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ABSTRACT

This research investigates techniques for iterative channel estimation to maximize

channel capacity and communication security. The contributions of this dissertation

are as follows: i) An accurate, low-complexity approach to pilot-assisted fast-fading

channel estimation for single-carrier modulation with a turbo equalizer and a decoder

is proposed. The channel is estimated using a Kalman filter (KF) followed by a

zero-phase filter (ZPF) as a smoother. The combination of the ZPF with the KF

of the channel estimator makes it possible to reduce the estimation error to near

the Wiener bound. ii) A new semi-blind channel estimation technique is introduced

for multiple-input-multiple-output channels. Once the channel is estimated using a

few pilots, a low-order KF is employed to progressively predict the channel gains

for the upcoming blocks. iii) The capacity of radio channels is investigated when

iterative channel estimation, data detection, and decoding are employed. By taking

the uncertainty in decoded data bits into account, the channel Linear Minimum Mean

Square Error (LMMSE) estimator of an iterative receiver with a given pilot ratio is

obtained. The derived error value is then used to derive a bound on capacity. It

is shown that in slow fading channels, iterative processing provides only a marginal

advantage over non-iterative approach to channel estimation. Knowing the capacity

gain from iterative processing versus purely pilot-based channel estimation helps a
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designer to compare the performance of an iterative receiver against a non-iterative

one and select the best balance between performance and cost. iv) A Radio channel is

characterized by random parameters which can be used to generate shared secret keys

by the communicating parties when the channel is estimated. This research studies

upper bounds on the rate of the secret keys extractable from iteratively estimated

channels. Various realistic scenarios are considered where the transmission is half-

duplex and/or the channel is sampled under the Nyquist rate. The effect of channel

sampling interval, fading rate and noise on the key rate is demonstrated. The results

of this research can be beneficial for the design and analysis of reliable and secure

mobile wireless systems.
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Chapter 1

Introduction

In this chapter, we outline the work motivation, problem statement, and research

contributions. The organization of the dissertation comes at the end of this chapter.

1.1 Motivation

Almost three-quarters of the world’s population already has access to mobile commu-

nications; yet the global mobile communications industry is expected to continue to

grow rapidly for many years [91]. This growth is fueled by the proliferation of mobile

applications, now penetrating every aspect of daily life. The volume of mobile data is

expected to increase 13-fold in five years, whereas the connection speed will assume

a 7-fold growth [1]. This enormous demand for high data rates is primarily powered

by mobile video and online gaming.

One of the main areas in mobile communications concerns vehicular networks.

The advancement in mobile technology enables cars to exchange real-time information

with external devices, other cars, or base stations to increase the vehicle performance

and improve the driving experience. Video calls, mobile video and gaming are among

the emerging services which will revolutionize the way cars are used1.

Next-generation mobile systems need new techniques to fully exploit the available

wireless spectrum. Exploiting the full communications capacity of wireless fading

channels is challenging [22]. New techniques are needed to allow wireless channels

to provide provably secure and private communications [24]. To achieve full capacity

use and/or perfect privacy over radio channels requires that the radio channel be

1By 2017, 60% of new cars will include connected car solutions, according to an Allied Business
Intelligence (ABI)’s report, 2012.
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accurately estimated by the communicating parties [131]. In light of the prospective

necessities of the next-generation mobile networks, this dissertation contributes new

algorithms for estimating fast-fading radio channels suitable for next-generation wire-

less protocols. The proposed techniques may be considered in the future standards

and specifications as viable solutions to some of the above mentioned challenges. Next

generation wireless networks are under development such as the WiGig and IEEE

802.11ad standards [45, 127, 133]. These standards exploit the 60 GHz spectrum to

increase the data rates of existing networks. Implementing the new technology on

wireless embedded systems, wireless sensor nodes, etc., requires low-complexity and

efficient receiver techniques designed to handle rapidly varying channels. Potential ap-

plications include control signaling for remote-operated aerial vehicles, high-reliability

communications for emergency vehicles, videoconferencing on high-speed trains, nar-

rowband communications between cars, etc.

1.2 Problem Statement

This research concerns iterative channel estimation as well as secret key generation

from the channel estimates for mobile wireless communications. An accurately esti-

mated channel is not only important to reliable communication, it is also an abundant

source of secret key bits for securing the communication.

Different types of channel impairments must be treated by the receiver to achieve

accurate channel estimation. In common radio communication systems, the signal

arrives at the receiver via different propagation paths, each with distinct amplitude

and delay, creating so-called multipath propagation (Fig. 1.1). Different propagation

delays cause different phase shifts of signal components, giving rise to constructive

or destructive interference. The phase shift depends mainly on the relative location

of the receiver with respect to the transmitter, as well as to interacting objects on

the path. Therefore, the overall signal amplitude will change with time if any object

movement is involved. As the signal is received through multiple paths, the superpo-

sition of the components coming from different directions and having different phases,

induces rapid fluctuations in the signal strength [132]. This phenomenon is caused

by the mobile’s movements and is known as time-selectivity. Another impediment in

communication systems is inter-symbol interference (ISI) caused by channel memory,

creating frequency selectivity in the channel.

Reliable communication over time-varying, frequency-selective channels calls for
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Figure 1.1: A multipath fading channel

accurate channel estimation algorithms at the receiver. For quasi-static or slow

fading channels, conventional pilot-based estimation methods offer adequate perfor-

mance [52,166]. For lower fading rates of up to 0.1% of the sample rate, low complexity

and near optimal techniques are available for orthogonal frequency division multi-

plexing (OFDM) and frequency-domain equalization schemes [72,102,166]. However,

these methods rely on the fundamental assumption that the channel is nearly static

over the duration of long blocks of symbols, so they fail to work at the higher fading

rates. Conventional frequency domain channel estimation and equalization methods

exhibit irreducible error floor at high Doppler frequencies [79]. Accurate estimation

of fast-fading channels with fading rates of up to 1% of the symbol rate using the

previously proposed methods entails high computational cost, which are not feasible

for many mobile computing applications.

This research first addresses the problem of estimating a fast-fading channel, with

a normalized Doppler frequency as large as 1% of the symbol rate for higher or-

der modulation schemes. By using a basis expansion model (BEM) to represent the

channel variation over a block, the estimation problem reduces to estimating the less

numerous BEM coefficients. The accuracy of the BEM depends on the block length

and the fading rate. For fast-fading channels, shorter blocks may be used. Short

blocks of data make it possible to perform data detection without exponential com-

putational cost [107, p. 281]. For higher order modulations, high-precision estimation

of the channel is critical since the detector is sensitive to the estimation errors.

The initial estimation of the channel in iterative processing relies on the pilot
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symbols. The rate of pilots must be greater than the Nyquist rate to allow chan-

nel identification unless blind or semiblind estimation is used. The Nyquist rate in

this case is determined by how fast the channel varies, i.e., the fading rate. As the

fading rate increases, the pilot overhead increases, leading to a reduction in the ef-

fective bandwidth of the channel [105]. The pilot overhead is more of a problem

in Multiple-Input Multiple-Output (MIMO) channels where a large number of pa-

rameters corresponding to the channels from each of the different antennas must be

estimated. Semiblind and blind techniques address this problem by sending fewer

or no pilots, but the computational cost is a burden, because they often require the

inversion of large matrices [64, p. 3]. We introduce a method for semiblind estima-

tion of MIMO channels with near-optimal performance and reasonable computational

cost.

Although doubly-selective channels pose challenging problems to reliable commu-

nication, the property that makes these channel difficult for communications, i.e.,

there are large number of random parameters needed to characterize the channel, can

actually be beneficial for security. Two parties using a doubly-selective radio channel

for two-way communication must both characterize this channel to achieve high data

rates. Many of these parameters cannot be measured by any third party [96], so that

the random values of these parameters can be used as shared secrets to support pri-

vate communications. When channel gain estimates are used to generate secret keys,

the key rate is determined by the accuracy of the channel estimates as well as the

rate of acquiring independent estimates from the channel, assuming that the channel

is unknown to any adversary. This fact brings about a close relationship between

the reliability and security problems considered in this dissertation, in the sense that

more accurate channel estimation would lead to higher channel capacity as well as

higher key rates (privacy).

1.3 Contributions

This research investigates techniques for iterative channel estimation and studies the

effect of using these techniques on channel capacity and security. The contributions

of this dissertation may be summarized as follows.

