any two genes X and Y observed over a series of n condi-
tions. For example, let Gi equal the (log-transformed) primary data for gene G in 
condition i. For any two genes X and Y, a similarity score can be calculated over a 
series of N conditions (Eisen et al. 1998), as
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Step 1: Follow the agglomerative approach.
Step 2: Compute the similarity matrix using the metric above.
Step 3: Identify similar pairs of genes based on their highest value.
Step 4: Create a node by joining the two most similar genes; compute the gene 

expression profile for the node, and update the similarity matrix by replacing 
these two elements.

Step 5: Repeat the process n – 1 times.

6.7 I mplementation of Hierarchical Clustering
We have implemented hierarchical clustering, using the GenePattern tool, on the 
all/aml dataset to run our experiments (as explained in Section 6.5). 	e algo-
rithm is based on agglomerative hierarchical clustering and groups all elements 
into a cluster according to their pairwise distance, with the closest item pairs being 
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merged first (Eisen et al. 1998). 	e comparison of gene expression sequences using 
pairwise average linking is discussed in Section 6.6.3.3.

We have selected the following parameters to implement hierarchical clustering 
in the GenePattern tool:

	 1.	Input file name: Already explained in Section 6.5.
	 2.	Measure column distance: Pearson correlation is used to measure column 

distance.
 3. Measure row distance: No row clustering

Normalize row, center column, and column normalize are selected default 
values. Figure 6.13 shows hierarchical clustering results.

6.8  Self-Organizing Maps Clustering
Self-organizing maps (SOMs) are used to make the visualization of data easier by 
mapping or transforming the n-dimensional data into one-dimensional (1D) or 2D 
data (Germano 1999). For example, in Figure 6.14, if we need to map 40 dimen-
sions each having 100 data points into two dimensions, then we will divide the 100 
data points into a 10 × 10 matrix, and each block of the matrix will represent the 
data found in 40 dimensions.

	ere are two components of SOM: data and weights (Germano 1999). Data 
can be any number of data points in n-dimensional space, e.g., 100 data points in 
40 dimensions. Weights are further divided into two parts: data and natural loca-
tion. 	is data are different from the data mentioned above and should have the 
same dimensions in the above example. A natural location is the location of the 
data points in the matrix, such as (1, 1), (2, 2).

6.8.1  SOM Algorithm
	e SOM algorithm is initiated by randomly selecting a data point (Ultsch and 
Siemon 1990). Once the data point is selected, use the best matching unit to 
search the data points that are similar or best represent the selected data point. In 
this step, distance is calculated between the selected data point and every other 
data point. 	e data point that has the shortest distance will be selected as the one 
most similar to the selected data point. 	e most common way of calculating dis-
tance (e.g., to find the distance between two data points p and q) is the Euclidean 
distance, which is given as
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Let us assume a randomly selected data point is p (0,6,2) and two other data 
points are q (0,3,4) and r (2,3,5). By using Euclidean distance, we will find which 
of the two data points is closer to the selected data point. 	is equation can be 
visualized as

 

( , ) (0 0) (6 3) (2 4) 13 3.6

( , ) (0 2) (6 3) (5 2) 18 4.24.

2 2 2

2 2 2

d p q

d p r

= − + − + − = =

= − + − + − = =
 (6.31)

	us, data point q (0, 3, 4) is the best matching unit because it has a shorter dis-
tance than data points p (0, 6, 2) and r (2, 3,5).

Once the most similar data point is selected, we check to see if its neighbors 
are similar. 	e neighbors can be found using methods such as concentric squares, 
hexagons, or Gaussian functions. If a neighbor is similar, it is selected, and the 
above steps are repeated iteratively. In this way, scaling of neighbors occurs, so that 
similar data points are grouped together (Fukunaga 1990).

1, 1 40, 1

1, 1 1, 10

10, 1

10, 1 10, 40

10, 10

Figure 6.14  Self-organizing map.
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6.8.2  Application of SOM in Bioinformatics
Researchers use SOM techniques for bioinformatics applications (Wang et al. 2001). 
To illustrate the usefulness of SOM techniques in bioinformatics, two such applica-
tions of SOM are described below:

 1. Identifying distinct gene expression patterns using SOM
 2. SOTA: Combining SOM and hierarchical clustering for convenient repre-

sentation of genes

6.8.2.1 � Identifying Distinct Gene Expression 
Patterns Using SOM

Due to the high complexity and dimensionality of microarray gene expression pro-
files, dimensional reduction and the feature selection of raw expression data are 
necessary (Wang et al. 2002). To solve this problem, Wang et al. have proposed a 
two-step analysis.

	e first step of this analysis is to use a self-organizing map (SOM) to reduce the 
dimensionality of the original data and help visualize the data more effectively and 
efficiently in a SOM component plane. 	e second step is hierarchical and k-means 
clustering is used to identify gene expression patterns to classify samples.

From the training set, sample data are chosen at each training step, and the 
distances between sample data and all prototype vectors are calculated (Kohonen 
1997). During training, data points are moved toward the dense area based on 
similarity using neighborhood data points, which leads to prototype vectors of 
neighboring units resembling each other (Vesanto 1999). 	e SOM component 
plane inspects the cluster structure, by comparing the spread of values in a compo-
nent plane. Correlations can then be revealed between similar patterns in identical 
positions. To find an interesting group or cluster of map units, k-means clustering 
is used to further cluster trained prototype vectors mi of SOM, which are combined 
to form clusters (Vesanto and Alhoniemi 2000).

Vesanto used validity indexes such as Davies-Bouldin to validate the best clusters 
by minimizing intercluster similarity and maximizing intracluster similarity. 	is 
validation scheme provided good clustering results for spherical clusters (Vesanto 
1999). 	e algorithm has some limitations; clusters with nonspherical shapes are not 
recognized as one cluster. Moreover, as the cluster increases, the algorithm becomes 
sensitive to outliers and the number of samples in clusters decreases.

6.8.2.2 � SOTA: Combining SOM and Hierarchical 
Clustering for Representation of Genes

SOTA combines the advantages of hierarchical clustering and SOM for convenient 
representation of genes. 	e biggest advantage of hierarchical clustering meth-
ods is that they help researchers visualize and represent genes more conveniently. 
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However, these methods are neither robust nor efficient, whereas SOM is insensi-
tive to noise, but require that the number of clusters be known before implementa-
tion (Longde et al. 2006).

SOM is a neural network with a number of nodes that have the same length of 
the input data and are assigned random values when the process begins (Kohonen 
1998; Tamayo et al. 1999). 	e reference vectors are grouped together based on 
their closeness or the similarity of genes with respect to reference vectors. 	e 
advantage of SOM is that the input of other genes can counterbalance and correct 
the effects of outliers.

	e self-organizing tree algorithm is a divisive (top-down) clustering method, 
which starts with a node called a root, and there are two leaves, each representing 
one cluster (Dopazo and Carazo 1997; Herrero and Dopazo 2002; Tamames et al. 
2002). 	e tree grows when the mean value between the cluster and the genes associ-
ated with it merge into a node. 	e growth of a tree can be stopped by customizing a 
specific number of loops. 	e SOTA algorithm is nondeterministic and is not sensi-
tive to noise or outliers. It is more flexible than the HC method and SOM.

6.9  Fuzzy Clustering
In hard clustering each object is assigned to only one cluster when cluster bound-
aries are well defined. However, in many cases cluster boundaries are ambiguous; 
hence fuzzy clustering can help in overcoming this limitation. In fuzzy cluster-
ing, the object can be assigned to more than one cluster based on degree of mem-
bership associated with each object when the cluster boundaries are ambiguous 
(Dave 1992; Eschrich et al. 2003). 	e degree of membership indicates the strength 
of association between an object and a particular cluster (Wunsch and Xu 2005; 
Zadeh 1965). For example, when a coin is tossed, as explained in Section 6.3.1.5, 
there is an uncertainty as to whether the output will be heads or tails. 	is type of 
uncertainty is called fuzziness.

Figure 6.15 shows two clusters. In the first cluster, samples are denoted by ○. 
In the second cluster samples are denoted by ◻. In hard clustering, each object is 

Figure 6.15  Hard clustering.
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assigned to only one cluster, whereas in Figure 6.16, an object can be assigned to 
more than one cluster. For example, object ⚫ is assigned to more than one cluster 
based on degree of membership.

	e objective function measures the overall dissimilarity within clusters. 	is 
dissimilarity needs to be minimized to obtain optimal partitioning where mem-
bership values determine how much fuzziness a fuzzy set contains. Memberships 
can determine important relations between a given object and the disclosed 
clusters.

	e mountain function for a vertex is defined as
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where D x vj i( , ) is the distance between the jth data object and the ith node, and is 
a positive constant. 	erefore, if the data object is closer to a vertex, it contributes 
more to the mountain function. First, the center is selected based on the vertex vml, 
which has the maximum value of mountain function Mvml and removal of selected 
center mountain destruction is performed. Mountain destruction can be performed 
by subtracting the value of the mountain function for each of the remaining vertices, 
which depends on two factors:

 1. Current maximum mountain function value
 2. Distance between the vertex and the center

	e algorithm stops when a terminating point is reached. 	e terminating 
point is the ratio between the current maximum and Mvml, which should be below 
a threshold value (Dave and Krishnapuram 1997).

Figure 6.16  Fuzzy clustering.
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6.9.1  Fuzzy c-Means (FCM)
Fuzzy c-means (FCM) attempts to find a partition (c fuzzy clusters) for a set of 
data points ∈ ℜ =x j Nj

d , 1,..., , while minimizing the cost function, as denoted 
in (Hoppner et al. 1999)
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where U = [ui, j]cxN is the fuzzy partition matrix and ∈ui j [0,1],  is the membership 
coefficient of the jth object in the ith cluster. =M m mi c[ ,..., ], then, is the cluster 
prototype (mean or center) matrix, ∈ ∞m [1, ) is the fuzzification parameter and 
is usually set to 2, and ( , )=D D x mij j i  is the distance measure between xj and mj 
(Hathaway and Bezdek 2001).

Wunsch and Xu (2005) have summarized the standard FCM in the four-step 
algorithm that follows:

 1. Select appropriate values for m, c, and a small positive number ∈. Initialize 
the prototype matrix M randomly. Set step variable t = 0.

 2. Calculate (at t = 0) or update (at t > 0) the membership matrix U by
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 for i = 1, …, c and j = 1, …, N.
 3. Update the prototype matrix by
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 for i = 1, …, c.
 4. Repeat steps 2 and 3 until − <∈+M Mt t|| ||( 1) ( ) , in which the Euclidean or L2 

norm distance function is used.

	e fuzzy c-means (FCM) method measures the cluster centroid as the mean 
of all points, which are weighted by their location in the cluster. 	e weighting 
is inversely related to the distance from the centroid to the cluster. Since cluster 
centers and membership grades are updated in each iteration, the accuracy of FCM 
depends on selection of initial centroids.
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FCM suffers from four potential problems: the presence of noise and outliers, 
identifying initial partitions, unknown locations of clusters (centers) a priori, and the 
number of points to be handled due to a large variability in cluster shape or density.

6.9.2  Application of Fuzzy Clustering in Bioinformatics
Researchers use fuzzy clustering techniques for bioinformatics applications 
(Dembele and Kastner 2003; Horimoto and Toh 2001). To illustrate the usefulness 
of fuzzy clustering techniques in bioinformatics, three such applications of fuzzy 
clustering are described below:

 1. Clustering genes using fuzzy J-means and VNS methods
 2. Fuzzy k-means clustering on gene expression
 3. Comparison of fuzzy clustering algorithms

6.9.2.1 � Clustering Genes Using Fuzzy 
J-Means and VNS Methods

	e aim of fuzzy clustering is to assign a membership value ranging from 0 to 1 to 
a gene that can be in more than one cluster. In this algorithm, a value of 0 indicates 
a weak association with the cluster, and a value of 1 indicates a strong association 
with the cluster (Belacel et al. 2004).

	e fuzzy c-means (FCM) method is an extension of the k-means method 
(Bezdek 1981; Dunn 1974; Ruspini 1969).

For a chosen number of clusters, c, and for an n × c matrix, W = [wik ], where wik 
is the membership degree for gene =i i n, 1,2,..., , to cluster =k k n, 1,2,..., , the FCM 
clustering problem can be represented as (Belacel et al. 2004)
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where Jm(W, V ) is the objectivity function that defines the quality of the result 
obtained for centroids V and memberships, Wm is the fuzzy parameter, and for 
m = 1 the partition is crisp, leading to the problem of minimum sum of squares 
clustering (Belacel et al. 2004). 
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gives a set of c centroids or prototypes, i.e., positions of cluster centers. In this instance,
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is the Euclidean norm determining distances between expression-level vectors and 
centroids, whereas membership degrees wij are defined such that ≤ ≤wik0 1 and 
Σ = ∀ == w i nk
c

ik 1, 1,2,...,1 .
	e FCM algorithm is as follows (Belacel et al. 2004):

Step 1: Find the initial centroid.
Step 2: Calculate the membership and initial centroid.
Step 3: Calculate the new centroid.
Step 4: If the centroid is improved, go to step 5. Otherwise, go to step 2.
Step 5: Calculate the membership and the objectivity function.

	e value of fuzzy parameter m has to be greater than 1, as m = 1 represents 
crisp clustering (Belacel et al. 2004).

Equation 6.38 can therefore be reformulated to (Hathaway and Bezdek 2001)
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where Rm(V ) is the new objectivity function that depends on the centroid positions, 
which can be found by minimizing Equation 6.38, and therefore it will be used to 
compute membership values.

	e FJM method, which was introduced by Belacel et al. (2002), is described 
below. To form defined neighborhoods, FJM uses all possible centroids-to-pattern 
relocations where membership values and centroids are calculated in the same way 
as in FCM (Belacel et al. 2002).

Step 1: Find the initial centroid.
Step 2: Calculate the objective function.
Step 3: Drop the least useful centroids.
Step 4: Once the centroid has been deleted, add the most useful pattern.
Step 5: Find membership values that help in changing the crisp solution to a 

fuzzy one and find the new centroid set using given memberships.
Step 6: Calculate the objective function R.
Step 7: If R improves, return to step 3. Otherwise, go to step 8.
Step 8: Calculate the memberships and the objectivity function.
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Both FCM and FJM depend on starting centroid values (Belacel et al. 2004). 
	erefore, these values cannot guarantee an optimal clustering solution. 	e steps 
to the algorithm are as follows:

Step 1: Set the centroids and objective function to be optimal: set stopping con-
ditions and kmax.

Step 2: If stopping conditions are satisfied, go to step 3; otherwise, go to 
step 8.

Step 3: Decrease the value of k by 1.
Step 4: If k > kmax, go to step 2. Otherwise, go to step 5.
Step 5: Generate at random new centroids, V, as the initial set of centroids.
Step 6: If R has improved, go to step 2. Otherwise, go to step 7.
Step 7: Increase the value of k by 1.
Step 8: Calculate memberships and objective functions.

6.9.2.2  Fuzzy k-Means Clustering on Gene Expression

Gasch and Eisen (2002) modified the fuzzy k-means clustering in two ways to 
determine overlapping clusters:

 1. 	ey ran fuzzy k-means clustering three times, and for the second and third 
runs, subsets of the data were used for clustering.

 2. 	ey used random initialization.

Genes representing rows and conditions representing columns in an expression 
value table were input for the algorithm. 	e steps for this process are outlined 
below.

Step 1: Clustering was begun by defining k/3 prototype centroids, where k and 
3 are clusters and clustering cycles, respectively. Gasch and Eisen (2002) used 
PCA to identify these k/3 Eigen vectors.

Step 2: Find the correlation between the gene expression pattern and the cen-
troid using the Pearson correlation method, which assigns a membership 
score to each gene for each prototype centroid.

Step 3: Calculate each centroid pattern again.
Step 4: Iterate the calculation of gene-centroid memberships and update the 

centroids until the required condition is met, for example, if centroid patterns 
become fixed or the termination criterion is met.

	is method not only gives the unique centroid but also gives a matrix that 
provides membership scores for each gene for each centroid. 	erefore, genes that 
belong to multiple clusters can be identified through their membership value.
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6.9.2.3  Comparison of Fuzzy Clustering Algorithms

	e comparison of fuzzy clustering algorithms method is a clustering algorithm 
that is used to classify fuzzy models (Almeida and Sousa 2001). 	is action is per-
formed by comparing the computational efficiency and accuracy of the algorithm.

Selecting fuzzy models for classification is a complex task, and this task becomes 
more complex due to the large number of features in a large dataset; therefore it 
becomes necessary to select only the relevant features. 	e fuzzy clustering algo-
rithm can be used to clustered data using different fuzzy clustering algorithms, such 
as possibilistic c-means, fuzzy possibilistic c-means, or possibilistic fuzzy c-means. 
	ese methods are all limited by the difficulty of determining which fuzzy clus-
tering algorithm should be used for classification. In this section, different fuzzy 
clustering algorithms are compared for computational efficiency and accuracy.

Classification of systems using fuzzy clustering includes the following steps 
(Sousa and Kaymak 2002):

Step 1: Gather data by computing or constructing system-relevant features.
Step 2: Preprocess data to remove incomplete, noisy, and inconsistent data.
Step 3: Select and identify relevant features.
Step 4: Select a clustering algorithm and its parameters.
Step 5: Select the number of required clusters.
Step 6: Cluster data using the selected clustering algorithm.
Step 7: Determine the membership functions from clusters by projection.
Step 8: Determine the fuzzy rule from each cluster by using membership func-

tions that are obtained in the previous step.
Step 9: Validate the model.

	e possibilistic c-means is based on the FCM algorithm, which uses a condition 
that the sum of membership degrees must equal 1. Due to the presence of outliers, 
this condition is difficult to achieve. A possibilistic objective function is proposed to 
overcome this limitation (Krishnapuram and Keller 1993) and is given by
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where γi are positive constants and D are ikA
2 , which is the squared inner-product 

norm defined in Equation 6.39.
	e first term in the above equation is similar to the FCM objective function, 

shown in Equation 6.39. 	e distances between the feature vectors and the pro-
totypes should be as small as possible, whereas the second term forces μij to be as 
large as possible, whereby assigning all memberships to zero and minimizing the 
criterion function.
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	e difference between fuzzy-possibilistic c-means (FPCM) and other fuzzy 
clustering algorithms, such as FCM and PCM, is that FPCM produces both 
memberships and possibilities, along with the centers for each cluster. Both 
memberships and possibilities help visualize the correct interpretation of data. 
Membership helps classify a data object that has the representative vector clos-
est to the data point. Possibility helps find the centroids to avoid the effect of 
outliers or noise. Moreover, FPCM overcomes the limitations of noise sensitiv-
ity defects and the coincident clusters problem of FCM and PCM, respectively 
(Pal et al. 1997). For example, in Equation 6.40,
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where DikA
2  is the squared inner-product norm defined in Equation 6.40 and 

> > ≤ µ ≤m n tik ik1, 1,0 , 1.
FPCM is limited in that it constrains the typicality values. By removing the 

constraint on the typicality values and retaining the column constraint on the 
membership values, the objective function can be determined as (Hathaway and 
Bezdek 2001)
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where DikA
2  is the squared inner-product norm defined in Equation 6.40 and m > 1, 

1,0 , 1η > ≤ µ ≤tik ik  and Σ == ui
c

i 11 .
Outliers can be reduced by using a bigger value for b than for a. 	us, similar 

effects can also be achieved by controlling the value of m. For example, to reduce 
the effect of outliers on the centroid, the large value of m and the small value of 
a can be used. However, in order to reduce the membership effects on the proto-
types, a large value of m should be used, so that the model will behave more like 
the PCM model.

	e fast fuzzy clustering algorithm (FFCA) is based on the self-organizing 
Kohonen network, in which the number of clusters is not known before applica-
tion (Herrero et al. 2001; Qin et al. 2003). FFCA was introduced to select the 
input for nonlinear regression models. First, all datasets must be normalized so 
that all the data points lie in one particular range. Gaussian membership func-
tions represent the clusters, and this algorithm uses the input patterns one by 
one. Initially, the first cluster center is defined by the input sample, and the initial 
cluster width is set to a default value, σ init . For each pattern, it checks whether 
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the sample belongs to a cluster c or not. If the sample does belong to cluster c, the 
pattern and cluster center vi are added to that cluster. Otherwise, a new cluster 
is created.

6.10 �I mplementation of Expectation 
Maximization Algorithm

We have implemented the expectation maximization (EM) algorithm using the 
IRIS dataset, which is available in WEKA. In this dataset, there are 150 samples 
and 4 attributes. 	e four attributes are sepallength, sepalwidth, petallength, 
and petalwidth.

	e EM algorithm works on the concept of probability distribution, where it 
indicates the probability of the instance belonging to each cluster. EM uses cross-
validation, which helps in finding the number of clusters. However, users can also 
specify the number of clusters in the beginning that need to be generated.

Working of cross-validation is done to determine the number of clusters:

 1. For 10-fold cross-validation, training data are split randomly into 10-fold and 
the number of clusters is set to 1.

 2. EM is performed 10 times using 10-fold cross-validation, and the loglikeli-
hood is averaged over all 10 results.

 3. If loglikelihood has increased the number of clusters by 1, then go to step 2.

Figure 6.17 shows four clusters (0, 1, 2, 3) obtained from the expectation maxi-
mization (EM) algorithm by using a 10-fold cross-validation method. 	e mean, 
standard deviation, and distribution of points are given for each cluster of an attri-
bute. 	ere are four attributes in the dataset: sepallength, sepalwidth, petallength, 
and petalwidth. Moreover, it has three classes: Iris-setosa, Iris-versicolor, and Iris-
virginica. As shown, cluster 0 contains 48 points, cluster 1 contains 50 points, 
cluster 2 contains 29 points, and cluster 3 contains 23 points.

6.11  Conclusion
Cluster analysis finds potential classes in the dataset, by either using a hierarchical 
structure or partitioning the data according to a prespecified number that includes 
steps ranging from preprocessing to cluster discovery and also provides great chal-
lenges to scientists. Although these algorithms solve several problems, each has 
limitations. Clustering algorithms usually follow certain assumptions and biases; 
therefore none of the clustering algorithms can solve all problems. 	us, selection 
of clustering algorithm depends on the application and needs of a researcher.
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Chapter 7

Advanced Clustering 
Techniques

	is chapter is an extension to the clustering techniques in bioinformatics. 	e cluster-
ing algorithms in this chapter are aptly titled advanced clustering techniques because 
they are based on the clustering techniques described in Chapter 6, but with natural 
extensions. In this chapter we provide descriptions of how these advanced clustering 
techniques are applied to different areas of bioinformatics (Bader and Hogue 2003).

7.1  Graph-Based Clustering
Graph-based clustering is used to group similar vertices into one cluster such that 
the maximum number of edges connect within the cluster, and the minimum 
number of edges connect between the clusters (Bader and Hogue 2003).

For clustering, a graph is represented by G(V, E), where V represents vertices of 
a graph, and E indicates edges that connect two vertices (Figure 7.1).

7.1.1  Graph-Based Cluster Properties
Graph-based cluster properties can be determined using the two-step process 
explained below (Schaeffer 2007).

 1. If one vertex cannot be connected to another vertex through an edge, then 
these vertices will not be in the same cluster.

 2. 	e edge connecting two vertices should be located within the cluster, not 
between clusters.
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Edges are classified into two groups: internal edges and external edges.
Internal edges connect one vertex to another vertex within the cluster. 

	erefore, if the vertex has an internal degree of 0, then this vertex is not con-
nected to any other vertex within a cluster. Hence, it should not be a part of the 
cluster (Figure 7.2).

