
Provided by the author(s) and University College Dublin Library in accordance with publisher

policies. Please cite the published version when available.

Title I/O-efficient Hierarchical Diameter Approximation

Authors(s) Ajwani, Deepak; Meyer, Ulrich; Veith, David

Publication date 2012-10

Publication information Epstein, L., Ferragina, P. Algorithms - ESA 2012: 20th Annual European Symposium

Ljubjana, Slovenia, September 10-12, 2012: Proceedings

Conference details The 20th Annual European Symposium, Ljubljana, Slovenia, 10-12 September 2012

Series Lecture Notes in Computer Science (LCNS, volume 7501)

Publisher Springer

Link to online version http://algo12.fri.uni-lj.si/?file=about

Item record/more information http://hdl.handle.net/10197/9897

Publisher's statement The final publication is available at www.springerlink.com.

Publisher's version (DOI) 10.1007/978-3-642-33090-2_8

Downloaded 2020-03-19T12:41:21Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1007%2F978-3-642-33090-2_8&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F9897

I/O-efficient Hierarchical Diameter

Approximation. ⋆

Deepak Ajwani1⋆⋆, Ulrich Meyer2, and David Veith2

1 Centre for Unified Computing, University College Cork, Cork, Ireland
2 Institut für Informatik, Goethe-Universität Frankfurt, Robert-Mayer-Str. 11–15,

D-60325 Frankfurt am Main, Germany

Abstract. Computing diameters of huge graphs is a key challenge in
complex network analysis. As long as the graphs fit into main mem-
ory, diameters can be efficiently approximated (and frequently even ex-
actly determined) using heuristics that apply a limited number of BFS
traversals. If the input graphs have to be kept and processed on external
storage, even a single BFS run may cause an unacceptable amount of
time-consuming I/O-operations.
Meyer [17] proposed the first parameterized diameter approximation al-
gorithm with fewer I/Os than that required for exact BFS traversal. In
this paper we derive hierarchical extensions of this randomized approach
and experimentally compare their trade-offs between actually achieved
running times and approximation ratios. We show that the hierarchical
approach is frequently capable of producing surprisingly good diameter
approximations in shorter time than BFS. We also provide theoretical
and practical insights into worst-case input classes.

1 Introduction

Massive graph data stemming from social networks or the world wide web have
implicitly become part of our daily life and also means big business. Conse-
quently, a whole branch of computer science (and industry) deals with network
analysis [8]. For connected undirected unweighted graphs G(V,E) where n = |V |
and m = |E|, the distance d(u, v) between two nodes u, v ∈ V is the number of
edges in the shortest path connecting u and v. The eccentricity of a node v is
defined as ecc(v) = maxu d(v, u). A fundamental step in the analysis of a massive
graph is to compute its diameter D := maxu,v d(u, v) = maxv ecc(v).

We focus on the case when G is sparse (m = O(n)) but nevertheless too
big to fit into the main memory of a single computing device. In this situation
one can either distribute the data over many computers and apply parallel al-
gorithms (e. g., see [6]) and/or store the data on secondary memory like hard
disks or flash memory. In this paper we will concentrate on improved diameter

⋆ Partially supported by the DFG grant ME 3250/1-3, and by MADALGO – Center for
Massive Data Algorithmics, a Center of the Danish National Research Foundation.

⋆⋆ Research of this author is supported by the EPS grant from IRCSET and IBM

approximation algorithms for the second (external memory) approach.