• Introducing a novel approach to iteratively estimating single-carrier fast-fading

radio channels using a smoother;
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• Proposing a low-complexity and accurate channel estimation method for higher

order modulation in fast-fading channels with a low pilot rate;

• Introducing a method to evaluate the capacity gain of iterative channel estima-

tion;

• Proposing a semi-blind iterative channel estimation technique for MIMO-OFDM;

• Calculating bounds on the rate of secret keys extractable from channel estimates

under realistic scenarios, where the channel is sampled under the Nyquist rate

and with half-duplex transmission.

The dissertation is organized into the following chapters.

Chapter 2 gives a literature review, describing important results in the area of it-

erative receivers and laying the foundations of the dissertation.

Chapter 3 introduces an efficient approach to estimating fast-fading doubly selec-

tive single-input-single-output (SISO) channels using a Kalman filter (KF) and

smoother. The performance of the proposed method is compared with a sim-

ilar state-of-the-art method. An extrinsic information transfer (EXIT) chart

analysis is performed to clarify the convergence behavior of the system for the

specific parameters and code in use.

Chapter 4 introduces a low-complexity and accurate semiblind channel estimation

technique for MIMO-OFDM systems.

Chapter 5 investigates the capacity of iteratively estimated doubly-selective chan-

nels when Linear Minimum Mean-Squares Error (LMMSE) estimators are used.

Lower bounds on the capacity are found. These bounds are used in an EXIT

analysis to predict the performance of an iterative receiver. The method can be

used to design such receivers.

Chapter 6 considers the problem of generating secret keys from channel estimates

and explores the secret key capacity for realistic channel measurement tech-

niques including half-duplex transmission with long transmit blocks.
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Chapter 7 concludes the dissertation by summarizing the research, the contribu-

tions and pointing to the future work.
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Chapter 2

Background

2.1 General Characteristics of Radio Channel

In a wireless system, the signal may reach the destination via different propagation

paths, each with distinct amplitude and delay characteristics. Different propagation

delays cause different phase shifts of the signal components, creating constructive or

destructive interference. For instance, at a carrier frequency of 2GHz, just a 10cm

movement may turn a constructive addition to a destructive one, attenuating the

signal at the receiver [115]. The phase shift depends on the relative locations of the

transmitter, receiver, and any objects in the environment interacting with the radio

signal. Therefore, the overall signal strength will change with time if any moving

object is involved. Small-scale fading is described as the variation of signal strength

due to movements of the mobile station over distances as short as a fraction of the

wavelength. The movement leads to a shift in the received frequency, known as the

Doppler shift [115]. The shift can be compensated in the receiver. However, the

interference between the signal components creates small-scale fading. The Doppler

frequency measures the rate of change of the channel and is proportional to the rel-

ative velocity of the receiver. This type of fading is captured by fading models such

as Rayleigh or Rician models. The Rayleigh model suits rich scattering environments

where a large number of scatterers contribute to the received signal. Rayleigh fading

is created when there is no line-of-sight (LOS) propagation path and the channel

gains from all directions to the antenna are identically and independently distributed

complex Gaussian random variables (RV’s). The channel gains for this model are

complex Gaussian RV’s with zero-mean, their magnitude follows a Rayleigh distribu-
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tion, and their phase is uniformly distributed over [0,2π] [22]. If a dominant path

exists, the likelihood of deep fades becomes much smaller and a Rician probability

density function (PDF) is used. In this case, the impulse response has a non-zero

mean component, e.g., due to the line of sight path. A model with more degrees

of freedom is the Nakagami model [28]. The amplitude of the sum of multiple i.i.d.

Rayleigh-fading signals follows a Nakagami distribution. This model fits best for fad-

ing channels of large delay spreads, with multiple independent clusters of reflected

radio waves, such as urban radio channels [159].

In addition to small-scale fading, the amplitudes of the received signal via LOS or

Non-Line-of-Sight (NLOS) paths may gradually vary over long distances (a few meters

to several hundreds of meters), for example, when an obstacle creates a shadow on the

path. This phenomenon is known as “shadowing”, causing large-scale fading [115].

When several propagation paths with different delays exist between the transmit-

ter and receiver, the duration of the radio channel’s impulse response may be longer

than a symbol period if the relative delay differences are larger than the symbol pe-

riod. The channel impulse response in these systems is not a single impulse, but

rather is spread over time [132]. As a result, the signal from one symbol affects the

reception of the following symbols. This phenomenon is called inter-symbol interfer-

ence (ISI). The existence of multiple propagation paths and signal reflections from

fixed and moving objects like mountains, buildings and vehicles cause selectivity both

in the time and frequency domain. Such a channel is called Doubly-selective chan-

nel (DSC). A frequency-selective channel has different gains for different frequency

components, and thus, distorts the signal. A time-selective channel has different

gains over different time instances. In broadband systems with high symbol rate,

frequency-selectivity is mainly due to the different delays of the propagation paths,

whereas time-selectivity is due to the mobile or objects moving in the propagation

environment.

Delay Spread and Coherence Bandwidth

Delay spread and coherence bandwidth characterize the signal dispersion in time.

Coherence bandwidth is defined as the frequency width over which the channel re-

sponse is well-modeled as being constant [132, p. 164]. It is inversely proportional to

the delay spread which is defined as the difference between the delay of the longest

path and that of the shortest path. The excess delay of a path is defined as the time

difference from the shortest path delay to the longest path.

A flat-fading channel (or narrow-band channel) is one where the coherence band-
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width is greater than the signal bandwidth (or equivalently, the symbol period greater

than the delay spread). In frequency-selective fading channels, the signal bandwidth

is larger than the coherence bandwidth.

Doppler Spread and Coherence Time

The channel fading rate is determined by the mobile station’s speed and measured

by Doppler spread and coherence time. When a sinusoidal signal of frequency f0 is

sent over a fading channel, the received signal will have frequency components over

the range f0 − fd to f0 + fd, where fd denotes the Doppler shift. The amount of

frequency dispersion is a function of the relative velocity and the angle of the receiver.

Doppler spread BD describes the degree by which the spectrum is broadened, while

coherence time TC represents the time interval over which the channel is considered

to be unchanging. A rule of thumb relationship states that TC = 0.4/fm [132, p. 165],

where fm = v/λ is the maximum Doppler shift with v and λ denoting the velocity and

the wavelength, respectively.

A fast-fading channel is identified by high Doppler spread, where the channel

gains are uncorrelated after relative delays of greater than a one hundred symbol

periods. In general, while efficient near-optimal estimators for slow-fading channels

have already been proposed in the literature [166], the design of channel estimators

for fast-fading channels has been a more challenging problem. This problem has been

tackled in the literature [92,101]. However, low-cost high accuracy estimators suitable

for higher-order modulation schemes used in high data-rate devices remained to be

explored.

A well designed wireless system must consider the above-mentioned factors to

achieve the best performance-cost compromise. In this research we explore channels

where the coherence time is on the order of the symbol duration and where the

coherence bandwidth is shorter than the signal’s bandwidth. In the next section,

we will review some physical characteristics of the most common vehicular wireless

network.

Radio Channel Model: Single-Input Single-Output

A single-input single-output radio channel can be modeled as a causal linear time

varying filter with input sc(t), output yc(t) and time-variant impulse response gc(t; τ)

at time t to an impulse at time t − τ , related as

yc(t) =

t

∫
−∞

sc(τ)gc(t; t − τ)dτ + vc(t) =

∞

∫
0

sc(t − τ)gc(t; τ)dτ + vc(t) (2.1)
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with vc(t) being the measurement noise. Typically, for fixed τ , g(t; τ) is a wide-sense

stationary random process with respect to time variable t. If it is also uncorrelated

with respect to delay variable τ , we have a wide-sense stationary uncorrelated scatter-

ing (WSSUS) channel. The correlation function of a WSSUS channel is invariant over

time. Further, the channel gains for different propagation delays are uncorrelated.

Real radio channels do not completely follow WSSUS model, as their statistics varies

with time. However, the WSSUS model can still be used with acceptable precision

for times periods of up to a sizable fraction of a second which is suitable for analyzing

most modern wireless systems.

To apply digital signal processing techniques, the analog signals are sampled with

a period of Ts at times t = nTs. A doubly selective multipath channel can then

be modeled as a linear time-varying FIR filter with L + 1 taps, where the largest

delay is L sample periods. Let g(n; l) denote the sampled time-varying channel’s

response at time n to a discrete-time impulse applied at the discrete time n − l.