External edges connect vertices between clusters. 	erefore, if the vertex has an 
external degree of 0, then this vertex should be a part of a cluster, as it has no con-
nections outside a cluster (Figure 7.3).

Figure 7.2 E dges in black are part of one cluster, as their internal edges are 
connected to one other. Hence, they have more internal edges than other edges, 
which are not part of this cluster.

Figure 7.1  A partitioned graph. The graph (top) has been partitioned into four 
clusters based on data point similarity.
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7.1.2  Cut in a Graph
Cut S is defined as the division of the vertices V into two nonempty sets ( , / )S V S  of a 
graph G = (V, E), and cut size is defined as the number of edges that connect vertices 
in one set S to vertices in another set ' / 'V S . 	e cut size is shown in Equation 7.1.

 
( , / ) { , } | , .c S V S v u E u S v V

S{ }= ∈ ∈ ∈  (7.1)

Cut size helps identify the sparseness of connections in the cluster, rather than 
with the rest of the graph (Goldberg and Tarjan 1986; Gomory and Hu 1961). 	is 
measurement can be taken by computing graph density where smaller cut sizes iso-
late the cluster better. Graph density is defined as the ratio of the number of edges 
present to the maximum possible edges.

A minimum cut (mincut) separates a graph so that the end product has a small 
number of edges (Figure 7.4).

7.1.3  Intracluster and Intercluster Density
Internal or intracluster density is defined as the density of the subgraph induced by 
the cluster (Davies and Bouldin 1979). For good clustering, internal density should 
be higher than the density of the graph δ(G),
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Figure 7.3 T hree clusters (shown in black): The cluster on the left is of good 
quality due to the high connectivity of internal edges. The cluster in the middle 
is not as well defined, as its edges are more connected to external edges than to 
internal edges. The cluster on the right has fewer connections both outside and 
inside. Hence, it is not a good cluster.



222  ◾  Data Mining for Bioinformatics

where e is a cluster, v and u are vertices of an edge, and ( )int eδ  is the intracluster 
density of a cluster (e).

	e external or intercluster density is defined as the ratio of intercluster 
edges to the maximum number of intercluster edges possible. For good cluster-
ing, the intercluster density of the clustering should be lower than the density 
of the graph,
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where ,....,1e ek  are clusters, v and u are vertices of an edge.

7.2  Measures for Identifying Clusters
Clusters can be determined using one of two methods. 	ey can be determined by 
computing values for the vertices, and assigning them to clusters based on these val-
ues. Clusters can also be determined by calculating a fitness measure for the set of 
possible clusters (Schaeffer 2007) (Figure 7.5) (Maulik and Bandopadhyay 2002).

7.2.1 � Identifying Clusters by Computing Values 
for the Vertices or Vertex Similarity

Some of the clustering algorithms compute similarity between the vertices by 
setting a threshold similarity. If similarity between vertices is higher than the 
threshold is, then the vertices are clustered together. 	is method is computa-
tionally more expensive than clustering a graph once the similarities are known. 
	e cluster should contain only those vertices that are similar and remove other 
vertices.

Figure 7.4  A cut in the graph is shown by a dotted line that cuts the graph into 
two partitions.
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A distance measure can be computed instead of similarity if the cluster bound-
ary is located in a way that includes most of the outside vertices and significantly 
increases the intracluster distances by using distance and similarity measure, 
adjacency-based measures, and connectivity measures. We will explain each of 
these measures below.

7.2.1.1  Distance and Similarity Measure

Distance measures, such as Euclidean distance, can be used to calculate the dis-
tance between two vertices. 	at distance is compared with the threshold distance. 
If a calculated distance is less than the threshold distance, then an edge will be 
assigned between the two vertices, and the vertices are considered to be similar and 
sorted into one cluster.

7.2.1.2  Adjacency-Based Measures

Adjacency-based measures can be performed by measuring the similarity between 
vertices using an adjacency matrix, which determines whether two vertices are 
similar or not by analyzing the overlap of their neighbors. If a value is 0, then 
there is no common neighbor between the two vertices. If the value is 1, then 
the neighbors are identical. In Figure 7.6(a) there are six vertices in a graph that 
are labeled and their relationship is explained by using the adjacency matrix in 
Figure 7.6(b). If one vertex is connected to another vertex by an edge, then 1 is 
assigned in the adjacency matrix; otherwise, 0 is assigned. For example, vertex 1 
is connected to vertex 2, and hence 1 is assigned in the adjacency matrix, whereas 
vertex 4 is not connected to vertex 2 by an edge, and hence 0 is assigned in the 
adjacency matrix.

Identifying Clusters

Compute Values for the Vertices Compute Fitness Measure

Density MeasureAdjacency-
Based Measures

Distance and
Similarity
Measure

Connectivity Measures

Cut-Based Measure

Figure 7.5  Measures to identify clusters.
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7.2.1.3  Connectivity Measures

Connectivity measures can be used to find the similarity between the vertices 
whether the vertices are in the same cluster or in different clusters. Vertices will be 
in the same cluster. If many paths exist between a pair of vertices, the number of 
paths can be compared by a default or a threshold value; i.e., they should be highly 
connected with each other.

7.2.2  Computing the Fitness Measure
	e cluster fitness measure is used to measure the quality of a given cluster (Rand, 
1971; Rousseeuw 1987). Using vertex similarity, cluster fitness functions help 
classify vertices into the clusters. Cluster fitness can be determined using two 
approaches: density measure and cut-based measure (Figure 7.7).

7.2.2.1  Density Measure

Several algorithms that have a density higher than a threshold value have been 
proposed to search for subgraphs. 	ese algorithms work because a cluster is a sub-
graph that is dense with respect to a given threshold density.
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1 2 3 4 5 6

0 11 0 0 1 0

1 02 1 0 0 0

0 13 0 1 0 0

0 04 1 0 1 1

1 05 0 1 0 0

0 06 0 1 0 0

 (a) (b)

Figure 7.6  (a) Labeled graph. (b) Adjacency matrix.

Fitness Measure

Density Measure Cut-Based Measure

Figure 7.7 I dentifying clusters by a fitness measure.
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7.2.2.2  Cut-Based Measures

Cut-based measures find the subgraph that is not dependent or has no relation-
ship with the remaining part of the graph by computing connectivity between 
the subgraph and the rest of the graph. Hence, high-quality clusters can be 
found.

7.3  Determining a Split in the Graph
Factors such as cuts, spectral methods, and betweenness determine graph splits 
(Figure 7.8).

7.3.1  Cuts
A cut in a graph is quite important, as a well-selected cut can divide a graph 
or separate two or more dense clusters. 	ere are two limitations with such 
a division:

 1. Simply removing single vertices will not help compute a cluster.
 2. It is difficult to determine the terminating point of splitting the graph.

7.3.2  Spectral Methods
	e second factor that helps determine a graph split is the use of spectral methods 
that are based on spectral clustering and computing eigenvectors. In a spectral 
method, eigenvectors are computed to correspond to the second smallest eigenvalue 
of the normalized Laplacian operator. Hence, the resulting eigenvector compo-
nents are used to measure the similarity between the vertices for determining 
clusters. Although the spectral method is computationally expensive, this limita-
tion can be overcome using a distributed algorithm to reduce the computational 
load (Kempe 2004) (Prodromidis et al. 2000).

Graph Splits

Cuts Spectral Methods Edge Betweenness

Figure 7.8  Graph can be split by using techniques such as cuts, spectral meth-
ods, and edge-betweenness.
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7.3.3  Edge-Betweenness
Edge-betweenness is another way to determine graph split. Newman and Girvan 
(2003) assign numerical weights on the edges in an unweighted graph to deter-
mine clustering. 	ese weights are called edge-betweenness, which is the number 
of shortest paths between two vertices that pass through an edge.

	e algorithm can be performed in four steps:

 1. Compute the edge-betweenness of all edges in the graph.
 2. Eliminate those edges that have the highest edge-betweenness.
 3. Calculate the edge-betweenness again for all the edges, as removal of the 

edges may change the edge-betweenness of other existing edges in the graph.
 4. Repeat steps 2 and 3 until no edges remain.

Finally, we obtain a clustering algorithm.

7.4  Graph-Based Algorithms
Graph theory helps describe clustering problems that arise in graphs where the 
nodes of a graph represent data points and edges represent proximity between 
nodes or data points. A dissimilarity matrix is defined as

 

1 ( , )
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0=
<
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if D x x d

elseij
i j , (7.4)

where 0d  is the threshold distance and ( , )D x xi j  is the distance between two points 
( , )x xi j .

Applications of graph theory include the Chameleon and CLICK algorithms.

7.4.1  Chameleon Algorithm
	e Chameleon algorithm is an agglomerative, hierarchical clustering algorithm, 
based on a nearest-neighbor graph, where an edge will be eliminated if the distance 
between the vertices is less than a defined threshold distance (Xu and Wunsch 
2005). Chameleon is performed as follows (Figure 7.9):

 1. Use minimal edge cut to divide the connectivity graph into a set of subclusters.
 2. Ensure there are enough nodes in each subgraph so that there is an effective 

similarity computation.
 3. Combine both relative interconnectivity and closeness to help find potential 

clusters, and merge these small subsets to obtain ultimate clustering solutions.
 4. Normalize the average weight of the edges that are connected based on the 

closeness of the clusters.
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7.4.2  CLICK Algorithm
	e CLICK algorithm is based on computing the minimum weight cut to form 
clusters (Xu and Wunsch 2005). Probability and graph theory help assign weight 
to the edges, which are defined as shown in Equation 7.5:
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Equation 7.5 can be replaced using the Bayes’ theorem as shown in Equation 
7.6, because CLICK further assumes that the similarity values within clusters and 
between clusters follow Gaussian distributions with different means and variances. 
For example,

 
log

(1 )
( )

2
( )

2
,0

0

2

2

2

2e p
p

S S
ij

B

w

ij B

B

ij w

w
= σ

− σ
+ −µ

σ
− −µ

σ
 (7.6)

where p0 is the prior probability that two objects belong to the same cluster, μB is 
the mean between cluster similarities, 2

Bσ  is the variance between cluster similari-
ties, μw is the mean within cluster similarities, and 2

wσ  is the variance within cluster 
similarities.

Figure 7.9  Steps of the Chameleon algorithm are explained in Section 7.4.1. 
(From Karypis, G., and E.H. Han, IEEE Comput Soc (1999): 68–75.)
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7.5 � Application of Graph-Based 
Clustering in Bioinformatics

To illustrate the usefulness of graph-based clustering in bioinformatics, three such 
applications are described below:

 1. Analysis of gene expression data using the shortest path (SP)
 2. Construction of genetic linkage maps using the minimum spanning tree of 

a graph
 3. Finding isolated groups in a random graph process

Each of these applications is described below.

7.5.1 � Analysis of Gene Expression Data 
Using Shortest Path (SP)

Some gene pairs exist in the same biological pathway but do not show high expres-
sion similarity (Zhou et al. 2002). 	erefore, transitive expression similarity is an 
important measure for finding transitive genes. 	ese genes can be found using 
shortest path (SP) analysis. By using this method, genes are identified based on 
whether they are functionally related. Moreover, by using the functionality of 
known genes, the function for unknown genes that are on the same shortest path 
as the known genes can be predicted (Zhou et al. 2002).

To find the number of connected gene pairs in the graph, a threshold will be 
selected to help construct a graph and compute the shortest path by assigning an edge 
when the absolute expression correlation Ca,b is higher than the predefined threshold. 
	e edge length between vertices a and b is ( ) (1 ), , ,d f C Ca b a b a b

k= = − , where increas-
ing the value of k in the gene provides more power to reveal transitive coexpression. To 
stabilize the number of genes, Zhou et al. set a value of k equal to or greater than 6. 
Moreover, to include only significant SPs, the authors set a threshold for a path length 
equal to 0.008. Using this threshold, only SPs that are less than 0.008 will be included.

Zhou et al. (2002) find the shortest path for all pairs of known genes and con-
nect them. By using the functionality of known genes, Zhou et al. have predicted the 
functionality of unknown genes by finding a gene-specific function. 	ey scanned 
the tree from the root to the lowest level of the tree. If the difference between the root 
and lowest level is less than four levels, then that function is a specific gene function, 
and hence this functionality can be assigned to an unknown gene on the SP.

7.5.2 � Construction of Genetic Linkage Maps Using 
Minimum Spanning Tree of a Graph

	is method is useful when the data are noisy and incomplete. 	erefore by com-
puting the minimum spanning tree, the correct order of markers can be deter-
mined (Wu et al. 2008; Matsuda et al. 1999).
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Building a genetic map is a three-step process (Wu et al. 2008), as shown 
below.

Step 1: Divide the markers into linkage groups, known as a group of loci that 
are connected. 	ese markers act as a single group, and clustering is needed 
to assign markers into linkage groups.

Step 2: Determine the correct order given to a set of markers in the same link-
age group.

Step 3: Calculate the distance between the adjacent markers.

Let di,j be the Hamming distance between two markers, li and lj, belonging 
to two linkage groups (Wu et al. 2008). 	e graph G(M, E) is drawn so that the 
weight is given to an edge (li, lj) ∈ E of a pairwise distance di,j between li and lj to 
cluster the markers into linkage groups between all sets of markers. Markers will 
be assigned to the linkage groups when the distance between them is larger than 
or equal to δ. 	en, that edge is removed from G(M, E), and the resulting graph 
divides into connected components.

7.5.3  Finding Isolated Groups in a Random Graph Process
Brumm et al. used two approaches to find different representations of the relation-
ships. First, they used a graph-based approach, in which a global threshold was set to 
classify all pairs that were above a predefined threshold, and the threshold graph was 
obtained. Second, they generated a dendrogram (or tree) using a clustering algorithm, 
whereby tree pruning was performed to obtain gene groups (Brumm et al. 2008).

Both of these methods are limited by the necessity to set a global threshold that 
is extremely sensitive. 	erefore, it is difficult to discover whether two genes are 
related within a module (internal cohesion) or how two genes are unrelated to each 
other within a module (external cohesion) (Handl et al. 2005; Hubert and Arabie 
1985). Moreover, in a heterogeneous biological system, it is difficult to reveal all the 
modules by using either one threshold graph or tree pruning.

To overcome the above limitations, a new method has been developed to detect 
modules in relational genomic data by giving ranks to the relationships between 
genes and threshold graphs by moving the global threshold from stringent to per-
missive (Brumm et al. 2008). Sequences of graphs having modules persist as cohe-
sive subgraphs, which are identified as groups, which allows modules to identify 
with internal cohesion and find the statistical significance of each candidate mod-
ule (Brumm et al. 2008).

	e graph approach can find relationships across a range of thresholds (Brumm 
et al. 2008). 	e first step of the graph approach is to find the graph that has all 
genes and no edges. 	e second step is to place the edge that has the strongest 
relationship score, i.e., rank 1, between the pair of genes and obtain the next graph. 
	erefore, subsequent edges are added based on ranks.
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In this way, a graph sequence is obtained. 	is graph sequence begins with an 
empty graph and ends with a complete graph. Hence, the entire analysis is based 
on a single graph.

7.5.4  Implementation in Cytoscape
We have implemented graph clustering by using a tool called Cytoscape. 	e input 
or dataset for Cytoscape is galFiltered.cys, which indicates a Cytoscape session file 
that contains interaction network and expression data. 	e files contain an interac-
tion network of 331 genes that were significantly differentially expressed in at least 
1 of the 20 experimental conditions (KeiichiroOno 2010).

To implement graph clustering we used a plug-in called ClusterONE in Cytoscape 
(Nepusz et al. n.d.). ClusterONE is based on a graph approach. 	is method is per-
formed by “growing” dense regions using one or two vertices called seeds based on 
their cohesiveness (Nepusz et al. 2012). Cohesiveness is a quality measure in which 
a well-defined group should have more internal edges and fewer boundary edges. 
Weights, which define how reliable that edge is, are assigned to the edges. Whenever 
reliable edges are found, they are selected in a numeric edge attribute in Cytoscape 
that helps drive the cluster growth process.

	e ClusterONE algorithm searches for high cohesiveness of clusters, which 
begins from a small set of vertices that are strongly bound together. 	is group 
can be increased by adding new vertices as long as cohesiveness increases. A 
vertex can be removed if it increases the cohesiveness of a group (Nepusz et al. 
2012).

	e termination condition, or the stopping condition, occurs when the cohe-
siveness of a group fails to increase. Subgroups that are less than a given threshold 
are discarded. Finally, subgroups that are cohesive and overlap are combined to 
form larger subgroups so that results can be interpreted more easily.

Once the clustering process is performed successfully, nodes will be colored 
based on the number of clusters. If a node is only in a single cluster, it will turn red. 
Similarly, if a node is in more than one cluster, it will turn yellow. Finally, if a node 
is an outlier, then it will turn gray (Figure 7.10).

We have selected the following default parameters to implement the ClusterONE 
algorithm in Cytoscape: minimum size, minimum density, edge weights and 
merging method, and overlap threshold. Two clusters are merged if overlap is 
larger than a given threshold.

7.5.4.1  Seeding Method

ClusterONE will start producing clusters from a single node or a single edge called 
initial seeds. 	ere are three ways in which ClusterONE can select seeds:

 1. Every node will be used as a seed.
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 2. From unused nodes, in which the node that does not participate and also 
has the largest weight of the discovered clusters will be selected as the 
next seed.

 3. From every edge, a measure will be taken once, each having a seed consisting 
of the two endpoints of the edge.

7.6  Kernel-Based Clustering
Most clustering algorithms are limited in that they can detect and cluster data 
only into spherical or elliptical shapes. 	is inability to recognize clusters in other 
shapes, such as nonspherical or arbitrary shapes, limits the applicability of the algo-
rithm (Vapnik 1999).

A kernel is a nonnegative real-valued integral function K, which satisfies the 
following two requirements:

 
( ) 1K u du∫ =

−∞

+∞
 and ( ) ( )K u K u− = for all values of u. (7.7)

If K is a kernel, then the function *K  is defined by ( ) ( ), 0* 1 1= λ λ λ >− −K u K u where .
Kernel-based learning algorithms are based on Cover’s theorem (Xu and 

Wunsch 2005). Complex and nonlinear, separable patterns can be transformed 
nonlinearly into a higher-dimensional feature space. In this way, it is possible 
to separate these patterns linearly (Xu and Wunsch 2005). An inner-product 
kernel can be calculated to help compute the corresponding points in the trans-
formed space.

Figure 7.10 I mplementation of ClusterONE in Cytoscape.
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For example, suppose we have a set of patterns x j
d∈ ℜ  and a nonlinear map 

: FdΦ ℜ →  (Xu and Wunsch 2005). Here, F represents a feature space with arbi-
trarily high dimensionality. 	e objective is to find K centers so that we can mini-
mize the distance between the mapped patterns and their closest center as
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where mi is the center for the lth cluster and lies in a span of ( ),...., ( )1x xNΦ Φ , and 
( , ) ( ). ( )k x x x xj j= Φ Φ  is the inner product kernel.

	ey define the cluster assignment variable as

	

1, if belongs to cluster
0, otherwise.
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 (7.9)

7.6.1  Kernel Functions
Kernel function transforms the data from the original space into a high-dimensional 
space nonlinearly, which may result in a better performance, as data would be more 
linearly separable (Scholkopf et al. 2001).

Most common kernel functions are uniform, triangle, Epanechnikov, quartic 
(biweight), tricube (triweight), Gaussian, and cosine. 	e most popular of these 
choices is the Gaussian function.

7.6.2  Gaussian Function
	e Gaussian function can be read as

 ( ) .
( )2

2 2f x ae
x b
c=

− −

 (7.10)

Equation 7.10 shows a classic Gaussian function, in which a is the height of the 
curve peaks, b is the position of the center of the peak, and c controls the width of 
the curve. In signal processing, Gaussian functions are used as Gaussian filters, and 
in image processing, they are used as Gaussian blurs (Figure 7.11).
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7.7  Application of Kernel Clustering in Bioinformatics
7.7.1  Kernel Clustering
Kernel clustering can find the number of clusters. In this method, the kernel matrix 
eigenvectors define the mapping based on the underlying nature of the data. 	e 
features of the data are presented for partitioning, and the sum-of-squares cost is 
used to evaluate the clustering method.

	e sum-of-squares method will not work if the boundaries separating the 
clusters are nonlinear. 	is limitation can be overcome by transforming the data 
into a high-dimensional feature space nonlinearly and clustering within this fea-
ture space. However, this approach will only work if the feature space is not high. 
Hence, the kernel principal component analysis (KPCA) method should not be 
applied on the transformed variables. Kernel function can be used in the original 
data space to compute inner products between points. 	is ability may aid the users 
working on infinite feature spaces.

Next, the kernel, k-means algorithm, can be formulated as the following:

 1. Initialize the centers ml with the first i, (i ≥ K )observation patterns.
 2. Take a new pattern xi + l, and calculate C(i + l )h, as shown in Equation 7.11.
 3. Update the mean vector mh, which has a corresponding C(i + l )h of 1, as

 ( ( 1) ), where / .( 1) 1
1m m x m C Ch

new
h
odd

i h
old

i h j
i

jh= + ξ Φ + − ξ = + +
+  (7.11)
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Figure 7.11  Gaussian function. (From http://upload.wikimedia.org/wikipe-
dia/commons/thumb/7/74/Normal_Distribution_PDF.svg/720px-Normal_
Distribution_PDF.svg.png.)
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 4. Adapt the coefficients T hj for each ( )x jϕ  as
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 5. Repeat steps 2–4 until convergence is achieved.

Kernel-based clustering algorithms have many advantages. For example, in 
high-dimensional or infinite feature space, it is possible to obtain a linearly sepa-
rable hyperplane using kernel-based clustering algorithms. 	ese algorithms can 
form arbitrary clustering shapes, except for hyperellipsoids and hyperspheres. 
Support vector clustering (SVC) is a form of kernel-based clustering algorithm and 
can address noise and outliers, and no prior knowledge is needed to determine the 
same topological structure.

7.7.2  Kernel-Based Support Vector Clustering
Support vector clustering is based on the kernel method that uses the kernel func-
tion for data clustering (Ben-Hur et al. 2001). 	is method is unable to detect non-
convex-shaped clusters. To overcome this limitation, Yeh and Lee have proposed a 
two-step ν-SVC method to aid in clustering the data into different groups. In the 
first step, a sphere centroid is calculated for each cluster. In the second step, the 
cluster results are improved iteratively using the k-means algorithm.

To make the method robust, excessive distances should be removed in order 
to avoid the excessive distance slack variables , 0,i iξ ξ ≥ ∀ξ  have used. Moreover, 
distances should not be smaller than R. 	erefore,
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where ν is a trade-off between sphere radius and the excessive distance of outliers, 
which helps determine the number of outliers and support vectors. 	us, slack vari-
ables are also called ν-SVC. In addition, ϕ: X ↦ F can be used as a nonlinear mapping 
function that connects an input space to a feature space F. In this equation, a and R 
are the center and radius of a sphere in the feature space, respectively. If the value of 
v is small, then only a few outliers will be found in a large sphere due to substantial 
penalty on the excessive distance. Similarly, if the value of v is large, then the radius 
will be small and there will be many outliers with large excessive distances.

SVC is time-consuming, as it can produce a large number of clusters, each 
containing a single sample. In addition, sometimes it can produce only one cluster 
having all the samples (Ben-Hur et al. 2001).
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To overcome these limitations, Satish and Sekhar cluster the data by using a two-
step ν-SVC method and then use k-means to improve the cluster results (Ben-Hur 
et al. 2001). To remove the effect of noise or outliers they changed the parameters 
by setting the value of v to be large and provide a trade-off between the radius of the 
sphere and the excessive distance, and then improved the cluster results iteratively by 
using k-means algorithm.

