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Variational Inference-based Positioning with
Nondeterministic Measurement Accuracies and

Reference Location Errors.
Bingpeng Zhou, Qingchun Chen, Henk Wymeersch, Pei Xiao and Lian Zhao

Abstract—Cooperative network localization plays an important role in wireless sensor network (WSN), wherein neighboring sensor
nodes will help each other to calibrate their locations. However, due to the dynamic wireless propagation environment and different
surroundings, the measurement accuracy at different network nodes is different and varies over time. In this paper, the uncertainties in
both measurement accuracy and reference node locations are considered to account for the impact of different surrounding
environments and the initial node location errors on the cooperative network localization. A mean-field variational inference-based
positioning (VIP) algorithm is proposed for cooperative network localization. The mechanism of the proposed VIP algorithm, the
convergence properties, implementation complexity, and the parallel implementation structure are presented to show that the VIP
algorithm provides an effective mechanism to incorporate and share the localization information among all network nodes for an
improved localization performance. Finally, a concise Cramer-Rao lower bound (CRLB) is derived to reveal the principle of localization
error propagation. It is disclosed that the localization error propagation principle is similar to the Ohm’s Law in circuit theory, which
provides a new insight into the impact of the measurement accuracy, the reference node location errors and the number of reference
nodes on the cooperative network localization performance.

Index Terms—Nondeterministic Measurement Accuracy, Reference Node Location Error, Cooperative Network Localization, CRLB.

F

1 INTRODUCTION

W IRELESS sensor network (WSN)-based cooperative
localization is an effective solution to enable the

location-aware services, such as location-aware security [1],
[2], warehousing management, environmental monitoring
and shopping mall navigation, which revolutionize the way
people search, locate and navigate the points of interest
inside buildings [3], [4].

Since the global positioning system (GPS) signal is usu-
ally unavailable in indoor environments [5], [6], it is of prac-
tical importance to explore the dedicated WSN-based coop-
erative localization, where various measurement signals can
be used, such as received signal strength (RSS) [7], time of
arrival (TOA) [8], [9], [10], [11] and angle of arrival (AOA)
[12]. However, there are several technical challenges still
remaining for the wireless network localization. First, the
localization cooperation with neighboring nodes is required
due to the limited number of anchor nodes in the network.
The reference node locations are inaccurate, owing to errors
in their initial location acquisitions. Hence, the reference node
location uncertainties are critical issues to be considered in
practical cooperative localization. Second, the measurement
accuracies associated with different reference nodes are
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different, due to their different surrounding environments,
device orientations, strengths of thermal noises and levels of
shadow fading.1 Moreover, in a dynamic environment (such
as the shopping mall crowded with moving people), the
measurement accuracy varies over time, and its real value is
thus difficult to obtain. Hence, the measurement accuracies
of different reference nodes are no longer identical, deter-
ministic and known. In this case, a hyper-prior model is
needed to characterize the randomness of nondeterministic
measurement accuracy. Consequently, in order to achieve
optimal performance, both reference node location error and
measurement accuracy randomness should be considered in
cooperative localization.

A multitude of localization schemes have been proposed
with different measurement data (e.g., node connectivity [6],
multihop number [15], [16], AOA [12], TOA [8], [9], [10],
[11], time difference of arrival [17], frequency difference of
arrival [18], gain ratios of arrival and range differences of
arrival [19]), under various constraints (e.g., the reference
node location errors [20], [21] and radio wave measurement
[6]) in different scenarios (e.g., underwater [22], indoor
[23], outdoor [24], dynamic tracking [25] and acoustic en-
vironment [26]). For example, the reference node location
error was studied in [20] and [21], where the importance
sampling and expectation-maximization-based positioning
methods were proposed respectively to deal with the anchor
node location errors. The corresponding Cramer-Rao lower
bound (CRLB) was derived in [20] to quantify the impact

1Here, the measurement accuracy is defined as the statistical distri-
bution precision of additive measurement errors, i.e., the inverse of the
measurement error covariance [13], [14], based on the statistical theory.
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of reference node location errors. The CRLB associated with
gain ratios of arrival in conjunction with range differences of
arrival was analyzed in [19] to study the effect of reference
node location errors. A multihop localization scheme based
on the evidence theory was proposed in [15] to deal with
the errors in the reference node locations. The effect of
reference node location errors was also analysed in [18],
wherein the time and frequency difference of arrival mea-
surements were utilized to perform the source localization.
In [27], the performance limits of the RSS-based and the
node connectivity-based localization were investigated to
clarify which strategy should be employed, and to find
out the optimal threshold for confirming the connectivity
of two network nodes. There are other methods, such as
the variational message passing [28], optimization methods
[29], belief propagation [30], which can be employed to
enable accurate localization in the presence of the reference
node location errors. However, almost all of them assume
the statistical precision parameters of measurement signal
errors at different nodes are identical, deterministic and
known.2 Harnessing the randomness of statistical measure-
ment accuracy is crucial not only for the analysis of localiza-
tion performance, but also for the development of efficient
localization algorithm.

In this paper, we assume the measurement accuracy of
different node pairs is nondeterministic. We use a Wishart
density, which is the conjugate priori of the precision of
a Gaussian variable, to characterize the nondeterministic
measurement accuracy. The Gaussian density is employed
to model the errors in the initial node locations. On this
basis, a mean-field variational inference-based positioning
(VIP) scheme is developed to share the measurement data
and prior location information among all network nodes
for localization performance enhancement. Moreover, a con-
cise CRLB is derived to reveal the principle of localization
error propagation. The impact of reference node location
errors and the measurement accuracy on the localization
performance is also analyzed. It is disclosed that, the error
propagation mechanism resembles the Ohm’s Law in circuit
theory, which provides a new insight into the impacts of the
measurement accuracy, the reference node location errors
and the number of reference nodes on the localization
performance. The proposed VIP algorithm is applied to the
RSS-based network localization, due to its model simplicity
and popular accessibility to WSNs.

The contributions of this paper are two-fold.
• A mean-field VIP scheme is proposed for cooperative

network localization, accounting for both the mea-
surement accuracy randomness and the reference n-
ode location errors. The VIP scheme can reap further
performance benefits from the global localization co-
operation (i.e., sharing of measurement data and pri-
ori location information among all network nodes)
and the variational messages propagation within the
associated Markov Blanket variables.

• A concise CRLB is derived to reveal the localization
error propagation mechanism. In addition, the im-
pact of the number of reference nodes, the reference

2We use “measurement accuracy” to stand for “statistical precision
parameters of measurement signal error” thereafter for brevity purpose,
whenever there is no confusion.

node location errors and the measurement accura-
cies are asymptotically analyzed to show how these
dependent factors dominate the cooperative localiza-
tion performance. It indicates the performance limits
for a localization algorithm. Moreover, the theoretical
analysis results can guide the algorithm design to
strike a balance between localization performance
and implementation overhead.

The remainder of this paper is organized as follows.
Section 2 describes the system model and the problem con-
cerned. A mean-field VIP algorithm is proposed in Section
3. The performance limits of VIP are analysed in Section 4.
Simulation and experiment results are presented in Sections
5 and 6, respectively. Finally, Section 7 concludes the paper.

2 SYSTEM MODEL

2.1 WSN Model
We consider a static WSN, as shown in Fig. 1, where all
sensor nodes are assumed to be uniformly distributed inside
the deployment area and the total number of sensor nodes
is assumed to be M . In addition, there are only inaccurate
nodes (no anchors) inside the whole area, and all sensor
nodes are supposed to be localized with the cooperation
of other nodes. We assume that, all sensor node locations
are inaccurate due to errors in acquisition of their initial
locations. The true (but unknown) location of the ith sensor
node is denoted by a D-dimensional column vector si, while
the coarse location (inaccurate location with a precision Ui)
recorded by the ith sensor node is denoted by µi. The coarse
location µi and precision Ui are recorded by the sensor
node and will be reported to the objective node (the node to
be located). In general, the true location si is modeled as a
Gaussian distribution with the center µi and the precision
Ui, namely,3 [31]

si ∼ N (si|µi,Ui), ∀i = 1 :M, (1)

where we assume sensor location precision Ui is indepen-
dent with each other. The location uncertainty is defined as
the inverse of the location precision matrix Ui.

Considering the localization of sensor node si (the objec-
tive node), we assume si is within the sensing range rs of
Mi nearby nodes (reference nodes), and we define the index
set of these reference nodes as

Ψi
.
= { j : ∥sj − si∥2 < rs, ∀j ̸= i}, (2)

where the symbol ∥ • ∥2 denotes the ℓ2-norm on a vector.
Hence, we have the set cardinal number |Ψi| =Mi.