The function s(n) gives the symbols transmitted at times n. The vector function

s(n) = [s(n) s(n−1) ⋯ s(n−L)]T gives the L+1 most recent symbols at time n. The

discrete-time signal at the receiver input can be expressed as,

y(n) =
L

∑
l=0

g(n; l)s(n − l) + v(n) = gT (n)s(n) + v(n) (2.2)

for n = 1,2, . . . ,N , where v(n) denotes the Gaussian zero-mean complex white noise

with variance σ2
v , and the channel impulse response at time n is given by,

g(n) ∶= [g(n; 0) g(n; 1) ⋯ g(n;L)]T . (2.3)

Stacking the signal samples into vectors of size N defines bys = [s(1) ⋯ s(N)]T ,

Eq. (2.2) can alternatively be written as,

y = Hs + v (2.4)

where H is the matrix representation of the convolution operation in (2.2). The entries

of H are either g(n; l) or zero. In most cases of interest, ∣g(n; l)∣ at a given instant

n can be assumed to follow a Rayleigh distribution. In a rich scattering environment

with the maximum Doppler frequency fd, the correlation between the channel gains
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follows a model introduced by Clarke and Jake [81] given by,

E [g(n, k)g(n +m,r)∗] = PlJ0(2πfdTsm)δkr, (2.5)

where J0(⋅) denotes the zeroth-order Bessel function of the first kind, Pl is the mean

power of the l-th propagation path, and δkr is the Kronecker delta function [115],

where δkr = 1 for k = r, and is zero otherwise. The Jake’s model assumes that the

Doppler shift as well as the power of channel paths are constant, and a large number

of interacting objects are distributed uniformly around the mobile station [115]. The

channel’s power spectral density (PSD) is the Fourier transform of the autocorrelation

function in (2.5) and takes the form of a U-shape curve given by

Sgg(f) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1

πfD
√

1−(f/fD)2
, ∣f ∣ < fD;

0, otherwise,
(2.6)

where fD = fdTs is the Doppler frequency normalized to the sampling rate.

A powerful tool for analyzing and modeling band-limited channel gain processes

with only a small number of parameters is the basis expansion model (BEM). BEM’s

are commonly used to describe the sequence of varying channel gains as the weighted

sum of time-domain basis functions. Given a BEM period of Tp samples and a set of

Q basis functions bq(n), q = 1, . . . ,Q; n = n0, ⋯ , n0 + Tp − 1, the BEM representation

of the channel impulse response g(n; l) for a fixed delay l is described as,

g(n; l) =
Q

∑
q=1

hq(l)bq(n), (2.7)

for n = n0, ⋯ , n0 + Tp − 1, where the weights hq(l) are called the BEM coefficients.

The parameters Tp and Q are usually chosen as a compromise between complexity

and performance. As the channel gains are usually highly correlated over time, one

has Q≪ N ; that is, the channel gain sequence can be characterized with much fewer

parameters. The estimation problem is reduced to tracking the BEM coefficients over

time. For channel tap l, let gl ∶= [g(n0; l) ⋯ g(n0+Tp−1; l)]T and hl ∶= [h1(l)⋯hQ(l)]T

denote the channel gain vector and the BEM vector, respectively, when l = 0,⋯, L.
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Let g ∶= [gT0 ⋯gTL]
T and h ∶= [hT0 ⋯hTL]

T . The matrix form of (2.7) is written as,

gl = Ehl, (2.8)

g = Bh (2.9)

where E is the BEM matrix with entries (E)m,q = bq(n0 +m − 1), B ∶= IL+1⊗E, and

⊗ denotes the matrix Kronecker product.

Using (2.2) and (2.7), the received signal is given as,

y(n) =
L

∑
l=0

Q

∑
q=1

hq(n)bq(n)s(n − l) + v(n), (2.10)

for n = n0, ⋯ , n0 + Tp − 1. Although the BEM coefficients are constant within a

BEM block, they may vary between the blocks. Therefore, we sometimes use h(n)

to denote this time dependency of the BEM vector. Using (2.2) and (2.10), the

vector of channel gains for different delay taps at the discrete time n denoted with

g(n) ∶= [g(n; 0) ⋯ g(n;L)]T can be written as,

g(n) = B(n)h(n) (2.11)

where B(n) ∶= IL+1⊗E(n, ∶), with E(n, ∶) denoting row n of the BEM matrix.

A popular and analytically tractable model to describe a vector of varying channel

gains is the complex-exponential basis expansion model (CE-BEM). Since the channel

gain process is band-limited to fD ≪ 1/2, the size of the CE-BEM vector is much

smaller than that of the channel gain vector. For a CE-BEM, bq(n) = (1/
√
Tp)ejωqn.

The channel impulse response g(n; l) can be expressed as,

g(n; l) =
1

√
Tp

Q

∑
q=1

hq(l)e
jωqn, (2.12)

where ωq ∶= (2π/Tp) [q − (Q + 1)/2] assuming that Q is an odd integer, when the

number of basis functions is bounded by Q ≥ 2⌈fdTpTs⌉.

Other BEM’s have also been employed in the literature to describe a varying band-

limited channel gain process. The discrete prolate spheroidal sequences (DPSS’s)

are finite sequences whose spectrum is also maximally concentrated over a limited

frequency band [145]. The columns of the BEM matrix are the Q eigenvectors as-

sociated with the largest eigenvalues of the matrix C defined as Cn,m = sin[2π(n −
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m)fD]/[π(n−m)]. DPSS BEM is used by Movahedian and McGuire [118] to estimate

a fast-fading radio channel. The Karhunen-Loève Transform (KLT) BEM exploits the

autocorrelation function of the channel gains to create a set of uncorrelated BEM co-

efficients [147]. It is the optimal mapping in the sense that the mean-square error

of the (truncated) BEM representation is minimized [65]. The KLT basis functions

bq(n) are the Q eigenvectors of the channel autocorrelation matrix Rgg = E[ggH]

associated with the largest eigenvalues.

In most of this research, a CE-BEM is used to represent the channel gain process.

Since the CE-BEM coefficients are the first Q coefficients of the fast Fourier transform

(FFT) of the signal, they can be computed using the FFT techniques, and the theory

of the FFT may conveniently be used for the analysis of the model.

After reviewing the physical properties of wireless channels, we now discuss chan-

nel capacity as an important performance measure for a communication channel.

2.2 Channel Capacity

In his seminal paper [141], Shannon established that by using infinite-length codes,

a noisy channel can transfer information up to a maximum rate called capacity, with

probability of error in receiving information approaching zero. Channel capacity is

an important basic performance metric in the analysis and design of communication

systems. The past few decades have witnessed the effort put into designing practical

codes to approach the channel capacity. Turbo codes [21] and low-density parity

check (LDPC) codes [57] are capacity-approaching iterative coding schemes widely

used in mobile systems.

The definition of channel capacity uses the concepts of entropy and mutual infor-

mation. Entropy measures the uncertainty of an RV. For the discrete RV X taking

values in set X , entropy is defined as [41]

H(X) ∶= −∑
x∈X

p(x) log p(x) (2.13)

where p(x) denotes the probability density function of X. The conditional entropy

of X conditioned on the discrete RV Y taking values in Y is defined as

H(X ∣Y ) ∶= −∑
y∈Y

∑
x∈X

p(x, y) log p(x∣y) (2.14)
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with p(x∣y) denoting the conditional probability density function of X given Y .

H(X ∣Y ) represents the average uncertainty of X when Y is known. The mutual

information between the RVs X and Y , denoted by I(X;Y ), measures the amount

of information in X about Y , and is defined as

I(X;Y ) ∶=H(X) −H(X ∣Y ) (2.15)

Channel capacity is defined in terms of the mutual information between the chan-

nel input and output. Let RV’sX and Y denote the transmitted and received symbols,

respectively. The capacity of a channel with finite-dimension input process XN de-

noting a sequence of N inputs to the channel, and output process Y N defined likewise,

is given by [50],

Ce = lim
N→∞

sup
pX

1

N
I(XN ;Y N), (2.16)

when the limit exists, where I(XN ;Y N) denotes the mutual information between

random vectors XN and Y N , and sup
XN

stands for the supremum of the mutual in-

formation taken over all possible choices of pX , the probability density function of

XN .

For the discrete-time fading channel described in (2.4) with the receiver channel

state information (CSI), the capacity is given by [22],

Ce = lim
N→∞

sup
Ps≤1

1

N
E

⎡
⎢
⎢
⎢
⎢
⎣

log det
⎛

⎝
IN +

1
√
σ2
v

HRssH
H
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

(2.17)

with H and s defined as in (2.4), Rss is the autocorrelation matrix of s, Ps denotes

the mean power of information symbols, and the expectation is taken over all possible

realizations of the random channel.