External memory model. The huge difference in data access times between
main memory and disks is captured in the external memory (EM) model (aka
I/O model) by Aggarwal and Vitter [1]. It assumes a two level memory hierarchy:
The internal memory is fast, but has a limited size of M elements (nodes/edges).
The external memory (of potentially unlimited size) can only be accessed using
I/Os that move B contiguous elements between internal and external memory.
The computation can only use data currently kept in internal memory. The cost
of an algorithm is the number of I/Os it performs – the less, the better. The
number of I/Os required to scan n contiguously stored elements in the external
memory is scan(n) = O(n/B) and the number of I/Os required for sorting n
elements is sort(n) = O(n

B logM/B n/B). For realistic values of B, M , and n,
scan(n) < sort(n) ≪ n. Frequently, the goal of designing external memory algo-
rithms for sparse graphs is to reduce the I/O complexity from Ω(n) to not much
more than O(sort(n)).

2 Related Work

The traditional approaches for computing the exact diameter rely on compu-
tationally expensive primitives such as solving the all pair shortest path prob-
lem (APSP) or fast matrix multiplication algorithms. Thus, many heuristics
(e.g., [11, 15, 7, 10, 12]) have been proposed to approximate the diameter. How-
ever, these heuristics still rely on BFS and SSSP traversals, which are very
expensive when the graph does not fit in the main memory.

In the external memory, network analysis algorithms have been developed for
specific graph classes (e.g., [14] for naturally sparse graphs). For general undi-
rected graphs, algorithms for the exact computation of the diameter [5, 9] require
Θ(n · sort(n)) I/Os for sparse graphs (m = O(n)) and are thus impractical. We
are interested in approaches that work for general undirected graphs and re-
quire even less I/Os than BFS, as even carefully tuned BFS implementations [4]
require many hours on graphs with billions of edges. In this context, Meyer’s
parameterized approach [17] achieves efficient trade-offs between approximation
quality and I/O-complexity in theory and can give good approximation bounds
even when the desired I/O complexity is restricted to be less than that of exter-
nal memory BFS algorithms [16].

Parameterized approach. The parameterized approach decomposes the in-
put undirected graph into many small-diameter clusters and then contracts each
cluster to a single node forming a condensed graph. This condensed graph pre-
serves the structure of the input graph and in particular, the diameter of the
condensed graph approximates the diameter of the input graph. The condensed
graph is typically much smaller than the input graph. If it fits internally, its
diameter can be approximated using internal memory heuristics; otherwise a

semi-external or fully external memory single source shortest path (SSSP) from
an arbitrary vertex can be used to obtain a good approximation.

To compute small-diameter clusters, the parameterized algorithm first selects
some vertices to be masters uniformly at random and then “grows” the clusters
around the selected master vertices “in parallel”. In a parallel cluster growing
round, each cluster tries to capture all its unvisited neighbors, with ties being
broken arbitrarily. Each such round is simulated in the external memory with a
constant number of scanning and sorting steps.

For undirected, unweighted graphs with n nodes and m = O(n) edges, an
O(

√
k·log n) approximation for the diameter can be obtained with high probabil-

ity (whp) using O(n ·
√

log k/(k ·B)+k ·scan(n)+sort(n)) I/Os by contracting
the input graph to n/k vertices. Thus, if we strive for O(n/B2/3) I/Os, we should
contract the graph to O(n/(B1/3 · logB)) vertices and expect multiplicative er-
rors of O(B1/6 ·

√
logB · log n) in the computed diameter whp.

In a recent workshop paper, Ajwani et al. [3] have shown that this parameter-
ized approach produces much better approximation bounds on many different
graph classes with varying diameters than its worst-case approximation guar-
antee would suggest. Also, if the number of vertices in the contracted graph
is carefully chosen, the parameterized approach is significantly faster than the
various internal memory heuristics for diameter approximation, even if the BFS
routine in those heuristics is replaced by its external memory counterpart. This
makes the diameter approximation of graphs with a few billion edges, a viable
task in external memory on typical desktop machines.