7.7.3 � Analyzing Gene Expression Data Using 
SOM and Kernel-Based Clustering

Kotani and Sugiyama (2002) examined and classified the gene expression data 
using self-organizing maps (SOMs) and a kernel-based clustering obtained from the 
DN.4 microarray. 	us, gene expression data are input to the SOM, and prototype 
vectors will be generated as input for kernel-based clustering. Hence, kernel-based 
clustering will be applied on the data (Kotani and Sugiyama 2002). 	erefore, 
kernel-based clustering categorizes the units of the SOM.

	e application of SOM is limited because the results are difficult to visualize or 
understand. Hence, it is hard to cluster boundaries, whereas data can be partitioned 
nonlinearly by using kernel-based clustering. 	us, Kotani and Sugiyama find clus-
ter boundaries by using kernel-based clustering, making the results of SOM easy to 
visualize and understand.

Self-organizing maps (SOMs) mapped or transformed the n-dimensional data 
into one-dimensional (1D) or 2D data where mapping is defined by associated 
D-dimensional prototype vectors, pi, for the ith unit. 	e unit chosen as the closest 
prototype vector to the nth input vector, xn, is defined as (Kohonen 1995)

 min( ) ( ).− −x p x pn i
T

n ii

 (7.14)

	e chosen unit updates its prototype vector according to

 p t p t h t p t xi i ci i n[ ]+ = + −( 1) ( ) ( ) ( ) .  (7.15)

where t is the learning iteration and hci is the neighborhood function that is a 
decreasing function. 	e authors have used a radial symmetric Gaussian function 
as the neighborhood (Kotani and Sugiyama 2002).

To increase the linear dispersion in feature space, kernel-based clustering 
(Girolami 2002) transforms the nonlinear data into higher-dimensional feature 
space. Φ is a smooth and continuous mapping from the data space to the feature 
space, F, and is defined as

 : .R FDΦ →  (7.16)
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	e trace of the within-group scatter matrix in F, SW
Φ

, is given by
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where Nc  is the number of clusters and N is the number of input vectors. 	e 
mean of each cluster, mk

Φ , is defined as
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where N z zk n
N

kn kn= Σ = ,1  is an indicator of whether the nth input vector belongs 
to the kth cluster, namely, if xn  belongs to the kth cluster, 1zkn = , and otherwise 

0zkn = .
N × N kernel matrix, K, is defined as

 K K x x x xij i j i j= = Φ Φ( , ) ( ). ( ).  (7.19)

Kotani and Sugiyama obtain the following equation:
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and
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kγ =  (7.22)

Girolami (2002) has used a radial basis function as the kernel function,

 
( , ) exp || || .2k x x x xi j i j= − −   (7.23)
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Finally, the optimal clustering of input vectors is obtained as
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7.8  Model-Based Clustering for Gene Expression Data
Model-based clustering is based on the assumption that each component or group 
of data is generated by underlying probability distribution, which helps determine 
a relevant or good clustering method (Azuaje and Bolshakova 2002; Yeung et al. 
2001). Yeung et al. have considered six such models: the Gaussian mixture model 
(GMM), the equal volume spherical model, the unequal volume spherical model, 
the unconstrained model, the elliptical model, and the diagonal model. 	e most 
common such models are Gaussian mixture and the diagonal model.

7.8.1  Gaussian Mixtures
Gaussian mixtures are the most statistically mature models for clustering areas in 
which each component is spherically symmetric. In these models, there are few 
parameters, and the spherical model is of equal volume (Ouyang and Welsh 2004). 
In GMM, each component is modeled by multivariate normal distribution param-
eters, kµ  (mean vector) and kΣ  (covariance matrix), which helps determine geo-
metric features such as shape, volume, and orientation for each component of k 
(Banfield 1993). For example,
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7.8.2  Diagonal Model
	e diagonal model can find the number of clusters and model parameters using 
the EM algorithm in both the MCLUST and diagonal model implementation. In 
the EM algorithm, the expectation (E) steps determine the probability whether a 
sample belongs to a particular cluster or not, and in the maximization (M) step, the 
model parameters are determined based on the current given group of membership 
probabilities. When the EM algorithms are combined, observations are assigned to 
their group based on maximum conditional probability
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7.8.3  Model Selection
Model-based clustering is a probabilistic approach that helps users to select the best 
clustering algorithm and the correct number of clusters (Yeung et al. 2001). 	ere 
is a trade-off between the probability model and the number of clusters. For exam-
ple,  a complex model requires a small number of clusters, while a simple model 
requires a large number of clusters. Let us assume D is an observed data, and M1 
and M2 are two models with parameters of a1 and a2, respectively. 	e integrated 
likelihood represents the probability that D is observed, given that the underlying 
model is Mk (Yeung et al. 2001).

To choose between models M1 and M2, (Kass and Raftery, 1995) suggested 
the use of Bayes factor. 	e Bayes factor is defined as the ratio of the integrated 
likelihoods of the two models B12 = p(D/M1)/p(D/M2). If B12 > 1, model M1 is 
preferred over model M2. 	e limitation of using the Bayes factor is the estimation 
of integrated likelihood.

Schwarz et al. have used a Bayesian information criterion (BIC) to compare 
models and find the BIC score of differences greater than a threshold. Models that 
contain this difference can be a strong reason for preferring one model over the other.

7.9  Relevant Number of Genes
	e clustering process partitions data into a number of clusters or groups that are 
denoted by K (Yuan and Li 2008; Tseng and Wong 2005). 	eir quality depends 
on the number of clusters. Some clustering algorithms need the value of K as an 
input. Sometimes K can be difficult to understand and evaluate if there are many 
clusters. Similarly, if there are fewer, clusters K cause loss of information (Youness 
and Saporta, 2010). Research in this area is ongoing, and it is difficult to find the 
appropriate value of K (Tseng and Wong 2005). Tseng and Wong have proposed a 
method that does not need to assign all the points into the clusters and produces 
tight and stable clusters (Yuan and Li 2008). Some representative examples are 
illustrated in the following.

7.9.1 � A Resampling-Based Approach for 
Identifying Stable and Tight Patterns

To identify stable and tight patterns (Tseng and Wong 2005), cluster the samples 
based on similar expression patterns. In microarray experiments, there are many 
genes that are not related to any biological process. 	erefore, there are no correla-
tion variations within clusters of genes. Hence, these genes should not be clustered, 
and are thus called scattered genes. Due to scattered genes, estimating the appro-
priate number of clusters is not easy. As a result, we get distorted clusters that are 
difficult to visualize and analyze because these scattered genes divide the algorithm 
into clusters at all points.
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For simplicity, Tseng and Wong (2005) used k-means and Euclidean distance as 
a dissimilarity measure by assuming data are in Euclidean space.

7.9.2 � Overcoming the Local Minimum 
Problem in k-Means Clustering

k-Means clustering will be used in the tight clustering algorithm. However, because 
the k-means method is the local minimum, its applications are limited, although 
it can be overcome by minimizing within-cluster dispersion (sum of squares) 
(Tseng and Wong 2005). However, it is computationally expensive to search for the 
global minimum. 	erefore, to stabilize within-cluster dispersion, the algorithm 
performs iterative reallocation. Poor selection of input values can give inaccurate 
results, as minimization falls in a local minimum quickly, and it becomes more 
prominent when scattered points exist.

7.9.3  Tight Clustering
	e subsampling procedure is used to create variability so that it is easy to dis-
tinguish between points that are stably clustered and those that are clustered by 
chance. From the original data, X takes a random subsample X ’, for example, 60% 
of the original sample size, and applies k-means with the prior knowledge of k on 
X ’ to obtain the cluster centers C(X ’, k) = (C1, C2, …, Ck), which can be used to 
cluster the original data X based on the distances from each point to the cluster 
centers. Following the convention of Tibshirani et al. (2001), the resulting cluster-
ing is represented by a comembership matrix D[C(X ’, k), X ], where D[C(X ’, k), X ]ij.

Repeat independent random subsampling B times to obtain subsamples X (1),  
X (2), …, X (B). 	e average comembership matrix is defined as D  = mean(D[C(X (1), 
k), X ], …, D[C(X (B),  k),  X ]). Search for a set of points V  =  {v1,  v2, …, vm} ⊂ 
{1, …, n} such that D i jv vi j ≥ − α ∀1 , , , where α is a constant close to 0. Order sets 
with this property by size to obtain Vk1, Vk2, etc. 	ese V sets are candidates of 
tight clusters.

7.9.4  Tight Clustering of Gene Expression Time Courses
Tight clusters are the most informative clusters and are obtained as small clusters. 
Such clusters usually include 20 to 60 genes in genomic signal processing (Yuan 
and Li 2008; Roddick and Spiliopoulou 2002). Moreover, tight clusters are more 
interpretable than existing partitions because they find core patterns. 	e k-means 
method is used to find the initial partition, and helps reveal more information. 
For example, a new function can be discovered when genes belonging to the same 
functional category are assigned into different tight clusters. Tight clusters can be 
obtained, by classifying some genes as scattered genes, but such classification can 
disturb biologically relevant patterns. Hence, Yuan and Li have proved that some 
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scattered genes can be of biological importance and should not be removed as outli-
ers (Yuan and Li 2008).

7.10  Higher-Order Mining
	e knowledge, information, or patterns obtained from large raw data are widely 
acknowledged, but many a times these raw data are not available due to several 
reasons. First, agencies do not want to share their data. Second, streaming data is 
only available temporarily, which will be in some other form. Finally, it is difficult 
to achieve the required computational speed, which is dependent on hardware tech-
nologies (Wijsen and Meersman 1998). 	erefore, there is a strong need to define 
methods that can extract knowledge or information even if there is no accessibility 
of primary or raw data. Hence, to overcome the above limitation, higher-order min-
ing is defined. Higher-order mining is a data mining form in which derived data, 
statistical information, or patterns are the input instead of raw data (Roddick et al. 
2008). More formally, let Ξ = | 1.... , 1i n ni{ }ε = ≥  be a set of models or patterns, 
such that iε  has been extracted from a dataset Di. Higher-order mining discovers 
new pattern or model ε̂ from the set Ξ through the use of data mining methods 
(Roddick et al. 2008).

7.10.1  Clustering for Association Rule Discovery
Due to the lack of discreteness in the nonprimary data, it is difficult to apply associa-
tion rule mining on it (Tuzhilin and Adomavicius 2002). 	is limitation can be over-
come by using clustering as a preprocessing step that helps formulate discrete intervals 
to obtain association rules of adequate frequency. Yang and Miller find numerical 
ranges for ordinal values by creating distance-based association rules by using the 
BIRCH algorithm (Zhang et al. 1996), which can be obtained from the generated 
clusters (Yang and Miller 1997). Moreover, Yang and Miller used the distance mea-
sure to find the distance between two clusters instead of finding support and confi-
dence. 	is distance helps in determine how strong a rule is; i.e., if a distance between 
two clusters C Cx y, , is large, then the rule is weak, C Cx y→  (Yang and Miller 1997).

7.10.2  Clustering of Association Rules
	ere can be some cases when there are large numbers of rules and these large num-
bers can make their interpretation difficult to understand (Toivonen et al. 1995). 
A set of rules of the form

ID[1] → Insurance[yes]
ID[2] → Insurance[yes]
ID[3] → Insurance[yes]
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might be better described as

ID[1–3] → Insurance[yes]

Lent et al. (1997) cluster the association rules by using a concept similar to 
the binning method used by Agrawal and Srikant (Lent et al. 1997; Agarwal and 
Srikant 1995), where each bin represents an association rule. Gupta et al. (1999) 
used the concept of finding distances to cluster the association rules, and Denton 
and Perrizo (2003) combined various forms of data mining algorithms and made a 
framework based on partitions.

7.10.3  Clustering Clusters
Partition-based clustering algorithms are iterative, as the center continues to 
move until it reaches a stopping or threshold condition based on some criterion. 
	erefore, initial points are computed to find the mean and allow the iterative pro-
cess to begin. According to Bradley and Fayyad, if the starting point is suboptimal, 
then clustering algorithms will reach suboptimal solutions (Bradley and Fayyad 
1998). Because of this problem, Fayyad suggested that clustering subsamples can 
aid in the discovery of an improved local minimum, and that the combination of 
solutions through clustering can reach an improved starting point. However, due 
to a suboptimal starting point, this method will be computationally expensive. A 
smoothing process can improve the chance that a researcher will reach a good solu-
tion (Bradley and Fayyad 1998).

7.11  Conclusion
In conclusion, Chapters 6 and 7 contain a detailed list of clustering (unsupervised) 
techniques of data mining. In these two chapters we have also provided insights 
into their application in bioinformatics and the challenges they pose.
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Chapter 8

Classification Techniques 
in Bioinformatics

Supervised learning, like unsupervised learning, is one of the data mining tasks 
introduced in the knowledge discovery in databases (KDD) process and consists 
of two phases, training and testing. In the training phase, we build a model using 
samples that is representative of the hypothesis (or real-world use of the function) 
and connects (learns from) the input parameters to achieve a learning objective, 
such that the samples can accurately and efficiently predict the learning outcome. 
We then extract features of interest from the samples. In this step, we ensure that 
the features are not too large in order to avoid the curse of dimensionality. Once we 
have completed the training phase, we begin the test phase. We test the trained 
model using random samples of data. Typically, the test phase includes evalu-
ation routines such as holdout and k-fold cross-validation techniques. In this 
chapter we provide an overview of the various supervised learning techniques, 
better known as classification techniques, and their application in the field of 
bioinformatics.

8.1 I ntroduction
	ere is a wide variety of classification techniques that one can choose from, and 
they perform differently under different data and learning domains. It is important 
to understand how these algorithms work in order to understand how the perfor-
mances and results will differ. Before we explain the working principle of each 
algorithm, we will highlight the intricacies of supervised learning.
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8.1.1  Bias-Variance Trade-Off in Supervised Learning
When trying to understand how a supervised learning algorithm works, it is imper-
ative to understand two key terms, bias and variance. To elucidate the effects of bias 
and variance and help define their prominence in supervised learning, let us first 
consider a situation in which we have two train sets. Let us assume that these two 
train sets do not share any samples but have the same number of classes and the 
same number of samples in each class. Let us consider a random test sample x that 
is used to test models built by a supervised learning algorithm using both training 
sets independently. If the sample x is incorrectly classified across both train sets, the 
model has a high degree of bias. If however, sample x is assigned a different class for 
different train sets, then the model has a high degree of variance. 	ese two vari-
ables have direct implications on the prediction error of the model, as it is directly 
proportional to the sum of the bias and variance.

When we create a train set with low bias, the result is often a “flexible classifier.” 
However, such a classifier may be too flexible and will fit differently in different 
datasets. 	us, there is a natural trade-off between bias and variance.

8.1.2  Linear and Nonlinear Classifiers
In this section we draw the distinction between linear and nonlinear classifiers. 
	e distinction is drawn by how the input object’s characteristics are modeled for 
decision making.

A linear classifier decides class membership of a sample by comparing a linear 
combination of the features to a fixed threshold. For example, let us consider a set 
of points that belong to two classes represented in a two-dimensional (2D) space as 
shown in Figure 8.1. A linear classifier attempts to fit a line + =c f c f H1 1 2 2  so that 

Hyper-planes
H4

H5

(a) (b)

Figure 8.1 T he triangles and dots can be separated by multiple linear classifiers 
in (a). In some cases, the separation of data by a linear function can lead to false 
alarms (and dismissals) in discrimination, but a nonlinear function can achieve 
better separation, as shown in (b).
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the line separates or divides the points into two corresponding classes. 	is step 
is best described in Figure 8.1(a). Since we consider only two features f1 and f2 for 
analysis, the resultant rules for classification are a linear combination of these two 
features, in which a sample is assigned to the first class if it satisfies + >c f c f H .1 1 2 2

Otherwise, the feature is assigned to the second class.
In our example, f f T( , )1 2  is the 2D vector representation of a data point. Both 

the parameter vector c c T( , )1 2  and the constant H play a vital role in defining the 
decision boundary. 	e resultant 2D representation of the decision boundary is a 
straight line that is a plane when viewed in three dimensions. When the number of 
dimensions is greater than 3, the resultant decision boundary is generalized to what 
is referred to as a hyperplane. If a hyperplane perfectly separates two classes, then 
the two classes are linearly separable. It should be noted that if the property of linear 
separability is maintained, then there are an infinite number of linear separators. 
Figure 8.1(a) is pictorial representation of a scenario in which the number of possible 
hyperplanes can be infinite. In reality, data are plagued by noise. While dealing with 
a linearly separable problem using noisy data for training, the challenge of choosing 
the best hyperplane is questioned, requiring a stringent criterion for selecting among 
all decision hyperplanes that perfectly separate the training data. In general, some 
hyperplane will perform well on new data and some will not. 	us, linear classifiers 
may not be as simple to use as they are to conceive due to a difficulty in determining 
the optimal set of parameters of �c  and H from a given train set.

	e nonlinearity of a nonlinear classifier is intuitively clear when the decision 
boundaries of the classifier are locally linear segments. However, we generally have 
a complex shape that is not equivalent to a line in two dimensions or a hyperplane 
in higher dimensions.

Figure 8.1(b) shows one such example of a nonlinear problem. In this figure, 
there is no one good linear separator between the two classes, as an isolated cluster 
of points that belong to a different class is surrounded by points of another class. 
	is lack of clear boundaries would make accurate classification using linear meth-
ods almost impossible.

Since nonlinear classifiers can capture complex decision boundaries, they pro-
duce better classification accuracies. Since we know that they perform better for 
complex classification problems, we must determine whether they perform well 
enough in other areas to justify using nonlinear classifiers for all classification prob-
lems. To answer this question, we look into bias and variance and their roles in both 
linear and nonlinear classification. It is imperative to describe a means to estimate 
the error associated with the classifier. A commonly used error estimate is the mean 
squared error (MSE), which is the difference between the predicted output of a 
classifier ϒ given a test sample x and the probability of x belonging to a class C 
(represented as P C x( | )), represented by the following notation:

 ( ) [ ( ) ( | )]ϒ = ϒ −MSE E x P C xx  (8.1)
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where is Ex the expectation with respect to P(d). Our objective is thus to minimize 
the MSE that is averaged over train sets. To achieve this objective, we reexamine 
the concept of bias and variance with respect to linear and nonlinear classifiers. 
We then define bias as the squared difference between P(C|x) (the actual probabil-
ity of a sample x belonging to a class C) and the predicted outcome ( )Γ xD  of 
the learned classifier averaged across train sets. 	e bias is large if the classifier is 
consistently inaccurate across different train sets. On the contrary, the bias may be 
small for several reasons: (1) if the classifier performs consistently well across differ-
ent datasets, (2) if different train sets cause errors on different test samples, or (3) if 
different train sets result in positive and negative outcomes on the same test sample, 
but average out to near zero.

Linear models are considered to have a high bias for nonlinear problems, as 
they can only be employed to model a linear hyperplane. If one of the input train 
sets has a class that is a nonlinear class boundary, then the resultant bias is high. 
	is high bias is a result of a large number of data points in the train set that 
would be consistently misclassified by the linear classifier. 	ey therefore require 
intuitive knowledge of the problem for fitting a linear classifier with data that 
are believed to exhibit linear characteristics, yielding lower error estimates and 
more correctly classified instances. On the contrary, if true class boundaries are 
not linear and we incorrectly “force” the classifier to be linear, then the classification 
accuracy will drop.

Nonlinear models are considered to have a low bias. As discussed, the decision 
boundaries generated by these classifiers vary greatly and are dependent on the dis-
tribution of the data points of a class in the train set. 	e variability offered by the 
nonlinear classifiers provides flexibility in classifying different classes with different 
degrees of accuracies as per the application needs.

We define variance as the variation of the prediction of a learned classifier across 
different datasets. It is the average squared difference between the predicted out-
come and its averaged prediction across different train sets.

	e variance is large if different train sets D give rise to very different predic-
tions for a given test sample x. It is small if the train sets have a minor effect on 
classifier prediction, be it correct or incorrect. 	us, variance is a measure of incon-
sistency with the decisions and does not take into consideration whether they are 
correct or incorrect.

Linear models are considered to have low variance, as most train sets that are 
randomly generated produce similar decision hyperplanes. 	e decision lines pro-
duced by linear learning methods will deviate slightly from the main class bound-
aries, depending on the train set, but the class assignment for the vast majority 
of samples (with the exception of those close to the main boundary) will not be 
affected. 	e circular enclave will be consistently misclassified.

Nonlinear models have high variance. It is apparent that these models create 
complex boundaries between classes and are thus sensitive to noise. As a result, 
the variance is high. For instance, if the test sample is close to noisy samples in the 
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train set, it can get misclassified by default. 	is noise results in a high variation 
across train sets.

High variances in learning methods are prone to overfitting training data, 
which may prevent us from capturing true properties of the underlying distribu-
tion (as shown in Figure 8.2). In overfitting the learning model learns from noise as 
well as from features. Overfitting increases the MSE and frequently is attributed to 
high variance learning methods.

8.1.3  Model Complexity and Size of Training Data
With the large increase in bioinformatics data, a large volume of research has been 
published, creating a growing importance of using data mining to utilize, under-
stand, and discover patterns of interest. In this section we try to explain the method 
for selecting a subset of data and the method’s effects on variance and bias of a 
classifier used.

	e work performed by Brian and Webb (1999) illustrates the effects of increas-
ing the size of the dataset on the variance and bias of different learning methods. 
	ey attempted to explore the possibility of designing algorithms specifically for 
large datasets. 	eir analysis was aimed at proving that if the number of samples in 
the dataset was increased, they could decrease the variance to develop algorithms 
that obtain more interesting results.

As discussed in Section 8.1.2, variance measures the degree to which the pre-
dictions of the classifiers developed by a learning algorithm differ among data-
sets. If the train sets are small, we assume that the relative impact of the train 
sets cannot be a sufficient representation of the population, and thereby expect 
a large variance for the learning algorithm. We can solve this problem using the 

(a) (b)

Figure 8.2  A schematic representation of noise in data and its effects on the per-
formance of a nonlinear classifier. (a) A nonlinear classifier that does not overfit 
the data and (b) a nonlinear model that overfits to suit the distribution of noise 
in the data.
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method described by Brian and Webb (1999). First, we assume that 50% of the 
samples in a population (large database) have a common characteristic. If a ran-
domly selected train set is of size 10, there is a probability of 0.38 that 40% or 
less of the samples in the train set will retain the common characteristic from the 
population. Furthermore, there is a negligible 0.17% probability that 30% or less 
of the samples in the train set will retain the characteristic. 	ereby, if a smaller 
train set is taken from a large population, it has a slimmer chance of being a good 
representation of the population. To negate the effect of this, we use a train set of 
size 1,000,000 if 50% of the population exhibits a common characteristic. 	e 
probability that 40% or less of the samples in the train set exhibits this character-
istic is less than 10–22, and the probability that 30% or less of the samples in the 
train set exhibits it is less than 10–26.

Furthermore, if 1% of the population exhibits a common characteristic and we 
randomly choose a train set of size 100, there is a probability of 0.37% that this 
characteristic will not be found in the samples of the train set and a probability of 
10–17 that this characteristic will not be captured in a larger train set of 1,000,000. 
In contrast, in a random sample of size 1,000,000, if 50% of the population exhib-
its the characteristic, then the probability that 40% or less of the sample will exhibit 
the characteristic is less than 10–22. 	e probability that 30% or less of the sample 
will exhibit the characteristic is less than 10–26.