2.2 Measurement Model
The general measurement model of cooperative wireless
localization can be given by

zi,j = h(si, sj) + ϵi,j , ∀j ∈ Ψi and ∀i = 1 :M, (3)

where zi,j denotes the associated measurement from sj to
si, and ϵi,j denotes the additive measurement noise.

3Although we assume no anchor in the deployment area, the anchor
node location can also be characterized by Eq. (1) when the location
precision Ui approaches infinity. Hence, this location model subsumes
the case with anchor node(s).
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Fig. 1. Illustration of the WSN deployment. Those nodes inside sensing
range rs around si, form the reference node cluster {sj |∀j ∈ Ψi}.

In particular, h(si, sj) is defined as the measurement
function, which depends on the distance ∥si − sj∥2 (range-
based methods) [32], the angle ∠(si, sj) (direction-based
methods) [33] or the connectivity c(si, sj) [27] of two nodes.

In this paper, the following analysis is valid for the
TOA, AOA and particularly the RSS-based localization [11],
[12], [7], [25], where the associated measurement function
h(si, sj) can be specified, respectively, as [32],4′ 5

hTOA(si, sj) = ∥si − sj∥2, (4)
hRSS(si, sj) = ϕ− 10γ log10 ∥si − sj∥2, (5)

hAOA(si, sj) = φj +
180

π
actan

(
[si − sj ]2
[si − sj ]1

)
, (6)

wherein ϕ = PT − L0 + 10γ log10 d0 and PT is the transmit
power, L0 denotes the path loss associated with the refer-
ence distance d0, γ denotes the path loss exponent [36]. In
addition, [x]k stands for the kth (k = 1, 2) element of a two
dimensional vector x, and φj stands for the direction of the
antenna main lobe. Unless otherwise stated, we use h(si, sj)
to denote the general range-based measurement function.

The measurement error ϵi,j is generally modeled as
a zero-mean Gaussian noise, i.e., ϵi,j ∼ N (ϵi,j | 0,wi,j),
where wi,j is defined as the measurement precision (or
accuracy). In practice, the precision of different measure-
ment noise is different due to different levels of shadowing,
different device orientation and different obstructions [37].
In addition, due to the dynamic surrounding environment
(such as the shopping mall crowded with moving people),
the measurement precision wi,j changes over time and it
is difficult to obtain its exact value. Hence, we assume the
measurement precision wi,j associated with different node
pairs (si, sj) is nondeterministic and unknown.

Hence, a hyperpriori model is needed to characterize
the randomness of nondeterministic measurement precision
wi,j . In Bayesian statistics, the Wishart density is the conju-
gate priori of the precision of a Gaussian distribution, thus it
can be used to characterize the hyperpriori of the precision

4For the TOA-based localization, we have considered the case that,
the non-light-of-sight signal can be identified and removed by the
identification methods [6], [34] and its positive ranging error can also be
mitigated [35]. The network timer is also assumed to be synchronized.

5For the AOA-based localization (see Eq. (6)), we assume the
scenario is in a 2-dimensional Euclid space, i.e., D = 2.

parameter of a Gaussian variable [38], [39]. It can not only
facilitate the associated theoretical analysis, but also guaran-
tee a reasonable assumption that the priori distribution and
the posteriori distribution of measurement precision fall in
the same distribution family [40]. The Wishart density is also
commonly assumed for the precision of a Gaussian variable,
for instance in [41], [42]. In this paper, we also apply the
Wishart density to model wi,j , i.e.,

wi,j ∼ W(wi,j |W, ψ), ∀j ∈ Ψi and ∀i = 1 :M, (7)

where the positive scalar W denotes its scale and ψ denotes
its degree of freedom (DoF). This model is validated by real
experiments presented in Section 5 (see Fig. 10(a)). Note
that, this model subsumes the case where the measurement
precision wi,j is deterministic and known, when ψW2 → 0.

2.3 Problem Formulation

Given each network node’s coarse location µi, precision
Ui and its measurement zi,j , ∀j ∈ Ψi, ∀i = 1 : M , the
task is to localize all network node positions and reveal
the localization performance limits, using limited state
information of measurement precision wi,j .

3 ALGORITHM DESIGN

In this section, by exploiting the underlying statistics of both
sensor node locations and measurement precisions, a mean-
field VIP algorithm is developed.

3.1 Statistical Model

Prior to presenting algorithm details, the objective function
and some variable definitions are introduced at first.

Let ci = vec [sj ]∀j∈Ψi be the cluster of reference nodes,
where vec[•j ]∀j∈Ψi yields a column vector stacked by all
components {•j : ∀j ∈ Ψi}. The measurements of node
si from Ψi are stacked as zi = vec [zi,j ]∀j∈Ψi . We define
a measurement precision vector as ωi = vec [wi,j ]∀j∈Ψi .
Considering the localization of senor node si (also called
the objective node), we define the associated complement
variable as αi = [s⊤i , c

⊤
i ,ωi]

⊤ with (MiD + D + Mi) di-
mensions, which incorporates all nondeterministic variables
associated with localization of si. Meanwhile, let αn

i denote
the nth individual variable in the complete variable {αi}.

Consequently, assuming the measurements conditioned
on αi are mutually independent, the likelihood distribution
associated with αi is specified as

p(zi|αi) =
∏
j∈Ψi

|wi,j |
1
2

√
2π

exp

(
−1

2
wi,j

(
zi,j − h(si, sj)

)2)
.

Hence, the posteriori distribution of αi is cast as

p
(
αi|zi

)
∝ p

(
zi|αi

)
p
(
αi

)
=

∏
j∈Ψi

|wi,j |
1
2

√
2π

exp

(
−1

2
wi,j

(
zi,j − h

(
si, sj

))2)
· N

(
sj |µj ,Uj

)
W

(
wi,j |W, ψ

)
· N

(
si|µi,Ui

)
, (8)

where ∝ denotes the left is proportional to the right.
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In particular, the posteriori distribution associated with
senor node location si is marginalized as

p(si|zi) ∝ p(si)

∫
p(zi|αi)p( s̃i) d s̃i

=N (si|µi,Ui)

·
∏
j∈Ψi

∫∫ |wi,j |
1
2

√
2π

exp

(
−1

2
wi,j

(
zi,j − h

(
si, sj

))2)
· N

(
sj |µj ,Uj

)
W (wi,j |W, ψ) dsjdwi,j , (9)

where s̃i is defined as the complementary variable set of si,
i.e., s̃i = αi\si, by introducing set partition {αi} = {si, s̃i}.

The localization of node si in terms of either minimum
mean squared error or maximum posteriori density is based
on the above marginalized posteriori p(si|zi). However, due
to the nonlinear measurement function h(si, sj) and nonde-
terministic measurement precision wi,j , there is no closed-
form expression of p(si|zi), (i.e., it can not be calculated out
with limited amount of common operations and functions
[43]), which complicates the localization realization. Hence,
we resort to the variational Bayesian inference (VBI) method
[44] to solve this problem.

3.2 Theoretical Basis
Considering the intractable posteriori p(si|zi), ∀i = 1 : M ,
we use a set of another distributions

{
q(α

(n)
i )|∀α(n)

i ∈ αi

}
to approximate the complete variable-associated posteriori
p
(
α

(n)
i |zi

)
, such that the Kullback-Leibler divergence (KLD)

between the joint density q(αi) and the objective posteriori
density p(αi|zi) is minimized.6 The utilized KLD metric is
defined as [44]

DKL[q||p] =
∫
q(αi) ln

q(αi)

p(αi|zi)
dαi, (10)

where q(αi) is assumed to be factorized as [44]

q(αi) = q(si)
∏
j∈Ψi

q(sj)q(wi,j), (11)

where q(si) stands for the approximation to the individual
posteriori p(si|zi), and so are q(sj) and q(wi,j).

Based on the mean-field VBI theory, the optimal varia-
tional approximation q(αn

i ) of each individual variable αn
i ,

∀αn
i ∈ {αi}, is finally derived as

q(αn
i ) ∝ exp

(⟨
ln p

(
αn

i ,B(αn
i )
)⟩

B(αni )

)
, (12)

where
⟨
g(αn

i )
⟩
αni

=
∫
g(αn

i )q(α
n
i ) dα

n
i , and B(αn

i ) stands
for the Markov blanket (MB) [48] associated with variable
αn

i , ∀αn
i ∈ {αi}, which can be specified as

B(si) = {sj ,wi,j , zi,j : ∀j ∈ Ψi}, ∀i = 1 :M, (13)
B(wi,j) = {si, sj , zi,j}, ∀j ∈ Ψi, and ∀i = 1 :M. (14)

Then, based on Eq. (12), each variational approximation
q(si) and q(wi,j) to the corresponding posteriori p(si|zi)
and p(wi,j |zi), respectively, can be iteratively calculated in
parallel and gradually converge, as addressed below.

