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Abstract 
Saliency detection has become an active topic in both computer vision and multimedia fields. In this 

paper, we propose a novel computational model for saliency detection by integrating the holistic center-

directional map with the principal local color contrast (PLCC) map. In the proposed framework, 

perceptual directional patches are firstly detected based on discrete wavelet frame transform (DWFT) and 

sparsity criterion, then the center of the spatial distribution of the extracted directional patches are utilized 

to locate the salient object in an image. Meanwhile, we proposed an efficient local color contrast method, 

called principal local color contrast (PLCC), to compute the color contrast between the salient object and 

the image background, which is sufficient to highlight and separate salient objects from complex 

background while dramatically reduce the computational cost. Finally, by incorporating the 

complementary visual cues of the global center-directional map with the PLCC map, a final compounded 

saliency map can be generated. Extensive experiments performed on three publicly available image 

databases, verify that the proposed scheme is able to achieve satisfactory results compared to other state-

of-the-art saliency-detection algorithms. 

Keywords: saliency detection, wavelet frame transform, principal local color contrast, directional patches  

1. Introduction 

Saliency detection focuses on separating the most salient objects/regions from background in images or 

videos [1], which is different from the conventional image-segmentation algorithms. Essentially, saliency 

detection tries to reveal and model the visual attention mechanism of Human Visual System (HVS) for 

perceiving salient objects or regions in a neurobiological way [2, 3]. Currently, a plenty of saliency 

detection models have been designed, which have been extended to various computer-vision and 

multimedia applications. Among them, typical applications include object detection [4, 5, 8], traffic 
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congestion analysis [7, 8], facial analysis [9, 10], underwater vision [36, 37], health prediction [51, 52, 53], 

visual prediction [56 - 61], activity recognition [62, 63], image retrieval [64 - 68] and so on. 

Over the past few decades, although the research of saliency detection has attracted wide attentions of 

scientists from different disciplines such as neurobiology, physiology of vision, cognitive psychology, and 

computer vision, reliably modeling the mechanism of visual selective attention still remains a challenge and 

an open issue, especially for the images under complex scenes and without prior knowledge in advance. 

Compared to these previous works, in this paper, we mainly focus on simulating how the human visual 

system (HVS) utilizes perception-directional visual stimuli to locate the most salient object in an image 

from the perspective of neurobiological perception. In our proposed framework, we first concentrate on 

designing a perceptual directional patch detector, based on discrete wavelet frame transform (DWFT) and 

sparsity criterion, to mimic how cortical cells that in the HVS utilize visual directional cues to detect salient 

objects in a computational way. Furthermore, the proposed perceptual directional patch detector can be 

applied universally, which is independent of image contents and no need of prior knowledge of image 

scenes. After locating the salient object, we also proposed an efficient local color contrast method, which is 

named principal local color contrast (PLCC) to calculate the color contrast between the salient object and 

the background rapidly. In contrast to traditional local color contrast methods, which require computing 

local contrast similarity over the entire image pixel by pixel leading to huge computational consumption. 

Our devised PLCC can not only soften and formulate principal local color contrast as a binary 

classification computation to avoid the NP-hard problem, but also has the ability to differentiate salient 

objects from complex background. Experiments are carried out on three publicly available image databases 

to evaluate the proposed model. And the comparison results have shown that the proposed method is 

effective and reliable for saliency detection. 

The remainder of the paper is organized as follows. In Section 2, we will describe the related work about 

saliency detection. In Section 3, we will introduce the proposed saliency-detection model in detail. 

Experimental results are presented in Section 4. The paper closes with a conclusion and discussion in 

Section 5. 