3 Extending the Parameterized Approach

Hierarchical extension. The scalability of the parameterized approach is still
limited. For very large graph sizes, either one needs to pick a very large value of
k to contract the graph enough to be able to run semi-external SSSP and thus
settle for a poor approximation ratio or one has to depend on the more I/O-
intensive primitive of fully-external SSSP. Also, we are not aware of any efficient
implementation for computing SSSP in fully-external memory. A potential ap-
proach to scale the parameterized approach further is to extend it by contracting
the graph recursively. The difficulty in such an extension lies in the fact that after
the first iteration, the graph becomes weighted and it is not clear how to I/O-
efficiently contract a weighted graph while minimizing the approximation ratio
of the resultant diameter. We consider different ways to select master vertices
(and their numbers) for weighted graphs and study the approximation quality
of the resultant diameter on various graph classes.
Bad graph class. Our first attempt for selecting the master vertices in the
weighted graphs is to completely ignore the edge weights occurring from graph
shrinking and simply select masters uniformly at random and with the same
probability in all recursive levels. Already for two levels of graph contraction the
multiplicative approximation error for the diameter might grow to Ω(k ·

√
k ·

log n): a factor of O(
√
k · log n) based on the analysis of [17] for unweighted

graphs, exacerbated by the fact that after the first shrinking, edges may rep-
resent a weight of Ω(k). Surprisingly, it will turn out in Section 4 that this
weight-oblivious master selection rule is often capable to yield reasonable ap-
proximation bounds. Nevertheless, in Section 4.2, we also present a sophisticated
artificial graph class where the computed diameter is provably a factor Ω(k4/3−ǫ)
away from the actual diameter using two recursive levels and the simple master
selection. Note that after the second level, the number of clusters is reduced to
O(n/k2). On the other hand, if we would have directly chosen master vertices
with probability 1/k2 using the non-recursive parameterized approach, we could
have achieved an approximation factor of O(k). Thus, on this graph class, the
diameter computed by the recursive extension of the parameterized approach
is significantly worse than the one computed directly by the parameterized ap-
proach.

Adaptive reduction in graph size. Our first approach described above re-
duces the number of vertices by the same (expected) multiplicative factor in each
recursive level. Since in the later recursive levels, the size of the graph is smaller,
it might be beneficial to perform more aggressive reduction by performing extra
scanning rounds to minimize the number of recursive levels required to reduce
the size of the graph enough for it to fit in the main memory. Ideally, the reduc-
tion factor should depend not only on the graph size and the available internal
memory, but also on the graph type. This is because the condensed graphs from
different classes have very different sizes. For instance, if we contract a linear
chain with 228 vertices and 228 − 1 edges to 220 vertices, we get 220 − 1 edges
(the size reducing by almost 256). On the other hand, we found that when we
reduced a

√
n-level random graph (described in Section 4) of 228 vertices and

230 edges to 220 vertices, there were still more than 228 edges in the graph (the
size reducing by a factor less than 4).

Our eventual goal is to design a software for approximating the diameter of
large graphs without assuming any a priori information about the graph class.
Thus our scheme needs to learn the graph class on-the-fly and use it to adapt
the number of master vertices and consider weights, too.

Selecting the master vertices. To improve the approximation quality with-
out increasing the I/O complexity and adapt the number of master vertices, we
experimented with different probability distribution functions for selecting the
master vertices. We found that selecting the ith vertex to be a master vertex
in kth round with a probability pi as defined below, provides a good diameter
approximation for a bad graph class of the two-level recursive approach. Let
Wi be the set of weights of edges incident to a vertex i and let maxi be the
maximum value in the set Wi. Let nk (mk) be the number of vertices (edges)
in the graph before the kth round of contraction, sum max =

∑nk

i=1 maxi,
max max = maxnk

i=1 maxi and min max = minnk

i=1 maxi. Then the probability
pi is equal to α(·)·(((maxi/sum max)·nk)−min max)/(max max−min max).
Here, α is an adaptability function that infers the rate of graph contraction based
on the past contraction history (values of m0, . . . ,mk−1,mk;n0, . . . , nk−1, nk)
and then adapts the number of master vertices nk+1 in the kth recursive level

based on the history and the expected graph size mk+1 from this level. We
restrict the graph size in the final level to fit in the main memory.