From this description, it can be expected that classifiers learned from many 
small train sets will differ more significantly than classifiers learned from larger 
train sets. 	is hypothesis was tested and verified using both linear and nonlin-
ear models. It was observed that in both linear and nonlinear models, the mean 
square error dropped as the size of the train set increased. However, when both 
independent variances and biases were compared, it was observed that nonlinear 
models exhibited a reduction in variance and a similar reduction in bias. While 
we expect a similar trend in linear models, it was observed that though there 
is a consistent decrease in variance with the increase in train set sizes, the bias 
fluctuated.

	e statistical conclusions drawn from these experiments reinforced the 
hypothesis that both linear and nonlinear classifiers perform better as train data are 
increased. 	is result is evident with the decrease in variance values obtained with 
increased train set sizes. 	e various trends in bias show that the computational 
complexity of learning affects the performance of the models generated as the size 
of train sets increases. 	us, if the presented results are extrapolated to millions 
of train samples, then the complexity of the learned models can be expected to be 
orders of magnitude higher than that for the small train sizes from which models 
are normally developed. 	is change in learning complexity may also be attributed 
to the decrease in variance, leading to the next important feature of reducing the 
complexity of these algorithms to strike a balance between both bias and variance. 
Various forms of classification schemes are available based on the number of phe-
notypes or classes available in the train sets.
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Binary classification: In this kind of classification scheme, there are two 
phenotypes considered in the train set. 	e objective of the learning 
scheme is to discriminate between samples that belong to either of the two 
classes. Better known as binary class classification, this scenario is derived 
from a single hypothesis H, leading to a single conclusion, either positive 
or negative.

Multiclass classification: On the other hand, we call learning multiclass clas-
sification if there are more than two phenotypes or classes associated with 
the instances in the training and testing sets. In this form of classification, 
the objective is to classify a single sample into one of the many classes. It is 
more complicated than the binary class classification, as comparing multiple 
hypotheses makes the decision.

Multiclass classification can thus be viewed as a collection of binary class classi-
fication strategies. Several commonly used strategies can make this possible, namely, 
the one versus all (OvA) and the all versus all (AvA). 	e OvA strategy works on 
the pretext that a single hypothesis separates one class from the rest of the classes. 
	is strategy equates a multiclass classification approach into a standard binary class 
problem, whereas the AvA strategy employs multiple hypotheses, where independent 
hypotheses exist between each pair of classes. 	us, decisions are performed based on 
the cumulative results of various underlying hypotheses being satisfied.

8.1.4  Dimensionality of Input Space
It is apparent that the complexity of the learning method is connected to the size of 
the train set. For simplicity, let us assume a train set X is a collection of data samples 

…x x xn{ , , , }1 2 . Each data sample xi is described by a set of features …f f fm{ , , , },1 2  
also referred to as dimensions. In our discussion on linear and nonlinear models, 
the complexity of a classifier is closely tied to the number of features or dimensions 
used to describe each xi.

	e complexity of the learning algorithm grows exponentially larger when the 
number of features (m) exceeds the number of samples (n) in the train set (i.e., when 
m >> n). 	is growth in complexity is owed to the curse of dimensionality as dis-
cussed in Chapter 2. Furthermore, the distance (Euclidean distance) between the 
points in an m-dimensional space increases as the number of dimensions increases, 
thereby introducing sparseness in the distribution of data. With the increase in 
sparseness of data, it becomes a computational challenge to determine the boundar-
ies of the data, and it is therefore difficult to determine a single hypothesis.

	is problem is increasingly prevalent in bioinformatics, as many datasets are 
considered to be high-dimensional (Ma and Huang 2008). For instance, cancer 
classification using gene expression analysis (Golub et al. 1999; West et al. 2001), 
epigenetics (Zukiel et al. 2004; Piyathilake and Johannig 2002), and proteomics 
using mass spectrometry (Leslie et al. 2004) all contain a large number of features 
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that far exceed the number of samples in the train set. It is believed that not all 
features are useful in describing the samples and as a solution require a data pre-
processing step of feature selection to reduce the number of features by filtering out 
relevant or redundant features.

8.2  Supervised Learning in Bioinformatics
Supervised learning finds its application in many facets of bioinformatics, especially 
in genomics and proteomics. With the prevalence of high-throughput techniques in 
biology, it has become increasingly difficult to analyze data of large magnitudes. For 
example, microarray technology makes it possible to view the expression of thou-
sands of genes under a variety of experimental conditions. Microarray gene expression 
experiments have been conducted to identify biomarkers in the different manifesta-
tions of cancer (Ramaswamy et al. 2001), including breast cancer (Lukes et al. 2009), 
head cancer, neck cancer, lung cancer (Vachani et al. 2007), and lymphoma (Golub 
et al. 1999). Researchers analyze the regulation (up- or downregulation) of subsets of 
genes to draw associations between genes that will elucidate their role in cancer. As 
with any biological data, the data obtained from microarray studies have categori-
cal phenotypes of interest that are hierarchical, such as cancer occurrence, stages, 
or subtypes. Moreover, the number of genes in these studies typically exceeds the 
number of samples available, making statistical inference about the genes difficult. 
	is mismatched ratio of genes to samples mandates the use of supervised learning. 
Supervised learning can be used to reduce the number of genes.

Furthermore, in proteomics, supervised learning techniques have been utilized 
to analyze an array of problems of biological significance. For instance, one of 
the central problems of bioinformatics is the classification of protein sequences 
into functional and structural families based on sequence homology. It is easy to 
sequence proteins but difficult to obtain protein structures. Analytic solutions are 
required based on statistical techniques to classify protein sequences into families 
and superfamilies. 	ese classification strategies usually rely upon extracted fea-
tures that exploit structure and functional relationships between proteins and their 
constituents. Furthermore, supervised learning has been exploited to determine 
the subcellular location of proteins in a cell. 	e subcellular location of a protein is 
necessary in determining its functional characteristics, as the protein’s location in 
the cell aids in inferring its biological functions.

	e automatic prediction, using supervised learning techniques, of protein sub-
cellular localization is an important component of bioinformatics. 	us the predic-
tion of protein function is now an integral part of bioinformatics and can aid in 
identification of drug targets.

As discussed in Chapter 5, mass spectrometry is an analytic technique that 
measures the mass-to-change ratio of ions. It is generally used to find the pro-
teomic/peptide composition of a physical sample. Some types of cancer affect the 
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concentration of certain molecules in the blood, which allows early diagnosis by 
analyzing the blood mass spectrum. 	is is a data-rich facet of proteomics that 
can benefit from supervised learning. Each feature is measured with mass spectra, 
and often summary statistics of the peaks can be used to discriminate between 
individuals with different cancer phenotypes. Researchers have used mass spectra 
to commonly detect prostate, ovarian, breast, bladder, pancreatic, kidney, liver, and 
colon cancers.

	us, the aim of supervised learning in bioinformatics is to broadly address two 
objectives: to build accurate classifiers or predictive tools and to derive inferences 
from the results obtained.

 1. To build accurate classifiers or predictive tools, users can apply one of several 
learning methods that could be linear or nonlinear. Such linear models 
used include support vector machines (SVMs) and the naïve Bayes (NB). 
Nonlinear models include the k-nearest-neighbor (kNN) classifier and 
tree-based classifiers such as C4.5. 	e classifier used is determined by the 
nature of the dataset used for training and testing. Moreover, the classifier 
should enable reliable discrimination between different phenotypes under 
analysis.

 2. To derive inferences from the results obtained, biologists survey the data for 
relevant information. 	ough building of accurate classifiers is important, 
biologists are not merely interested in accurate predictive tools. 	ey also 
look for additional information that could be extracted from the data but 
that could not be derived from simple statistical analysis. For example, it 
is of growing importance for researchers to identify biomarkers of diseases 
from a set of microarray samples obtained from different biological states. 
	ese biomarkers refer to a small set of relevant genes that lead to the correct 
discrimination between different biological states, which are derivatives of 
patterns obtained from classification rules.

To provide a conceptual view of the data, we use microarray data as an exam-
ple to introduce concepts and challenges in this data process. Microarray tech-
nology enables the measurement of the expression level of thousands of genes 
simultaneously in a cell mixture (Wang et al. 2005). A phenotype is the outward, 
physical manifestation of an organism, and phenotype classification is used to 
classify tissue samples into different classes of phenotypes, including cancer versus 
normal, using gene expression data (refer to Figure  8.3). 	ese phenotypes are 
determined using the measured expression levels of thousands of genes in the 
samples as features.

	us, to conceptualize these data, let us assume that from given N tissue sam-
ples and expression levels of M genes, we can store the data in a × +N M( 1)matrix 
as shown below, where each vector (column) represents a sample and each element 
in the vector represents the expression value of the M genes. We introduce an 
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additional (Ci ) element into the vector that represents the phenotype from which 
the sample is drawn.

One of the challenges in using supervised learning in bioinformatics lies in the 
embedded challenges that the raw data possess. As mentioned, the success of using 
a supervised classification scheme can only be exemplified if the following data 
issues are addressed in the preprocessing stage of the KDD process: the removal of 
data inconsistency and missing values, the removal of noise, normalization, and the 
reduction of dimensionality.

 1. Removal of data inconsistency and missing values must be performed to deter-
mine which method is best. Biological data typically consist of data gener-
ated by biological experiments. Legacy systems are typically plagued with 
manually curated data that have varied nomenclature and missing values. It 
is thus imperative that these issues be addressed before subjecting the data to 
any learning approach.

 2. Removal of noise is performed to filter out samples that do not meet the stan-
dards for data. 	e inconstant recording of results from biological experiments 
plagues these systems. Not all biological experiments fail to systematically 
follow a set of standards; then these experiments, rather than increasing the 
volume of data, contribute to the noise of the system. It is thus imperative to 
filter out samples that do not confirm the standards by applying appropriate 
filtering approaches.

Figure 8.3  A schematic representation of gene expression data obtained from 
high-throughput microarrays. 
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 3. Normalization is a process that ensures that all the samples are treated equally. 
Typically data in bioinformatics are obtained from disparate sources, making 
normalization essential for effective comparison and learning.

 4. Dimensionality reduction reduces the expense of computational systems in 
evaluating high-dimensional data. It is known that not all features/dimen-
sions are important or at times redundant and can be removed, thereby 
reducing the computational load and decreasing the scarcity of the data. It 
is preferred to understand the nature of the data and use effective feature 
selection techniques.

In general, the analysis of biological data entails several hundred to thousands 
of features (as in the case of microarray data), with only a few dozen to hundreds of 
samples available. In such cases, the number of dimensions exceeds the number of 
samples (M >> N). Most learning algorithms exploit chance patterns and elabo-
rate models that perform well on training data but poorly on new data, leading 
to overfitting. 	e risk of overfitting must be reduced by selecting a set of features 
proportionate with the number of samples. Moreover, the selection of a reduced 
set of features requires fewer computational efforts for model learning and enables 
a better understanding of the process that underlies the data. Depending on how 
the selection process is combined with the classification process, attribute selection 
methods belong to one of the following three categories: filter methods, wrapper 
methods, or embedded methods. 	ese methods are explained in Chapter 4. In 
the remainder of this chapter, we highlight key supervised learning approaches and 
their applications in the field of bioinformatics. 	ere are several supervised learn-
ing strategies in existence, and we have logically separated them into the following 
categories: linear models, which include SVMs; naïve Bayes, nonlinear models, 
which include tree-based models and Bayesian networks; and ensemble approaches, 
which include bagging and boosting.

8.3  Support Vector Machines (SVMs)
Support vector machines (SVMs) are powerful classification algorithms. 	ey are 
prominently used in computational biology and have been successfully applied to a 
gamut of problems, like protein homology detection (Melvin et al. 2007), functional 
classification of promoter regions (Holloway et al. 2005), and the prediction of pro-
tein-protein interactions (Chatterjee et al. 2011). SVMs are based on two key concepts, 
the margin of separation and kernel functions (Ben-Hur et al. 2008). 	e philosophy 
behind the use of the SVM is to fit a linear separating line or plane between the distri-
butions of points. 	is philosophy is based on the performance methods of any linear 
model as described in previous sections. We refer to this separating line or plane as the 
hyperplane. In a 2D view, this hyperplane is as simple as drawing a line that separates 
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the points into two groups. Points that lie on one side of the hyperplane are considered 
to be positive, and the remaining points are considered to be negative.

Let us consider a situation with a set of points that belong to two classes that 
are well separated. We assume that the separation between these points is such that 
we could intuitively draw a separating hyperplane that is as far as possible from the 
points in both classes. Such a hyperplane is believed to possess a large margin of 
separation. 	is hyperplane is pictorially represented in Figure 8.4.

	e decision boundary (or hyperplane) is represented using dashes and the 
function f (x). 	e maximum margin boundary is computed by a linear SVM. 	e 
region between the two lines defines the margin area. 	e data points highlighted 
with black centers are support vectors. 	us, the first objective of the algorithm is 
to maximize this margin of separation. Since the fitting of the hyperplane is closely 
connected to the distribution of the data points, it becomes a challenge to fit a 
maximum margin of separation, when the data points overlap in their distribu-
tions. When the data point distributions overlap, the data are inherently believed to 
be nonlinear. We can extend the linear SVM to suit the nonlinearity of data using 
kernel functions. 	us, as the name suggests, kernel functions are transformation 
functions that transform the linear classifier into a nonlinear classifier. Such func-
tions consist of mapping the nonlinear data to an abstract feature space where the 
maximum margin of separation exists. We discuss these concepts in depth in the 
following sections.

8.3.1  Hyperplanes
To introduce the first objective of the SVM algorithm of fitting a maximum separat-
ing hyperplane between data points that belong to different classes, let us represent 

Margin of Separation

W

–1.0

+1.0
0.0

f (x)

Figure 8.4  A 2D representation of a linear classifier separating two classes.
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each data point x by a vector of length N, i.e., xj , where  = …j N1, , , and j repre-
sents the features that describe the data point in an N-dimensional space. Using this 
nomenclature, a data matrix of M data points is represented as a matrix of the form 

=x yi i i
M{( , )} 1, where y1 is the class label associated with the data point xi.

SVMs use a linear discriminant function to fit a linear plane for the given data 
matrix that is represented as follows:

 ( ) , .f x w x b= 〈 〉 +  (8.2)

Here, ⟨w, x⟩ represents the dot product between two vectors w and x. 	is dot prod-
uct is also referred to as the scalar product between two vectors and is represented as 
follows

 

, .
1

∑〈 〉 =
=

w x w xj j

j

n

 (8.3)

	e purpose of the discriminant function f (x) is to assign a score for a given 
data point x. 	is score is then used to decide how to classify x using the weight 
vector w and the bias b, a scalar value.

In a scenario where there are just two dimensions, the points satisfying the 
equation ⟨w, x⟩ = 0 correspond to a straight line that passes through the origin. In 
the scenario where there are three dimensions, a plane and more generally a hyper-
plane pass through the origin. 	e bias b translates the hyperplane with respect to 
the origin.

	e hyperplane divides the space into two half spaces according to the 
sign of f (x), which indicates the side of the hyperplane a point is located on. 
If >f x( ) 0, then the point is located in the positive class; if <f x( ) 0, then the 
point is located in the negative class. 	e boundary between regions is classified 
as positive, and the decision boundary of the classifier is called negative. A clas-
sifier with a linear decision boundary, defined by a hyperplane, is called a linear 
classifier.

8.3.2  Large Margin of Separation
In a linearly separable dataset, a hyperplane correctly classifies all data points, and 
there may be many separating hyperplanes. We are thus faced with the question of 
which hyperplane to close, ensuring that not only the training data, but also fea-
ture examples, unseen by the classifier at training time, are classified correctly. Our 
intuition as well as statistical learning theory suggests that hyperplane classifiers are 
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defined as the distance of the closest example to the decision boundary. Let us adjust 
b such that the hyperplane is halfway between the closest positive and negative sam-
ples. If we scale the discriminant function to take the values +/–1 for these samples, 
we find that the margin is 1/||w||, where ||w|| is the length of w, also known as its
norm calculated using ,〈 〉w w .

	e hard margin SVM, applicable to linearly separable data, is the classifier 
with maximum margin among all classifiers that correctly classify all the input 
examples. To compute w and b corresponding to the maximum margin hyper-
plane, one has to solve the following optimization problem:

 

min 1
2
|| ||

to: ( , ) 1, 1,..., .
,

2

〈 〉+ ≥ =

w

subject y w x b for i n
w b

i i

 (8.4)

where the constraints ensure that each example is correctly classified, and mini-
mizing w|| ||2 is equivalent to maximizing the margin. 	e set of formulas above 
describes a quadratic optimization problem, in which the optimal solution (w, b) 
is described to satisfy the constraints ( , ) 1〈 〉+ ≥y w x bi i , while the length of w is 
as small as possible. Such optimization problems can be solved using standard 
tools from convex optimization.

8.3.3  Soft Margin of Separation
Data are often not linearly separable; and even if they are, a greater margin can be 
achieved by allowing the classifier to misclassify some points. 	eory and experi-
mental results show that the resulting larger margin will generally provide better 
performance than the hard margin SVM. To allow errors we replace the inequal-
ity constraints in Equation 8.4 with ( , ) 1 , 1, , ,〈 〉+ ≥ − ξ = …y w x b for i ni i i  where 
ξ ≥i 0 are slack variables that allow an example to be in the margin or misclassified. 
To discourage excess use of the slack variables, a term Σ ξC i i  is added to the func-
tion to be optimized:
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	e constant C > 0 sets the relative importance of maximizing the margin 
and minimizing the amount of slack. 	is formulation is called the soft margin 
SVM.
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8.3.4  Kernel Functions
Instead of the abstract idea of data points in space, one can think of data points as 
representing objects using a set of features derived from measurements performed 
on each object. For large margin separation, the relative position or similarity of 
the points to each other is important, and the exact location is unimportant. In 
the simplest case of linear classification, the similarity of two objects is computed 
by the dot product (or scalar or inner product) between the corresponding feature 
vectors. To define different similarity measures leading to nonlinear classifica-
tion boundaries, one can extend the idea of dot products between points with 
the help of kernel functions. Kernels compute the similarity of two points and 
are the second important concept of SVMs. 	e domain knowledge inherent in 
any classification task is captured by defining a suitable kernel (i.e., similarity) 
between objects.

A more straightforward way of turning a linear classifier nonlinear or making 
it applicable to nonvectorial data is mapping data to vector space, referred to as the 
feature space, using a mapping function ϕ. 	e use of this mapping function is 
represented as follows:

 ( ) , ( ) .= 〈 φ 〉+f x w x b  (8.6)

For example, if f (x) is a nonlinear function in the original input space the map-
ping function ϕ maps each point to linearly separable feature space, as shown in 
Figure 8.5.

	ere are different forms of mapping functions, the simplest of which is one 
that considers all products of pairs of features in the input space. For example, let us 

Non-linear
to Linear
Mapping

Figure 8.5  A schematic representation of the mapping of a nonlinear input 
space to a linear feature space where a simple hyperplane can separate between 
data points of different classes.
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assume that we have three features, x1, x2, and x3, in the input space. 	e resultant 
features in the feature space would be as follows: x x.1 2, x x.1 3, x x.2 3 , x12 x2

2, and 
x32. 	is feature space is therefore quadratic in nature. 	ough simple to conceive, 
this approach of explicitly computing nonlinear features (i.e., product of features) 
does not scale well with a large number of features. Furthermore, if we use mono-
mials of degree d rather than degree 2, as above, the dimensionality would be 
exponential in d, resulting in a substantial increase in memory usage and the time 
required to compute the discriminant function. If our data are high-dimensional 
to begin with, as in the case of gene expression data, this method will not provide 
acceptable results.

Kernel methods avoid this complexity by avoiding the set of explicitly mapping 
the data to a high-dimensional feature space.

It is known that (as discussed previously) the weight vector of a large margin 
separating a hyperplane can be expressed as a linear combination of training points,
i.e., = Σ α

=
w y x

i

n

i i i
1

. 	is expression can also be used for a large class of linear algo-
rithms. Our discriminant function (Equation 8.6) then becomes
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=
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	e representation in terms of the variable αi  is known as the dual repre-
sentation. We observe that the dual representation of the discriminant function 
depends on the data only through dot products in feature space. Dual representa-
tion is also present for the dual optimization problem when we replace xi  with 
φ xi( ). If the kernel function ′k x x( , ) is defined as

 ( , ) ( ), ( )′ = 〈φ φ ′ 〉k x x x x  (8.8)

it can be computed efficiently. Once this function is defined, the dual formulation 
can solve the problem without carrying out the mapping ϕ into a potentially very 
high-dimensional space.

	e two most commonly referred to kernel functions are the polynomial and 
Gaussian kernels. 	e polynomial kernel of degree d is defined as

 ( , ) ( , ), ′ = 〈 ′〉+k x x x x Kd K
polynomial d  (8.9)

where K is often chosen to be 0 (homogeneous) or 1 (heterogeneous). 	e feature 
space for the heterogeneous kernel consists of all monomials with a degree up 
to d. And yet, its computation time is linear in the dimensionality of the input 
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space. 	e kernel with d = 1 and K = 0, denoted by klinear , is linear, leading to a 
linear discriminant function.

	e degree of the polynomial kernel controls the flexibility of the resulting 
classifier. 	e lowest-degree polynomial is the linear kernel, which is not sufficient 
when a nonlinear relationship between features exists. 	e second widely used ker-
nel is the Gaussian kernel, defined as

 
( , ) exp 1 || ||2′ = −

σ
− ′






σk x x x xGaussian  (8.10)

where σ > 0 is a parameter that controls the width of the Gaussian method. 	e 
Gaussian kernel plays a similar role, as the degree of the polynomial kernel controls 
the flexibility of the resulting classifier. 	e Gaussian kernel is essentially zero if 
the squared distance − ′x x|| ||2 is larger than σ; i.e., for a fixed x′ there is a region 
around  x′ with high kernel values. 	e discriminant function is thus a sum of 
Gaussian bumps centered around each support vector. When σ is large, a given 
data point x has a nonzero kernel value relative to any sample in the set of samples. 
	erefore, the whole set of support vectors affects the value of the discriminant 
function at x, leading to a smooth decision boundary. As we decrease σ, the kernel 
becomes more local, leading to greater curvature of the decision surface. When σ 
is small, the value of the discriminant function is nonzero only in the close vicinity 
of each support vector, leading to a discriminant that is essentially constant outside 
the close proximity of the region where the data are concentrated.

8.3.5  Applications of SVM in Bioinformatics
SVMs are used for a variety of applications, such as splice site detection or recogni-
tion (Sonnenburg et al. 2007; Eichner et al. 2011; Degroeve et al. 2002), remote 
protein homology detection (Liao and Noble 2003), and gene expression data 
analysis (Brown et al. 2000). In this section, we describe the experimental design 
required to apply SVM in these areas of analysis and the nature of data and the 
modifications that are brought about to the algorithm.

8.3.5.1  Gene Expression Analysis

Here, we briefly describe the work performed by Brown et al. (2000), in which the 
SVM was used to analyze gene expression data.

8.3.5.1.1  Raw Data

Brown et al. (2000) used the gene expression data obtained from experiments con-
ducted using budding yeast Saccharomyces cerevisiae (Eisen et al. 1998). 	e data 



264  ◾  Data Mining for Bioinformatics

consist of 79 samples, each consisting of 2,467 genes. As described in previous sec-
tions, we represent gene expression microarray data in the form of a gene expres-
sion matrix. Each element of the gene expression matrix contains values of an 
expression ratio, i.e., the expression levels of a specific gene with respect to two 
experimental conditions. Typically, the numerator of this expression ratio repre-
sents the expression level of the gene in the condition of interest. 	e denomina-
tor of the expression ratio represents the expression level of the same gene in a 
specific reference condition. 	erefore, in a scenario where data are from a series 
of m experiments, each of the n genes is represented as an m-dimensional vector 
resulting in an n × m gene expression matrix. In this case we have n = 2,467 genes 
and m = 79 samples. 	e functional annotation information for these genes was 
obtained from the Munich Information Center for Protein Sequences (MIPS) 
(Mewes et al. 2000).