6There are a multitude of other methods to find the approximation
of a complicated posteriori density function, such as Monte Carlo sam-
pling [20], [45], unscented transformation [46], Laplace approximation
[47] and linearization [45].

3.3 Algorithm Formulation

At each VBI iteration of the VIP algorithm, when deriving
q(αn

i ) we assume other approximations q(αm
i ), ∀m ̸= n,

are determined. Based on the mean-field VBI method, the
variational approximations in VIP are updated as follows.

(i) Update of q(si) about Sensor Node Location: We
first consider the update of node si, ∀i = 1 : M . According
to Eq. (12), given q(sj) and q(wi,j), ∀j ∈ Ψi, the variational
distribution q(si) is approximated by a variational particle
set {s(τ)i , ℘

(τ)
i |∀τ = 1 : Ns} as follows (please see the

detailed derivation in APPENDIX A),

q(si) ≈
∑

τ=1:Ns

℘
(τ)
i δ

(
si − s

(τ)
i

)
, (15)

whereNs denotes the number of particles, and δ denotes the
Dirac function. In addition, s(τ)i stands for the supporting
point of particle, which is drawn from its priori p(si), i.e.,

s
(τ)
i ∼ p(si), (16)

and ℘(τ)
i denotes its weight, which is given by

℘
(τ)
i ∝

∏
j∈Ψi,
k=1:Ns

exp

(
− 1

2
℘
(k)
j ⟨wi,j⟩

(
zi,j− h

(
s
(τ)
i , s

(k)
j

))2)
︸ ︷︷ ︸

Pi
(
s
(k)
j

)
,

(17)

where the approximation expectation ⟨wi,j⟩ = ψ♯
i,j W

♯
i,j ,

while W♯
i,j and ψ♯

i,j denote the posterior scale and the
posterior DoF of a Wishart distribution, respectively, i.e.,
q(wi,j) = W

(
wi,j |W♯

i,j , ψ
♯
i,j

)
(see Eq. (20)). A simple nota-

tion ⟨wi,j⟩ is used in (17) to stand for ⟨wi,j⟩wi,j , when the
two variables involved in the operator ⟨•⟩• are the same.
Please see APPENDIX A for the detailed derivation.

We can find out that, each particle s
(k)
j of reference node

sj carries variational message Pi

(
s
(k)
j

)
. All these variational

messages {Pi

(
s
(k)
j

)
}∀k=1:Ns

∀j∈Ψi

carried by different particles

of different reference nodes jointly enhance the location
confidence q(si) of objective node si. In addition, at each
VBI iteration associated with each node, all particle weights
{℘(τ)

i |∀τ = 1 : Ns} can be updated in parallel (see more
details in Section 3.5.(ii)).

Given the variational particles derived as above, the
sensor location and the associated location precision can
be determined, according to an asymptotic minimum mean
squared error criterion, as below

ŝi =
∑

n=1:Ns

℘
(n)
i s

(n)
i , (18)

Ûi =

( ∑
n=1:Ns

℘
(n)
i

(
s
(n)
i − ŝi

)(
s
(n)
i − ŝi

)⊤)−1

. (19)

Namely, in addition to the node location estimation ŝi,
the location precision Ûi can also be iteratively updated.

As for the approximation update q(sj) associated with
the reference node sj , ∀j ∈ Ψi, it is equivalent to the update
of q(si) in (15), where the approximate distribution q(sj) is
derived by integrating the posterior information (e.g., q(si)
and q(wi,j)) propagated from its MB B(sj).
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In fact, the VIP algorithm combines both the variational
inference and importance sampling to deduce the compli-
cated posteriori distribution p(si|zi), and to enable a feasible
network localization scheme, which is different from the
traditional particle-assisted approximation method, e.g., the
localization scheme in [20]. The variational iterations can
gradually improve the particle efficiency with low approxi-
mation error (see Section 3.5.(i) for more details).

(ii) Update of q(wi,j) about Measurement Precision: We
now formulate the update of approximate posteriori q(wi,j).
Assuming q(si) and q(sj), ∀i = 1 : M and ∀j ∈ Ψi, have
been determined in the previous iteration, the approximate
distribution q(wi,j) can be derived as the following Wishart
density (see APPENDIX B for the details),

q(wi,j) ∝ |wi,j |
(ψ+1)−2

2 exp

(
− 1

2

(
W♯

i,j

)−1
wi,j

)
d
=W

(
wi,j |W♯

i,j , ψ
♯
i,j

)
, (20)

where d
= denotes the equality in the sense of distribution. In

addition, the posteriori DoF ψ♯
i,j = ψ + 1, and we have

W♯
i,j =

(⟨(
zi,j − h (si, sj)

)2⟩
si,sj

+W−1
)−1

, (21)

≈
( ∑

k=1:Ns
τ=1:Ns

℘
(τ)
i ℘

(k)
j

(
zi,j − h

(
s
(τ)
i , s

(k)
j

))2
+W−1

)−1

, (22)

where the variational particles
{
s
(τ)
i , ℘

(τ)
i |∀τ = 1 : Ns

}
∼

q(si) and
{
s
(k)
j , ℘

(k)
j |∀k = 1 : Ns

}
∼ q(sj) are employed to

approximate the complicated term in Eq. (21).
Hence, the nondeterministic measurement precision can

be updated as its posteriori expectation in the following way

⟨wi,j⟩ = ψ♯
i,j W

♯
i,j , (23)

which is also referred to as its asymptotic minimum mean
square error estimation, i.e., ŵi,j = ⟨wi,j⟩.

3.4 Algorithm Realization
The VIP scheme can be performed not only in a centralized
computation center (i.e., a centralized localization manner)
but also by each individual sensor node (i.e., a distributed
localization manner). For a centralized localization strategy,
once all the measurement data and priori information of
network node locations are gathered, the computation cen-
ter can act on the global data (measurements, variational
message, node location information) to localize network
nodes in parallel (see Section 3.5.(ii)). On the other hand, for
a distributed localization strategy, each sensor node si can
derive its own location through exchanging the variational
message {Pi

(
s
(k)
j

)
|∀k = 1 : Ns} with its nearby nodes

{sj |∀j ∈ Ψi} only. Of course, in such a strategy, each node
should be provisioned with sufficient hardware to afford the
VIP calculation. The algorithm complexity will be discussed
in Section 3.5.(iv).

Once obtaining {Pi

(
s
(k)
j

)
|∀k = 1 : Ns, ∀j ∈ Ψi}, the

VIP algorithm can iteratively identify ŝi, even with nonde-
terministic measurement precision wi,j . The other nondeter-
ministic parameters (i.e., Ui and wi,j) can also be updated
with decreasing errors, leading to more accurate network

localization. The pseudo-code description of the proposed
VIP scheme is presented in Algorithm 1.

Algorithm 1: The proposed VIP scheme
Input : µi,Ui, zi,j , ∀j ∈ Ψi and ∀i = 1 :M .

1 Initialization: PT , L0, d0, γ,W, ψ (supposing RSS).
2 Give all initial distributions p(si) = N

(
si|µi,Ui

)
, ∀i.

3 Collect mutual measurements zi of network nodes
and construct the reference node index set Ψi, ∀i.

4 Draw proposal particles
{
s
(k)
i |∀k = 1:Ns

}
∼ p(si), ∀i.

5 While not converge do
6 For i = 1 :M

7 Update the particles {s(τ)i , ℘
(τ)
i |∀τ = 1:Ns} for

the node si in parallel, as addressed in Eq. (17).
8 Update ⟨wi,j⟩ = ψ♯

i,jW
♯
i,j , where ψ♯

i,j = ψ + 1

and W♯
i,j is given by Eq. (21), ∀j ∈ Ψi.

9 End
10 Return the location estimation ŝi =

∑
n ℘

(n)
i s

(n)
i

and the associated localization precision in (19).
11 End

Output: ŝi, Ûi and ⟨wi,j⟩, ∀j ∈ Ψi and ∀i = 1 :M .

3.5 Algorithm Characteristics

In order to clearly present the mechanism of the proposed
VIP algorithm, we have the following formulation.