2. Related work 

Generally, saliency detection models can be categorized into two distinctive types [11, 12]: either "the 

bottom-up" or "the top-down" case. The bottom-up visual attention modeling framework, which is based on 

low-level visual cues in an image including intensity, color, contrast, and orientation features, with the 

understanding that visual attention is in a biologically plausible way with unconsciously driven [2, 3, 4]. In 

contrast, the top-down computational mechanism mainly relies on the high-level comprehension of the 

image contents and requires prior knowledge of image scenes. Therefore, the top-down based saliency 

detection models are usually task-dependent or application-oriented, which demand large-scale training 

data and time-consuming human labeling images in a supervised learning manner. Since the training 

process is depended heavily on the training data, thus the generalization abilities of the top-down models 

normally lack of expansibility.  
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At present, most research works of saliency detection are focused on the bottom-up computational model 

[11, 12]. A pioneering exploration for bottom-up saliency detection was proposed by Itti et al. in 1998 [1]. 

In their computational model, an input image was decomposed into three separately feature maps of color, 

intensity, and orientation. Then, a center-surround contrast method was implemented to produce multi-scale 

image features, which were fused into a compounded saliency map to estimate each pixel’s saliency value 

ultimately. In [13], a local contrast based image attention framework using a fuzzy growing algorithm is 

designed to produce saliency maps for salient object detection. Based on luminance information and 

spatiotemporal cues, Zhai and Shah [14] employed global contrast to implement visual attention detection 

in video sequences. In [15], Harel et al. proposed a Graph-Based Visual Saliency (GBVS) method for 

saliency detection, which was executed via normalizing and fusing the feature maps to highlight the salient 

regions in an image. Hou and Zhang proposed a spectral-residual method based on the log-spectrum 

analyzes of an image to generate a saliency map for saliency detection [16]. With the benefit of multi-scale 

contrast, center-surround histogram and color spatial distribution, a salient object detection method was 

designed to separate the conspicuous objects from the image background [17]. In [18], by formulating the 

bottom-up saliency detection as a center-surround process, a discriminant saliency model was devised to 

predict eye fixations in an image. Based on color contrast scheme by calculating each pixel’s color 

difference between the average image color, a frequency-tuned approach was proposed for salient region 

detection in [19]. Rahtu et al. [20] presented a conditional random field (CRF) based segmentation model 

to separate salient objects from images and videos, which was based on local feature contrast in 

illumination, color, and motion clues. In [21], a non-parametric low-level saliency detection method was 

proposed. In their method, a spatial pooling mechanism and a scale-weighting function were employed to 

achieve saliency estimation. Goferman et al. introduced a context-aware saliency detection model based on 

local contrast scheme in [22], which applied local low-level features, visual organization rules, and high-

level features to highlight salient objects. Based on selective-contrast strategy, Wang et al. [23] proposed a 

supervised Markov-random-field framework based on differential threshold for saliency detection. In [24], 

a saliency detection model based on multiple-instance learning by combining low-, mid-, and high-level 

features in the saliency estimation progress was effectively devised. By analyzing the nonlinear integration 

of different visual features and their intrinsic correlations, a saliency detection method by nonlinearly 

incorporating first-order statistics of features and region covariances was proposed in [25]. Yang et al. [26] 

proposed Graph-regularized saliency detection model, which integrated contrast, smoothness priors and 

convex-hull-based center prior to accomplish salient object detection. In [27], a salient object detection 

method based on multi-scale analysis on superpixels was introduced. In their method, visual cues from 

local contrast, integrity and center bias were optimized by a guided filter to produce a final saliency map. 

Zhu et al. [28] proposed a saliency optimization framework by fusing low level features via background 

detection with a principled optimization algorithm to generate saliency maps. In [29], Cheng et al. designed 

a histogram-based contrast (HC) framework, which was then incorporated into spatial information to obtain 
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region-based contrast (RC) saliency maps for detecting salient regions. Qin et al. [30] introduced a novel 

cellular automata based propagation mechanism for saliency detection, which incorported color and space 

contrast in a Bayesian framework to produce a robust saliency map. In [31], superpixel-wise model based 

on homology-similarity was proposed, which took advantage of two saliency principles of spatial 

compactness and color contrast. Kong et al. [32] presented a framework to improve the performance of 

existing saliency detection models via an Extended Random Walk (ERW) selection mechanism, which 

could separate salient foreground from image background more effectively. With the aim for localizing 

salient objects, a relevance feedback algorithm was employed to estimate weights for integrating texture-

insensitive and region-based saliency measures [33]. Jian et al. [34] proposed a saliency detection method 

by combining quaternionic distance based weber local descriptor and low-level priors. In [35], Li et al. 