Modeling the graph contraction. We considered various inference functions
for modeling the graph contraction. Our first model assumed a direct propor-
tionality between the number of vertices and edges, i.e., nk+1 = nk ·mk+1/mk.
Later, we integrated more complex linear and non-linear models such as mk+1 =
A ·nk+1+B and mk+1 = A ·nk+1+B ·√nk+1 in our adaptability function, learn-
ing the values of parameters A and B based on the (limited) past contraction
history of the graph.

Tie breaking. In the parallel cluster growing approach, ties are broken arbi-
trarily among the clusters vying for the same vertex. To reduce the weighted
diameter of the clusters in the second recursive level, ties can be broken in favor
of the cluster that has the shortest distance from the vertex to its master.

Move master vertices. We use another trick to further reduce the weighted di-
ameter of the clusters. Once the clustering is done using parallel cluster growing,
we move the master vertices closer to the weighted center of their corresponding
clusters and re-compute the distances between the clusters based on the new
master vertices. Since the clusters fit in the internal memory, it requires only
one scanning step to load all clusters in the main memory and compute the
distances of all vertices from the master vertex of their cluster.

Once the contracted graph fits into the main memory, we can use any internal
memory technique to approximate the diameter of the contracted graph. In this
work, we use the double sweep lower bound [15] technique that first computes
a single-source shortest path from an arbitrary source s and then returns the
weighted eccentricity of a farthest node from s. Other techniques (e.g., [11]) can
also be used for this purpose.

We study the relative merits of these ideas and show that by carefully tuning
our implementation based on these ideas, we can approximate the diameter of
graphs with many billions of edges in a few hours. Note that these graph sizes
are significantly bigger than that of past experiments reported in the literature,
even for external memory algorithms.

4 Experiments

Since external memory experiments on large graphs can take many hours and
even days, a certain self-restraint in the number of such experiments is un-
avoidable. As such, we performed our initial experiments for analyzing the ap-
proximation quality of various extensions of the parameterized algorithm on a
machine with 64 GB RAM, using an internal memory prototype. For the variant
that gave the best approximation, we implemented it for optimized I/O perfor-
mance in external memory. The external memory implementation relies on the
STXXL library [13], exploiting the various features supported by STXXL such
as pipelining and overlap of I/O and computation. The running time and I/O
volume reported in the paper are based on external memory experiments.

Also, we restrict ourselves to extensions involving only two levels of recursion.
We found that for the graph sizes that we considered, we could get acceptable
running time and a good approximation ratio with two recursive levels.

4.1 Configuration

For experiments in internal memory we used a machine from the HPC cluster
at Goethe University on graphs with 256 million vertices and about 1 billion
edges. For our external memory experiments, we used an Intel dual core E6750
processor @ 2.66 GHz, 4 GB main memory (around 3.5 GB was available for the
application) and four hard disks with 500 GB. Only the 250 GB from the outer
tracks were used in a RAID-0.

4.2 Graph Classes

We chose four different graph classes: one real-world graph with logarithmic di-
ameter, two synthetic graph classes with diameters Θ(

√
n) and Θ(n) and a graph

class that was designed to elicit poor performance from the simple extension of
the parameterized approach. Recall that the simple extension (hereafter referred
as Basic) chooses the master vertices at different recursive levels with the same
probability.