(i) Message Propagation: We can see from Eq. (17) that,
in the VIP algorithm, by incorporating q(sj) and q(wi,j),
∀j ∈ Ψi, (which converge to p(sj |zi) and p(wi,j |zi), respec-
tively), the particle set

{
s
(k)
i , ℘

(k)
i |∀k = 1 : Ns

}
yields a

more and more closer approximation to p(si|zi) by using
q(si). As a result, the approximation error of particle set{
s
(k)
i , ℘

(k)
i |∀k = 1 : Ns

}
will become smaller and smaller

gradually.
In the framework of VIP algorithm, the estimation of one

variable αm
i (∀αm

i ∈ {αi}) benefits from the variational
information of other variables in the associated MB B(αm

i ).
Nevertheless, for the traditional importance sampling-

based positioning method (e.g., [20]), the desired particles{
s
(k)
i , ℘

(k)
i |∀k = 1 : Ns

}
only depend on priori p(sj) and

p(wi,j), ∀j ∈ Ψi. Given the proposal particles {s(k)i |∀k = 1:
Ns} drawn from p(si), each particle weight is calculated as
Eq. (24), where the particle set {s(m)

j , ℘
(m)
j |∀m = 1 : Ns}

approximates the priori p(sj), and {w(n)
i,j , φ

(n)
i,j |∀n = 1 : Ns}

approximates the priori p(wi,j), ∀j ∈ Ψi. Namely, there is
just the priori rather than the posteriori information of sj
and wi,j propagated into the localization of node si. Hence,
the particle approximation involved in the VIP algorithm
is more efficient than that in the traditional importance-
sampling method.

On the other hand, by incorporating the variational
message {Pi

(
s
(τ)
j

)
|∀τ = 1 : Ns} from reference node sj ,

∀j ∈ Ψi (which can also incorporate variational message
{Pj

(
s
(t)
k

)
|∀t = 1 : Ns} from its own reference node sk,

∀k ∈ Ψj), the node si can integrate the localization infor-
mation from the remote node sk, k /∈ Ψi, that falls out
of its reference cluster, as shown in Fig. 2. In such a case,
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℘
(k)
i ∝

∏
j∈Ψi

∑
m=1:Ns,
n=1:Ns

℘
(m)
j φ

(n)
i,j

∣∣w(n)
i,j

∣∣ 1
2 exp

(
−1

2
w

(n)
i,j

(
zi,j − h

(
s
(k)
i , s

(m)
j

))2)
. (24)

the mutual measurement information of all sensor nodes
can be globally shared among the whole network. However,
the traditional importance-sampling method (e.g., [20]) only
incorporates the associated local priori information of p(sj)
and p(wi,j), ∀j ∈ Ψi, from its reference cluster.

Fig. 2. Illustration of variational message propagation.

Hence, the proposed VIP scheme gains further localiza-
tion accuracy from both the global localization information
propagation among network nodes and the variational mes-
sage exchange with the associated MB variables.

(ii) Parallel Structure: The calculation steps 7 and 8
of the VIP algorithm can be performed in parallel when
iteratively deducing each approximate distribution q(αm

i ),
∀αm

i ∈ {αi}. Consequently, in the VIP algorithm, the par-
allel calculations can be performed as follows. (ı) All node
locations si and the measurement precisions wi,j , ∀j ∈ Ψi,
∀ i = 1 :M , can be deduced in parallel, through exchanging
the associated variational information; (ıı) At each VBI itera-
tion of each node location, all weights {℘(τ)

i |∀τ = 1 : Ns} of
its variational particle set can also be updated in parallel (see
(17)); (ııı) For the update of a particle weight ℘(τ)

i of a node
si, all variational messages

{
Pi

(
s
(τ)
j

)}
∀τ=1:Ns
∀j∈Ψi

propagate

from its reference nodes {sj : ∀j ∈ Ψi} can be calculated
in parallel, as shown in Fig. 3.

(iii) VIP Convergence: Generally, the variational infer-
ence estimator converges to a saddle point. If the localiza-
tion system is unbiased, the VIP-based location estimation
can converge to the true location asymptotically. The con-
vergence properties of variational Bayesian approximation
method are studied in [49], which states that the variational
inference-based unbiased estimation will locally converge to
the true value almost surely when the measurement sample
size is sufficiently large. In lights of this, the variational
inference-based approximation error will approach zero,
when the number of variational particles and measurement
samples approach infinity. Moreover, the associated local-
ization error is asymptotically Gaussian [49].

On the other hand, in our VIP algorithm, the variational
approximation q(αn

i ), ∀αn
i ∈ {αi}, is chosen to minimize

the KLD distanceDKL[q(αi)||p(αi|zi)] in (10), we then have

Fig. 3. Illustration of the parallel computation of the VIP algorithm.

that 0 ≤ D
(ℓ)
KL[q(αi)||p(αi|zi)] ≤ D

(ℓ−1)
KL [q(αi)||p(αi|zi)],

where D(ℓ)
KL[q(αi)||p(αi|zi)] denotes the associated KLD at

the ℓth variational iteration. Hence, for each iteration the
KLD is monotonically non-increasing. Once the proposed
VIP method reaches a set of fixed distributions {q(αn

i ) :
∀αn

i ∈ {αi}}, the variational distribution q(αi) minimizes
DKL[q(αi)||p(αi|zi)]. As a result, the VIP algorithm can
make {q(αn

i ) : ∀αn
i ∈ {αi}} as close as possible to p(αi|zi),

till it finally converges. The VIP algorithm converges typi-
cally after 6 iterations.

(iv) Computational Complexity: For the localization of
one node, the VIP algorithm’s computational complexity
scales with O(MiN

2
s T ), where T is the iteration number

such that the VIP algorithm converges. As mentioned earli-
er, all system variables and variational particles in the VIP
algorithm can be calculated in parallel. Hence, in one par-
allel processing unit, the practical computational overhead
is reduced to O(T ), meanwhile MiN

2
s processing units are

required. Although the overall computational cost is equiv-
alent to a centralized strategy, the required processing time
can be decreased by MiN

2
s times if the parallel-computation

strategy is employed. The computation complexity of tra-
ditional Monte Carlo-based method (e.g., [20]) scales with
O(MiN

3
s ), as shown in Eq. (24).

4 PERFORMANCE ANALYSIS

In addition to complexity and convergence, there are other
localization performance metrics, such as CRLB, robustness,
scalability and cost, where the CRLB is commonly used to
benchmark the localization precision, which is defined as
the inverse of a Fisher Information Matrix (FIM) [50].

In this section, we first present a full FIM associated with
the localization system, which holds all statistical inference
information of all nondeterministic variables (such as node
location variables si, sj and measurement accuracy wi,j).
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Based on this result, the node location estimation-based
CRLB is then obtained to evaluate the VIP-based localization
performance. Finally, we perform a CRLB analysis and find
the asymptotic performance limits over the size of reference
node location error and the number of reference nodes.

4.1 Full FIM

Consider the localization of sensor node si, whose complete
variable (that incorporates all the associated nondeterminis-
tic variables) is denoted as αi (see its definition in Section
3.1). The full FIM associated with the Bayesian estimation
(BE) of complete variable αi is expressed as [50],

Jαi
BE = −Eαi,zi

{
∇αi,α⊤

i
ln p

(
αi|zi

)}
, (25)

= −Ezi,αi

{
∇αi,α⊤

i
ln p

(
zi|αi

)}
︸ ︷︷ ︸

J
αi
MLE

−Eαi

{
∇αi,α⊤

i
ln p

(
αi

)}
︸ ︷︷ ︸

J
αi
P

,

where ∇αi,α⊤
i
(•) denotes a second order derivative with re-

spect to αi, Ezi,αi{•} denotes the expectation with respect
to distribution p(zi,αi), J

αi
MLE is the maximum likelihood

estimation (MLE)-based FIM, and Jαi
P is the priori FIM.

Assuming the variables are priori independent, the BE-
based FIM can be structured as Eq. (26), where Mi reference
nodes in Φi are successively labeled by s1, . . . , sMi . The
MLE-based FIM Iαmi ,αni

MLE of αm
i ,α

n
i , ∀αm

i ,α
n
i ∈ {αi}, and

the priori FIM Iαmi
P of variable αm

i are defined as

Iαmi ,αni
MLE =−Ezi,αi

{
∇αmi ,αn⊤

i
ln p(zi|αi)

}
, (27)

Iαmi
P =−Eαi

{
∇αmi ,αm⊤

i
ln p(αm

i )
}
, (28)

which are specified as (see APPENDIX C, D and E)

Isi,si
MLE =

∑
j∈Ψi

ηAi,j , (29)

Isi
P =Ui, (30)

Isi,sj
MLE = − ηAi,j , ∀j ∈ Ψi, (31)

Isi,wi,j
MLE =0D×1, ∀j ∈ Ψi, (32)

Isj ,sj
MLE = ηAi,j , ∀j ∈ Ψi, (33)

Isj
P =Uj , ∀j ∈ Ψi, (34)

Isj ,sk
MLE =0(D×D), ∀j, k ∈ Ψi and j ̸= k, (35)

and other information vector Isk,wi,j
MLE ,∀j, k ̸= i are not

included here, since they will multiply with all-zero infor-
mation metric Isi,wi,j

MLE (see Eq. (32) and (40)). In addition, η
stands for the measurement precision expectation,

η = Wψ, (36)

and Ai,j denotes the measurement resolution factor, which
is specified as (based on the specific measurement choices)

Ai,j = Esi,sj

{
∇sih(si, sj)∇s⊤j

h(si, sj)
}

(37)

=



(
10γ

ln 10

)2

Esi,sj

{
(si − sj)(si − sj)

⊤

∥si − sj∥42

}
, RSS

Esi,sj

{
(si − sj)(si − sj)

⊤

∥si − sj∥22

}
, TOA(

180

π

)2

Esi,sj

{
vi,jv

⊤
i,j

∥si − sj∥42

}
, AOA

,

where the vector vi,j in the AOA case (supposing the
dimensions of location space are D = 2) is defined as

vi,j =

[
[sj ]2 − [si]2

[si]1 − [sj ]1

]
. (38)

The measurement resolution factor Ai,j indicates the ca-
pability that the localization algorithm precisely recognizes
the location difference, given a certain measurement change.