design a novel learning-to-rank method for salient object detection, which eleaborated saliency detection as 

a cost-sensitive label ranking problem by ranking saliency values in a descending order. Recently, 

underwater saliency detection becomes a hot issue. A large-scale underwater image database was 

constructed in [36]. Later, Jian et al. [37] designed an underwater saliency detection model by integrating 

Quaternionic Distance Based Weber Descriptor (QDWD) with pattern distinctness and Local Contrast, 

which incorporated quaternion number system and principal components analysis simultaneously. 

In contrast to the bottom-up saliency detection mechanisms driven by low-level visual features, the top-

down saliency model is dependent on the understanding of the scene context. Since the top-down strategy 

normally needs supervised learning and lack of generalization abilities, little work has been introduced. 

Oliva et al. [38] proposed a top-down saliency detection framework based on global scene configuration 

for object detection. In [39], a top-down computational mechanism with prior knowledge and region 

dividing strategy was devised for image segmentation. Cholakkal et al. [40] designed a top-down saliency 

detection approach via locality-constrained contextual sparse coding. In their approach, three locality 

constraints were combined to label an object category. In [41], a two-stage deep method was proposed to 

learn the intra-class association between the exemplars and query objects for top-down saliency detection. 

Recently, based on joint conditional random field and dictionary learning, Yang et al. [42] proposed a top-

down saliency framework with a max-margin algorithm to train the detection model. 

In this paper, we consider the more common category of the bottom-up computational saliency detection 

model. Then, based on perception-directional visual stimuli and sparsity criterion, we propose a novel 

saliency detection model based on directional patches extraction and principal local color contrast. The 

merits and advantages of the proposed saliency detection model are listed as follows: 

Ø We design a perceptual directional patch detector based on DWFT and sparsity criterion, to mimic 

how cortical cells that utilize visual directional cues in HVS to detect salient objects. 

Ø Compared with conventional local color contrast requiring calculating local contrast similarity 

over the entire image, the proposed principal local color contrast (PLCC) can not only distinguish 

salient objects from complex natural scenes, but also significantly reduce computational 

consumption. 
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Ø Finally, to further highlight the boundaries of the salient objects and adequately suppress the 

background noises, a compounded saliency map is incorporated by integrating the holistic center-

directional cue with the PLCC feature simultaneously to achieve reliable saliency detection. 

3. The proposed saliency-detection framework 

In this section, we present a novel framework, which integrates the perceptual directional patches and 

principal local color contrast cue for saliency detection. Fig. 1 illustrates the designed framework for 

saliency detection based on directional patches extraction and principal local color contrast (PLCC). We 

will first introduce the proposed procedure for detecting and extracting perception-based directional 

patches via DWFT according to sparsity criterion, and then propose the principal local color contrast 

method. All different sources of visual cues are combined into a single saliency map for saliency detection. 

3.1  Perception-based directional patch extraction  

For human visual system (HVS), the perception of directionality/orientation cue has arisen with the 

birth of human beings. Consequently, directionality/orientation information in an image is a very important 

and subconscious stimulus for HVS to perceive and understand the image [5, 48, 49, 54]. Hence, 

directionality/orientation cue has been applied to many computer-vision related tasks, such as image fusion 

[43] and content-based image retrieval [44, 55]. 

In the following subsection, we will describe and design a DWFT based algorithm to extract the 

directional patches in an image. The proposed perception-based directional patch extraction scheme, which 

is independent of image contents and prior knowledge of image contents, is biologically plausible and aims 

to mimic how HVS perceives the directionally visual stimuli in the saliency detection process.  