It has been shown that the input signal can be extracted from the channel output

even if the channel is unknown to the receiver and no pilots are sent by the trans-

mitter [61]. In the method proposed by Godard [61], the parameters of an adaptive

equalizer are iteratively updated by minimizing a special cost function using gradient

method without estimating the channel. Differential modulations do not require the

channel estimates, but cause elevated BER [62]. In differential modulation, the data

bits are encoded into the relative phase of the consecutive symbols. Assuming that

the phase of the channel gain is invariant from one symbol to the next, the phase

change in the received signal is mainly due to the signal. This approach does not
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need the knowledge of the channel gains, and is used in non-coherent detection where

the channel is not explicitly estimated by the receiver. Drawbacks with this strategy

include slow convergence and the possibility of local minima resulting in detection

errors [49]. In [179], the BER performance of differential detection is compared to

that of coherent detection in the presence of channel estimation error. It is shown

that with accurate channel estimation, the coherent technique outperforms the differ-

ential detection. To avoid these drawbacks and simplify the receiver design, coherent

symbol detection is performed using the channel estimates [101]. To perform coherent

detection, the receiver has to estimate the time varying channel gains through pilot-

based or (semi-)blind techniques. The accuracy of the channel estimator significantly

affects the capacity [105,119]. The capacity in this case is defined as [105],

Ce = lim
N→∞

1

N
E [sup

Ps≤1
I(y, Ĥ; s) ∣H] , (2.18)

where Ĥ denotes the estimated gain matrix and the expectation is taken over all

possible realizations of the random channel. Define channel estimation error as H̃ ∶=

H−Ĥ. Then y = Ĥs+H̃s+v. The uncertainty in s given y is due to both the channel

noise v and the term H̃s due to the error in the knowledge of channel impulse response.

Therefore, a larger channel estimation error corresponds to a higher uncertainty on

s when y is known. A poorly estimated channel will reduce I(y, Ĥ; s), and thus,

the capacity. A closed-form expression for capacity of an estimated channel remains

an open problem. The capacity of purely pilot-based estimated channels using linear

minimum mean-squares error (LMMSE) channel estimators has been studied by Ma,

Giannakis, and Ohno [105], where an optimal pilot scheme to maximize a lower bound

on capacity was proposed. This bounds will be used in this research to evaluate the

capacity of iterative receivers, where the detected data symbols are iteratively used

by the channel estimator to improve the accuracy. Agarwal and Honig [4] studied the

capacity of a block fading channel with partial feedback is studied in a non-iterative

setting. The trade-off between transmission rate and channel estimation error is

considered by W. Zhang, Vedantam, and Mitra [178]. This work demonstrated that

higher transmission rates give rise to higher channel estimation errors, and establishes

a relationship between the channel capacity and the maximum allowable channel

estimation error (the so-called “capacity-distortion function”). The formulation and

derivations however, are limited to finite-alphabet signals and non-iterative channel

estimation schemes, and extending the approach to doubly-selective continuous-state
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channels is difficult.

2.3 Channel Estimation

Coherent detection requires that the channel be estimated. Pilot-assisted channel

estimation techniques periodically insert known symbols between data symbols in a

time-multiplexed fashion [31, 32, 105, 114], or superimpose the pilots on data sym-

bols [56, 59, 158, 163]. The pilot overhead in time-multiplexed pilot-assisted channel

estimation depends on the fading rate. According to the Nyquist sampling theorem,

2fD pilots per channel path per data symbol are required to uniquely identify the

channel impulse response. Pilot overhead of pilot based methods may lead to signifi-

cant throughput loss in fast-fading environments or when a large number of antennas

or channel taps is involved. For example, with the optimal pilot scheme proposed

by Ma et al. [105] where a lower bound on capacity is maximized, the pilot overhead

may exceed 50% of the bandwidth in the scenarios with many channel taps and high

fading rates.

A formal analysis of pilot-assisted estimation was first presented by Cavers [31]

where a Wiener filter was used to minimize the estimation error in a flat-fading

scenario, and the trade-off between estimation accuracy and bandwidth efficiency was

studied. The idea was that more pilot signaling would reduce the useful bandwidth

but increases the estimation accuracy. This technique was extended to frequency-

selective channels where the superiority of pilot-based schemes in terms of the BER

performance, over non-coherent detection was shown [32].

Pilot design may be optimized based on various criteria, such as bounds on capac-

ity, bit error rate (BER) or LMMSE. The optimal design determines power allocation

between pilots and data symbols, pilot placement in the transmit stream and the num-

ber of pilot symbols. Crozier, Falconer, and Mahmoud [42] proposed least-squares

(LS) filtering for estimating frequency-selective channels. The optimal pilot sequence

is found by minimizing the LS error. The case of doubly-selective channels was con-

sidered by Ma et al. [105], where the optimal sequence was found that maximizes a

lower bound on capacity. It was shown that the optimal pilot pattern would consist

of a non-zero pilot, and null symbols (zeros) before and after the pilot. The high-SNR

regime is studied by Kannu and Schniter [87], where a pilot scheme to maximize the

spectral efficiency is proposed. Training policy in multiple-antenna communications

was explored by Marzetta [109], Hassibi, and Hochwaldand [71] for BLAST (Bell
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Labs Layered Space-Time). BLAST is a MIMO technology which exploits the spatial

diversity for reliable communications in broadband systems. Marzetta [109] employed

a method to evaluate the effect of channel estimation error on the outage capacity of

a Rayleigh flat fading channel. The outage capacity was used to design the optimal

pilot scheme to maximize the overall transmission rate. Hassibi and Hochwaldand [71]

proposed a training policy for multiple-antenna systems to maximize a lower bound

on the capacity. It was shown that for optimal pilot allocation over the pilot and data

symbols, the number of pilots should equal the number of transmit antennas.

Channel estimation based on the input-constrained capacity maximization was

considered by Baltersee, Fock, and Meyr [16] for the case of time-selective flat fading

channels. The input-constrained capacity is used to refer to channel capacity when

the symbol alphabet is discrete equiprobable rather than Gaussian. It was shown that

the mutual information is a function of the estimation LMMSE. Also, the optimal

pilot rate in the sense of channel capacity was found to always be above the Nyquist

rate.

Pilot-assisted channel estimation may require a significant portion of the band-

width to be allocated to pilots, specially in channels with high fading rates or large

numbers of paths between the transmitter and the receiver. Semi-blind and blind tech-

niques exploit the properties of the channel and input signals to reduce the necessary

pilot rate below the Nyquist sampling rate of the channel gain processes and save the

bandwidth. By allocating all the bandwidth to data symbols, the spectral efficiency

increases, but this often translates into much higher computational cost to obtain

accurate enough channel estimates to support useful data reception. The second or-

der statistics of the received signal along with the cyclo-stationarity of the input are

used by Tong, Xu and Kailath [153] to identify the channel without training. A class

of blind/semi-blind techniques called subspace methods decompose the output auto-

correlation matrix to obtain the signal or noise subspace [33,117,152,154,167]. These

subspaces correspond to the largest and smallest eigenvalues of the auto-correlation

matrix. The signal subspace is spanned by the channel impulse response matrix. As

such, the channel matrix may be obtained up to a phase ambiguity [117]. Singular

value decomposition to decompose the subspaces may be computationally inefficient

due to the large dimensions of the auto-correlation matrix.

If standard channel estimation methods are used with MIMO, the pilot overhead

increases with the number of transmission antennas to the point that a significant

portion of the available bandwidth is consumed by pilots. Blind and semiblind tech-
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niques can significantly increase spectral efficiency compared to standard pilot-based

channel estimation where the pilot rate must be above the Nyquist sampling rate

of the channel gain process. The semiblind techniques introduced by Y. Chen and

Song [33, 35] apply a linear precoding before transmission to create correlation be-

tween symbols, which allows for channel estimation without pilots but also makes

symbol detection more difficult and prone to errors [35]. As the channel state is es-

timated from estimates of the covariance of the received signal, for accurate channel

estimation these methods require the channel state to be static over a long period

of time. This issue makes the method inapplicable to fast-fading channels where

the channel coherence time is on the order of only tens of symbols. Moreover, the

computational cost of these techniques is higher than the pilot-assisted methods.

A blind and semiblind technique is presented by Yu, B. Zhang and P. Chen [176]

where the statistics of the blocks of the received signal are used to compute the

magnitudes of the channel gain processes for different propagation delays. Sparse

pilots are then used to resolve the phase ambiguity and obtain the final channel

process estimates before data detection. Since the channel is assumed to be invariant

over a block, channel variations within a block are not captured. Therefore, this

approach works well only for very slow fading channels. However, at the fading rates

encountered in mobile radio channels, an unwanted error rate floor is hit.