Moreover, by letting Isi,si
BE = Isi,si

MLE + Isi
P , the full BE-

based FIM Jαi
BE can be partitioned as

Jαi
BE =

[
Isi,si

BE

(
Φsi

BE

)⊤
Φsi

BE Rsi
BE

]
. (39)

4.2 VIP-associated FIM
We now focus on the estimation of si over nuisance parame-
ters sj and {wi,j |∀j ∈ Ψi}. The overall Bayesian information
of the objective node localization can be characterized by
its BE-based full FIM Jαi

BE in (26), and the equivalent FIM
Jsi

BE associated with si retains all necessary information for
localization, in terms of [(Jαi

BE)
−1][1:D,1:D] = (Jsi

BE)
−1 [11].

Based on the matrix partition in Eq. (39), the equivalent
Bayesian FIM Jsi

BE associated with localization of si can be
derived by using Schur’s complement as

Jsi
BE = Isi,si

BE −
(
Φsi

BE

)⊤(Rsi
BE

)−1
Φsi

BE. (40)

Based on (29)–(35), we have (see APPENDIX F)

Jsi
BE =Ui +

∑
j∈Ψi

ηAi,j −
∑
j∈Ψi

η2A⊤
i,j

(
ηAi,j +Uj

)−1
Ai,j

=
∑
j∈Ψi

((
ηAi,j

)−1
+U−1

j

)−1︸ ︷︷ ︸
Hi,j

+Ui, (41)

where Hi,j is defined as the equivalent measurement infor-
mation from sj accounting for its location uncertainty, while
ηAi,j corresponds to the crude measurement information
without considering the reference location uncertainty.

Based on Eq. (41), the localization performance depends
on the measurement size, the independent reference source
size |Ψi|, the priori accuracy Ui and Uj , the measurement
resolution Ai,j and the measurement precision. In addition,
considering the randomness of measurement precision, the
final VIP error bound only depends on the measurement
precision’s expectation, as shown in Eq. (41). Even so, when
one assumes the measurement precision of all nodes is fixed
at its expectation (if its expectation could be known before-
hand somehow), the corresponding localization method will
lose certain performance, just as the traditional localization
methods did. Namely, capturing the statistics of measure-
ment precision will gain further performance.

As shown in Eq. (41), each crude measurement infor-
mation ηAi,j (neglecting the reference node location error)
gathers measurement precision expectation η and measure-
ment resolution Ai,j . The measurement resolution Ai,j in-
dicates the discrimination ability of the corresponding local-
ization method, while the inverse of measurement precision
expectation η implies how seriously the measurement noises
blur the location estimation.

In addition, due to the reference node location errors{
U−1

j : ∀j ∈ Ψi

}
, the final localization accuracy is reduced
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Jαi
BE =



Isi,si
MLE + Isi

P Isi,s1
MLE · · · Isi,sMi

MLE Isi,wi,1
MLE · · · Isi,wi,Mi

MLE

Is1,si
MLE Is1,s1

MLE + Is1
P · · · Is1,sMi

MLE Is1,wi,1
MLE · · · Is1,wi,Mi

MLE

...
...

. . .
...

...
. . .

...
IsMi,si

MLE IsMi,s1
MLE · · · IsMi,sMi

MLE + IsMi
P IsMi,wi,1

P · · · IsMi,wi,Mi
MLE

Iwi,1,si
MLE Iwi,1,s1

MLE · · · Iwi,1,sMi
MLE Iwi,1,wi,1

MLE + Iwi,1
P · · · Iwi,1,wi,Mi

MLE

...
...

. . .
...

...
. . .

...
Iwi,Mi,si

MLE Iwi,Mi,s1
MLE · · · Iwi,Mi,sMi

MLE Iwi,Mi,wi,1
MLE · · · Iwi,Mi,wi,Mi

MLE + Iwi,Mi
P


︸ ︷︷ ︸

Φ
si
BE

︸ ︷︷ ︸
Rsi

BE

. (26)

with
∑

j∈Ψi

η2A⊤
i,j

(
ηAi,j + Uj

)−1
Ai,j . Moreover, measure-

ment information from each reference node is degraded
from ηAi,j to Hi,j . Thereafter, all these weakened mea-
surement information

∑
j∈Ψi

Hi,j collaborates with the priori

accuracy Ui to produce the final localization accuracy infor-
mation Jsi

BE.

Fig. 4. Illustration of the spatial propagation of localization information.

Furthermore, we can see that all the involved localization
information

(
{ηAi,j ,Uj : ∀j ∈ Ψi} and Ui

)
propagates

spatially like the Ohm’s Law in circuit theory. As shown in
Fig. 4, for the localization of node si, the crude measure-
ment information ηAi,j and location precision Uj of one
reference node sj can be deemed as resistances connected in
parallel, forming the equivalent measurement information
Hi,j (i.e., R1 =

(
R−1

1,1 + R−1
1,2

)−1, where R1 stands for the
equivalent resistance of two parallel-connected resistances
R1,1 and R1,2); these equivalent measurement information
{Hi,j : ∀j ∈ Ψi} from all reference nodes and its priori loca-
tion precision Ui propagate like the resistances connected in
series (resistance summation), forming the final localization
information Jsi

BE of node si.

4.3 CRLB Analysis
On the other hand, the mean square error of the VIP-based
localization is lower bounded by its CRLB Bsi

BE as follows

E{∥ŝi − si∥22} ≥ tr
(
Bsi

BE

)
, (42)

Bsi
BE =

(
Jsi

BE

)−1
, (43)

where tr(•) denotes the matrix trace.
Considering node location uncertainties in the coopera-

tive localization, a natural question arises: Does a reference
node contribute to localizing the objective node even though its
location is inaccurate? By introducing Bsi

BE(Mi) to denote
the CRLB of node si, associated with Mi reference nodes,
we have the following proposition.

Proposition 1. Assume the current reference cluster size
is Mi, and give one more reference sensor sMi+1 with
location precision UMi+1, then the CRLB satisfies

Bsi
BE(Mi + 1) ≼ Bsi

BE(Mi). (44)

Proof. Since both UMi+1 and ηAi,Mi+1 are positive, the above
inequality can be directly derived from Eq. (41). �

Proposition 1 implies that, even if the location precision
of a node is very poor, incorporating this node into reference
cluster can still statistically improve the localization accura-
cy. Namely, there still exists useful information from those
location-precision-limited nodes for network localization.

We define U′
i
.
= max{Uj : ∥Uj∥2, ∀j ∈ Ψi} and U′′

i =
min{Uj : ∥Uj∥2, ∀j ∈ Ψi}, in which ∥ • ∥2 denotes the
Hilbert-Schmidt norm for squared matrix. We have

lim
U′
i→0

Bsi
BE =U−1

i , (45)

lim
U′′
i →∞

Bsi
BE =

( ∑
j∈Ψi

ηAi,j +Ui︸ ︷︷ ︸
J

si
∞

)−1

, (46)

where U′′
i → ∞ denotes ∥U′′

i ∥2 − ∥H∥2 > 0, ∀H ∈ RD×D.

Based on Proposition 1 we further know that, the asso-
ciated CRLB reduces with the increase of reference cluster
size, despite node location errors. Another question arises.
What is the limit of CRLB with infinitely large reference cluster?

Proposition 2. When all network nodes are randomly
and uniformly distributed inside the deployment area, the
localization accuracy scales linearly with the reference clus-
ter sizes (keeping a fixed sensing range rs), namely,

J si
BE =MiH+Ui, (47)

where H =
(
(ηΛ)−1 + Ū−1

)−1 denotes the expectation of
equivalent measurement information Hi,j , in a long-term
averaging sense. Λ and Ū stand for the expectation of Ai,j

and Uj , respectively.