The discrete wavelet frame transform (DWFT), which is an improved variant of discrete wavelet 

transform (DWT), can present and reflect image directional variations at different scales in a multi-

resolution analysis (MRA) manner [45, 46]. Compared to the DWT, DWFT has an obvious advantage and 

it is thus an overcomplete wavelet representation by omitting the down-sampling manipulations in DWT, as 

is shown in Fig, 1 (a). According to the definition of wavelet transform, a wavelet is an oscillating and 

attenuated function and its integrals equal to zero ( ) ( ) 0 x d xψ
∞

−∞
=∫ , a one-dimensional wavelet transform 

can be written as follows: 

 
                 /2

, ( ) 2 (2 )j j
j k x x kϕ ϕ− −= − ;  and                                                                (1) 

 
/2

, ( ) 2 (2 )j j
j k x x kψψ − −= − ,                                                                       (2) 

 
where: ( )xϕ and ( )xψ  are the scaling function and wavelet function, respectively; 

,{ ( )}j k xϕ and
,{ ( )}j k xψ are 

two orthogonal function basis sets. 

The computation process of the DWT of a 2D signal involves recursive filtering and sub-sampling, as 

shown in Fig. 2 (a). Then the two-dimensional DWT of the image ( , )f x y  is defined [45, 46]: 
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 Input image 

 Extraction of some directional patches 

 The centroid of the extracted patches 

   
 

 

 

 

 The final compounded saliency map 

 The binary saliency map using OSTU threshold 

Fig. 1. Designed framework for saliency detection based on directional patches extraction and PLCC. 
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where M×N denotes the size of the input ( , )f x y ; 0j  is an arbitrary initial scale; ( )xϕ  is also the scaling 

function, and ( )i xψ  (with i={H, V, D}) are the wavelet functions; H denotes the horizontal high-frequency 

information, V the vertical high-frequency information, and D the diagonal high-frequency information, 

respectively. A two-level decomposition of DWT is as shown in Fig. 2 (a). We denote the detail sub-

images (sub-band) as DWTLH  (contains the high frequency horizontal information), DWTHL  (contains the 

high frequency vertical information), and DWTHH  sub-band (contains the high frequency diagonal 

information), accordingly. The decomposition of DWT also produces one approximation sub-image, 

denoted by DWTLL , containing the low frequency information of the input image. The DWT can decompose 

the DWTLL  band recursively. Therefore, two-level level wavelet decomposition yields 6 detail image. We 

use DWT
1LH , DWT

1HL , DWT
1HH , DWT

2LH , DWT
2HL , DWT

2HH , and an additional approximation image DWT
2LL  to 

denote all the sub-band images (See Fig. 2 (a)). 

However, an obvious drawback using DWT is that it is not translation-invariant for image analysis. To 

handle and overcome this disadvantage, an over-complete and redundant wavelet representation, called the 

DWFT, with a dilated fact 2 j↑  at decomposition level j is proposed by Unser in [47]. Similar to DWT, the 

DWFT with J decomposition levels yields a total of 3×J detail sub-bands and one approximation sub-band, 

while all of them are of the same size as the input image. The detail sub-bands of DWFT contain DWFTLH  

(reflects the high frequency horizontal information), DWFTHL  (reflects the high frequency vertical 

information), and DWFTHH  sub-band (reflects the high frequency diagonal information), respectively. Fig. 

2(b) shows a two-level decomposition of DWFT, which produces 6 detail images - DWFT
1LH , DWFT

1HL , 

DWFT
1HH , DWFT

2LH , DWFT
2HL , DWFT

2HH , and one low-pass filtered approximation image DWFT
2LL  of the input 

image. The main differences between the DWT and DWFT are illustrated in Fig. 2. 
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                                     (a)                                                                                 (b) 

Fig. 2. Two-level decomposition of DWT and DWFT. (a) The decomposition progress of DWT;  (b) The 

decomposition progress of DWFT. 