2.3.1 Iterative Channel Estimation

With purely pilot based estimation, the channel gains for times between the pilots are

estimated using interpolation. Accurate pilot-based estimation in fast-fading chan-

nels calls for a large amount of pilots which leads to low spectral efficiency, especially

in channels with a large number of taps [105]. Iterative channel estimation employs

the detected data as virtual pilots to enhance the channel estimation accuracy, hence

reducing the pilot overhead needed for a given accuracy. This approach to chan-

nel estimation has widely been used with turbo channel estimation which perform

channel estimation, symbol detection and data decoding in an iterative manner. At

each iteration, soft information on coded bits is exchanged between the equalizer and

decoder until convergence is reached. Turbo equalization reduces the receiver com-

plexity as compared to the optimal method of building a large trellis of the channel

and decoder states and then performing a maximum a posteriori (MAP) sequence

detection. Iterative equalization is inspired by the work of Berrou on turbo codes [21]
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which reduced the complexity of decoders for capacity approaching codes. It was

first employed by Douillard et al. [54] to improve the performance of a coded modu-

lation system over a known frequency selective channel using a MAP equalizer and

a MAP decoder. The BER performance of this receiver was shown to be close to

that of the optimal method at a much lower computational cost. However, the cost

of a MAP equalizer could still be a burden with higher-order constellations and/or

large delay spreads due to the the large number of the trellis states. Laot, Glavieux,

and Labat [97] replaced the hard-decision MAP equalizer with a soft ISI canceler,

to increase the accuracy. Based on the work of Douillard et al. [54], MMSE-based

soft-input-soft-output equalizers were proposed by Tüchler, Singer, and Koetter [161]

with significant complexity reduction.

Extending the turbo principle to channel estimation, Davis, Collings, and Hoe-

her [46] studied the problem of joint channel estimation and equalization using a

MAP equalizer for doubly-selective channels where an expanded trellis was employed

to include the extra memory required to estimate the channel. To overcome the com-

plexity of trellis-based equalizers, the use of linear adaptive filters or variations of

the Kalman filter has been considered for coded modulation systems [92, 101]. An

extended Kalman filter [144] is used by Li and Wong [101] for joint channel estima-

tion and symbol detection. The channel gain process is characterized by a first order

auto-regressive (AR) model. AR models and CE-BEMs have also been employed in

several other works [15, 60, 83, 156]. A downside with using the low-order AR mod-

els is the existence of an error-rate floor at high SNRs [95], due to their imperfect

representation of the channel’s time evolution [15].

Based on the method of Li and Wong [101], a more accurate channel model using

CE-BEM was employed by H. Kim and Tugnait [92]. The superiority of block-wise

CE-BEM over symbol-wise AR models in modeling and tracking fast-fading channels

has been well investigated by Tugnait, He, and H. Kim [157] for different adaptive

algorithms and by H. Kim and Tugnait [93] for MIMO channels. Tugnait et al. [157]

explored adaptive blockwise tracking of a doubly-selective channel using a KF and

recursive least squares method. The time variations of the channel over a block are

captured by a CE-BEM, whereas the evolution of the BEM coefficients between the

blocks are represented by an AR model. Compared to the AR channel models, this

method reduces the modeling mismatch, resulting in performance improvement in

fast-fading environments.

In fast-fading environments, these methods typically suffer a BER floor at higher
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SNRs, which prevents their application to higher-order modulations which must oper-

ate at these SNR levels [112]. Higher order modulations are more prone to the chan-

nel estimation error, hence, more accurate channel estimators are needed. Enhanced

performance requires prohibitively large KF state vectors, particularly for multipath

fast-fading radio channels, posing a computational complexity problem. For slower

fading channels with normalized Doppler frequencies of less than 0.001, a near op-

timal and efficient channel estimation approach was proposed by Wan, McGuire,

and Dong [166] for OFDM, but it does not scale well to fast-fading channels since

it is based on the assumption that the channel gains are constant over a period of

128 samples. Fast channel variations destroy this assumption required by the pop-

ular frequency-domain equalization schemes used by the OFDM and single-carrier

methods proposed in much of the literature. The invariant gain assumption implies

that the channel is almost invariant When these methods are applied to fast-fading

channels, they exhibit an unacceptably high error floor [136].

Iterative channel estimation methods proposed by Movahedian, McGuire, and

Wan [120, 166] for single transmit and receive antenna systems can be extended to

MIMO-OFDM case. Unfortunately, the technique used by Movahedian and McGuire

[120] requires signal blocks with durations many times the coherence time of the

channel to guarantee good performance which leads to unacceptable latency at the

normalized fading rates of 10−4 and lower considered in most of MIMO literature.

The approach of Wan and McGuire [166] works well in SISO case, but the number of

pilots required to estimate the channel grows unacceptably large for MIMO systems

with many antennas. An impediment to using the aforementioned single-antenna

techniques is that they require time diversity of the radio channel within the period

of single processing block. Time diversity is achieved by sending different bits of

the codeword at different times. As the channel varies with time, only part of the

codeword is likely to be transmitted during a time period when the channel gain is

low and thus corrupted by the noise and fading effects of the channel. If too many

bits of the codeword are corrupted during the transmission, the decoder is not able to

recover the erroneous bits. To guarantee the required time diversity, these methods

require unacceptably long signal blocks incurring undesirable receiver latency. This is

much less of an issue in MIMO channels where the spatial diversity may be exploited

to compensate for a short processing block to obtain the same diversity as a long

processing block in a SISO receiver. An iterative semiblind estimation approach is

proposed by K. J. Kim, Tsiftsis, and Schober [94] for LDPC coded MIMO-OFDM,
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Figure 2.1: Transmitter

where a recursive-least-squares (RLS) algorithm is employed to estimate the channel

gains for each fading block. While the method works well with reasonable complexity

for quasi-static or very slow fading channels, its performance deteriorates in fast

channel variations as the forgetting factor in the RLS algorithm cannot be tuned well

for the estimator to track the channel variations [122].

2.3.2 System Model

The iterative approach to channel estimation, symbol detection and data decoding as

considered in this thesis assumes the following models for transmitter and receiver.

Transmitter

A bit-interleaved coded modulation system transmitting over a time-varying fading

channel is considered here as shown in Fig. 2.1. We use the notation for single-

carrier signaling and samples from the work of H. Kim and Tugnait [92]. A block

of independent data bits {b(k′), k′ = 1,2, . . . ,Nd} is encoded by a convolutional or

LDPC encoder with code rate R. The encoded sequence c(k′) goes through a bit-

wise random interleaver Π(⋅) of length Ni, generating the interleaved coded sequence

{c(k), k = 1,2, . . . ,Ni}. The resulting interleaved data are modulated according to

some constellation χ, mapping every Nmod bits into a constellation point.

Receiver

The receiver performs iterative channel estimation, data detection, and decoding. At

each iteration, the channel estimator uses the data estimates from previous iteration

to enhance the estimation accuracy. The channel estimates are then used by the

equalizer to detect the data symbols. Data symbol estimates are demodulated and

used by the decoder to generate soft data bits. Using soft information rather than hard

information, results in a performance improvement. Soft data bits carry reliability
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information about the decision made by the decoder on each decoded bit. New

estimates on data symbols are calculated using the soft bits and fed back to the

equalizer and channel estimator.

2.3.3 Optimal Linear Channel Estimator Bound

For the continuous-time single-path channel estimation problem, assuming the signal

is uncorrelated with the noise, the mean-square-error (MSE) of the optimum Wiener

filter is given by

W ∶=

∞

∫
−∞

Sgg(f)Svv(f)

Sgg(f) + Svv(f)
df, (2.19)

where Sgg(f) and Svv(f) denote the PSD of the channel gains and noise, respec-

tively [126]. Since the channel is band limited, the above bound applies also to

discrete-time filters. For the case of a Rayleigh fading channel with the Jakes’ model,

the PSD of the channel gains is described by (2.6).

A good approximation to (2.19) at high SNRs, where Sgg + Svv ≈ Sgg, can be

obtained as

W ≈ 2fDσ
2
v (2.20)

where σ2
v is the noise variance. The error of this approximation is less than 1% for

SNR’s greater than 20 dB.

The study of channel estimation techniques and the capacity of estimated channels

bears significant implications for communication security. As it will be shown, the

ability of the legitimate parties to establish a secure communication channel depends

on the channel capacity. An accurately estimated channel not only is crucial for

reliable communication, but also serves as an abundant source of secret keys for

secure communication. This fact motivates the study of security aspects of data

communications in the physical layer in the following section.