Proof. Please see the proof in APPENDIX G. �
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We can see from Eq. (47) that(
tr(Bsi

BE)
) 1

2 =
(
tr
(
(MiH+Ui)

−1
)) 1

2 , (48)

lim
Mi→∞

(
tr(Bsi

BE)
) 1

2 =0. (49)

Namely, although all node locations are not accurate, the
positioning error (in terms of root mean squared error) tends
to be arbitrarily small, at the rate of O

((√
M

)−1), when the
reference cluster size is sufficiently large.

5 NUMERICAL SIMULATION

5.1 Simulation Settings
Numerical simulation results are presented herein to show
various performance of the VIP-based localization.

We consider a static WSN deployed in an R[m] × R[m]
squared area, where R denotes the width of the deployment
area. We assume there are only inaccurate sensor nodes (no
accurate anchor node) uniformly deployed inside the area.

Firstly, in order to examine the impacts of dependent
factors, e.g., the shadow fading, reference cluster size Mi

and reference node location errors on the VIP performance,
Scenarios A1-A3 in TABLE 1 are simulated, respectively,
where only RSS measurement is used (assuming γ = 3 and
ϕ = 50). The conclusions obtained can be applied to the
TOA and AOA-based localization.

TABLE 1
Scenarios A1-A3 (RSS only)

A1 A2 A3
R 20 20 20

Uj : ∀j ∈ Ψi [10−2I, 104I] † random‡ random
Ui 0 0 1/10I
W 1/1500 5 ∗ 10−4 : 10−3 1/1500
ψ 80 60 : 100 80
Mi 6 6 3 : 100

† Here I represents the identity matrix.
‡ The precision of reference node location is assumed to
be Uj ∼ W(Uj |1/100I, 10), ∀j ∈ Ψi, i = 1 :M .

Secondly, Scenario B in TABLE 2 is considered to demon-
strate the convergence properties of the VIP scheme, where
the measurement is specified as RSS data as well.

TABLE 2
Scenarios B and C

B (RSS) W = 1/300 : 1/15, ψ = 8
C (RSS, TOA, AOA) W = 1/1500, ψ = 80

In Scenarios B and C, we assume the precision of
initial node location to be Ui ∼ W(Ui|1/100I, 10),
∀i = 1 : 200, and assume R = 100, rs = 20.

Thirdly, Scenario C in TABLE 2 (where RSS, TOA and
AOA measurement data are considered respectively) is sim-
ulated to compare the proposed VIP algorithm with oth-
er localization algorithms, including importance sampling-
based positioning (ISP) [20], mulihop-aided particle swar-
m optimization (PSO)-based localization [51], weighted
least square-based positioning (WLSP) [52], expectation-
maximisation-based positioning (EMP) [21], second-order

cone programming (SOCP) method [53], semi-definite pro-
gramming (SDP)-based approach [54], adaptive simulated
annealing (ASA)-assisted maximum likelihood localization
[55], auxiliary variables-assisted total least square-based po-
sitioning (TLSP) [56].

In Scenario C, the localization algorithms utilized in
different cases of RSS, TOA and AOA measurements are
listed in TABLE 3. In the case of AOA, we assume the
direction of antenna main lobe to be φi = 90o, ∀i = 1 : 200.

TABLE 3
Localization Algorithm Toolbox in Scenario C

RSS ISP [20], PSO [51], EMP [21], SOCP [53]
WLSP [52]

TOA ISP [20], WLSP [52], EMP [21], SDP [54]
AOA ISP [20], WLSP [52], ASA [55], TLSP [56]

It is assumed that the number of particles employed
in VIP, ISP and PSO methods is Ns = 50. A total of 103

simulations are performed. We use the root mean squared
error (RMSE) metric to assess the localization performance,
which is defined as

RMSE =
(
E{∥ŝi − si∥22}

) 1
2 . (50)

5.2 Influence of Various Dependent Factors
In this part, the asymptotic localization RMSEs over refer-
ence node location precision, shadow fading and the num-
ber of reference node number, respectively, are presented to
reveal their effects on the proposed VIP-based localization
performance.

(i) Reference Node Location Precision Uj : In order to
evaluate the VIP performance over different levels of refer-
ence node location uncertainties, Scenario A1 is simulated,
where we assume the reference node location precision Uj ,
∀j ∈ Ψi, varies from 10−2I to 104I, whereas the objective
node location precision is fixed at Ui = 1/10I. Other
simulation settings are given in TABLE 1.
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Uj : ∀j ∈ Ψi

VIP algorithm

CRLB

(J si

∞
)−1

Fig. 5. The RMSEs over different reference node location precision Uj

(Scenario A1).

Fig. 5 shows the obtained RMSE v.s. reference node
location precision. The dashed curve and dash-dot curve
stand for the CRLB and its asymptotic limit

(
Jsi

∞
)−1 (see

Eq. (46)), respectively. It is shown that, with the increase in
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the reference node location precision, the obtained RMSE
monotonically decreases.

Due to the mechanism to handle the nondeterministic
measurement accuracy and reference node errors, the pro-
posed VIP algorithm can get close to its CRLB. However,
there is also a little gap from its CRLB, in particular with
large reference node location errors. This gap mainly comes
from (ı) the inevitable approximation error of its variational
particles and (ıı) the inherent gap due to the possible bias,
nonlinear or non-Gaussian characteristics of the RSS-based
location estimator.

Moreover, the VIP-based localization error and its CRLB
reach, at best, the lower limit

(
Jsi

∞
)−1, when the reference

location precisions become sufficiently large.
(ii) Fading Parameters: The scale parameter W and the

associated DoF ψ jointly indicate how randomly the mea-
surement noise varies. In order to assess the performance of
the proposed VIP algorithm over different levels of shadow
fading, Scenario A2 is considered in this simulation. The
corresponding simulation settings are given in TABLE 1.

The achieved RMSEs of the VIP algorithm and its CRLB
over different deep-shadow-fading environments are shown
in Fig. 6. One can see that the VIP error is close to its CRLB.
When the scale W and the DoF ψ increases, the uncertainty
of measurement precision decreases, which leads to the
reduced RMSE.
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Fig. 6. The achieved RMSEs over different levels of shadowing fading
(Scenario A2).

On the other hand, TABLE 4 presents the VIP errors
and its CRLB over different shadow fading, wherein the
measurement precision expectation Wψ is fixed, while ψ
and W vary. As shown in TABLE 4, the VIP errors are almost
invariant in different scenarios, wherein the expectation is
set to be Wψ = 80/1500 while ψ = 60 : 100. Moreover, the
same conclusion holds for its CRLB in this case, i.e., the VIP
scheme and its CRLB are only dependent on the expectation
of measurement precision.

(iii) Reference Cluster Size Mi: In this simulation, we
consider Scenario A3, where Mi is assumed to range from 3
to 100 (while keeping the sensing range rs = 20), to evaluate
its impact on network localization. The simulation results
are shown in Fig. 7. Other simulation settings are given in
TABLE 1.

We can see from Fig. 7(a) that, the localization informa-
tion J si

BE scales linearly with the reference cluster size Mi,
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Fig. 7. Localization performance over different reference cluster size Mi

(Scenario A3). In subfigure (a), we use the matrix trace as a perfor-
mance metric to assess the localization accuracy and its FIM.

which complies with Proposition 2. Hence, we can expect
Bsi

BE → 0 as Mi → ∞. The ISP scheme does not reach the
CRLB, due to its limited particle representation efficiency.

5.3 Convergence of VIP

According to the framework of the VIP scheme, the node
location si, location precision Ui, and the measurement
precision wi,j can be calibrated iteratively at the same time,
through propagating the variational message.

In this simulation, Scenario B in TABLE 2 is considered
to examine the convergence property of VIP algorithm, in
terms of both the estimation error of node location ŝi and the
calibration error of nondeterministic measurement precision
ŵi,j . The convergence behavior of VIP localization error and
measurement precision calibration error over different level-
s of shadowing are shown in Figs. 8(a) and (b), respectively.
The associated simulation settings are given in TABLE 2.
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Fig. 8. Convergence of the VIP algorithm (Scenario B).

As shown in Fig. 8(a), the VIP-based localization error
can converge to a lower value, which benefits from the glob-
al propagation of variational message, at each VIP iteration
(see Eq. (17)). A similar convergence behaviour can be found
for calibration error of ŵi,j in Fig. 8(b). Hence, under the VIP
framework, the nondeterministic parameters (wi,j and Ui)
can be iteratively calibrated with decreasing errors from the
given network measurements, which yields a more accurate
network localization.
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TABLE 4
Achieved RMSEs with Fixed Expectation of Measurement Precision

(ψ,W) (60, 2/2250) (70, 4/5250) (80, 1/1500) (90, 4/6750) (100, 1/1875)

VIP 5.0332 5.0696 5.1021 5.1315 5.0968
CRLB 4.8952 4.8527 4.9163 4.8875 4.9552

Note that, all the achieved RMSEs are in meter.