 

Since the { DWFTLH , DWFTHL , DWFTHH } sub-images of DWFT reflect three different direction high-

frequency information, we propose a procedure to compute the vertical, horizontal, and diagonal 

directionality maps based on these three { DWFTLH , DWFTHL , DWFTHH } sub-images, accordingly. Then, these 

directionality maps are finally normalized to fuse into a composite directionality/orientation map for 

locating the perceptual-meaningful directional patches. Concerning the horizontal directionality/ orientation 

map estimation, which can be calculated from the DWFTHL  sub-image (covering the vertical high-frequency 

information) of the DWFT. Suppose DWFTLH ( , )x y , DWFTHL ( , )x y and DWFTHH ( , )x y denote the sub-images’ 

coefficients of the DWFT, where x and y denote the row coordinate and column coordinate of the sub-
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images, accordingly. With regard to each row of the DWFTHL ( , )x y  sub-image, the horizontal directionality 

map is defined as follows: 

DWFT DWFT1( , ) | HL ( , ) | { | HL ( , ) |}
2

W

H
r W

Dir x y x y x r y
W =−

= +∑ ,                                             (7) 

where W represents the width of adjacent coefficients to be extracted, and in practice it can be set to p 

(where p is the wavelet regularity of a orthogonal wavelet with a compact support).  

       With respect to the calculation of the vertical directionality, the vertical directionality map is expressed 

along each column of the DWFTLH ( , )x y  sub-image in the following form: 

DWFT DWFT1( , ) | LH ( , ) |{ | LH ( , ) |}
2

W

V
r W

Dir x y x y x y r
W =−

= +∑ .                                             (8) 

    Compared with the horizontal and vertical directionality maps, the calculation of diagonal directionality 

map is taken two perpendicularly diagonal directions, corresponding to / 4π  and 3 / 4π , into consideration 

together. Based on the DWFTHH ( , )x y  sub-image, the computation process of diagonal directionality map is 

defined as the average of the two perpendicularly diagonal directions of / 4π  and 3 / 4π  as follows:  

1 2
1( , ) ( ( , ) ( , ))
2

= +D D DDir x y Dir x y Dir x y ,                                             (9) 

where 1DDir  and 2DDir  denotes the diagonal directionalities of / 4π  and 3 / 4π , respectively.   

Since all the vertical, horizontal and diagonal directionality maps are with the same size of the original 

image, these different directionality maps can be straightforwardly normalized and then merged together to 

construct a composite orientation/directionality map, as is shown in Fig. 4 (b): 

1( , ) ( ( , ) ( , ) ( , ))
3 H V DDir x y Dir x y Dir x y Dir x y= + + .                                            (10) 

Moreover, in order to keep the sparsity of the extracted patches, while prevent the detected patches from 

being gathered together too concentrated, we utilize the following ‘sparsity criterion’ to ensure the detected 

patches scattered around the salient object. Once a directional patch was detected, the pixel values of its 

neighborhood patches are set as zeros. The diagram of sparsity criterion is defined as in Fig. 3.  

 
Fig. 3. Scattering criterion for the directional patches extraction. Red patch denotes the detected directional 

patch, and blue patches indicate its neighborhood with 2 patch-blocks. 

 

Then, these patches with first K (e.g. K = 15) largest values can be extracted from the composite 

orientation/directionality map. Fig. 4 (c) shows some detected perception-based directional patches with the 

maximum values extracted from the composite directionality map for detecting and locating the salient 
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object. As illustrated in Fig. 4 (b), the proposed method can detect the directional patches in the image 

efficiently, which can be seen as a typical local feature to locate the salient object in an image for saliency 

detection.   

 

    

    

    
    (a)                                                (b)                           (c)                                          (d)  
Fig. 4. Extraction of directional patches based on DWFT and sparsity criterion: (a) input images, (b) composite 

orientation/directionality maps, (c) extraction of some directional patches, (d) the centroids using the spatial 

distribution of the extracted patches 

3.2 Determining the center using the spatial distribution of the extracted patches 

Assume K directional patches have been extracted in an image, and each directional patch utilizes one 

center-point to represent the spatial distribution of the directional patch, accordingly. Then, we can 

determine the center based on the spatial distribution of the extracted patches easily. Let Cen=(x’, y’) be the 

centroid of the detected directional patches (the white cross as is shown in Fig. 4 (d)), a square region Sq 

with the length Z as its sides can be defined to represent the local characteristics of the salient object, as is 

illustrated in  Fig. 4 (d). 