2.4 Physical-layer security

Channel estimates can be exploited to generate secret keys used to encrypt the data

transmitted over a public channel. This section lays the foundations for secret key

generation from the channel impulse response as a common source of randomness

between the communicating parties.
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2.4.1 Basic Concepts

We study the security aspects of data communication systems exposed to adversaries

with unlimited computational power. This physical-layer approach to security differs

from the computational complexity approach which hinges on the assumption that

performing certain computing tasks (such as prime factorization of large numbers)

require much computing power or time to be feasible. The computational complex-

ity approach employs the well-known methods of Diffie and Hellman [48] or Rivest,

Shamir, and Adleman (RSA) [135]. Diffie-Hellman algorithm is employed to establish

a secret key between two parties. The secret key is then used to secure the commu-

nication. With RSA, key distribution is performed by a trusted third-party. Overall,

RSA is computationally expensive compared to the methods discussed here, making

it less viable for mobile devices. Elliptic Curve Cryptography (ECC) is computation-

ally faster, but it may still require accelerator hardware to run on small devices [63].

The key agreement mechanism in ECC is similar to Diffie-Hellman. For ECC, the

key size to provide a certain level of security is smaller than that of an RSA sys-

tem. In information-theoretic physical-layer security the computational complexity

is avoided. Rather, the security is based on the solid frame of information theory and

the security results are mathematically provable [111]. Information-theoretic security

is concerned with unconditional security.

One drawback with information theoretic security comes from the assumption

made about the noise levels in the system which may lead to either over-optimistically

high or extremely low secrecy capacity [24]. This is the case when, for example,

the adversary’s observation of the signals in the communication channel is not as

contaminated with noise as it was incorrectly assumed to be. If a security protocol

relies on the assumption of a lower noise level in the signals received by the legitimate

communicating parties, the communication may not be secure. When secret keys are

generated using the channel estimates, the key rate depends super-linearly on the

fading rate (see Chapter 6), which may be too low for many applications.

An unconditionally secure system was first introduced by Shannon [140] and in-

volves the concept of perfect secrecy. Consider a message M encoded to a codeword

X by a transmitter Alice, received as Y by a legitimate receiver Bob, and intercepted

as Z by an eavesdropper Eve, where Z may be different from X due to reception

errors on Eve’s part. Perfect secrecy refers to the condition where Eve is not able

to extract any information from Z regarding M , that is H(M ∣Z) = H(M), where
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H(M) is the entropy of the message and H(M ∣Z) denotes the conditional entropy

of M conditioned on Z. The conditional entropy H(M ∣Z) is called the eavesdrop-

per’s equivocation, representing the Eve’s uncertainty about the message after ob-

serving Z. For perfect secrecy, the mutual information between M and Z defined

as I(M ;Z) ∶= H(M) −H(M ∣Z) is zero [41]. The entropy of the message measures

the information content of the message, whereas the mutual information between M

and Z is a measure of the amount of information about M contained in Z. Under

perfect secrecy, the codeword is statistically independent of the message given Eve’s

observation, implying that, knowing Z will not increase Eve’s information about the

message. The transmitted codeword X is computed by a function of the message M

and a shared secret key K which is independent of the message M which is shared by

Alice and Bob, the knowledge of which suffices to recover the message by the other

party. Shannon assumed that Eve and Bob receive an exact version of the codeword,

i.e., Y = Z = X, and showed that for perfect secrecy, the secret key must contain as

many bits as the secret message which implies that the secret key rate must be equal

to or greater than the message’s data rate. For shorter keys, the Eve’s equivocation

is at most H(K) and she will be able to extract some information from the codeword

in the sense that H(M ∣Z) < H(M); Observing Z decreases the Eve’s uncertainty

about what the message could be by an amount of I(M ;Z) =H(M)−H(M ∣Z). We

will show that iterative channel estimation has significant implications regarding the

derivable key rate and the security of the system.

2.4.2 Secrecy Capacity

Shannon’s description of perfect secrecy assumes that Bob and Eve receive the same

codeword, without any communication error. A more practical conception of se-

crecy quantifies the maximum rate at which a reliable and secure communication

over a broadcast noisy channel is possible. This maximum rate is referred to as the

channel secrecy capacity. The concept of secrecy capacity was originally introduced

by Wyner [170] for a special type of channel, called the degraded wiretap channel

(DWTC). Consider a message M coded by Alice to codeword Xn and sent through

a discrete memoryless channel to Bob, who receives Y n. This channel is described

by some conditional probability function pY ∣X denoting the probability function of

the RV Y conditioned on the RV X. Message M is drawn from 2nR1 possible mes-

sages. The wiretapper, Eve, receives Zn through a “degraded channel” described by
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some conditional probability function pX ∣Z , in the sense that Xn, Y n and Zn form

a Markov chain 1, denoted as Xn → Y n → Zn [103]. This case where Eve receives a

degraded version of the signal received by Bob, does not represent a practical chan-

nel, but it greatly simplifies the description of the secrecy capacity in the following.

In a wiretapped channel, a rate R is called achievable if there exists a channel code

with sufficiently long codewords, that can transmit R bits of message information

with vanishingly small probability of error, while maintaining the Eve’s equivoca-

tion (1/n)H(M ∣Zn) at a minimum of R bits. The secrecy capacity is the maximum

achievable R. As long as (1/n)H(M) = R1 < R, in the limit as n →∞, that is, if the

transmission rate is below the secrecy capacity, then there exist wiretap codes which

ensure that the information leakage rate to Eve represented by (1/n)I(M ;Zn), goes

to zero as the codeword length n goes to infinity. The secrecy capacity Cs for a

DWTC is [170]

CDWTC
s = max

pX
{I(X;Y ) − I(X;Z)} (2.21)

One interesting form of a wiretap channel is that of a fading wireless channel in

which instantaneous SNR may change due to channel gain variations. In this case,

the secrecy capacity will depend on the fading characteristics such as the channel

coherence time, as well as whether the full CSI is available to the transmitter. Most

optimistically, when the full CSI of the main channel and Eve’s channel is known

to the legitimate communicating parties, the capacity can be strictly positive even

if the main channel is noisier than the eavesdropper’s channel. The key to this

remarkable result is that the legitimate receivers can cooperate while Eve cannot get

their assistance. The transmitter can adjust its power to the instantaneous SNR of

the legitimate receiver with respect to that of the eavesdropper. This strategy for

example may only transmit data when Eve’s channel is in a deep fade while Bob’s

channel is not. By modulating the transmit power in accordance with the relative

SNR of the main channel with respect to Eve’s channel, the capacity of the main

channel would exceed that of the Eve’s channel [17]. However, this result is more of

a theoretical interest than a practical one, because the Eve’s channel SNR may not

be available to the transmitter. The above-mentioned bounds on secrecy capacity

are based on the assumption of one-way communication from Bob to Alice. Maurer

showed [111] that if there exists some external common source of randomness, a non-

zero secrecy capacity is achievable for channels which would otherwise have a null

1RVs X, Y , and Z form a Markov chain if given Y , then X and Z are statistically independent,
i.e., I(X;Z ∣Y ) = 0.
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capacity.

A more practical wiretap channel than the DWTC where the Eve’s received signal

may not be a degraded version of Bob’s signal, was studied by Csiszár and Körner [43].

Let U denote an auxiliary RV used by the encoder as an additional randomization

factor, so that U → X → Y Z. The secrecy capacity of a wiretap channel (WTC) is

given by

CWTC
s = max

pUX

{I(U ;Y ) − I(U ;Z)}+ ≥ CDWTC
s (2.22)

where pUX denotes the joint probability function of U and X, and {⋯}+ indicates that

only non-negative values are acceptable. By incorporating U , the channel between U

and Z effectively turns into a degraded version of the channel between U and Y . The

secrecy capacity is positive if for some U , I(U ;Y ) > I(U ;Z), in which case, Eve’s

channel is said to be noisier than Bob’s channel. Note that if X → Y → Z, then Eve’s

channel is noisier than Bob’s channel, but not vice versa. Therefore, the DWTC is a

special case of WTC.