The real-world graph sk-2005 has around 50 million vertices, about 1.8 billion
edges and is based on a web-crawl. It was also used by Crescenzi et al. [11] and
has a known diameter of 40. The synthetic x-level graphs are similar to the
B-level random graphs in [2]. The graph consists of x levels, each having n

x
vertices (except the level 0 containing only one vertex). The edges are randomly
distributed between consecutive levels, such that these x levels approximate the
BFS levels if BFS were performed from the source vertex in level 0. The edges are
evenly distributed between different levels. We selected x =

√
n and x = Θ(n)

to generate
√
n and Θ(n)-level graphs for our experiments. Figure 1a illustrates

an example of such a graph.
While the basic recursive extension of the parameterized approach with uni-

form master probabilities already yields reasonable approximation ratios on
many graph-classes including real-world data, it is possible to design artificial
inputs that cause significant approximation errors. Before we sketch the con-
struction of such a graph class (referred worse 2step), we consider worst-case
inputs for the standard non-recursive approach with master probability 1/k.
Figure 1b displays a graph consisting of a main chain C0 with x1 nodes. Each
of these x1 nodes is connected to a side chain Ci of length x2 that ends with a
fan of size x3. The diameter of this graph is Θ(x1 + x2).

For x1 · x2 ≤ k1−ǫ and constant 0 < ǫ ≪ 1, there is at least a constant
probability that master vertices of the non-recursive approach only appear at
the very ends of the side chains (i.e., in the fans, outside of the marked box).
Furthermore, if the value of x3 is chosen sufficiently large (Ω(k · log n)), each fan
receives at least one master with high probability. Thus, with at least constant
probability, for each side chain a cluster is grown from its fan towards the main

...

(a) Example of a x-level
graph.

...

..
.

...

..
.

..
. ...

..
.

...

..
.

..
.

... ...

..
.

...

x2

x3 x3 x3

x1

c1 c2

(b) Worst-case input for the parameter-
ized approach.

Fig. 1: Various graph classes used in our experiments.

chain C0 and all these clusters reach C0 simultaneously and then stop growing.
Therefore, the shrunken weighted graph features a path with x1 − 1 edges of
weight Θ(x2) each, resulting in a diameter of Θ(x1 · x2). Choosing x1 = k1/2

and x2 = k1/2−ǫ, the expected multiplicative approximation is therefore Ω((x1 ·
x2)/(x1 + x2)) = Ω(k1/2−ǫ), asymptotically matching the upper bound proved
in [17]. Larger graphs with similar behavior can be obtained by chaining several
copies of the graph structure discussed above along the zigzag lines (using simple
paths of length Θ(x1 + x2) each).

For the recursive graph shrinking approach with i ≥ 2 levels of shrinking we
would like to construct an input class that after the first i − 1 levels resembles
the worst-case graph for the non-recursive version and has accumulated huge
edge weights in the side chains but not on the main chain. For ease of exposition
we only sketch the 2-level case with master probability 1/k for both shrinking
phases: (1) edges of weight O(1) in the shrunken graph G′ can be obtained with
high probability from two high-degree fans that are connected by an edge in the
input graph G. (2) simple isolated paths of length Θ(z · k) in G will result in
paths of total weight Θ(z · k) distributed over an expected number of Θ(z) edges
in G′. Appropriate fans in G′ are obtained with high probability from double fan
structures in G at the cost of a quadratic node overhead concerning the fans.

While the base chain for G′ can easily be generated using (1), there is a
technical problem with the side chain generation via (2): since the number of
vertices in those side chains in G′ are only bounded in expectation, their actual
numbers will vary and therefore during the second shrinking phase some clusters
would reach the main chain earlier than others. As a consequence, the negative
impact on the approximation error caused by those clusters reaching the main
chain late would be lost and the overall theoretical analysis will be significantly
hampered. We deal with this problem by reducing the number of side chains so
that each side chain has a certain buffer area on the main chain and therefore

with high probability side chains do not interfere with each other, even if they
feature different number of vertices. By Chernoff bounds, for side chains with
E[x2] = k2/3−ǫ in G′, buffer areas of Θ(k1/3) between two consecutive side chains
suffice with high probability. Filling in the details, it turns out that the expected
diameter of the resulting graph G′′ after the second shrinking phase exceeds the
diameter of the input graph G by a factor of Ω(k4/3−ǫ).