8.3.5.1.2  Data Preprocessing

	e raw data are then subjected to the logarithm normalization scheme. 	e nor-
malized logarithm of the gene expression value is the logarithm of the ratio of 
expression level Ei for gene X in experiment  i, to the expression level Ri of the 
same gene X in the reference state. 	e logarithm of the ratio is further divided 
by the square root of the sum of logarithms such that the expression vector �

= …X X X( , , )1 79  has the Euclidean length 1. 	is length is represented using the 
following relation:

 

=
∑ =

X E R
E R

i
i i

j j j

log( / )
log ( / )

.
1

79 2
 (8.11)

	erefore, the expression value of gene X in experiment i is positive if the gene is 
upregulated with respect to the reference state and negative if it is downregulated.

8.3.5.1.3  Problem Illustration

	e aim of this study is to use SVMs to create a model from a set of genes that have 
common functions and to discriminate between members and nonmembers of a 
given functional class based on expression data. 	us, with the expression features of 
the class learned, the SVM can recognize new genes as members or as nonmembers 
of the class based on its expression data. Second, the inferences drawn by the SVM 
can provide potential insight about the gene expression patterns that are character-
istic for a functional group and whether a specific gene is likely to be a member of a 
functional group.
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8.3.5.1.4  Methodology

	e methodology employs the following steps:

 1. Each vector X in the gene expression matrix is viewed as a point in an 
m-dimensional space.

 2. Construct a hyperplane that separates samples from two phenotypes.
 a. 	e data are nonlinear; therefore, the authors used kernel functions. 	ey 

use multiple kernels to obtain optimal results: (i) a simple kernel, (ii) a 
quadratic kernel, and (iii) the Gaussian kernel.

 i. Using a simple kernel K(X,Y ) that can measure the similarity between 
genes X and Y by using the dot product in the input space
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 ii. Squaring the kernel 
� �

= +K X Y X Y( , ) ( . 1)2. 	is step yields a qua-
dratic hyperplane. 	e corresponding separating hyperplane in the 
feature space includes features for all pairwise expression interactions 
X Xi j , where  ≤ ≤i j1 , 79. Raising the kernel to higher powers yields 
polynomial separating surfaces of higher degrees in the input space.

  In general, the kernel of degree d is defined by 
� �

= +K X Y X Y d( , ) ( . 1) . 
In the feature space of this kernel any gene X features for all d-fold 
interactions between expression measurements are represented in 
terms of the form …X X Xi i id, , , ,1 2  where ≤ ≤X Xi j1 , 79.

 iii. Use the Gaussian kernel of the form K(X,Y) exp( || X Y|| /2 )2 2
� �

= − − α , 
where α is the width of the Gaussian.

  As the data have been preprocessed such that the vectors follow 
the Euclidean distance, the value of α is set to be equal to the median 
of the Euclidean distances from each positive example to the nearest 
negative example.

	e objective of this study was to test the ability of different kernels to distin-
guish between genes that belonged to two independent classes. Furthermore, the 
authors wanted to test the ability of the kernel functions to overfit the data being 
analyzed. 	ey were successful in demonstrating that kernels of higher order were 
more successful in differentiating genes that belonged to different classes.

8.3.5.2  Remote Protein Homology Detection

We describe the work performed by Liao and Noble (2003). 	is work focuses on the use 
and modification of SVMs for the detection of remote homology in protein sequences.
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8.3.5.2.1  Raw Data

	e data used in this study consist of protein domains that belong to the differ-
ent superfamilies defined by the Structural Classification of Proteins (SCOP) ver-
sion 1.53 (Murzin et al. 1995). Sequences were selected using the Astral database 
(Brenner et al., 2000) by filtering similar sequences based on a threshold E value. 
In this example, the threshold was set at 10–25, and the resulting 4,352 distinct pro-
tein sequences with known family and superfamilies were considered for analysis. 
For each family, the protein domains with the family were considered positive test 
samples, and the protein domains outside the family but within the superfamily 
were considered positive training samples. 	is designation resulted in sequences 
that were categorized into 54 families containing at least 10 samples (positive test) 
and 5 superfamily members outside of the family (positive train). Negative samples 
are taken from outside of the positive sequences’ fold and are randomly split into 
training and testing sets in the same ratio as the positive samples.

With the exponentially growing number of protein sequences, finding protein 
sequence similarity is a major challenge of computational biology. It is a constant 
endeavor among bioinformatics researchers and practitioners to develop algorithms 
that can effectively detect the remotest sequence similarity between sequences of 
known families (classes) of proteins to recently generated sequences. Evolution 
controls the relation between families of proteins that is dictated by sequence, 
structure, and function. It is hypothesized that proteins that belong to a common 
family of proteins share a certain degree of similarity among each other. Traditional 
sequence similarity algorithms, such as the Smith-Waterman dynamic program-
ming algorithm, basic local alignment search tool (BLAST), and FASTA, have 
been consistently performed and are used as benchmark techniques in the field 
of sequence similarity. However, they fail when the degree of similarity between 
proteins is less than 30%.

Data mining has played a vital role in this process, and several algorithms have 
been implemented. 	e SVM-Fisher (Jaakkola et al. 1999) and SVM-pairwise 
algorithms have been successfully employed. Both algorithms have been successful 
in integrating traditional sequence similarity techniques with supervised learning. 
	e SVM-Fisher algorithm was successful in integrating the hidden Markov model 
(HMM) sequence profiling technique with the SVM algorithm. In this section, we 
describe how a pairwise sequence similarity technique can be integrated with the 
SVM using the SVM-pairwise algorithm (Liao and Noble 2003).

8.3.5.2.2  SVM-Pairwise Implementation

	e SVM-pairwise implementation consists of two steps: (1) feature extrac-
tion, i.e., converting a protein sequence into fixed-length feature vectors, and 
(2) training an SVM using a train set that consists of protein sequences in the 
vectorized form.
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Feature extraction: Converting a give protein sequence into fixed-length fea-
ture vectors is a feature extraction phase of the KDD process. Here we create 
a feature vector (for each protein sequence) using a list of pairwise sequence 
similarity scores, computed with respect to all of the sequences in the train 
set. Since the number of sequences in the train set is finite, the length of the 
feature vector for each sequence is fixed.

  	e pairwise sequence similarity score used for feature extraction has the 
following advantages: (a) 	e pairwise score representation is simpler. (b) It 
does not require multiple alignment of the train set. It allows for detection 
of motif or domain-sized similarities. (c) Pairwise score representation makes 
room for negative training samples, thereby allowing the SVM to leverage 
from the diversity of the training samples.

  	e vectorization step of SVM-pairwise uses the Smith-Waterman algo-
rithm. 	e feature vector corresponding to a protein X is = …Fx fx fx fxn, , , ,1 2  
where n is the number of proteins in the train set f xi and is the E value of the 
Smith-Waterman score between sequence X and the ith train set sequence. 
Default parameters, a gap opening penalty, and extension penalties of 11 and 
1 are used, along with the BLOSUM 62 matrix.

Training of SVM: From the vectorized proteins this is performed to determine a 
similarity score between pairs of input vectors. At the heart of the SVM is a ker-
nel that acts as a similarity score between pairs of input vectors. 	e base SVM 
kernel is normalized such that each vector has a length 1 in the feature space.
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  	is kernel K(X,Y ) is then transformed into a radial basis kernel K X Yˆ ( , ), 
as follows:
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 where the width σ is the median Euclidean distance (in feature space) from 
any positive training example to the nearest negative example. 	e constant 1 
is added to the kernel to draw the data away from the origin. 	is translation 
is necessary because the SVM optimization algorithm we employ requires 
that the separating hyperplane pass through the origin.

  An asymmetric soft margin is implemented by adding a value 0.02 × ρ, 
where ρ is the fraction of train set sequences that have the same label as the cur-
rent sequence to the diagonal of the kernel matrix. 	e output of the SVM is 
a discriminant score that is used to rank the members of the test set. 	e same 
SVM parameters are used for the SVM-Fisher and SVM-pairwise tests. It was 
observed that the SVM-pairwise test performed well under these conditions.
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8.4  Bayesian Approaches
	e many forms of Bayesian approaches are derived from the Bayes’ theorem. 	is 
section provides an overview of Bayesian approaches, which are discussed along with 
their applications in bioinformatics (Kelemen et al. 2003; Wilkinson 2007). In this 
chapter, we investigate two approaches: the naïve Bayes algorithm and the Bayesian 
network algorithm.

8.4.1  Bayes’ Theorem
If we attempt to determine the probability density model P(C|X ), then we can deter-
mine the probability that a sample X, described by a set of features …x x xn{ , , , },1 2  
belongs to the class C. In this example, let sample X be the evidence, and let X 
belonging to class C be the underlying hypothesis H. 	is example reduces the 
problem to the determination of the posterior probability of a hypothesis H pro-
vided that evidence X is true. 	e determination of the posterior probability is best 
defined using the Bayes’ theorem. In its simplest form, the Bayes’ theorem estab-
lishes this posterior probability using the following relation:

 
=P H X P H P X H
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.  (8.14)

	us, to determine the posterior probability the Bayes’ theorem entails the 
computation of two prior probabilities, P(X ) and P(H ) and the posterior proba-
bility P(X |H ). To determine these probabilities, let us consider a train set T that 
has a set of m samples described by the same set of n features used to describe 
the sample X. P(X ) is the probability of the event occurring in train set T, and 
similarly P(H ) refers to the probability that the hypothesis  H holds in train 
set T. 	e posterior probability P(X |H ) refers to the probability that the event X 
is conditioned on H. 	is posterior probability indicates that event X occurs if 
hypothesis H is true.

	e Bayes’ theorem is employed in classification in the forms of the naïve Bayes 
classifier and the Bayesian network classifier, which have been named under the 
category of Bayesian approaches. Extensions to these algorithms are prominently 
used in all fields of bioinformatics.

8.4.2  Naïve Bayes Classification
When the Bayes’ theorem is extended into a classification algorithm, it becomes 
the naïve Bayes classifier. For example, if we retain the annotations used in the 
previous section, then train set T consists of m, n-dimensional vectors representing 
m samples. Let these samples belong to a fixed set of l classes = …C C C Cl{ , , , }.1 2  
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Based on the computation of the posterior probability using the Bayes’ theorem, 
the naïve Bayes classifier computes the posterior probability for given evidence. In 
this example, the test sample that does not have a class label for each hypothesis but 
refers to the different classes in the set C.

	e objective of the naïve Bayes classifier is to assign a class label to the 
test sample. 	is label should exhibit the highest posterior probability. In other 
words, the evidence (test sample X ) is assigned to class Ci if the following holds 
true for all values of j:

 > ≤ ≤ ≠P C X P C X for j l j ii j( | ) ( | ) 1 , .  (8.15)

	is condition is called the maximum posteriori hypothesis and in general is 
represented as follows:
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	e implementation of the Bayes’ theorem in the naïve Bayes classifier requires 
the following modifications: handling of prior probability and handling of poste-
rior probability. 	ese modifications are carried out to facilitate reduction in com-
putational cost for determining the posterior probability P C Xi( | ).

8.4.2.1  Handling of Prior Probabilities

Since the prior probability P(X ) is marginal it can be deducted from the posterior 
probability P C Xi( | ) in computation; i.e., P(X ) is constant across all classes. 	is 
modification therefore reduces the Bayes’ theorem to the form

 ( | ) ( ) ( | ).P C X P C P X Ci i i∝  (8.17)

	e prior probability P Ci( ) is simple to compute. It is estimated as the ratio of 
the number of samples that belong to class Ci to the total number of samples in 
the train set T, i.e., =P C C Ti i T( ) | |/| |, . In situations where all classes in T have equal 
numbers of samples, the P Ci( ) can be treated as a constant. 	e Bayes’ theorem is 
therefore reduced to the form

 ( | ) ( | ).P C X P X Ci i∝  (8.18)

	us, maximizing the posterior probability P C Xi( | ) relies heavily on the maximi-
zation of P X Ci( | ).
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8.4.2.2  Handling of Posterior Probability

Since most of the datasets in data mining are high-dimensional and since the 
computational complexity of estimating the posterior probability is P X Ci( | ), the 
naïve Bayes algorithm assumes that all features of the evidence and train set T are 
independent of each other. 	is assumption, also known as the class conditional 
independence criterion (Keller et al. 2000), drastically reduces the computational 
complexity of the naïve Bayes algorithm by taking the product of probabilities of 
its attributes for a given class in the train set T.
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8.4.3  Bayesian Networks
Bayesian networks are useful for describing processes composed of locally inter-
acting components; the value of each component depends on the values of a rela-
tively small number of components. In addition, statistical foundations for learning 
Bayesian networks from observations, and the computational algorithms to do so, 
have been successfully tested in many applications. Below, we concentrate on the 
contributions of Friedman et al. (2000), which examine the dependence and con-
ditional independence in data.

8.4.3.1  Methodology

Bayesian networks, though defined by probabilities and conditional independence 
statements, can derive connections using the direct causal influence of variables. 
	e concept of Bayesian networks is best illustrated as follows. Let P(X,Y ) be a joint 
distribution over two variables X and Y. Further, let variables X and Y be indepen-
dent if and only if P(X,Y ) = P(X )P(Y ) for all values of X and Y, i.e., P(X |Y ) = P(X ); 
otherwise, let the variables be considered dependent. If X and Y are dependent, 
then learning the value Y gives us information about X. Note that the correla-
tion between variables implies dependence. However, dependent variables might be 
uncorrelated. For example, assume gene X is a transcriptional factor of gene Y. In 
such a case, we expect their levels of expression to be dependent. For example, when 
the expression level of X increases, we should see a similar increase in the expression 
level of Y. However, if gene X inhibits gene Y, then we see the reverse; when the 
expression level of X increases, the expression level of Y decreases.

	ese dependencies can be captured using graphs, with each gene represented 
as a node and the relation between nodes being represented using a directed edge. 
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	e direction of the edge between nodes represents the dependence between nodes. 
Since gene Y is dependent on gene X, we represent dependence with an edge that is 
directed from X to Y (X is the parent of Y ). See Figure 8.6 for representation.

We now consider a slightly more complex scenario involving a system of three 
genes: X, Y, and Z. In this system, let us consider that gene X transcribes gene Y, and 
gene Y in turn transcribes gene Z. In such a situation, the expression levels of pairs 
of genes are dependent. However, gene X and gene Z do not share a direct relation, 
as they share only a common factor, gene Y. If gene Y is removed, then gene X and 
gene Z are independent of each other. In such a situation, gene Y is considered to be 
the mediator between gene X and gene Z and is represented as follows:

 =P X Y Z P X Y( | , ) ( | ),  (8.20)

and we emphasize that genes X and Z are conditionally independent, given Y. 
	is relation of conditional independence is represented as I(X;Z |Y ). 	e con-
ditional independence between genes has no representation in the graph (see 
Figure 8.6).

In a more complex scenario of interaction between genes, let us assume a ran-
dom gene M is regulated by gene X. As described above, the genes related to gene X 
are genes M and Y, whereas genes M and Y are conditionally independent of each 
other. 	is conditional independence is represented using the relation I(M;Y |X ), 
and gene X dictates the dependence between genes M and Y. We formalize the 
relation between genes M, Y, and X, as gene X is the common cause of genes Y and 
M. If gene X was nonexistent or not measured, then there would be dependence 
between genes M and Y, and in such an instance, we would refer to gene X as a hid-
den common cause (Friedman et al. 2000).

If, in another example, gene H transcribes gene Y, then gene Y is regulated by 
two genes X and H. We refer to genes X and H as the parent genes of gene Y, i.e., 
pa(Y ). Modeling the influence of two parent genes on a gene leads to an important 
parameter of Bayesian network models, where each node or variable is described as 
a conditional probabilistic function of its parents. 	rough this conditional prob-
ability function of Y, we specify the probability of gene Y to have the expression 
value y given the values of its parents pa(Y ) as P(y|pa(Y )).

M

X

Y

H

Z

Figure 8.6 T he representation of the parent relation between genes using graphs.
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8.4.3.2  Capturing Data Distributions Using Bayesian Networks

	e next challenge in Bayesian network modeling is capturing the data distribution 
using a Bayesian network. To obtain such representations, we formalize the defini-
tion of Bayesian networks as follows.

Let us use a variable = …X X Xn{ , }1 , such that Xi  represents a random vari-
able whose value is xi  of finite domain. Similarly, we represent other variables Y 
and Z as vectors of random variables.

A Bayesian network is a representation of a joint probability distribution (JPD). 
	is representation consists of two components. 	e first component, G, is a 
directed acyclic graph that has vertices that correspond to the random variables 

…X Xn,1 . 	e second component describes a conditional distribution for each vari-
able, given its parents in G. Together these two components specify a unique dis-
tribution on …X Xn,1 .

	erefore, the graph G encodes the Markov assumption where each variable 
Xi is independent of its nondescendants given its parents in G. We formalize this 
Markov assumption as

 , ( ; ( )| ( )),i I X NonDescendants X Pa Xi i i∀  (8.21)

where Pa Xi( ) is the set of parents of Xi in G, and ( )NonDescendants Xi  are the non-
descendants of Xi  in G.

By applying the chain rule of probabilities and properties of conditional inde-
pendencies, any joint distribution that satisfies the above constraint can be decom-
posed in the product form
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To specify a joint distribution, we also need to specify the conditional prob-
abilities that appear in the product form. 	is component of the network describes 
distributions P x pa Xi i( | ( )) for each possible value xi of Xi and of pa Xi( ). In the 
case of finite valued variables, we represent these conditional distributions as tables. 
Generally, Bayesian networks are flexible and can accommodate many forms of 
conditional distribution, including various continuous models. Given a Bayesian 
network, we might want to answer many types of questions that involve joint prob-
ability (for example, what is the probability of X = x given the observation of some 
of the other variables?) or independencies in the domain (for example, are X and Y 
independent once we observe Z?).
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8.4.3.3  Equivalence Classes of Bayesian Networks

A Bayesian network structure G implies a set of independence assumptions in addi-
tion to the independence statement. Let Ind(G) be the set of independence state-
ments (of the form Z is independent of Y given Z) that hold in all distributions 
satisfying these Markov assumptions. 	ese can be derived as consequences, as 
shown in Equation 8.21.

More than one graph can imply exactly the same set of independencies. For 
example, consider graphs over two variables X and Y. 	e graphs X → Y and X ← Y 
both imply the same set of independencies (i.e.,  Ind(G) = ∅). We say that two 
graphs G and G ′ are equivalent if Ind(G) = Ind(G ′). 	is notation is crucial, since 
when we examine observations from a distribution, we often cannot distinguish 
between equivalent graphs.

8.4.3.4  Learning Bayesian Networks

With the modeling of data using Bayesian networks, the next challenge is learn-
ing from the modeled data. In simplistic terms, learning is achieved by identifying 
an optimal network that represents the complexities between variables, i.e., how 
they relate to each other in the training data. Moreover, it is important to quantify 
which is a challenge. Several methods have been proposed, of which the statistical 
scoring means determining the best network topology that captures inherent rela-
tionships between variables. 	ese scoring functions have been motivated to select 
the optimal network based on the score obtained.

8.4.3.5  Bayesian Scoring Metric

Before we look into the Bayesian scoring metrics, we will formulate the definition 
of a Bayesian network as a graph to simplify the definition of the metrics.

Building on the concepts of a directed acyclic graph (DAG) and the definition 
of the joint probability distribution (JPD), …P X Xn( , ),1  in the previous sections, 
for a set of variables …X Xn,1 , a Bayesian network decomposes the JPD as
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where ( , , , )1 2i i in…  is a permutation of the variables index (1,2, , )n…  and ikπ  
denotes the parent set of the variable xk . It should be noted that there is no 
perfect representation of a Bayesian network, and the JPD can be represented in 
different forms depending on the order of each node.
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8.4.3.5.1  Node Order and Acyclicity Constraint

Because the nodes’ order can affect the JPD, it is important to define the order 
of nodes in the Bayesian network as it imposes parent-child relationships between 
nodes. If gene X precedes gene Y in the ordering, then gene Y cannot be a direct or 
indirect parent of gene X. 	is constraint of order ensures that the test of acyclic 
graphs need not be carried out whenever a new node or edge is added to the graph 
that violates the Bayesian network creation. Several methods are used to estimate the 
order of nodes in a Bayesian network. 	ese methods include maximum a posteriori 
(MAP) and expectation maximization (EM) that can be used to estimate the con
ditional probabilities after the structure of a Bayesian network is determined.

8.4.3.5.2  Likelihood Equivalence

	e likelihood equivalence assumption is as follows: if two structures are equiva-
lent, their parameter joint probability density functions (PJPDFs) are identical, and 
thus coined the BDe score metric. 	e likelihood equivalence assumption measure 
implies that the Dirichlet distribution of the parameters and the resulting BDe 
score metric have a property of score equivalence, i.e., two equivalent structures 
have the same score. 	is score equivalence is advantageous in cases in which we 
do not want the data to distinguish the equivalent structures. However, it is disad-
vantageous in estimating the causal relationship between variables, as equivalent 
structures represent different causal relationships.

For example, if gene Y transcribes genes X and Z, then X ← Y → Z. If we want 
to know the causal relationship, we require a scoring metric to differentiate between 
true structure and the equivalent X → Y → Z. On the other hand, if we simply 
want to learn a network to infer one gene Y given another gene X, or the probabil-
ity P(Y = k|X = j ), either gene could fulfill this task. 	us, theoretically speaking, it is 
advantageous to have score equivalence. However, in network learning it is not clear 
that the score equivalence property is of any use, as when node order is specified there 
is only one resultant outcome and node order removes the need for score equivalence.

8.4.3.5.3  Score Metrics

	ere are various other score metrics in the literature and they have been described 
in brief as follows (Yang and Chang 2002):

Uniform prior score metric (UPSM): If the network parameters are assumed 
to have a uniform distribution (uniform priors), the score metric can be 
expressed as
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 where Nijk  denotes the number of cases in the given database D in which the 
variable xi  took its kth value = …k ri( 1,2, , ), and its parent πi  was instantiated 
as its jth value = …j qi( 1,2, , ), and = ∑ =N Nij k

r
ijk

i
1 .

Conditional uniform prior score metric (CUPSM): If the conditional uni-
form distribution is assumed, the score metric can be written as
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General Dirichlet prior score metric (DPSM): If the Dirichlet distribution is 
assumed, then the score metric can be written as
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 where ′Nijk  is the corresponding Dirichlet distribution orders for a set of param-
eters, which need to be assigned some values by users, and ′ = Σ ′=N Nij k

r
ijk

i
1 . 	e 

uniform distribution can be considered a special case of ′ =Nijk 1.
BDe score metric (BDe): If the likelihood equivalence assumption is used 

instead of the Dirichlet distribution assumption, and the same formula as 
DPSM is derived. However, the user does not assign the orders arbitrarily. 
	ey are determined by the equivalent sample size N ’ and the assumed local 
joint probability. Specifically,
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8.4.4  Application of Bayesian Classifiers in Bioinformatics
Using the BDe score metric of likelihood equivalence, various class models for the 
data, an example model Mi for class I, and a test sample vector = …x x x x xn{ , , , , }1 2 3  
drawn from some probability distribution, one can classify x according to the model 
with maximum posterior probability (for a posterior probability), given the sample:

 ( ) (log ( | )),=class x argmax p M xi i
 (8.28)

where p M xi( | ) is the Bayesian a posteriori probability that Mi is true given the test 
sample x. By the Bayes’ theorem,

 =p M x p x p x M p Mi i i( | ) ( ) ( | ) ( ).  (8.29)
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Assuming equal prior probabilities, p Mi( ),  for each model, we obtain:

 ( ) (log ( | ))=class x argmax p x Mi i
 (8.30)

i.e., the computed class of the sample is the model for which the sample has the 
greatest likelihood. Finally, the naïve Bayes method makes the additional assump-
tion that, given the class model, values for each component of x are independent of 
one another, so that the above becomes

 

( ) log | .class x argmax p x Mi

g

g i∑ ( )=












 (8.31)

	is assumption of class attribute independence greatly facilitates the com-
putation of the likelihoods for the data given each model, since it is much easier 
to infer individual class attribute value probabilities from the training data than 
it is to infer joint class attribute value probabilities. 	is simplification has been 
used successfully in a number of domains, including some with known class 
attribute dependencies.