3.3  Principal Local Color Contrast (PLCC) 

In most of the existing saliency-detection modeling approaches based on the bottom-up computational 

strategy, local color contrast is widely used as a low-level visual feature in images for salient object 

detection, which has achieved good results in highlighting the foreground objects. Compared to previous 

methods, in this paper, we propose an efficient and effective local color contrast method called principal 

local color contrast (PLCC) for saliency detection. The main idea is that we utilize the square region Sq 

inside the salient object to estimate the principal local color contrast between the salient object and the 
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image background. Instead of calculating local contrast or blindly comparing similarity over each pixel in 

the entire image one by one resulting in vast computational cost, the designed PLCC method is not only 

sufficient to highlight semantic objects from complicated scenarios, but also can significantly reduce the 

computing complexity during distinguishing salient objects from the image background. 

With the aid of the square region Sq determined in the previous step, for an input image we first set plc  

as the principal local color vector by taking the mean value of the pixels inner the square region Sq in the 

image color space, and Cen is the spatial position center of the square region Sq. Let ( , )pos x y  denote the 

spatial position with pixel coordinates ( , )x y  in the input image, and ( , )pc x y  is used to represent its color 

vector of the pixel in an input image. Then, the computational scheme of the principal local color contrast 

(PLCC) can be defined as follows:  

2

1( , )
|| ( , ) ||( , ) exp

2

PLCC x y
pos x y Cenpc x y plc

σ

=
− −⎛ ⎞− ⎜ ⎟
⎝ ⎠

,                                                    (11) 

where 2σ  controls the strength of spatial weighting.  

Fig. 5 shows some typical principal local color contrast (PLCC) maps of the input images. Among PLCC 

computational procedure, Fig. 5 (b) illustrates the center-prior map ( , )Cenpri x y , generated by the second 

part of the equation (11) using the corresponding centroid of (as is shown in Fig. 4 (d)) spatial distribution 

of the extracted directional patches; while Fig. 5 (c) shows the final PLCC maps of the original images. 

 

    

    

    

      (a)                 (b)                             (c)                                 (d)                                     (e) 
Fig. 5. Computational progress of the principal local color contrast (PLCC): (a) input images, (b) the center-prior map 

( , )Cenpri x y  using the spatial distribution of the extracted directional patches, (c) PLCC maps, (d) the final 

compounded saliency maps by integrating the holistic center-directional map with the PLCC map, (e) the binary 

saliency map using classical OSTU threshold method. 
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3.4 The final compounded saliency map 

The aim of the final stage is to incorporate these two saliency cues as an overall saliency map, by 

combining the merits of both sides, complement each other and make the saliency map more robust [50]. 

Besides, with an attempt to further highlight the boundaries of the salient objects and adequately suppress 

the image background, a compounded saliency map is fused by integrating the holistic directional map 

( , )Dir x y  with the center-prior map ( , )Cenpri x y  and the PLCC map ( , )PLCC x y  simultaneously, to 

generate the final compounded saliency map as follows: 

( , ) ( , ).* ( , ) ( , )Salmap x y Dir x y Cenpri x y PLCC x y= +  ,                                             (12) 

where .*  is the pixel-by-pixel multiplication operator. The purpose of the multiplication processing is that 

we utilize the center-prior map ( , )Cenpri x y  to preserve the edges of salient objects while simultaneous 

stifle and removal of the background noises in the border of images. Then after integration of the 

complementary visual cues, the final compounded saliency map ( , )Salmap x y  enhances the contrast as well 

as retaining the edges of salient objects in order to facilitate saliency-detection tasks. Fig. 5 (d) displays the 

final compounded saliency maps produced by the proposed method. And Fig. 5 (e) shows the binary 

saliency map using the classic OSTU threshold method. It can be noted that the proposed method can 
preserve the boundaries of the salient objects completely while can highlight the whole salient objects 

uniformly and smoothly.                                        

4. Experimental results 

In order to evaluate the performance of the proposed model, there publicly available and widely used 

datasets, including MSRA10K dataset [17, 28, 29], ECSSD database [50], and DUT-OMRON image 

database [26, 27, 30] were tested and evaluated for various saliency-detection models. In the experiments, 

the number of directional patches with the first largest values K  is set at 15, which can be employed to 

estimate the center using their spatial distribution. A square region Sq with the length Z = 5 is adapted, and 
2σ  is set at 8 for controlling the strength of spatial weighting. These parameters are empirically set and 

experiments show that using the above settings can produce a satisfactory and robust overall performance. 