We randomize the layout of the synthetic graphs on the disk to ensure that
the disk layout does not reveal any additional information that is exploitable.
However, we use the ordering provided with sk-2005 graph for fair comparison
with results reported in the literature.

4.3 Results

In this section, we first demonstrate that our bad graph class does elicit poor
approximation results from the basic extension. Then, we show that a combi-
nation of techniques mentioned in Section 3 improves upon the approximation
quality significantly, even for the bad graph class. We analyze the reasons for
this improvement, and finally show that altogether our external memory code
results in a good approximation on a wide range of graph classes in a few hours,
even on graphs with billions of vertices and many billions of edges.

[Probability of selecting a master vertex]

[ratio]

2
−14

2
−13

2
−12

2
−11

2
−10

2
−9

2
−8

2
−7

2
−6

2
−5

2
−4

5

10

15

20

25

30

35 k = 2
k = 4
k = 8
k = 16
k = 32

Fig. 2: Approximation ratio using the basic extension with varying probability of
choosing the master vertex on five worse 2step graph instances generated with
different parameters depending on k.

Empirical analysis of worse case graphs. We first ran the basic extension of
the parameterized approach on worse 2step graph instances that were generated
using parameter settings suitable for different values of k. As can be seen in
Figure 2, for larger values of k and within a certain range, smaller master proba-
bilities cause higher approximation ratios and as k grows the highest achievable

ratios start growing even faster. However, due to the constants hidden in the
construction the maxima appear for somewhat lower master probabilities than
k suggests. Nevertheless, already for rather small values of k, we experience sig-
nificant ratios (larger than k) demonstrating that this graph class can indeed
elicit poor approximation ratio from the basic extension.

Exact Basic Adaptive Tie break Move All

sk-2005 40 185 196 173 182 168
ratio 4.625 4.900 4.325 4.550 4.200

√

n-level 16385 16594 16416 16604 16597 16408
ratio 1.013 1.002 1.013 1.013 1.001

Θ(n)-level 67108864 67212222 67131347 67212123 67174264 67131036
ratio 1.002 1.000 1.002 1.001 1.000

worse 2step 3867 138893 38643 137087 17321 13613
ratio 35.918 9.993 35.450 4.479 3.520

Table 1: Diameters on different graph classes with various extensions.

Approximation quality. Next, we consider the various techniques described
in Section 3 to determine if they can improve the approximation ratio on dif-
ferent graph classes. These techniques include (i) Adaptive, where we use the
probability distribution function described in Section 3; (ii) Tie break, where
the ties in the parallel cluster growing rounds are broken such that among all
clusters competing to get a vertex v, the cluster that has the shortest distance
between its master and v gets the vertex v; (iii) Move, where the masters are
re-selected after the clustering to reduce the weighted diameter of the clusters
and (iv) All, where all of the above techniques are combined. Table 1 presents
the diameter computed by these techniques together with the exact diameter
for different graph classes. This table is computed for graphs with 228 vertices
where in both recursive levels master vertices are chosen with a probability of
2−8. Thus, the various extensions contract the number of vertices in the input
graph by a factor of around 216 = 65, 536, making it possible to handle graphs
that are significantly bigger than the main memory size. Despite such a large re-
duction in the number of vertices, we get a fairly small approximation ratio with
the All approach in our experiments, thus proving the efficacy of our techniques.