In the case of microarray data, we model each class as a set of Gaussian distribu-
tions, one for each gene computed from the training samples of that class:

 = …M M M Mi i i i
n{ , , , }1 2  (8.32)

where Mi
g  is the class I Gaussian distribution for gene g. 	e class of a test sample 

x is given by
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g i
g  (8.33)

which, when substituting Mi
g  for a Gaussian distribution with sample mean µi

g  and 
standard deviation σ i

g, becomes
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 (8.34)

Since ( )p x Mg i
g|  is proportional to ( )( )( ) ( )σ − −µ σxi

g
g i

g
i
g1/ exp 0.5 /

2
, it can be

interpreted as the probability that the gene g component of x is within some small
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nonzero interval centered at xg. Furthermore, if one again assumes equal prior 
probabilities for all models, the relative log probabilities between any two models 
Ma  and Mb  with respect to x can be expressed simply as the difference between 
their log likelihoods:

 
∑

( ) ( ) ( ) ( )− = − =
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gens g

| | | |

log( ) 0.5(( )/ ) log( ) 0.5(( )/ ) .2 2
 (8.35)

Such a difference can be used as a confidence measure for choosing class a over 
class b.

8.4.4.1  Binary Classification

In this section, we cover the role of the NB classifier for the use of likelihood selec-
tion of genes. In binary classes, genes in the NB classifier each vote for the likeli-
hood of alternative models, M g

1  and M g
2 , given the test sample vector component 

xg . Intuitively, we want genes that can distinguish between samples of each class, 
finding M g

1  is more likely than M g
2  given a sample of class 1, and M g

2  is more likely 
than M g

1  given a sample of class 2. We define two relative log likelihood scores, 
→LIK1 2 and →LIK 2 1, for gene g:

( ) ( )= −→LIK logp M X logp M Xg g| |1 2 1 1 2 1  where X1  are training samples of class 1, and 

( ) ( )= −→LIK logp M X logp M Xg g| |2 1 2 2 1 2  where X 2 are training samples of class 2.
	e ideal gene for the NB classifier should have both LIK scores much greater 

than zero, indicating that the gene, on average, votes for class 1 on training sam-
ples of class 1, and for class 2 on training samples of class 2. If a test sample is 
selected from the same probability distribution as the training data, then one can 
expect this gene to vote for class 1 for test samples of class 1, and for class 2 for test 
samples of class 2. 	e greater the values of the LIK scores above zero, the greater 
the contribution one expects the gene to make toward the correct classification of 
a test sample.

It is difficult to find genes for which both LIK scores are far greater than zero. 
Instead, one can select two sets of genes, →GENES1 2  and →GENES2 1, each maxi-
mizing one of the two LIK scores, while merely requiring the other to be greater 
than zero:

 : 0 0.2 1 1 2 2 1GENES LIK and LIK �>→ → →  (8.36)

Genes in each set are ranked according to their values of the LIK score maxi-
mized by that set. Combining the n/2 top-ranking genes from each set then pro-
duces an NB classifier with n genes.
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8.4.4.2  Multiclass Classification

	is method for using LIK scores to select genes for a naïve Bayes classifier extends 
beyond the case of two classes. In cases where the number of classes is  c, we 
define c(c − 1) different LIK scores:

( ) ( )= −→LIK logp M X logp M Xj k j
g

j k
g

j| |  where X j  are training samples of class j 
and 1 ≤ j, k ≤ c, j ≠ k.

Similarly, we select  c(c − 1) distinct sets of genes, each maximizing one LIK 
score, while merely requiring all others to be greater than zero:

 

�

> ′ ≠ ′ ≤ ′ ′ ≤

→ →

→

GENES LIK

LIK j k j k c

j k j k

j k

: 0

0 ,1 , .
 (8.37)

Genes in each →GENES j k  set should therefore distinguish test samples of class 
j with better accuracy than the alternative model Mk

g .
When equal numbers of genes from all − →c c GENES j k( 1)  sets are com-

bined, the resulting NB classifier should again have the desired properties. 
Consider a test sample x of class j. Genes in the (c – 1) different →GENES j k  sets, 

≤ ′ ′ ≤ ′ ≠ ′ ′ ≠j k c j k j j1 , , , , will on average make a contribution to the log likeli-
hood term of M j

g  at least as large as that of terms of the alternatives. As a result, the 
summed log likelihood term of M j

g  will on average be larger than that of all other 
models, so =argmax p x M ji i(log ( | ))  and the classifier votes for class j.

8.4.4.3 � Computational Challenges for 
Gene Expression Analysis

Based on the above description of Bayesian networks, one can treat each gene 
in a microarray as a variable. In addition, other attributes that affect the sys-
tem can be modeled as additional random variables. 	ese attributes include 
temporal indicators, experimental conditions, and background variables such 
as exogenous cellular conditions. By using learning based on a Bayesian net-
work based on statistical dependencies, one can answer a wide range of queries, 
such as whether there is dependence between expression levels of a gene and the 
experimental conditions under study. However, these inferences are connected 
to the statistical constraints and interpretation of results obtained. Moreover, 
the modeling of a complex system of genes entails a degree of algorithmic and 
processing complexity.

Most difficulties in this modeling process revolve around the curse of 
dimensionality, which exists due to the thousands of genes and few samples 
for analysis. On the positive side, it is believed that only a handful of genes 
affect the transcription of a gene. 	is sparcity of genes aids Bayesian network 
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performance, as Bayesian networks perform best on these types of data. 	e 
implementation of Bayesian networks for gene sets was described by Bauer 
et al. (2010).

8.5  Decision Trees
In this section of the chapter we provide a brief description of the different supervised 
learning strategies inspired by decision trees. We start a discussion with the C4.5 algo-
rithm, a natural extension of its predecessor, the ID3 algorithm, that can be used to 
construct a univariate decision tree. In the simplest terms, decision tree model genera-
tion can be viewed as a recursive splitting of the train set. 	erefore, the train set in 
its entirety is found at the root of the tree. 	is train set is split into smaller chunks of 
data based on the values that each attribute possesses in the train set. 	is recursive 
data splitting is performed until the leaves of the tree result in individual records or a 
group of records that have the same phenotype. 	e decision tree algorithm for model 
generation has two major components, attributes selection and termination criteria.

	e following are the guidelines for model generation using any form of 
decision tree:

 1. 	e leaf of a tree could be a single sample or a group of samples that has a 
common phenotype.

 2. Estimate the potential information content of each feature or attribute.
 3. Based on a selection criterion find the best attribute to branch on.

Based on the above guidelines, the biggest challenge in constructing the tree 
model is estimating the potential information content of each feature or attribute 
that describes a sample (Figure 8.7).

y1
y1 y2 yj Phenotype

Features

. . .
xa xl xf P1. . .
xa xk xf P1. . .
xb xm xh P2. . .
xb xm xf P1. . .
xb xl xh P2. . .

y2

yjP2

P2 P1

xh

xl xm

xa xb

xf

P1

Figure 8.7  A schematic representation of the construction of a decision tree, 
where each node of the tree represents a feature and the values of the features 
determine the link between the nodes. The leaves of the decision tree are the 
associated phenotypes.
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	e C4.5 algorithm to construct the tree model uses the measure of entropy to 
measure the disorder of data using the following relation:

 1

∑( )ϒ = −
ϒ ϒ











=

Entropy
y
log

y

i

m
i i  (8.38)

where ϒ represents the train set and ( )ϒEntropy  represents the information con-
tent of the train set, iterating over all possible phenotypes that belong to ϒ, and yj 
represents a subset of samples that belong to a specific phenotype.

In order to estimate the conditional entropy of ϒ for a given attribute j, we use 
the following relation:
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	e conditional entropy for a given attribute j allows us to estimate its relevance 
in the train set, where represents the partition of the train set ϒ, where each parti-
tion is determined based on the n possible values possessed by attribute or feature 
j. We define the entropy gain of attribute j relative to the entropy possessed by the 
entire train set as follows:

 ( , ) ( ) ( | ).Gain j Entropy Entropy jϒ = ϒ − ϒ  (8.40)

	e aim of using this definition is to maximize the gain, dividing by overall 
entropy due to split argument �y  by value j.

8.5.1  Tree Pruning
	e problems associated with decision tree models stem from two issues: (1) 	e 
class that has the most number of samples (majority phenotype/class) would result 
in rules that overpower rules generated from minority phenotypes/classes. (2) It is 
difficult to determine a test set that could traverse all the nodes in a tree. 	is makes 
it difficult to actually determine an ideal test set.

However, apart from these two issues it should be noted that decision tree mod-
els are sensitive to outliers that are present in the train set. It is therefore common 
to see decision tree models that overfit the train set. Tree pruning is hence an 
important step that helps remove rules that are influenced by these outliers. From 
a bioinformatics perspective, it is importation to subject any decision tree model to 
pruning, as bioinformatics data are prone to noise and outliers.
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	e objective of tree pruning is twofold: (1) to reduce classification errors, 
caused by outlier instances embedded in the train set, and (2) make the decision 
tree more generalized to avoid overfitting (Esposito et al. 1997).

Considering the need for decision tree pruning there are several pruning 
approaches in the literature; for instance, some approaches proceed from the root 
of the decision tree and proceed down toward the leaves while examining the 
branches to prune. 	ese are referred to as the top-down approaches. On the con-
trary, there exist approaches that traverse the decision tree in the opposite direc-
tion, known as the bottom-up approaches. Other approaches to tree pruning use 
the train set to evaluate the accuracy of a pruned decision tree, while others use an 
addition dataset called the pruning set to establish the performance of the pruned 
decision tree.

With the gamut of pruning approaches, they are commonly categorized into 
prepruning and postpruning. In the prepruning approach, the pruning step is inte-
grated into the model building step. As part of the prepruning step, the data split-
ting that occurs at every node of the decision tree is terminated abruptly based on 
a predetermined threshold of the attribute evaluated. 	is abrupt termination of 
data splitting ensures that further splitting of data at a node does not take place at 
the next iteration. Here the node is treated as a leaf and assigned a phenotype label 
of the majority phenotype/class.

Unlike prepruning, there are several approaches to postpruning, such as reduced 
error pruning (REP), pessimistic error pruning (PEP), minimum error pruning 
(MEP), cost-complexity pruning (CCP), critical value pruning (CVP), and error-
based pruning (EBP) (Esposito et al. 1997). For the purpose of brevity, we discuss 
the simplest form of postpruning, reduced error pruning (REP).

In the REP, postpruning is carried out using an independent pruning set. 	e 
iterative pruning process starts with the completed decision tree (Tall ). For each 
node i of Tall  the postpruning approach compares the number of classification 
errors made on the pruning set when the subtree Ti is kept with the number of clas-
sification errors made when i is turned into a leaf and associated with the best class. 
Sometimes, the simplified tree has a better performance than the original decision 
tree Tall . In such cases, Ti is pruned from Tall . 	is pruning operation is repeated on 
the simplified tree until further pruning increases the misclassification rate.

8.6 E nsemble Approaches
In this section we describe prominently used ensemble learning approaches. 
Ensemble learning is an effective technique that has increasingly been adopted to 
combine multiple learning approaches to improve overall classification accuracy. 
High dimension and relatively small number of samples typically characterizes bio-
logical data—frequently characterized as a small sample size problem. Moreover, 
these samples are typically plagued by noise and missing values. 	ese ensemble 
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techniques alleviate the small sample size problem by averaging classification results 
over multiple classifiers. It is believed that this philosophy of averaging the per-
formance of multiple classifiers reduces the potential for overfitting the final clas-
sification results. Furthermore, through the use of an ensemble of classifiers, the 
train set may be used in a more efficient way, which is critical to many biological 
applications with small sample size (Yang et al. 2010; Webb and Zheng 2004). 
	us, an ensemble of classifiers is designed to boost classification accuracy and 
enhance generalization. By the term boosting we refer to enhancing the classifier 
performance specifically in scenarios of high-dimensional data where the number 
of samples m are far lower than the number of features n (m << n) in the train 
set. 	e term generalization refers to the ability of the ensemble classifiers to clas-
sify samples of unknown classes after the training is performed. Both boosting of 
accuracy and generalization of classification are closely tied to the bias and variance 
of the ensemble of classifiers. It is shown that the ensemble of classifiers can control 
the variance and bias using boosting, bagging, and averaging strategies. However, 
the time and space complexity of these techniques are believed to be high. 	us, 
ensemble classifiers are applied in scenarios where accuracy is important.

Several ensemble approaches are prevalent in bioinformatics. In this section, 
we introduce three such techniques and describe their workings. 	ese techniques 
include bagging, boosting, and random forests ensemble methods. But before we 
describe the characteristic differences between each of these techniques, we will 
illustrate the workings of an ensemble classifier. 	roughout this chapter thus 
far, we focus on learning techniques. 	e significance of these techniques lies 
in choosing a single hypothesis from a set of hypotheses that best discriminates 
between samples of the training data. Typically, we envision a scenario in which 
the train set is free of noise and missing values. We believe that a resultant hypoth-
esis generated from such a train set best discriminates between the classes of the 
train set and refer to it as the best hypothesis (hbest ). For a visual explanation, see 
Figure 8.8(a).

In small sample size problem scenarios, determining the best hypothesis (hbest ) 
is a challenge considering the fact that there could be several optimal hypotheses, 
and choosing the best hypothesis that covers all of the several hypotheses presents a 
challenge of its own. Figure 8.8(b) best describes this scenario. In this case, a tradi-
tional learning approach would choose a single hypothesis that would not general-
ize well considering the disparities in the hypothesis space.

	e philosophy for using an ensemble of classifiers is the intelligent manipula-
tion of the train set to obtain different hypothesis spaces with different classifiers, 
i.e., …H H H HL( , , . )1 2 3 , where L is the number of classifiers. By manipulating 
the train set, we can effectively narrow down a consensus of hypotheses space Ho, 
represented by the overlap of the hypotheses spaces (Figure 8.8(b)).

	eoretically, this Ho is obtained by combining the classification rules of mul-
tiple classifiers using an integration method that takes advantage of the overlapped 
region. 	e best classification rule is obtained by approximating multiple rules. 
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	is approximation yields to classifiers that are more accurate and provides effective 
generalization. As previously mentioned, there are several ensemble techniques that 
are prevalent in bioinformatics. 	e following section provides an overview of three 
such prominent techniques.

8.6.1  Bagging
Bagging, also known as bootstrap aggregation, is one of the first and simplest forms 
of ensemble-based techniques. 	is method was proposed by Breiman (1996). 	e 
working principle of the bagging technique is analogous to the following. Let us 
consider a panel of evaluators who have been chosen to help come up with the best 
possible decision given a compiling set of evidence. In the bagging technique, each 
evaluator in the panel is given equal importance, by dividing all the evidence into 
equal subsets of evidence across all the evaluators. It should be noted that the subset 
of evidence given to each evaluator is chosen at random to avoid biases. 	e deci-
sions (votes) made by each of these evaluators are then tabulated and subjected to 
a voting scheme where decisions that are consistent across all evaluators are chosen 
as the best.

In a classification scenario using bagging, the train data (D) are first subjected 
to a bootstrap sampling strategy, where subsets of samples are chosen at random 
from D. Note that bootstrap sampling employs sampling with replacement, result-
ing in unbiased subsets that are subjected to independent classifiers (evaluators). 
Figure 8.9 provides an illustration of the bagging strategy in creation of an ensem-
ble of classifiers. Each independent classifier that is part of the ensemble (referred 
to as a weak learner) generates rules from the independent subset of training data 
allocated to it through bootstrap sampling. 	ese rules are subject to various voting 

Figure 8.8  A schematic illustration of hypothesis space partitioning with the 
ensemble of classifiers as proposed by Yang et al. (2010).
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strategies to choose the most consistent rules that would ultimately be used for clas-
sification by the ensemble.

Various voting strategies are applied in bagging (Erp et al. 2002) and have 
been effectively classified into three categories, each derived from human voting 
strategies: unweighted voting methods, confidence voting methods, and ranked 
voting methods. 	ough these methods may seem complex, the voting strategies 
are simple to implement, as they are independent of the classifiers in the ensemble 
(Ho et al. 1994).

8.6.1.1  Unweighed Voting Methods

	e unweighted voting methods consist of methods in which each vote carries 
equal weight. 	e only differentiation between the classes is the number of votes 
they have received. As a consequence, classifiers cannot express the degree of prefer-
ence of one class over the other. Although this method removes relevant informa-
tion, it also results in less complex methods to implement. Moreover, these methods 
do not perform well in the cases of ties.

Plurality: 	e benefit of this voting strategy lies in the simplicity and ease of use. In 
this method, every classifier votes one class label for a given sample. Ultimately, 
the sample is assigned to that class that receives the highest number of votes. 
However, plurality voting may assign a sample to a wrong class due to erroneous 
assignments by the classifiers in the ensemble. 	ere is a real possibility of the 
sample being assigned to a wrong class by a small number of wrong votes.

DA

CA

DB
. . .

CB

Voting

Bootstrap . Sampling

Training . Data . (D)

DN

CN

Figure 8.9 T he bagging strategy in an ensemble of classifiers.
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Majority voting: Majority voting builds on the problems of plurality vot-
ing and at times is confused with plurality voting. As in plurality voting, 
majority voting allows each classifier to vote one class label for a sample. 
	e sample is ultimately assigned the class label that receives the highest 
vote with the constraint that receives a majority of more than half of the 
number of classifiers in the ensemble that have the same vote. Majority 
voting assigns a class label to a sample if and only if the majority con-
straint is satisfied. 	is majority constraint makes the voting strategy less 
error-prone if the ensemble has a large number of classifiers and is therefore 
a widely accepted technique. However, when a sample fails to satisfy the 
same majority constraint, the sample is rejected by the voting strategy and 
no class label is assigned.

Multiclass scenarios and variations in voting schemes require a hierarchy 
of steps; thus, the following methods are commonly referred to as multistep 
methods. 	ese multistep methods of unweighted voting are difficult to imple-
ment as they rely on the preference of classifiers by taking pairs of classes into 
consideration.

8.6.1.2  Confidence Voting Methods

Unlike the unweighted voting methods, confidence voting methods rely on the clas-
sifiers in the ensemble to express their preference toward a class. 	e preference is 
therefore a scalar value called the confidence score of a classifier for a class. 	e 
higher the confidence score, the more the class is preferred by the classifier. 	e con-
fidence scores of each classifier toward the classes are generated prior to the actual 
classification process.

Pandemonium: Every classifier is given one vote, which it can cast for any class. 
	e classifier casts the vote by stating its confidence in the class. 	e class that 
receives the vote with the highest confidence of all votes wins. 	is method, 
known as Selfridge’s pandemonium (Selfridge 1958), is one of the first exam-
ples of using separate experts/agents in computer science. It is very simple, 
but misses the possibility for a classifier to express differences of preference 
between classes. Only the classifier’s top choice and its confidence are known. 
Furthermore, there is no limit to the amount of confidence that classifiers 
may adhere to. While limits are easily added to the method, a correct scale 
is difficult to implement. However, with well-scaled classifiers, this method 
could be sufficient.

Sum rule: When the sum rule is used each classifier has to give a confidence 
value for each class. Next all confidence values are added for each class, and 
the class with the highest sum wins the election.
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Product rule: As with the sum rule, each classifier gives a confidence value for 
each class. 	en, all confidence values are multiplied per class. 	e class with 
the highest confidence product wins. 	e product rule is highly subjective to 
low confidence values. A very low value can ruin a class’s chance of winning 
the election no matter what its other confidence values are.

8.6.1.3  Ranked Voting Methods

In ranked voting methods the classifiers are asked for a prior preference ranking 
of the classes. In this way, more information on the classifier’s preference is used 
than in the unweighted voting methods. However, unlike the confidence voting 
methods, the ranked voting methods reflect the degree of preference between two 
classes in the form of ranks. 	ese ranks do not correspond to the confidence of the 
classifiers used in the ensemble classifier.

Borda count: 	is method only runs if a complete list of preference ranks is 
available from all classifiers over all classes. It then computes the mean rank 
of each class over all classifiers. 	e classes are reranked by their mean rank, 
and the top-ranked classes win the election. Note that the Borda count is the 
ranked variant of the sum rule.

Single transferable vote (STV): Also known as alternative voting (in case of 
one-winner solutions), each classifier gives a preference ranking of the classes. 
Incomplete ranks are possible, though such ranks may result in a classifier 
losing its vote. A majority vote is held based on the highest-ranked class of 
each classifier’s ranking. If some class gains the majority, it wins the election. 
Otherwise, the class with the least number of votes in the majority voting is 
eliminated from further participation. 	is class is removed from all prefer-
ence rankings. Now, the process repeats itself, starting with the majority vote, 
until one class gains the majority.

One low rank in an STV election has less effect on class selection than a 
low rank in the Borda count does. However, due to the elimination procedure, 
complex and illogical side effects may occur (for example, voting for a candi-
date may result in the candidate’s loss of the election). 	us, in any ensemble 
based on bagging, there are three comprehensive components: the bootstrapping 
sampling, the classifiers, and the voting strategy. Bootstrap sampling divides 
the train set into unbiased subsets, which are provided to each classifier in the 
ensemble. 	e set of classifiers that composes the ensemble typically consists of 
a diverse set of classifiers. 	e most vital component of the bagging technique 
is the voting strategy used to combine the decisions derived from the classi-
fiers. 	e variations of known bagging techniques are driven by the different 
voting strategies.
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8.6.2  Boosting
As with bagging, the boosting technique is characterized by three components: 
sampling of the train set, a set of classifiers that form the ensemble, and a voting 
strategy. Boosting relies on strategic resampling that is geared toward providing 
the most informative training subset to each of the classifiers in the ensemble. 	e 
boosting strategy can be viewed as a cascade of classifiers—in which each classifier 
generates decisions based on a refined subset of the training subset as we iterate 
through the cascade. 	e refining of the training subset is the responsibility of each 
of the classifiers in the ensemble. A schematic representation of boosting is provided 
in Figure 8.10. It should be noted that the voting techniques used in bagging can 
be employed in boosting.

To formalize the procedure behind the boosting ensemble of classifiers strategy, let 
us consider an ensemble ξ that consists of a set of N classifiers, i.e., ξ = …C C CN{ , , , }.1 2  
Let us assume that each of the classifiers in ξ is binary, where Ci classifies a sample xi 
to only two classes, i.e., ∈ −C xi i( ) { 1,1}. 	e final decision of ξ in classifying sample 
xi is the weighted sum of the outputs of the classifiers in the ensemble represented by 
the following relation:

 ( ) ( ) ( ) ( ).1 1 2 2 �ξ = α + α + + αx C x C x C xi i i N N i  (8.41)

In Equation 8.41, α α … αN{ , , , }1 2  corresponds to the weight assigned to the 
decisions by each of the classifiers.
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Figure 8.10 T he schematic representation of the boosting strategy in an ensemble 
of classifiers.
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	e AdaBoost algorithm is targeted toward choosing the best set of classifiers 
from a pool of a diverse set of potential classifiers (Freund and Shapire 1995). 	e 
objective of the AdaBoost algorithm is to choose a set of classifiers that complement 
each other in an optimal manner. 	is objective is brought about by the following 
framework and reflected in Equation 8.41. It thus consists of (1) a set of diverse 
classifiers …C C CN{ , , , }1 2 , (2) a weight αi( ) associated with each classifier, which 
acts an indicator (or flag) of the classifier’s ability to yield a decision given the train 
set, and (3) a function that sums the outputs of each of the classifiers to yield a 
common result.