2.4.3 Secret Key Generation

Rather than constructing wiretap codes, another strategy to securing a communica-

tion is having the communicating parties to generate a shared secret key which is

then used to encrypt the data. In this model, Alice and Bob can both measure some

common source of information, such as the wireless channel itself. Eve may also ob-

serve this source of randomness, but her measurements are inferior to both Alice and

Bob. Alice and Bob can publicly discuss their measurements using key agreement

protocols to agree on a common key without revealing this key to Eve. The secret

key capacity is defined as the maximum rate key bits that Alice and Bob can gener-

ate, while keeping Eve almost ignorant about the key. Secret key agreement over a

public, noiseless and authenticated channel between Alice and Bob was theorized by

Maurer [111], Ahlswede and Csiszar [5]. The key agreement process consists of four

phases [24] as follows.

Common randomness establishment: Correlated RVs are observed by Alice,

Bob, and Eve. The correlation may be characterized either by a source model, where

an external source of randomness generates Xn, Y n, Zn with joint PDF p(xn, yn, zn),

or by a channel model, where the channel delivers a noisy version of the signal pro-

duced by Alice to Eve and Bob. This model is described with p(yn, zn∣xn).

Advantage distillation: In this phase, Alice and Bob gain some advantage, in terms
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of mutual information about the measured signal, over Eve. Distillation through

two-way public transactions between Alice and Bob was first described by Maurer,

Ahlswede, and Csiszar [5,111], where upper and lower bound on key rate and secrecy

capacity were derived. To see how advantage distillation works, consider the above-

mentioned source model and suppose that the mutual information between Alice’s

observations and Eve’s observations is greater than the mutual information between

Bob’s and Alice’s observations, giving no advantage to Alice and Bob over Eve. In

this case, any attempt to derive a key solely based on common randomness would fail,

as there is more “commonality” between Alice and Eve. However, it can be shown

that through public discussion, Alice and Bob are still able to agree on a secret key.

The idea is that Alice and Bob pick out only those realizations of (Xn, Y n) that

are highly correlated. Other less-correlated observations are discarded. The decision

as to which realization be chosen is communicated between Alice and Bob through

public channel.

Information reconciliation: At this stage, error-correction techniques such as low-

density parity check (LDPC) codes are employed to provide Bob with an almost

error-free bit string about which Eve has only a partial knowledge [19,27,55].

A reconciliation protocol identifies the discrepancies between the Alice’s and Bob’s

observation by exchanging parity checks over the public channel. A simple method

is described in [172], where Alice and Bob observe jointly Gaussian random variables

Xn and Y n. Alice first quantizes Xn and then converts the quantized vector to the

bit string Xa. The parity check vector for Xa, called the syndrome, is calculated using

some LDPC code. The syndrome is sent to Bob over an error-free public channel.

Using the syndrome and Y n, Bob decodes Xa using an error correcting algorithm.

Careful selection of the error-correcting code is crucial for this method to work.

If the code is too powerful, it will correct not only Bob’s, but Eve’s errors, and the

key will be revealed to Eve.

Privacy amplification: After reconciliation, Alice and Bob have some information

in common about which Eve may still have nonzero knowledge. For a perfect key,

the common information between Alice and Bob must be mutually independent of

the Eve’s knowledge. Privacy amplification establishes a secret key between Alice

and Bob by extracting a shorter key from the common reconciled key, about which,

the eavesdropper would have no information. A common approach to privacy ampli-

fication uses one-directional hash functions [18]. Assume that Eve has estimated a

secret key S̃ with some bits identical to those of Alice and Bob. Eve, however, would
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not know the positions of the common bits. Therefore, if a deterministic function,

involving shuffling and combining the bits of the key, is applied to the secret keys,

Eve cannot determine f(S̃). It has been shown that there exist functions the output

of which are equally likely for Eve.

2.4.4 Channel Fading as a Source of Randomness for Key

Generation

The principle of channel reciprocity guarantees that Alice and Bob would experience

identical channel response when they measure the wireless channel simultaneously or

with sufficiently small delays between their measurement times [128]. Furthermore,

any adversary located farther than half the wavelength from Alice and Bob, will ob-

serve independent fading, meaning that, the mutual information between the channel

measured by Eve and that measured by Alice or Bob is limited [5], assuming that

the channel response is not predictable due to effects such as shadow fading. Using

channel reciprocity to generate secret keys was proposed by Hershey, Hassan, and

Yarlagadda [74]. This approach has since gained attention from researchers. Key

generation from the phase of a Rayleigh fading channel was investigated by Hassan

et al. [70]. Ye, Reznik, and Shah [172] have proposed a method for key generation

from the gains of a Rayleigh flat fading channel. The gains as well as the estimation

errors are assumed to be i.i.d. with no time correlation. The two parties quantize

their continuous gain measurements to generate bit strings, which are encoded with

an error-correcting code to manage gain measurement and quantization errors (refer

to Section 2.4.3). Afterwards, a hash function is used to generate a key which is com-

pletely unknown to Eve. These techniques have been extended to frequency-selective

multipath cellular channels by Ye et al. [173]. Assuming i.i.d. channel samples the

secret key capacity Ck is evaluated based on an upper bound given as

Ck ≤
L

∑
i=1

log(1 +
SNRl

2 + 1/SNRl

) (2.23)

where SNRl ∶= Pl/σ2
e with Pl and σ2

e denoting the power of path l and the power

of estimation error, respectively. The above inequality does not take the temporal

correlation of the channel samples into account. This temporal correlation reduces the

key rate. Further, if the channel impulse responses on different paths are correlated,

the key rate decreases, as the overall entropy of the channel gain process is reduced.
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This simple inequality also refers to the basic limitation imposed by the estimation

error on the secret key capacity of an estimated wireless channel.

If the gain samples are correlated, an orthogonal decomposition algorithm is used

to extract uncorrelated samples from correlated gain measurements [138]. If the time

interval between observations is shorter than the coherence time of the channel, there

would be some correlation between the key strings extracted from successive obser-

vations, which is not addressed in the work of Ye et al. [173]. Moreover, in iterative

receivers the channel is estimated at much shorter intervals than the coherence time,

limiting the application of the method even further. The case of correlated eaves-

dropper is addressed by Chou, Draper, and Sayeed [37].

In the research by Sayeed, and Perrig [137], the phase of channel gains is estimated

by an MMSE estimator and quantized to obtain the secret key. The quantization

strategy and transmit power are optimized for minimum energy consumption. Key

generation based on the location and duration of channel deep fades is studied by

Azimi-Sadjadi et al. [14]. This technique does not require identical channel measure-

ments at the two ends; only matching deep fades would suffice. This method does

not exploit the full secret key capacity of the channel as it discards part of the signal

envelope which is not in a deep fade. UWB channel pulse response is used by Wilson,

Tse, and Scholtz [169] to generate secret keys. The channel gains are assumed to be

i.i.d. and unknown and estimated by Alice and Bob. Research by Liu, Draper, and

Sayeed [104] showed that the use of channel coefficients in IEEE802.11a OFDM as

the key source is feasible.

The radio channel considered in all the proposed techniques is either with i.i.d.

gains, or quasi-static. A quasi-static fading channel has constant gains over the whole

codeword, in contrast to the slow fading type where the channel gains are allowed to

change every block of N symbols [24, p. 194].
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Chapter 3

Estimation of Fast Fading SISO

Channels

Accurate channel estimation is crucial in higher order modulation systems due to

the sensitivity of the demodulator to estimation errors. The achievable capacity

of the channel is influenced by the estimation error. Also, when the channel gain

estimates are used to generate secret keys by the communicating parties, the key rate

is determined by the estimation accuracy.

In this chapter we propose an efficient, low-complexity approach to pilot-assisted

fast-fading channel estimation for single-carrier modulation with a turbo equalizer

and a decoder. The error performance of the proposed method is close to the the

ideal case where the channel is known to the receiver.

3.1 Introduction

We address the problem of estimating a fast-fading channel, with normalized Doppler

frequencies as large as 1% of the symbol rate, capable of supporting single-carrier 16-

quadrature-amplitude modulation (QAM) and 64-QAM modulation schemes. For

lower fading rates, bandwidth-efficient and computationally cheap OFDM channel

estimators and frequency-domain equalizers are available. These techniques assume

that the channel is quasi-static, i.e., the channel gains remain nearly constant over

time periods of about 100 symbols. These methods fail to work at the higher fading

rates considered by this research. It is well known that the performance of an OFDM

receiver is very sensitive to the Doppler spread with OFDM systems experiencing
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undesirable error floors at high SNRs when the channel gains evolve significantly over

the period of a single OFDM symbol [79].