For graphs with small diameter such as sk-2005, various additive errors dom-
inate the approximation ratio. However, this can be easily rectified as once it is
determined that the input graph has a small diameter, one can run BFS based
heuristics to compute better approximations. For such graphs, BFS can be ef-
ficiently computed in external memory. In contrast, the hardest case for the
external memory BFS (in terms of running time) is the

√
n-level graph. For this

hard graph class, however, even the basic extension yields an approximation ra-
tio of 1.013 and the All approach improves it to 1.001. The case for Θ(n)-level
graph is similar – the Basic approach already gives a fairly good approximation

ratio and the All approach improves it further. For the interesting case of the
worse 2step graph where the basic variant gives a very poor approximation ratio
of 35.92, the All approach manages to improve it to 3.52 – a factor of more

than 10. These results imply that the additional techniques provide considerable
robustness to the approximation quality by significantly improving the ratio for
the very bad case. Most importantly, this improvement comes at little or no
additional cost to the I/O complexity and the overall runtime of the external
memory implementation.
Distance distribution within clusters. Next, we analyze the reasons for the
poor performance of basic extension on the worse 2step graph. After the first level
of clustering, the resultant graph has a diameter of 10,067 with an approximation
ratio of 2.6. It is in the (second level) clustering of this (weighted) contracted
graph that the quality of the approximation deteriorates. Our techniques such
as careful selection of master vertices closer to high weight edges, breaking the
ties in favor of clusters with shorter distance to their masters, and moving the
masters to weighted cluster centers reduce the weighted diameter of the second
level clusters. The smaller diameter clusters, in turn, ensure that the resultant
condensed graph better captures the diameter of the input graph.

The fact that vertices in the second level clusters are closer to their master
vertices in the All scheme than in the basic extension is evident from Figure 3,
where we plot the number of vertices at varying distance from their cluster
masters. The number of vertices with distance at most 10 from the master vertex
is 3638 for the basic approach and 5362 for the All approach, while the number
of vertices with distance greater than 300 is 210 for the basic approach and 12
for the All approach.

[distance]

[vertices]

0 50 100 150 200 250 300

2
0

2
5

2
10 Basic

All

Fig. 3: Distance distribution on worst 2step graph after the second recursive level
of the basic approach and all extensions

Running time and I/O complexity. Theoretically, our approach requires
O(n·

√

log (k1 · k2)/(k1 · k2 ·B)+(k1+k2)·scan(n)+sort(n)) I/Os for contracting

Size Exact Computed Approx Running I/O Time I/O Volume
[GB] Diameter Diameter Ratio Time [h] [h] [TB]

sk-2005 27.0 40 133 3.325 0.7 0.1 0.3
√

n-level 128.0 46342 46380 1.001 11.1 5.7 4.7

Θ(n)-level 83.8 536870913 546560415 1.018 5.4 3.5 3.0

worse 2step 31.9 8111 25271 3.116 2.1 1.4 1.1

Table 2: Results of our external memory implementation.

the graph to n/k1 nodes in the first iteration and then to n/(k1 ·k2) in the second
iteration. This is better than the BFS complexity when k1 + k2 <

√
B.

Empirically, Table 2 presents the result of using our external memory imple-
mentation to approximate the diameter on

√
n-level, Θ(n)-level and worse 2step

graphs with 231 vertices and 233 edges (except worse 2step which is a tree).
On moderate to large diameter graphs such as these, the external memory BFS
implementation based on parallel cluster growing requires months and even the
BFS implementation based on chopping the Euler tour of a bidirectional span-
ning tree requires many hours [2] on graphs that are 8 times smaller than ours.
Thus, the various diameter approximation techniques based on multiple calls
to BFS routine are likely to take many days. On the other hand, our approach
provides fairly good approximations of graph diameter in a few hours, that is
even less time than that required for one exact BFS call. Alternatively, applying
the single step approach [3] hardly yields better approximations in practice than
the hierarchical method but results in significantly larger running times: on the
Θ(n)-level graph, e.g., 76 hours were needed to approximate the diameter with
222 master vertices and still 21 hours with 224 masters. Note that the running
time of our external memory approach is still dominated by the time required
for I/Os and the total volume of data moved between the two memory levels for
approximating the diameter is still in the order of terabytes, thereby showing
that the problem continues to remain I/O-bound, even with four parallel disks.