AdaBoost follows an iterative framework. At each iteration, a classifier is chosen 
from a pool (or a pertinent set) of potential classifiers depending on their ability to 
classify samples that were previously misclassified by classifiers higher up the cas-
cade. 	is process ensures that classifiers in the ensemble complement each other 
and at the same time boost the overall performance in the ensemble. 	e heart of 
the algorithm is realized through the choice of classifiers, and is composed of the 
following three steps: seeking prospective classifiers for the ensemble, choosing an 
optimal set of classifiers, and assigning weight to a chosen classifier.

8.6.2.1 � Seeking Prospective Classifiers to 
Be Part of the Ensemble

	e objective of this step is to select new classifiers from a pool of classifiers that 
can help with the classification of samples that are still misclassified by a classi-
fier higher in the cascade. Let us assume that we start with our initial train set T, 
which consists of N-dimensional samples = …x x x xi i i i

N{ , , , }1 2  of data having class 
labels  ∈ −yi { 1,1}. Let us further assume that we have a finite set of k classifiers to 
choose from and the AdaBoost algorithm is subject to M iterations. First, we set up 
an error criterion that is iteratively carried out. AdaBoost uses the exponential loss 
error criterion (Wyner 2002), where each classifier is assigned a cost −βe  for every 
hit (correctly classified instance) and a weight βe  for a miss (misclassified instance). 
It should be noted that β > 0 such that misses are penalized more than hits.

	e main idea in AdaBoost is to proceed systematically by extracting one clas-
sifier from the pool in each of the M iterations. 	e elements in the dataset are 
weighted according to their current relevance (or urgency) at each iteration. At the 
beginning, all elements are assigned the same weight. During each iteration, those 
samples that are misclassified are assigned higher weights. 	us, when a new clas-
sifier is selected, importance is given to the classifier that performs well with those 
samples that are weighed higher.

8.6.2.2  Choosing an Optimal Set of Classifiers

In each iteration of the AdaBoost algorithm the k classifiers in the pool are 
reranked, taking into consideration the new weights assigned to the samples of 
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T (as discussed above). In this step, we focus on determining the next Cm and its 
corresponding weight, αm. Based on Equation 8.41, we obtain

 ( ) ( ) ( ) ( ),( 1) 1 1 2 2 1 1�ξ = α + α + + α− − −x C x C x C xm i i i m m i  (8.42)

and we want to extend it to

 ( ) ( ) ( ).( 1)x x C xm i m i m m iξ = ξ + α−  (8.43)

At the first iteration (m = 1), ξ(m – 1) is the zero function. We define the total 
cost, or total error, of the extended classifier as the exponential loss.

 
∑=

=

− ξ +α−E e
i

N
y x C xi m i m m i ,

1

( ( ) ( ))( 1)  (8.44)

where αm and Cm are to be determined in an optimal manner. We rewrite the above 
Equation 8.44 as follows:

 
∑= ( ) ( )

=

− αE w e
i

N

i
m y C xi m m i

1

 (8.45)

where

 = ( )− ξ( )−w ei
m y xi m i .( ) ( )1  (8.46)

In the first iteration, we get =( )wi 11 , for i = 1, …, N. During later iterations, 
the vector w(m) represents the weight assigned to each data point in the train set at 
iteration m. We then divide the sum into two numbers that reflect the weighted 
cost of all hits plus the weighted cost of all the misses.
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For selecting Cm the exact value of α >m 0  is irrelevant since minimizing E is 
equivalent to minimizing αe Em  for a fixed αm  and = +α αe E W W ec e

m m2 . Further, 
since >αe m 1,2  we can rewrite the above expression as

 = + + −α αe E W W W ec e e
m m( ) ( 1).2  (8.48)

+W Wc e( ) is a constant; thus αe Em  is minimized for the mth  iteration if a classifier 
is picked that has the lowest weight We  	us, the next choice of Cm  should be the 
one with the lowest penalty given the current set of weights.

8.6.2.3  Assigning Weight to the Chosen Classifier

With the classifier chosen, Cm  the immediate step is to determine its corresponding 
weight αm .

Considering the error E represented as

 = +−α αE W e W ec e
m m  (8.49)

we differentiate both sides by the weight αm :

 
.E

W e W e
m

c e
m mδ

δα
= − +−α α  (8.50)

On multiplying both sides by αe m and equating it to zero, we obtain

 − + =αW W ec e
m 0 .2  (8.51)

On simplification the optimal αm  is provided by the following relations:

 
α =









W
Wm

c

e

1
2
ln  (8.52)

 

1
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ln 1

2
ln 1α = −
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


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 = −








W W
W

e
em

e

e

m

m
 (8.53)

where =e W Wm e / , the percentage rate of error given the weights of the data 
points.

	e above steps are iteratively captured as follows:
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For m = 1 to M,

 1. Select and extract from the pool of classifiers the classifier Cm, which minimizes

 
∑=
≠

W we

y C x

i
m

i m i

,
( )

( )

 

 2. Set the weight αm  of the classifier to

 

1
2
ln 1α = −
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m  

 where =em W
W
e ,  and

 3. Update the weights of the data points for the next iteration. If Cm(xi) is a miss, set

 
= = −+ αw w e w e

e
i
m

i
m

i
m m

m

m 1 .( 1) ( ) ( )

 

 Otherwise, = =+ −α
−w w e wi

m
i
m

i
m e

e
m m

m
.( 1) ( ) ( )

1

8.6.3  Random Forest
Random forest is an ensemble approach that is suited to handle high-dimen-
sional data, as different models work on independent feature sets (subsets of the 
high-dimensional space). 	e results are assimilated to a single result. A random 
forest is a collection of individual decision tree classifiers, where each tree is a 
forest that has been trained using a bootstrap sample of instances from the data, 
and each split attribute in the tree is chosen from among a random subset of 
attributes. Classification of instances is based on aggregate voting over all trees 
in the forest.

Individual trees are constructed as follows from data having N samples and M 
explanatory attributes:

 1. Choose a train set by selecting N samples, with replacement from the data.
 2. At each noted in the tree, randomly select m attributes from the entire set of 

M attributes in the data (the magnitude of m is constant throughout the for-
est building).

 3. Choose the best split at that node from among the m attributes.
 4. Iterate the second and third steps until the tree is fully grown (no pruning).
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During the first step of the process a subset of N samples is chosen from the 
initial train set using the bootstrap sampling with replacement, resulting in a split 
of the train set. 	e set of N samples is used for analysis and generation of a tree t. 
	e remaining sets that are not part of set Di are called out-of-bag sets. 	e samples 
of this set Di are used for error prediction estimation.

	e samples in set Di are used to construct the tree without pruning. It should be 
noted that this is an iterative process, and each iteration results in the creation of a tree 
for analysis. Moreover, each tree is constructed differently as the number of randomly 
selected attributes would vary from each tree in the forest, as dictated in step 2.

To predict the class of an observation using a tree, the observation is assigned 
to a terminal node (i.e., a leaf) based on its predictor values. 	e class containing 
the majority of train set observations in the leaf is selected as the class prediction 
for the observation. With a forest of classification trees, each tree gets one vote for 
each out-of-bag observation, and for a given observation, the class receiving the 
most votes is the forest prediction. Again, ties are resolved by selecting the class 
with the lowest label. 	e probability of ties is very small if the number of trees 
is large. 	e random forest prediction for an observation is computed by averag-
ing the tree predictions over trees for which the given observation is out of bag 
(Figure 8.11).

Repetition of these steps yields a forest of trees, each of which has been trained 
on bootstrap samples of instances. 	us, for a given tree, certain instances will have 
been left out during training. Prediction error is estimated from these out-of-bag 
instances. 	e out-of-bag instances are also used to estimate the importance of par-
ticular attributes via permutation testing. If randomly permuting values of a par-
ticular attribute do not affect the predictive ability of trees on out-of-bag samples, 
that attribute is assigned a low importance score.

8.6.4  Application of Ensemble Approaches in Bioinformatics
Association studies have become an integral part of bioinformatics over the past 
decade. Association studies can help determine individual susceptibility to vari-
ous diseases as well as their responses to drugs based on their genetic variations. 
A widely used design for association study is to screen common single nucleotide 
polymorphisms (SNPs) and compare their variation between case and control sam-
ples for disease-associated gene identification at the genome-wide scale (termed as 
genome-wide association (GWA) studies). It is commonly accepted that complex 
diseases such as diabetes and cancer arise from a combination of multiple genes 
that often regulate and interact with each other to produce the traits. 	erefore, 
the goal of these studies is to identify the complex interactions among multiple 
genes that, together with environmental factors, may substantially increase the 
risk of the development of diseases. Using SNPs as genetic markers, this problem 
is commonly formulated as the task of SNP-SNP and SNP-environment interac-
tion identification.
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Among many pattern recognition algorithms, the decision tree algorithm has 
long been recognized as a promising tool for SNP-SNP interaction identification. 
Initial attempts to identify gene-gene interaction using decision tree-based meth-
ods were investigated on relatively small datasets. For instance, Yang et al. (2010) 
explained the application of the CART algorithm with a multivariate adaptive 
regression spline model to explore the presence of genetic interactions from 92 SNPs.

With the increasing popularity of tree-based ensemble methods, such meth-
ods have become the focus of many recent studies under the context of SNP-SNP 
interaction identification for complex disease analysis. Although different ensemble 
methods have been proposed for identifying SNP-SNP interactions, random for-
ests are the most popular. 	is popularity is largely due to the method’s intrinsic 
ability to take multiple SNPs jointly into consideration in a nonlinear fashion. In 
addition, random forests can be used easily as an embedded feature evaluation 
algorithm, which is applicable for disease association studies.

Training Data (D)

Bootstrap Sampling

Bootstrap
Instances

Di OBi Error
Estimation

Random Attribute
Selection

Tree1 Tree2 . . . Treei

Model

Out-of-
Bag

Instances

Figure 8.11 T he schematic illustration of the random forest classifier.
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	e primary goal of a random forest analysis in the context of genetic associa-
tion studies is to identify SNPs that may increase or decrease susceptibility to a 
disease (Bureau et al. 2005; Lunetta et al. 2004). 	is goal can be achieved by 
quantifying how much each SNP contributes to the predictive accuracy of a ran-
dom forest by measuring its predictive importance. Finding that an SNP helps 
differentiate between cases and controls is an indication that the SNP either con-
tributes to the phenotype or is linked to disequilibrium with SNPs, contributing 
to the phenotype.

We describe measures of predictive importance as a categorical response, such 
as the case or control status of individuals in a genetic study. For individual i, let 
Xi represent the vector of predictor variable values, yi represent its true class, Vj (Xi )
represent the vote of tree j, and tij represent an indicator taking value 1 when indi-
vidual i is out of bag for tree j and 0 otherwise. Let = Σ =T ti j

T
ij1  be the number of 

trees for which individual i is out of bag. 	e margin of votes mg X yi i( , ) is the dif-
ference between the proportion of votes for the true class and the largest proportion 
of votes among the other classes for a given individual. With only two classes, such 
as diseases and control, the margin becomes the difference between the proportion 
of votes for the true class and the proportion of votes for the wrong class. Letting 

=I V X yj i i( ( ) ) denote the indicator function taking value 1 when =V X yj i i( )  and 
0 otherwise, the margin can be written:

 

( , ) 1 ( ( ) ) max 1 ( ( ) ) .
1 1
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With only two classes, 0 and 1, the margin simplifies to:
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	e margin represents the level of confidence of the forest prediction. When most 
trees vote for the true class of an individual and the margin is close to 1, the pattern of 
predictor values for that individual unambiguously matches that of other individu-
als in the true class. When a large proportion of trees votes for another class and the 
margin is just above 0 or is negative, the pattern of predictor values has only weak 
similarity with other individuals in the same class and may point to another class.
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Now, consider random permuting of the values of a predictor variable such 
as an SNP genotype among the individuals excluded from the bootstrap sample, 
such that the variable becomes independent of the response. If the variable is pre-
dictive of the response, it will be present in a large proportion of trees and near the 
roots of those trees. A large proportion of out-of-bag individuals have genotypes 
that will be directed to the wrong side of the tree. 	e margin is then expected to 
decrease from the original variable values. Conversely, if the variable is not related 
to the response, it will be present in few trees, and when it is present, it will be 
near the leaves.

8.7  Computational Challenges of Supervised Learning
	e computational challenges of applying supervised learning on bioinformatics 
datasets are attributed to two aspects. 	e first is the very unbalanced nature of 
the datasets encountered in bioinformatics (Provost 2000). A dataset is believed 
to be unbalanced when one class contains more samples (majority class) than the 
other(s). For instance, in the case of splice site detection there are 100 times fewer 
positive samples than negative samples. Unbalanced datasets can present a chal-
lenge when training supervised learners. 	e standard approach to addressing this 
issue is to assign a different misclassification cost to each class. For SVMs, this cost 
is calculated by associating a different soft margin constant to each class according 
to the number of samples in the class. Often when data are unbalanced, the cost 
of misclassification is also unbalanced, where having a false negative proves more 
costly than having a false positive.

Another challenge in supervised learning is the problem of overfitting. A super-
vised model is considered to be overfit if the model is closely tied down to its train 
set. 	e results obtained from such models tend to be biased where the model fails to 
perform on random test samples. Overfitting stems from the fact when the model is 
overly trained to fit closely to the noise in the data. 	ere are different model evalua-
tion strategies that are discussed in Chapter 9, to gauge the effectiveness of the models.

8.8  Conclusion
In this chapter we described prominent classification or supervised learning strate-
gies used in the field of bioinformatics. 	e chapter covered important concepts of 
supervised learning such as bias and variance and model complexity. 	e chapter 
also shed light on specific challenges that bioinformatics datasets pose to supervised 
learning. Apart form listing the different approaches to supervised learning, the 
chapter provided a description of the application of these approaches to different 
high-throughput data-rich areas of bioinformatics, such as gene expression data and 
protein structure prediction.
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Chapter 9

Validation and 
Benchmarking

In Chapter 8, we introduce bias and variance, overfitting, and key classifiers 
as bioinformatics applications. 	ese techniques have been used successfully 
with both clustering and classification methods. In this chapter, we describe the 
evaluation strategies used to test a hypothesis and evaluate the performances of 
the clustering and classification techniques described in Chapters 6 to 8. For the 
readers’ convenience, we have divided this chapter into two parts. 	e first part 
contains an explanation of model selection and evaluation techniques used on 
classification models. 	e second part contains an explanation of cluster evalu-
ation techniques.

9.1 I ntroduction: Performance Evaluation Techniques
With the exponential growth of data and the growing importance of data min-
ing, the roles of clustering and classification techniques have become of an integral 
part of research in bioinformatics. Despite this importance, the significance of the 
results and knowledge mined from biological data is formalized using evaluation 
techniques. A wide range of performance evaluation techniques are available in 
data mining. 	ese techniques have been derived using well-known statistical 
principles. 	is section of the chapter is dedicated toward explaining how these 
principles can be used for better inference evaluation.

Before we delve into the techniques of model evaluation, we would like to 
remind the readers that classification techniques are used to generate learning 
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models that are used to classify samples into the most unbiased forms possible using 
the least possible variance. As discussed in Chapter 8, a trade-off exists between the 
bias and variance of the learning model, i.e., models with low bias have high vari-
ance and vice versa. It is known that classification model bias remains constant as 
the size of training set D increases, whereas the variance decreases (i.e., as D → ∞, 
the model’s variance → 0) in such cases. Variance is therefore an indicator of the 
performance of a model (Guyon 2009).

However, while models with low variance seem to be the best logical choice, 
it is observed that models with the least possible variance tend to be overfitted 
models. 	erefore, though variance is an effective estimate of model performance, 
it fails to gauge a model’s ability to generalize across training sets and compare 
model performances. To avoid these errors, it is a common practice in data min-
ing to use the generalization error as an alternate means to evaluate and compare 
learning models.

	e generalization error G( ) of a model is defined as follows (Nadeau and 
Bengio 2003). For example, if a large dataset X X Xn

n= …{ , , }1 1  consists of n 
samples of the form RX x yi i i

p q= ∈ +( , ) , where p and q denote the dimensions of 
xi  and the class label yi , then let D represent the training set of n n≤1  samples 
drawn at random from the dataset X n

1 . Furthermore, let f A represent the super-
vised learning algorithm trained using the training set D. 	e generalization 
error GA( ) is defined as the inaccuracy of a decision f xA( ) when y is the associ-
ated class label. 	e difference between the corresponding generalization errors 
G G( , )A B  of two models, f A  and fB , is used to compare the two learning algo-

rithms, provided they use the same learning data (Vapnik 1999). 	e following 
sections describe the data mining strategies used to estimate the generalization 
errors of models.

9.2  Classifier Validation
To generate accurate generalization error estimates, various validation strategies 
can be used in tandem with data mining. 	ese validation techniques are moti-
vated by two factors: model selection and performance estimation.

 1. Model selection: Almost invariably, classification techniques have one 
or more parameters that dictate the performance of the model generated. 
For example, in the case of the SVM and its respective kernel function, the 
parameters of the kernel function dictate the performance of the classifier, or 
in the case of the random forest classifier, the determination of the number 
of trees is necessary to obtain optimal model performance. 	erefore, model 
selection enables the users to choose and optimize the set of parameters of a 
classifier for optimal model performance.
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 2. Performance estimation: Once a model is selected with an optimal param-
eter set, performance estimation is used to estimate the performance of the 
selected model. Performance is typically measured by a model’s ability to 
classify samples to their corresponding classes for a given dataset.

9.2.1  Model Selection
With the various classification models available in data mining, it is a challenge to 
choose those models that best suit the data in the application domain. Model selec-
tion is used to choose that model that best fits the data set being analyzed. Typically, 
bioinformatics datasets consist of a large number of samples (n), and each sample is 
described by a fixed number of features (p) (i.e., n >> p). In such situations where 
n >> p, any learning strategy can be applied. However, many high-dimensional data-
sets used in bioinformatics consist of a small number of samples, and the features 
that describe these samples are larger in number (n << p). In such situations, the 
choice of model affects the results and inferences that can be derived.

Determining which model to use is driven by a heuristic of model choice (Guyon 
2009) that encapsulates the conditions described below. 	e benefits of using a 
heuristic of a model is that this model reduces the chances of model overfitting, 
prioritizes learners to be used, and reduces the computational complexity that can 
be avoided. 	e following heuristics highlight the importance of choosing appro-
priate classification models by taking into consideration overfitting, linear models, 
and nonlinear models.

Overfitting: 	e naïve Bayes classifier is least prone to overfitting and least 
computationally expensive of known classification techniques. As described 
in Chapter 8, the naïve Bayes classifier simplifies the assumption of feature 
independence (i.e., there is no relation between features), and thus renders the 
easy implementation of a model that is computationally effective. Moreover, 
this assumption of feature independence may create models that underfit the 
data when (1) there are a larger number of features than samples and (2) 
the number of samples is not sufficient to estimate the classifier performance 
using cross-validation. Due to these limitations, it is advisable to use the naïve 
Bayes classifier as a baseline model.

Linear models: Linear models are derived from classifiers, such as the support 
vector machine (SVM) with a linear kernel, and have low computational 
complexity. 	ese models are most effective on datasets that have a large 
number of samples (n) with a lower number of features (p). However, these 
models are preferred as they can provide a better fit of the data.

Nonlinear models: Nonlinear classifiers such as the J48 or C4.5 decision trees 
should be considered only if sufficient amounts of training data are available 
to perform cross-validation. Nonlinear SVM models work well with datasets 
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that have a large number of features. However, computational complexity 
increases with the number of features, and these nonlinear models could 
require feature selection in such cases.

9.2.1.1  Challenges Model Selection

Before discussing the various validation strategies used to estimate the performance 
of a model, we provide an overview of the procedure used to validate a selected 
model in this section. Performance estimation of a model is dependent on the num-
ber of samples in the dataset. Let us consider a dataset consisting of n available 
samples in a study, of which m number of samples is used for model training. In 
model training, the different parameters of the selected models are tweaked, and 
the best model is selected for performance estimation. Performance estimation is 
then performed on a test set T. It is imperative that the test set T = n − m be reserved 
solely for testing throughout the study. 	erefore, performance estimation poses 
the following challenges.

9.2.1.1.1  Sufficient Number of Samples in Train and Test Sets

	is challenge is based on the characteristics of the dataset. If the dataset consists of 
a relatively large number of samples (n), as compared to the number of features (p) 
(i.e., n >> p), then it is believed that a model trained on a training set that consists of 
randomly chosen samples and tested using a testing set would provide relevant error 
estimates that reflect the characteristics of the entire dataset. However, if the data-
set has a lower number of samples (n) than the number of features (p) (i.e., n << p), 
we could face a situation where it is not always possible to reserve a sufficiently large 
test set without compromising the number of samples used for training the model. 
	is problem could invariably generate inaccurate error estimates that could be 
misleading. As discussed previously, the performance of the model is closely related 
to the size of the train set. 	erefore, appropriate train and test sets (with a mini-
mum number of samples) should be determined based on a predetermined model 
performance confidence interval prior to model creation.

9.2.1.1.2  Handling Imbalanced Datasets

Models are affected by an imbalance in the number of samples in each class. 
Bioinformatics is plagued by imbalanced datasets (Chawla et al. 2004). Classifiers 
trained on imbalanced datasets create models that classify the test instances to the 
majority class (i.e., the class that has the most samples) that is least important. 	ese 
misclassifications of samples that belong to the minority class deteriorate the overall 
performance of the model. 	e relationship between the training set and the equal 
representation of all classes is made worse when there is large overlap between classes 
or when majority classes can be further divided into smaller subclasses.
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Two approaches can be adopted to handle imbalanced datasets: unsupervised 
(data specific) and supervised (algorithmic) approaches. Unsupervised approaches 
rely on various resampling strategies, such as the random oversampling of the minor-
ity class with replacement of samples (Liu et al. 2009), random undersampling of the 
majority class, directed oversampling (in which no new samples are created, but the 
choice of which samples to replace is informed rather than random), and directed 
undersampling (where the choice of samples to eliminate is informed).

Supervised (algorithmic) (Fu et al. 2002) approaches rely on weighing and 
thresholding strategies that prioritize minority classes to counter the class imbal-
ance caused by the majority classes (Mease et al. 2007). 	ese strategies include 
adjusting the decision threshold or one-class learning rather than multiclass 
learning. Other approaches, such as the ensemble of undersampled SVMs (EUS 
SVMs), include a mixture of data and algorithmic approaches. 	ese methods 
use ensembles (Kang and Cho 2006) in which the results of many classifiers 
are combined after oversampling or undersampling the data using different over/
undersampling approaches.

9.2.2  Performance Estimation Strategies
Bioinformatics applications have access to a finite set of samples that are often 
insufficient for testing a hypothesis using classification models. Because of the small 
sample sets, overfitting is prominent in several bioinformatics applications, espe-
cially those that have a large number of features (p).

Performance estimation strategies are used to avoid overfitting the error esti-
mates of a model to overly optimistic (i.e., lower than the true error rate) results.

	is section describes the performance estimation strategies used to effectively 
test a hypothesis despite the shortage of samples in bioinformatics datasets.