For quantitatively comparing the state-of-the-art saliency-detection approaches, the average precision, 

recall, and mea- sureF  are utilized. Precision measures the proportion of the detected salient-object 

rectangle, inside the ground-truth rectangle, over the detected salient-object rectangle, while recall is 

defined as the ratio of the detected salient-object rectangle, inside the ground-truth rectangle, over the 

ground-truth rectangle: 

the detected salient object rectangle 
inside the ground truth rectanglePreision=
the detected salient object rectangle

, and                                           (12) 

the detected salient object rectangle 
inside the ground truth rectangleRecall=

the ground truth rectangle
.                                                 (13) 
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The mea- sureF  is an overall evaluation to weight precision more than recall, and is defined as follows: 

Precision Recall
Precision+Recal

(1 )
l

Fβ
β
β
+ ×

=
×

× ,                                                (14) 
where β  is a real positive value and is set at β  = 0.3 [4, 14, 15, 16]. 

In our extensive experiments, we also compare the proposed algorithm with other state-of-the-art 

saliency-detection frameworks, containing nine representative bottom-up methods with different 

computational strategies, namely the Itti [1], Graph-Based (GB) [15], Context-aware (CA) [22];  Non-

Parametric (NP) [21], Nonlinearly Covariance (NC) [25], Graph-regularized (GR) [26], Multi-Scale 

Superpixel (MSS) [27]; Robust Background Detection (RBD) [28] and Background-Single Cellular 

Automata (BSCA) [30]. The following sub-sections will give the detail of the experimental results 

performed on three individual databases. 

4.1 The MSRA10K database 

We firstly evaluated the proposed algorithm on the popular MSRA10K database, which contains 10,000 

images with their corresponding pixel-wise ground truth for saliency detection assessment. 

Fig. 6 shows some typical saliency detection results of different methods performed on the MSRA10K 

database. It can be noted that the proposed algorithm generates saliency maps more uniformly with contrast 

and little background pixels than other state-of-the-art methods. In addition, the merit of our proposed 

method is that the boundaries of the salient objects are well-preserved. Through visual comparing, the 

proposed strategy has a superior ability to highlight the salient objects and retain the edges of objects 

efficiently, as illustrated in Fig. 6. 

 

 

Fig. 6.  Some saliency-detection results of different state-of-the-art saliency-detection models on the 
MSRA10K dataset. 
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 The quantitative comparisons (with precision, recall and the mea- sureF values) between the proposed 

method and other nine state-of-the-art saliency detection algorithms are firstly assessed on the MSRA10K 

database. Fig. 7 shows the precision, recall and the mea- sureF  criteria of all of the ten performed models. 

From the comparisons, we can find that most of the methods produces saliency-detection results with 

precision higher than 70%, namely CA [22], NC [25], MSS [27]; RBD [28], BSCA [30] and our proposed 

algorithm. For the overall criterion mea- sureF , all of the saliency-detection models, except the early 

method in Itti [1], are higher than 50%, and our proposed model achieves better performance over other 

nine existing state-of-the-art saliency-detection methods in terms of mea- sureF . Experiment results on the 

MSRA10K dataset show that our proposed scheme is efficient and precise for general images. 

 

 
Itti      GB     CA      NP       NC       GR    MSS   RBD    BSCA Our method 

Fig. 7. Performance of the proposed model compared with other state-of-the-art methods on the MSRA10K dataset, in 

terms of average precision, recall, and mea- sureF .  