TABLE 5
The Achieved RMSEs of Different Methods (Scenario C)

RSS TOA AOA
Proposed VIP (4.03, 3.13)† (4.05, 3.46) (3.41, 2.32)

ISP [20] (4.54, 3.13) (4.33, 3.46) (3.73, 2.32)
EMP [21] ⋆ (4.31, 3.46) ⋆
PSO [51] (4.69, 3.13) ⋆ ⋆

WLSP [52] (5.34, 3.13) (5.35, 3.46) (5.31, 2.32)
SOCP [53] (4.79, 3.13) ⋆ ⋆

SDP [54] ⋆ (4.91, 3.46) ⋆
ASA [55] ⋆ ⋆ (5.29, 2.32)

TLSP [56] ⋆ ⋆ (5,26, 2.32)
† In each binary array (•, •), the first number stands
for the achieved RMSE of the corresponding localization
method, and the second number denotes the correspond-
ing CRLB.
⋆ This symbol denotes the corresponding localization
method is not included in the simulation associated with
the corresponding measurement data.

5.4 Localization Accuracy Comparison

In this part, the proposed VIP algorithm is compared with
several existing localization methods, e.g., ISP [20], ESP [21],
PSO [51], WLSP [52], SOCP [53], SDP [54], ASA [55] and
TLSP [56] in Scenario C, where RSS, TOA and AOA data
are considered, to demonstrate its localization accuracy.

The simulation settings are summarized in TABLE 2.
The localization methods corresponding to different mea-
surement choices are introduced in TABLE 3. The achieved
RMSEs of different localization methods with various mea-
surement data are presented in TABLE 5.

As shown in TABLE 5, the proposed VIP scheme out-
performs the localization methods mentioned above in all
RSS, TOA and AOA cases due to its ability to exploit (ı)
the underlying statistics of random measurement accuracy
& inaccurate node locations and (ıı) the global information
inside network measurements & prior location information.

In addition, each of the ISP, PSO and EMP methods fails
to reach the CRLB, due to the limited representation efficien-
cy of particles. In contrast, the VIP method can iteratively
improve the representation efficiency of variational particles
to reduce the approximation error, by exploiting the further
knowledge via variational information exchange among
nondeterministic variables (e.g., {si, sj ,wi,j |∀j ∈ Ψi}).

The other methods like WLSP, SOCP, SDP, ASA, TLSP
also fail to reach the CRLB, and there is localization perfor-
mance loss compared with the proposed VIP method in all
RSS, TOA and AOA cases, due to (ı) the lack of mechanism
to capture the random measurement accuracy & reference
node uncertainty, and (ıı) the failure in exploiting global
knowledge inside priori location information {µi,Ui|∀i =

1 :M} and measurement data {zi,j |∀j ∈ Ψi, ∀i = 1 :M}.

6 PRACTICAL EXPERIMENT

6.1 Experiment Setup
In order to capture the statistical distribution of realistic
measurement precision wi,j in dynamic environments and
to verify the VIP algorithm, we conduct a practical experi-
ment in a static WSN.

The experiment area is a 9[m] × 6[m] × 2.8[m] (indoor)
lab at Southwest Jiaotong University, which is illustrated in
Fig. 9(a). We only consider the RSS measurement in this
experiment, and the conclusions in the following can be
easily extended to the TOA and AOA-based localization.
Each sensor node is equipped with an IEEE 802.15.4 ZigBee
Module operating at 2.4GHz. A prototype of sensor node
is presented in Fig. 9(b). The sensing range of each sensor
node is about rs = 20[m] in an indoor environment.

All RSS data between distinct sensor nodes are collected
and read out by a gateway connected to a laptop com-
puter, as shown in Fig. 9(a). The deployment area of this
experiment is crowded with students with normal walking
speed, which is consistent with a typical dynamic situation
in shopping mall and central business district.

Fig. 9. An illustration of the WSN layout and a prototype of sensor node
employed in the practical experiments.

6.2 Wishart Priori Model
In order to verify the Wishart hyperpriori model of mea-
surement precision wi,j assumed in Eq. (7), in this part,
a realistic experiment in aforementioned dynamic indoor
environment with random walking students is performed.
In this experiment, for each node pair (si, sj), a total of
3× 104 RSS measurements zi,j are collected to calculate the
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measurement precision wi,j , and a total of 105 measurement
precision wi,j from different node pairs are calculated to
count its statistical distribution.7
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(subfigure (a)) and the resulting localization errors (subfigure (b)).

The associated probability density function of RSS mea-
surement precision wi,j is shown in Fig. 10(a). We can see
that the RSS measurement precisions wi,j of different sensor
node pairs can be approximately described by a Wishart
distribution of ψ = 3 and W = 1/350. The randomness of
wi,j stems mainly from four reasons: (ı) different situations
of the measurement links for different node pairs (si, sj),
(ıı) dynamic wireless environments, (ııı) different hardware
condition leading to different strength of thermal noises,
and (ıv) different device orientation.

We can also notice that, there still exists a small gap
between the statistical distribution and the matched Wishart
density. Based on the Large Number Law and Central Limit
Theorem, this gap will be dismissed when the measurement
sampling size is sufficiently large.

6.3 Practical Localization Errors
We compared the proposed VIP scheme with other local-
ization methods, such as ISP algorithm [20], mulihop-aided
PSO method [51], rigid transformation-based positioning
(RTP) [57] and dynamic circle expanding-based positioning
(DCEP) [58], to reveal the VIP-based localization perfor-
mance against these typical algorithms in the same scenario.

As shown in Fig. 10(b), the VIP-based localization out-
performs other algorithms, due to the benefit from varia-
tional message propagation and harnessing of the nonde-
terministic measurement precision. The ISP algorithm loses
localization accuracy since it fails to exploit posteriori infor-
mation of reference node locations {sj : ∀j ∈ Ψi} and the
nondeterministic measurement precision {wi,j : ∀j ∈ Ψi},
and so are other methods such as RTP and PSO. In addition,
since the RTP method is a statistical-independent algorithm,
it is very sensitive to the measurement noise intensity. The
same problem remains in the DCEP method. Also, since the

7We employ wi,j = E
{
(zi,j − z̄i,j)

−2 } to count the statistical
measurement precision in experiments, where z̄i,j denotes the average.

RTP method highly depends on the rigid geometry among
network nodes, it works well in a dense network.

In addition, when the objective function is seriously non-
convex owing to shadowing and nonlinear measurement
function, the final solution of PSO is not sufficiently stable,
which requires a large amount of searching particles. In
particular, the PSO algorithm is highly dependent on the
initial particle deployment and the weighting strategy of its
particles, thus an optimal weighting method based on the
statistical knowledge is necessary, as in the VIP algorithm.
On the other hand, the VIP algorithm requires a proper
importance sampling function to improve its representation
efficiency of particles.

7 CONCLUDING REMARKS

In this paper, we investigate the cooperative network local-
ization in WSNs, in the presence of sensor node location
errors and nondeterministic measurement accuracy. We ex-
ploit the statistical information of these two nondeterminis-
tic factors to develop a mean-field VIP scheme to localize all
network nodes in parallel. The proposed VIP algorithm can
reap more potentials not only from the global localization in-
formation propagation among network nodes, but also from
the variational message sharing among the MB variables.

In addition, a concise CRLB of the VIP scheme is derived
to unveil the impact of those two nondeterministic factors
on the achievable localization performance. In particular,
it discloses that, the priori information Ui, the measure-
ment precision η, the measurement resolution Ai,j and the
reference location precisions Uj propagate like the Ohm’s
Law in circuit theory (see Fig. 4). It is shown that the
degradation owing to either the measurement uncertainty
or the reference node location uncertainty can effectively be
reduced through the global network node localization co-
operation with more network measurements. The proposed
VIP scheme and its performance analysis can subsume the
traditional localization issue as a special case wherein the
measurement precision is deterministic and known. Fur-
thermore, we have the following conclusions.

• When the measurement accuracies of network nodes
are nondeterministic, the VIP error bound depends
on its expectation only.

• The final localization accuracy scales linearly with
the reference cluster size. If the reference cluster
size is sufficiently large, the localization error can be
made arbitrarily small in theory.

• Incorporating one more node with inaccurate initial
location into the associated reference cluster can still
statistically improve localization accuracy for an un-
biased localization system.