5 Conclusion

Using our new hierarchical extensions of the parameterized diameter approx-
imation approach we managed to process significantly larger external-memory
graphs than before while keeping approximation ratio and computation time rea-
sonable. Open problems concern directed and dynamic versions, and the question
whether the worse 2step graph class construction yields an asymptotically tight
lower bound on the approximation error for the two level basic extension.

Our framework can as well be initialized directly from a weighted graph,
but our analysis of approximation quality holds only when the input graph is
unweighted. To make our hierarchical extension cache-oblivious, one might con-
sider recursively contracting the number of vertices by a factor independent of
B, till the graph reduces to a constant size.

Acknowledgements

The authors would like to thank Andreas Beckmann for his help with STXXL
and the hardware resources and the anonymous reviewers for their feedback.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9), pages 1116–1127, 1988.

2. D. Ajwani. Traversing large graphs in realistic setting. PhD thesis, Saarland Uni-
versity, 2008.

3. D. Ajwani, A. Beckmann, U. Meyer, and D. Veith. I/O-efficient approximation of
graph diameters by parallel cluster growing – A first experimental study. In 10th
Workshop on Parallel Systems and Algorithms (PASA), 2012.

4. D. Ajwani, U. Meyer, and V. Osipov. Improved external memory BFS implemen-
tation. In Proc. 9th ALENEX, pages 3–12, 2007.

5. L. Arge, U. Meyer, and L. Toma. External memory algorithms for diameter and
all-pairs shortest-paths on sparse graphs. In Proc. 31st ICALP, volume 3142 of
LNCS, pages 146–157. Springer, 2004.

6. D. A. Bader and K. Madduri. Snap, small-world network analysis and partition-
ing: An open-source parallel graph framework for the exploration of large-scale
networks. In Proc. 22nd IPDPS, pages 1–12. IEEE, 2008.

7. K. Boitmanis, K. Freivalds, P. Ledins, and R. Opmanis. Fast and simple approxi-
mation of the diameter and radius of a graph. In Proc. 5th WEA, volume 4007 of
LNCS, pages 98–108. Springer, 2006.

8. U. Brandes and T. Erlebach, editors. Network Analysis: Methodological Founda-
tions, volume 3418 of LNCS. Springer, 2005.

9. R. Chowdury and V. Ramachandran. External-memory exact and approximate
all-pairs shortest-paths in undirected graphs. In Proc. 16th SODA, pages 735–744.
ACM-SIAM, 2005.

10. D. G. Corneil, F. F. Dragan, M. Habib, and C. Paul. Diameter determination on
restricted graph families. Discrete Applied Mathematics, 113(2-3):143–166, 2001.

11. P. Crescenzi, R. Grossi, C. Imbrenda, L. Lanzi, and A. Marino. Finding the di-
ameter in real-world graphs – experimentally turning a lower bound into an upper
bound. In Proc. 18th ESA, volume 6346 of LNCS, pages 302–313. Springer, 2010.

12. P. Crescenzi, R. Grossi, L. Lanzi, and A. Marino. On computing the diameter of
real-world directed (weighted) graphs. In Proc. 11th SEA, 2012.

13. R. Dementiev and P. Sanders. Asynchronous parallel disk sorting. In Proc. 15th
SPAA, pages 138–148. ACM, 2003.

14. M. T. Goodrich and P. Pszona. External memory network analysis algorithms for
naturally sparse graphs. In Proc. 19th ESA, pages 664–676, 2011.

15. C. Magnien, M. Latapy, and M. Habib. Fast computation of empirically tight
bounds for the diameter of massive graphs. Journal of Experimental Algorithmics,
13:1.10–1.9, 2009.

16. K. Mehlhorn and U. Meyer. External-memory Breadth-First Search with sublinear
I/O. In Proc. 10th ESA, volume 2461 of LNCS, pages 723–735. Springer, 2002.

17. U. Meyer. On trade-offs in external-memory diameter-approximation. In Proc.
11th SWAT, pages 426–436, 2008.