4.2 The ECSSD database 

We have also tested our proposed method against other state-of-the-art saliency detection models on the 

widely used and more challenging ECSSD database, which includes many semantically meaningful but 

structurally complex natural-scene images, for performance comparisons and evaluations. The ECSSD 

database contains 1,000 images in total. These images in the ECSSD database are collected from the 

internet and five helpers are asked to label the homologous ground truth masks.  
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Fig. 8 shows some representative results of saliency maps generated by different saliency detection 

algorithms including our proposed method. From Fig. 8, we can note that the proposed method can 

accurately detect almost entire salient objects and produce better object outlines and edges than other 

methods. The main reason can be attributed to the contribution of holistic center-directional maps based on 

DWFT, which is designed to efficiently represent the salient object’s global shape cues in an input image. 

 

 
Fig. 8.  Some representative results of saliency maps generated by different saliency detection algorithms preformed on 
the ESSCN dataset. 

We also report the performance of the proposed method and other nine state-of-the-art saliency detection 

methods. Quantitatively comparisons are performed and assessed according to the measurements of 

precision, recall and the mea- sureF . Fig. 9 shows the comparisons of different methods under the three 

different evaluation criterions. From the comparisons as shown in Fig. 9, it can be seen that our proposed 

method outperforms the other ten different state-of-the-art methods on the ECSSD database, in terms of the 

overall mea- sureF values. These experimental results, carried on the ECSSD dataset, also verify that our 

proposed model is able to produce reliable and promising saliency-detection outcomes. 
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Itti       GB         CA      NP        NC       GR      MSS    RBD     BSCA Our method 

Fig. 9. Comparisons of different saliency-detection methods in terms of average precision, recall, and mea- sureF  on 

the ECSSD dataset.  

4.3  The DUT-OMRON database 

Moreover, most current state-of-the-art models are sensitive to images with strong textures and 

complicated backgrounds. Those species of images are tough to dispose and are a still challenging issue for 

saliency detection. Thus, we further evaluate our proposed algorithm on the publicly available DUT-

OMRON database, which has 5,168 challenging images selected from more than 140,000 images. The 

images in DUT-OMRON database are difficult but carefully collected, since these images in this dataset 

contain complicated background; besides, most of the images is with low color-contrast between the salient 

objects and the image background. For instance, there are some images with animal protective coloration 

that enable them to blend with their surroundings and backgrounds. 

Fig. 10 illustrates some typical saliency detection results of various algorithms performed on the DUT-

OMRON dataset. As shown in Fig. 10, we can observe that our proposed model can highlight the salient 

objects more smoothly while contain less background regions than other state-of-the-art algorithms. 

Compared with other existing methods, the saliency maps generated by our model are more precise and it is 

also capable of suppressing the background regions effectively. 
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Fig. 10 Some typical saliency detection results of various algorithms performed on the DUT-OMRON dataset. 

For objective evaluation, Fig. 11 shows quantitative comparison results on DUT-OMRON database 

according to precision, recall and F-measure. From the F-measure scores in Fig. 11, it can be observed that 

the proposed model gives the more accurate saliency-detection results compared with other existing 

algorithms. Extensive experiments, implemented on the DUT-OMRON dataset with images of rough 

textures, low color-contrast and complex background, also prove that our designed framework is capable of 

generating satisfactory saliency-detection results. 
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Itti       GB      CA      NP        NC      GR     MSS   RBD   BSCA Our method 

Fig. 11. Performance of the proposed model compared with other state-of-the-art methods on the DUT-OMRON 

database, in terms of average precision, recall, and mea- sureF .  

5. Conclusion and discussion 

In this paper, a novel bottom-up method is proposed for efficient and reliable saliency detection. The 

designed framework effectively takes both the holistic center-directional cue and the principal local color 

contrast (PLCC) cue into consideration simultaneously. Experiments show that the proposed framework 

can highlight and distinguish salient objects from complicated background while significantly diminishes 

the complexity of the computational consumption. Furthermore, extensive experiments on three widely 

used databases verify that our proposed method produces satisfactory saliency detection results compared 

with other state-of-the-art methods.  
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