The emphasis of our work in this paper is on the cooper-
ative localization algorithm design in adverse environments
with significant uncertainties and on the associated localiza-
tion error propagation mechanism. In the near future, the
pros and cons of different cooperative localization schemes
in more practical scenarios will be studied to explicitly ad-
dress the localization competitions, in terms of the localiza-
tion accuracy, the implementation complexity, the required
signaling basis and other related technical issues. Moreover,
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the cooperative localization in more diverse and dynamical
environments, for instance, shopping mall, railway station,
underground parking, will be tested in the near future
to provide further practical evidence. The presented VIP
algorithm is generic and widely applicable, we would like to
test the cooperative localization in AOA and TOA scenarios
as follow-up work in the future.

ACKNOWLEDGMENTS

This work was supported by the NSFC (No. 61271246), and
was also partly supported by Royal Academy of Engineer-
ing Award (batch reference 1314-2). In addition, the authors
would like to thank Mr. Zefeng Dong and Mr. Hanbing
Huang for conducting the experiments.

REFERENCES

[1] H. Li, L. Sun, Haojin Zhu, X. Lu and X. Cheng, “Achieving privacy
preservation in WiFi fingerprint-based localization”. INFOCOM,
2014 Proceedings IEEE, Vol.84, No.1, 2014, pp.2337-2345.

[2] M. Li, H. Zhu, Z. Gao, S. Chen, L. Yu, S. Hu and K. Ren, “All
your location are belong to us: breaking mobile social networks for
automated user location tracking,” MobiHoc, 2014, pp.43-52.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, ”A
survey on sensor networks.” IEEE Communications magazine, Vol.40,
No.8, 2002, pp.102-114.

[4] D. Dardari, A. Conti, C. Buratti and R. Verdone, ”Mathematical
evaluation of environmental monitoring estimation error through
energy-efficient wireless sensor networks.” IEEE Trans. Mobile
Computing, Vol.6, No.7, 2007, pp.790-802.

[5] Y. Chen, D. Lymberopoulos, J. Liu and B. Priyantha, ”Indoor Lo-
calization Using FM Signals,” IEEE Trans. Mobile Computing, Vol.12,
No.8, 2013, pp.1502-1517.

[6] A. Conti, M. Guerra, D. Dardari, N. Decarli. and M. Z. Win, ”Net-
work experimentation for cooperative localization,” IEEE Journal on
Selected Areas in Communications, Vol.30, No.2, 2012, pp.467-475.

[7] W. Ouyang, A.K-S. Wong and C.-T. Lea, ”Received Signal Strength-
based Wireless Localization via Semidefinite Programming: Nonco-
operative and Cooperative schemes.” IEEE Trans. Veh. Techn., Vol.59,
No.3, 2010, pp.1307-1318.

[8] Y. Shen and M. Z. Win. ”Fundamental limits of wideband local-
ization -Part I: A general framework.” IEEE Trans. Inform. Theory,
Vol.56, No.10, 2010, pp.4956-4980.

[9] D. Dardari, A. Conti, U. Ferner, A. Giorgetti and M. Z. Win, ”Rang-
ing with ultrawide bandwidth signals in multipath environments.”
Proceedings of the IEEE, Vol.97, No.2, 2009, pp.404-426.

[10] S. Bartoletti, W. Dai, A. Conti and M. Z. Win, ”A mathematical
model for wideband ranging.” IEEE Journal of Selected Topics in
Signal Processing, Vol.9, No.2, 2015, pp.216-228.

[11] Y. Shen, H. Wymeersch and M. Z. Win, ”Fundamental limits of
wideband localization–Part II: Cooperative Networks,” IEEE Trans.
Inform. Theory, Vol.56, No.10, 2010, pp.4956-4979.

[12] X. Jun, M. Ma and C. L. Law, ”Cooperative angle-of-arrival posi-
tion localization,” Measurement, Vol.59, 2015, pp.302-313.

[13] Y. Dodge and D. R. Cox. ”The Oxford dictionary of statistical
terms.” Oxford University Press, Vol.167, No.2, 2004, pp. 377-377.

[14] K. O. Arras, N. Tomatis, B. T. Jensen and R. Siegwart, ”Multisensor
on-the-fly localization: - Precision and reliability for applications.”
Robotics & Autonomous Systems, Vol.34, No.2-3, 2001, pp.131-143.

[15] R. Feng, X. Guo, N. Yu and J. Wan, ”Robust Multihop Localization
for Wireless Sensor Networks with Unreliable Beacons,” Interna-
tional Journal of Distributed Sensor Networks, Vol.8, No,6, 2012.

[16] K. Shrawan and D. K. Lobiyal, ”An advanced dv-hop localization
algorithm for wireless sensor networks,” Wireless Personal Commu-
nications, Vol.71, No.2, 2013, pp.1365-1385.

[17] L. Wang, T. K. Hon, J. D. Reiss and A. Cavalaro, ”Self-localization
of Ad-Hoc Arrays Using Time Difference of Arrivals”, IEEE Trans-
actions on Signal Processing, Vol.64, No.4, 2016, pp.1018-1033.

[18] K. C. Ho, X. N. Lu and L. Kovavisaruch, ”Source Localization
Using TDOA and FDOA Measurements in the Presence of Receiver
Location Errors: Analysis and Solution,” IEEE Trans. Signal Process-
ing, Vol.55, No.2, 2007, pp.684-696.

[19] B. Hao, ”On the Cramer-Rao Bound of Multiple Sources Localiza-
tion Using RDOAs and GROAs in the Presence of Sensor Location
Uncertainties,” Proc. IEEE WCNC, 2012.

[20] M. Vemula, M. F. Bugallo and P. M. Djuric, ”Sensor Self-
localization with Beacon Position Uncertainty,” Signal Processing,
Vol.89, No.6, 2009, pp.1144-1154.

[21] B. Li, N. Wu, H. Wang and J. Kuang, ”Nodes localization with
inaccurate anchors via EM algorithm in wireless sensor networks,”
2014 IEEE International Conference on Communications Workshops
(ICC), Sydney, NSW, 2014, pp. 121-126.

[22] D. Roee and L. Lampe, ”Underwater localization with time-
synchronization and propagation speed uncertainties,” IEEE Trans.
Mobile Computing, Vol.12, No.7, 2013, pp.1257-1269.

[23] A. Yassin, Y. Nasser, M. Awad, A. A1-Dubai, R. Liu, C. Yuen,
R. Raulefs, ”Recent Advances in Indoor Localization: A Survey
on Theoretical Approaches and Application,” IEEE Communications
Surveys & Tutorials, 2016

[24] N. Bulusu, J. Heidemann and D. Estrin, ”GPS-less low-cost out-
door localization for very small devices,” IEEE Personal Communi-
cations, Vol.7, No.5, 2000, pp.28-34.

[25] J. Teng, H. Snoussi , C. Richard and R. Zhou, ”Distributed Vari-
ational Filtering for Simultaneous Sensor Localization and Target
Tracking in Wireless Sensor Networks,” IEEE Trans. Veh. Techn.,
Vol.61, No.5, 2012, pp.2305-2318.

[26] A. Riad and N. Aouf, ”Visual information to enhance time dif-
ference of arrival based acoustic localization,” Proc. of 2014 IEEE
International Conference on Aerospace Electronics and Remote Sensing
Technology (ICARES), 2014.

[27] G. Giorgetti, S. K. Gupta and G. Manes, ”Understanding the
limits of RF-based collaborative localization,” IEEE/ACM Trans.
Networking, Vol.19, No.6, 2011, pp.1638-1651.

[28] W. Yuan, N. Wu, B. Li, H. Wang and J. Kuang, ”A low-complexity
cooperative localization algorithm based on variational message
passing in wireless networks,” Proc. of 2014 Sixth International
Conference on Wireless Communications and Signal Processing (WCSP),
2014.

[29] K. Yang, G. Wang and Z. Luo, ”Efficient convex relaxation meth-
ods for robust target localization by a sensor network using time
differences of arrivals,” IEEE Trans. Signal Processing, Vol.57, No.7,
2009, pp.2775-2784.

[30] H. Wymeersch, J. Lien and M. Z. Win, ”Cooperative localization
in wireless networks,” Proceedings of the IEEE, Vol.97, No.2, 2009,
pp.427-450.

[31] I. Sharp, K. Yu and T. Sathyan, ”Positional accuracy measurement
and error modeling for mobile tracking,” IEEE Trans. Mobile Com-
puting, Vol.11, No.6, 2012, pp.1021-1032.

[32] F. Gustafsson and F. Gunnarsson. ”Mobile positioning using wire-
less networks: possibilities and fundamental limitations based on
available wireless network measurements.” IEEE Signal Processing
Magazine, Vol.22, No.4, 2005, pp.41-53.

[33] M. Z. Win, A. Conti, S. Mazuelas, Y. Shen, W. M. Gifford, D.
Dardari and M. Chiani, ”Network localization and navigation via
cooperation,” IEEE Communications Magazine, Vol.49, No.5, 2011,
pp.56-62.
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