9.2.2.1  Holdout

	e holdout method is considered to be the simplest form of performance estima-
tion that partitions the data into two disjoint sets: a train set and a test set. 	e train 
set is used to train the chosen classifier for model generation during the training 
phase. During this phase, the optimal values of the model parameters are deter-
mined, and an appropriate performance measure is evaluated. Once the model is 
generated, the testing set is used to obtain an unbiased estimate of the generalized 
performance of the models.

	ough it is the simplest form of performance estimation with a single training 
and testing experiment, the holdout estimates of error could be misleading when 
the testing set is not sufficient to provide good error estimates. 	ese data insuf-
ficiencies are brought about by sparse datasets that are common in bioinformatics. 
Such limitations can be overcome using bootstrapping and cross-validation tech-
niques described in the following sections (Figure 9.1).
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9.2.2.2  Three-Way Split

One alternate approach to the holdout technique is the three-way split. In the three-
way split, model selection and performance (true error) estimates are computed at 
the same time. As the name suggests, this technique splits the data into three inde-
pendent sets: the training set, the validation set, and the testing set.

As with the holdout technique, the three-way split train set is used for model 
selection and parameter estimation. 	e difference between the methods is that the 
three-way split creates an additional split referred to as the validation set, as noted 
above. 	e validation set consists of a set of samples that are used to fine-tune 
the estimated parameters of the model selected using the train set. 	is additional 
fine-tuning enables the removal of biases from the true error estimates created dur-
ing the model training using the train set. Furthermore, all parameter estimations 
should terminate with the validation set.

Finally, the testing set is used to assess the final performance of the fine-tuned 
model. It should be noted that just as in the holdout method, the testing set is an 
independent set of samples that are used to generate the true error estimates of the 
final model.

	e following steps encapsulate the process of performance evaluation using the 
three-way split method (Figure 9.2):

 1. Dataset D is divided into three disjoint (independent) sets: train (t), valida-
tion (v), and testing sets (T ).

 2. Choose an appropriate classifier (F ) and determine the parameters that 
need tuning.

 3. Use the training set (t) and the classifier (F) to generate the model ( f ).
 4. Determine optimal parameters of model ( f ) using the validation set (v).
 5. Repeat steps 2 through 4 if there are multiple classifiers or if multiple 

parameters need to be optimized.

Test
Set

Classi�er

Model

Train
Set

Figure 9.1  A schematic representation of the holdout technique for perfor-
mance estimation of a model.
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 6. Select the best model ( f ), and train it using the combined training and 
validation sets.

 7. Perform parameter estimation using the final model ( f ) and the independent 
test set (T ).

9.2.2.3  k-Fold Cross-Validation

	e k-fold cross-validation is the most prominently used performance estimation 
technique in data mining and bioinformatics applications. k-Fold cross-validation 
divides the data set into k disjointed (independent) subsets consisting of equal (or 
nearly equal) samples in each subset. Each of the k disjointed data subsets is referred 
to as a fold, thus the name k-fold. 	e k-fold cross-validation process is an iterative 
procedure in which one of the k subsets (chosen at random) is used as a test set for 
performance estimation at each iteration, while the remaining k – 1 disjointed sub-
sets are combined to form the training set that is used to train the model.

It should be noted that the number of iterations in the k-fold cross-validation is 
set to k; i.e., the number of iterations is equal to the number of disjointed subsets 
used for performance evaluation. Having the number of iterations fixed to k is done 
such that there is an equal probability of each fold being used as the testing set for 
performance evaluation. Once all the iterations of the k-fold cross-validation are 
carried out, the average of the error estimates is computed to provide a generalized 
performance estimate performed over all k-folds. 	is generalized performance 
estimate, though slightly pessimistic, is considered justified as it is carried out over 
the entire sample space.

Another form of the k-fold validation technique is the leave-one-out cross-
validation (LOOCV) (Efron and Tibshirani 1997), in which each subset contains 

Validation
Set

Classi�er

Model

Error
Estimation

Model Selection Performance
Evaluation

Train
Set

Test Set

Final Model

Final Error

Figure 9.2  A schematic representation of the application of the three-way split 
approach to performance estimation.
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one sample, i.e., k =  N, where N = the number of samples in the dataset D 
(Figure 9.3).

9.2.2.4  Random Subsampling

Random subsampling performs k data splits of the dataset. Unlike k-fold cross-
validation, the number of splits is not equal to the number of iterations by which 
the procedure is repeated. Random subsampling is also referred to as Monte Carlo 
cross-validation (MCCV).

In this approach, each split consists of a fixed number of samples (determined 
by the user) that are randomly chosen without a replacement from the dataset.

	e error estimates (Ei ) are carried out on multiple iterations for a given dataset. 
In every iteration of the algorithm, a new set of samples is chosen from the dataset 
independently for training and testing. 	e true error estimate is obtained by taking 
the average of the separate estimate Ei, as shown in Equation 9.1.
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 (9.1)

	e error estimates generated using random subsampling are believed to be pes-
simistic (i.e., worst-case estimates), whereas those generated using the holdout test 
are overly optimistic.

9.3  Performance Measures
In this section, we discuss the measures proposed in data mining to test the perfor-
mance of a model. 	e most fundamental of these measures is the ROC analysis 
and its application to the binary (or two-class) classification problem. A binary 
classification algorithm maps a sample (for example, an unannotated sequence) 

Iteration
1

Iteration
2

Iteration
3

Dataset is Split
into k Folds

k-1 folds used 
for training

kth fold used 
for testing

Figure 9.3 T he process of splitting the dataset into folds followed in k-fold 
cross-validation.
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into one of two classes, denoted as C+ and C–. Building on our discussions in 
Section 9.3.2, the parameters of any classification algorithm are derived using the 
train set that consists of samples obtained from the known C+ and C– classes, and 
then the classifier is tested on the C+ and C– samples that are disjoint from the 
train set.

Such a binary classifier predicts only the classes to which test samples belong. 
	ere are four possible outcomes for this classifier: true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN). 	ese outcomes are schemati-
cally known as a confusion matrix (see Figure 9.4).

If a sample that belongs to the true positive class C+ is correctly classified as 
positive, then the result is counted as a true positive (TP); however, if the sample is 
misclassified as negative, it is counted as a false negative (FN). Similarly, if a sample 
that belongs to the true negative class C– is correctly classified as negative, it is 
counted as a true negative (TN); if it is misclassified as positive, it is counted as a 
false positive (FP).

9.3.1  Sensitivity and Specificity
	e TP, FN, TN, and FP counts can then be used to derive other measures of 
classifier performance. 	e true positive rate (also known as the hit rate or recall) 
of a classifier is derived from the following relation:

 
.TP Rate

Positives correctly classified
Total number of positives

=  (9.2)

As shown in the confusion matrix (see Figure 9.4), the positives correctly clas-
sified refer to the true positive (TP) count, and the total number of positives refers 
to the sum of both the true positive and false positive counts (i.e., TP + FN).
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Figure 9.4  A schematic representation of a confusion matrix in the case of a 
binary classifier. The different performance measures that are derived from the 
confusion matrix are true positive (TP), false positive (FP), true negative (TN), and 
false negative (FN).
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Similarly, the false positive rate (also known as the false alarm rate) of the clas-
sifier is computed using the following relation:

 
FP Rate Negatives incorrectly classified

Total number of negatives
= ,  (9.3)

where negatives incorrectly classified refer to the false positive (FP) count and the 
total number of negatives refers to the FP + TN.

	e TP and FP rates are two of the most import measures of model perfor-
mance. It is important to know that a model that is effective for discriminating 
between samples of the C+ and C– classes will have both a high TP rate and a low 
FP rate. 	e interplay between the TP rate and FP rate is best captured using the 
ROC plot described in Section 9.3.3.

	e true positive rate (TP rate) is also referred to as the sensitivity. Another 
important measure of model performance is known as specificity or TN rate and is 
calculated using the following relation.

	 Sensitivity  = 1 – Specificity	 (9.4)

Typically, sensitivity represents a model’s ability to identify samples that belong 
to the positive class (C+), and specificity represents a model’s ability to identify 
samples of the negative class (C–).

9.3.2  Precision, Recall, and f-Measure
Similar to the measures of sensitivity and specificity, the measures of precision and 
recall are used to estimate the performance of a model. Precision and recall are 
measures used to evaluate the retrieval performance of a classifier and are suited 
to biological applications that deal with information retrieval (Huang and Bader 
2009; Abeel et al. 2009). In this section, we provide the formal definition of preci-
sion and recall, and their derivative f-measure used as a comprehensive measure to 
gauge the performance of a classifier.

Precision (p) is the ratio of the number of true positives (TP) to the total number 
of positives (TP + FP) used and is represented by Equation 9.5:

 
.p

TP
TP FP

=
+

 (9.5)

Precision, therefore, represents the positive predictive value of a model. Similarly, 
we have the measure of recall (r). Sometimes referred to as the TP rate, sensitivity 
is to the ratio between the number of true positives (TP) and the total outcomes 
(TP + FN) generated by the model. Recall (r) is represented as follows:

 
.r

TP
TP FN

=
+  (9.6)



Validation and Benchmarking  ◾  309

To determine model accuracy using both p and r, we use the f-measure. 	e 
f-measure is the harmonic mean between p and r and is represented as follows:

 
2 .F measure

p r
p r

− = × ×
+

 (9.7)

In Equation 9.7, the f-measure is believed to be high when both the p and r 
values are high. 	e f-measure is effective in capturing the compromise between p 
and r. 	erefore, a model that has a higher f-measure is unbiased and is an effec-
tive classifier.

9.3.3  ROC Curve
	e receiver operating characteristics (ROC) curve is a classification evaluation tech-
nique that is used to visually compare the performance of classifier. In order to ana-
lyze the performance of a model, it is important to compare the interplay between 
the true positives and the false positives of independent classifiers. 	e ROC is a 
graphical plot of the true positive rate and the false positive rate of a classifier in the 
ROC space. 	e ROC space is represented by the specificity (FP rate) on the x-axis 
versus sensitivity (TP rate) on the y-axis. A point in the ROC space is the represen-
tation of a classifier in terms of its FP rate and TP rate as coordinates in the ROC 
space using a test set. 	is representation of the ROC space enables the capture of 
the trade-off between the true positives and the false positives of a classifier so that 
the result is beneficial for comparing the classifier performance.

An ROC curve is a step function that tracks the performance of a classifier as 
the number of samples in the test set increases (i.e., as it tends to ∞). Figure 9.5 pro-
vides a schematic representation of the performance of a classifier using the ROC 
curve. If the ROC curve of a classifier is skewed toward the northwest corner of 
the ROC space, the classifier exhibits a higher TP rate and a lower FP rate as the 
number of samples in the test set increases. Classifiers that follow this skewed trend 
are believed to be liberal when the skew identifies positive samples that are true 
positives with weak evidence.

If, on the contrary, the curve is skewed toward the southeast corner of the ROC 
space, the classifier exhibits a higher FP rate and a lower TP rate. In such a scenario, 
the classifier is believed to conservative when it is biased toward false positive clas-
sifications along with a lower TP rates. Similarly, if the ROC curve of a classifier 
falls along the diagonal of the ROC space, it is believed that the classifier has no 
bias toward the TP rate or the FP rate, and performs like a random guess, as in the 
case of making a decision by flipping a coin (head or tail). Typically, it is desirable 
to have a classifier that has a higher TP rate and a lower FP rate.

In order to quantify the performance of a classifier using the ROC curve, we 
use the measure of area under the curve (AUC). A relative measure that ranges 
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from 0 to 1, the AUC refers to the area under the ROC curve in the ROC space 
(see Figure 9.5). A classifier is believed to perform well if the AUC is higher and 
approaches closer to 1, and vice versa.

9.4  Cluster Validation Techniques
With the large volume of unlabeled data being generated in the field of bioinformat-
ics, it is vital to understand the underlying distribution of the data. Unsupervised 
clustering techniques of data mining aid in the understanding of the inherent 
properties of data. However, with the gamut of clustering techniques available, it 
becomes increasingly difficult for users to choose and validate these findings. Refer 
to Chapters 6 and 7 for a description of clustering techniques and their applications 
in bioinformatics. In this section, we describe the validation techniques that can 
be used to quantify the quality of a cluster. 	e evaluation of the results obtained 
from a clustering algorithm uses three cluster characteristics to quantify the quality 
of a cluster. 	ese cluster characteristics include compactness, connectedness, and 
spatial separation (see Figure 9.6) (Handl et al. 2005; Halkidi et al. 2001).

Compactness: Compactness, the formation of compact clusters, is achieved if 
the clustering algorithm is effective in keeping the intracluster differences 
small. Compactness can be achieved with algorithms that enable the forma-
tion of spherical and well-separated clusters such as the k-means algorithm. 
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Figure 9.5  ROC curve. (From Fawcett, T., Pattern Recog Lett (2006): 861–874. 
With permission.)
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While compactness is useful for characterizing clusters with well-formed 
boundaries, this property is ineffective in characterizing complicated 
clusters.

Connectedness: As the name suggests, connectedness can be used to character-
ize arbitrary shaped clusters based on the connectivity between points of a 
cluster. Compactness is based on the assumption that neighboring data items 
belong to the same cluster.

Spatial separation: Spatial separation is a criterion that enables the character-
ization of clusters that are sparse (i.e., data points between two clusters are 
widely separated). 	erefore, spatial separation usually combines with other 
characteristics, like compactness along with a distance measure. Spatial sepa-
ration between clusters is measured using three approaches: (1) single linkage, 
(2) complete linkage, and (3) average linkage.

9.4.1  The Need for Cluster Validation
All clustering methods are driven by the choice of distance measure, and the 
objective to form clusters with high intracluster similarity and low interclu-
ster similarity. 	ose bioinformatics applications that use clustering strate-
gies for hypothesis testing are plagued with datasets that are noisy and sparse. 
	ese inherent properties of the dataset make it difficult to interpret the results 
obtained using clustering algorithms. Typically, researchers rely on visual 
inspections of clusters and use prior biological information to estimate the 
quality of a cluster, making cluster validation subjective. Moreover, these coun-
terproductive practices of users undermine the clustering algorithms’ abilities 
to discover useful information possessed by the data necessitating the use of 
stringent validation techniques.

Clustering techniques are primarily used to discover significant groups pres-
ent in high-dimensional datasets. However, different clustering techniques generate 

(a) Compactness (b) Connectedness (c) Spatial Separation

Figure 9.6  Dataset exhibiting the different properties. (From Handl, J., et al., 
Bioinformatics 21, no. 15 (2005): 3201–3212. With permission.)
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varied results. 	ese discrepancies in results are attributed to factors that govern 
clustering techniques.

Clustering techniques are biased toward cluster parameters: Clustering 
algorithms are biased toward the formation of clusters as the creation of clus-
ters is governed by the parameters used by the technique. For example, the 
k-means algorithm is governed by the predetermined value of k that corre-
sponds to the number of clusters in the data. 	is is the fundamental prob-
lem that leads to observable discrepancies between the solutions produced by 
different algorithms.

�e sensitivity of the clustering technique to the number of features in the 
dataset: Clustering relies on the existence of distinct naturally occurring 
clusters of data points within the feature space. As most clustering techniques 
are governed by the use of a distance measure, it is a challenge to identify 
naturally occurring clusters in sparse high-dimensional spaces. 	is inherent 
problem results in the clustering of data points in the absence of any observed 
distribution in points, leaving it to the user to detect the significance of the 
resultant clusters returned.

It is therefore necessary to validate a clustering algorithm to determine that 
the clustering algorithm is not biased toward particular cluster properties and 
that the clusters formed are significant. In this section, we describe the cluster 
validation techniques that are categorized into external and internal measures of 
cluster quality.

9.4.1.1  External Measures

External validation measures consist of those techniques that use existing infor-
mation (correct class labels) to evaluate the quality of a cluster. 	ese validation 
measures are therefore used to evaluate a predefined objective or hypothesis. 	e 
measures are also used to validate a cluster with a known set of benchmark data. In 
situations where no known benchmark is available to evaluate a cluster, we rely on 
an internal measure of cluster goodness. Internal measures therefore do not rely on 
class labels, but rather use information intrinsic to the structure of the data (Handl 
et al. 2005).

External measures are divided into unary measures and binary measures, which 
are described as follows.

Unary measures: Unary measures are used to validate whether a cluster parti-
tion complies with the ground truth. 	e ground truth typically consists of 
a dataset with each sample assigned a unique class label. Unary measures are 
evaluated based on purity and the completeness of the cluster evaluated with 
respect to the ground truth dataset. Purity denotes the fraction of the cluster 
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taken up by its predominantly occurring class label, whereas completeness 
denotes the ratio of the number of samples in the predominant class that are 
classified to the cluster being evaluated to the total number of samples in the 
class. To obtain an assessment of a cluster, it is important to consider purity 
and completeness together. For a comprehensive assessment of purity and 
completeness, we use the f-measure as described in Section 9.3.2 (Handl et 
al. 2005).

Binary measures: Binary measures are used to assess the consensus between a 
cluster and the ground truth based on the contingency table of the pairwise 
assignment of data items. Most of these indices are symmetric and are there-
fore equally well suited for use as binary measures, that is, for assessing the 
similarity of two clustering results.

	e Rand index is a binary measure that is used to determine the similarity 
between two clusters as a function of positive and negative agreements in pairwise 
cluster assignments. Other binary measures include the Jaccard coefficient, which, 
unlike the Rand index, takes into consideration only the positive matches between 
clusters for evaluation.

9.4.1.2  Internal Measures

Internal measures, unlike external measures, do not rely on a ground truth dataset. 
All internal measures of a cluster are relative to the dataset from which the cluster 
is derived and use intrinsic information of the cluster and dataset to assess the 
quality of the clustering. As discussed in the previous section, measures of com-
pactness, connectedness, and separation are effective internal measures of cluster 
goodness. Apart from these three internal measures, we describe other measures 
that are derived from these measures.

Combinations: As the name suggests, combination measures are combinations 
of the internal measures of compactness and separation. In clustering, it is 
believed that as intracluster homogeneity increases with the number of clus-
ters, the distance between the clusters decreases. 	erefore, the measures that 
fall into this category measure both intracluster homogeneity and intercluster 
separation. A final score is computed as a linear or nonlinear combination 
of the two measures. An example of a linear combination is the SD validity 
index, and an example of a nonlinear combination is the Dunn index.

Predictive power/stability: Another form of cluster validation techniques that 
assess the predictive power or stability of a cluster forms a special category of 
internal validation measures. 	ese techniques rely on repeated resampling or 
perturbation of the original dataset and reclustering the resulting data. 	e 
consistency of the corresponding results provides an estimate of the signifi-
cance of the clusters formed.
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Compliance between partitioning and distance information: An alternative 
measure of cluster quality is an estimation of the degree of distance informa-
tion preserved from the original datasets in clusters. 	is measure uses the 
cophenetic matrix C that is symmetric of size N × N, and N is the number of 
samples in the dataset. Each element C(i,j) of the matrix C acts as an indica-
tor if a pair of samples is assigned to a common cluster. For the evaluation 
of a hierarchical clustering, the cophenetic matrix can also be constructed 
to reflect the level within the dendrogram. Here, an entry C(i,j) represents 
the level within the dendrogram at which the two samples i and j are first 
assigned to the same cluster.

Several methods have been proposed that capture the correlation between the 
cophenetic matrix and the original dissimilarity matrix to assess the preservation of 
distances under different distance functions and within different feature spaces or 
to compute the dendrograms obtained for different algorithms.

9.4.2  Performance Evaluation Using Validity Indices
A great deal of research is focused on finding the correct or optimal number of 
partitions. Cluster validity indices help address this problem by estimating the 
correct number of clusters and finding the quality clusters (Halkidi et al. 2001). 
	e most commonly used validity indices have been described below (Azuaje and 
Bolshakova 2002).

9.4.2.1  Silhouette Index (SI)

	e computation of the silhouette index is described by the following steps:

 1. For a given cluster, =X j cj ( 1,..., ), the silhouette technique assigns a silhou-
ette width, =s i i m( )( 1,..., ), to the ith sample of Xj. 	is value is defined as

 ( ) ( ( ) ( ))/max{ ( ), ( )},= −s i b i a i a i b i  

 where a(i) is the average distance between the ith sample and all of the 
samples included in Xj , and b(i) is the minimum average distance between 
the ith sample and all of the samples clustered in = ≠X k c k j s ik ( 1,..., ; ). ( ) 
lies between –1 and 1.

 2. When the value of s (i) is near 1, it can be assumed that the ith sample has 
been assigned to an appropriate cluster.

 3. When s(i) is near zero, it can be assumed that the ith sample can be assigned 
to the nearest neighboring cluster.

 4. When s(i) is near –1, it can be assumed that the ith sample has been misclas-
sified (Rousseeuw 1987).
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A global silhouette value or silhouette index, GSu, can be used as a validity 
index for a partition U. 	is measure can be determined using Equation 9.8, as 
shown below, which helps estimate the “correct” number of clusters for partition U 
(Rousseeuw 1987). 	us, a high value of silhouette index indicates that partition U 
is a better or optimal cluster. 	is method can be represented as

 
∑=

=

GS
c

Su j

j

c
1

1

 (9.8)

9.4.2.2  Davies-Bouldin and Dunn’s Index

Unlike the SI, the Davies-Bouldin (DB) index is defined as the ratio of the sum of 
the within-cluster scatter to the between-cluster scatter (Davies and Bouldin 1979). 
A small DB value indicates a compact cluster. Mathematically, such a reading can 
be defined as
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n c c

i j
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 (9.9)

where n is number of clusters, σi is the average distance of all patterns in cluster i 
to their cluster center ci, σj is the average distance of all patterns in cluster j to their 
cluster center cj, and d(ci, cj ) is the distance of cluster centers ci and cj.

Similarly, the Dunn index (D) is defined as the ratio of the minimum intraclus-
ter distance to the maximum intercluster distance. 	e Dunn index lies within the 
range of 0 to 1, and values approaching 1 correspond to good clusters. 	e index 
is given by

 =D d d/ ,min max  (9.10)

where dmin is the minimum distance between two objects from different clusters, 
and dmax is the maximum distance of two objects from the same cluster.

9.4.2.3  Calinski Harabasz (CH) Index

	e Calinski Harabasz (CH) index, proposed by Maulik and Bandopadhyay 
(2002), is computed as

 − −race b k trace w n k( ( )/( 1)/( ( )/( )),  (9.11)
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where b and w represent the between- and within-cluster scatter matrices, respec-
tively, and k and n represent the cluster and data points, respectively.

	e trace for the between-cluster scatter matrix B can be written as

 
∑= −

=

Trace b nk zk z
k

k

( ) || || ,2

1

 (9.12)

where nk is the number of points in cluster k and z is the centroid of the entire 
dataset. 	e trace of the within-cluster scatter matrix W can be written as trace(W ),

 
∑∑= −

==

Trace w xi zk
i

nk

k

k

( ) ( ) ,2

11

 (9.13)

9.4.2.4  Rand Index

A Rand index determines the similarity between two partitions with respect to 
positive and negative agreements and can be used to assess the degree of agreement 
between two clusters (Rand 1971; Youness and Saporta 2010). 	e Rand index 
ranges in value from 0 to 1; a higher Rand index value indicates a higher similarity 
between two partitions. 	is index is defined as the ratio of the number of agree-
ments between two partitions divided by the total number of objects (Hubert and 
Arabie 1985).

9.5  Conclusion
	is chapter provides an explanation of computation techniques used to validate 
and benchmark results obtained using either clustering or classification techniques 
on datasets. Moreover, it should be noted that these techniques are used for hypoth-
esis testing in bioinformatics.
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