For higher order modulations, high-precision estimation of the channel is critical

since the detector is sensitive to the estimation errors. To keep the receiver computa-

tional cost to reasonable levels, the channel estimation and signal equalization tasks

are performed separately, using two cascaded low-order KFs. Although the channel

gain processes are band limited to the Doppler frequency, the channel estimator’s KF

output is contaminated with an estimation error, which is not strictly band limited

to the Doppler frequency. This chapter demonstrates the use of a zero-phase filter

(ZPF) as a smoother to suppress the out-of-band estimation error. The combination

of the ZPF with the KF of the channel estimator makes it possible to reduce the esti-

mation error to near the Wiener bound. To get similar performance using just a KF

would require the KF to have a state vector of a large order which incurs a significant

computational cost. The KF provides an independent estimate of the channel gains

for each propagation path, which are smoothed independently. Since the smoothing

function is applied to each channel path independently, the method efficiently fits on

multicore processors. Standard sequential methods such as Extended Kalman Fil-

ter (EKF) implementations (e.g., in the reference [92]), do not map onto multicore

processing platforms efficiently.

The rest of the chapter is organized as follows: Section 3.2 describes the transmit-

ter, receiver, and channel models. In Section 3.3, the fixed-lag approach to channel

estimation is presented. It also outlines a technique for processing the symbol blocks

to improve the performance of the smoother. Section 3.4 introduces a method for de-

signing the smoother. The soft-in-soft-out equalizer and decoder are briefly described

in Section 3.5. In Section 3.6, the computational complexity of the proposed method

is evaluated and compared. Simulation examples and results are given in Section 3.7.

The EXIT analysis is presented in Section 3.8.

3.2 System Model

3.2.1 Transmitter

The transmitter follows the model described in Section 2.3.2. Following the time-

multiplexed training scheme proposed by Ma et al. [105], a sequence of lp pilot symbols

is periodically inserted per ls data symbols to form the transmit sequence {s(n), n =
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1,2, . . . ,N}. Each symbol s(n) represents Nmod bits of the coded sequence which

are denoted cd(n), d = 1,⋯,Nmod. Each pilot sequence is comprised of an impulse

of magnitude
√
lp guarded by (lp − 1) /2 zeros on each side. The selection of the

frequency of pilots is a trade-off between spectral efficiency and estimation accuracy.

The sampling period of the signal Ts is identical to the symbol period. The symbol

sequence s(n) is assumed to be zero mean and have unit mean power.

3.2.2 Channel Model

The channel is a multipath radio channel with each path being subject to Rayleigh

fading and additive white Gaussian noise. The channel is assumed to be wide-sense

stationary uncorrelated scattering (WSSUS), following the Jakes’ model with the

maximum Doppler frequency fd described in (3.31). The channel’s input-output

equation is given by (2.2). A CE-BEM with Q = 1 basis function is used for 4-

QAM and 16-QAM. The long-time autocorrelation properties of the radio channel are

imperfectly modeled with AR(1) models of the channel coefficients, leading to elevated

estimation errors. This additional error is particularly problematic for detection of

higher order modulation, which requires a high SNR to achieve low BERs. Therefore,

more accurate channel models are required to avoid an unacceptably high BER floor.

To provide this accuracy, a higher order CE-BEM channel model is proposed for the

64-QAM receiver. A first order AR model will then be used to track the coefficients

of the CE-BEM, as in the method of H. Kim and Tugnait [92].

3.2.3 Receiver

The iterative (turbo) receiver (see Fig 3.1) is comprised of the channel estimator,

equalizer and decoder modules, each exchanging soft information with each other

as described in Section 2.3.2. Soft information on a data bit measures the level of

confidence in the decision for the bit being 0 or 1. Channel estimation is assisted

with pilots. Pilots contain no useful information for the detector/decoder and are

removed from the equalizer output before it is forwarded to the decoder. The soft

information communicated with the decoder is in the form of log-likelihood ratio

(LLR) on data bits given by L(c(k)) ∶= log{P (c(k) = 1)/P (c(k) = 0)}. A large

absolute value for LLR implies a high degree of certainty in the knowledge of c(k).

A zero LLR corresponds to no knowledge of c(k). The received signal and the soft

decisions on data symbols from the previous iteration along with the reinserted pilots
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Figure 3.1: Receiver structure

are input to the channel estimator followed by a smoother. Smoothed channel gain

estimates are fed to the equalizer module.

Data symbols are first estimated with the equalizer. The output of the equalizer

including the data symbol estimates ŝ(n) and their estimated variance σ2(n) is put

through a soft-in-soft-out demapper to generate the extrinsic LLRs for the coded bits

LMe {c(k)}. This extrinsic information consists of only the additional information on

the transmitted data sequence generated by the decoder excluding the input infor-

mation from the detector. The extrinsic information on a given bit is obtained by

subtracting the input LLR from the output LLR. For stable iterative loop operation,

the input to a given block at each iteration must be nearly independent of its output

of the previous iteration, so as to prevent unwanted positive feedback where a compo-

nent (channel estimator, detector, or decoder) is directly fed its own output. In every

iteration, the extrinsic information from the detector/channel estimation block are fed

to the decoder, whereas the information from the decoder generated in the previous

iteration is fed to the channel estimation/detector block. In the decoder, LMe {c(k)} is

deinterleaved to provide the soft input to the soft-in-soft-out convolutional decoder.

The soft-in-soft-out decoder produces LLR information on coded bits, denoted with

LDa {c(k)}. This LLR information is then used to generate updated symbol estimates

s̄(n) and their variance γ(n), which are used by the channel estimator and the equal-

izer. At the same time, the extrinsic information LDe {c(k)} is extracted to be fed

back to the soft-in-soft-out demapper to further improve the next-round decisions on

data symbols.
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3.3 Channel Estimation and Smoothing

A fixed-lag KF smoother is used to estimate the channel at sample time n using

measurements taken up to time n +D where D is the smoothing lag interval of the

filter. The KF is followed by a ZPF smoother. Since the channel gains are correlated,

the future samples of channel output can be used by a fixed-lag KF to improve the

estimation accuracy of the current sample [144]. While the ZPF can remove the

portion of the estimation error process only in the band ∣f ∣ > fD, the fixed-lag KF is

able to reduce the estimation error in the frequency band ∣f ∣ < fD.

In the initial iteration of the receiver algorithm, the channel is estimated using

only the pilot symbols. In the second and following iterations, the pilot symbols are

augmented with the data symbols detected at successively higher confidence levels

with each iteration to improve the channel estimates. The smoother takes the esti-

mated gains ĝ(n; l) from the KF and generates the smoothed gain estimates ğ(n; l).

The long memory of the smoother turns out to be beneficial in reducing the estimation

error, while keeping the processing cost low.

The smoother is a high-selectivity low-pass filter. This filter must have a linear

phase response to avoid phase distortion [10]. Phase distortion occurs when different

frequencies in the signal are not delayed equally. As a result the signal is spread

over time and distorted. Phase distortion is undesirable in communication systems.

While finite-impulse-response (FIR) filters with linear phase response can be designed

to have a high selectivity, these FIR filters require a large number of taps. On the

other hand, infinite-impulse-response (IIR) filters can offer high selectivity with much

less memory and computational complexity, but they require phase equalization to

provide the linear phase response needed for detection of digital signals. If block

processing is possible, the use of ZPFs can be considered. A ZPF has high selectivity

at low computational cost with ideal phase response [10]. A ZPF with a component

IIR filter using an elliptical approximation is employed. Given an IIR filter, a ZPF is

obtained by passing a block of data through the filter in the forward and backward

(reverse) directions. A ZPF has a zero phase response. The ZPF is applied to the

channel gain samples for each propagation path separately.

The ZPF introduces unwanted transients at the beginning and end of the filtered

output signal. Adding extra samples to the current block from the preceding and the

succeeding sample blocks before applying the ZPF mitigates these transient effects.

After the ZPF is applied, the unwanted transient effects will only affect the extra
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Figure 3.2: Block processing.

appended samples. The extra samples are then discarded before the smoothed channel

gains are sent to the symbol detection system.

The received signal is partitioned into blocks of N samples. Each block contains

symbols for Ni bits, where Ni is the length of the interleaver. At each time step,

the channel gains for two blocks of N samples are being processed by the receiver as

shown in Fig. 3.2, with an additional M samples taken from a previously processed

block, i.e., 2N +M symbols are processed. Each block is processed in two stages. At

time step i, the channel gains and data symbols for blocks i and i + 1 are estimated

by the receiver using the iterative algorithm. However, only the symbol decisions for

block i are forwarded to the receiver output as the results for block i + 1 are likely

to be contaminated by the transient effects of the ZPF. At the end of each step, the

final M samples of the estimated channel gains for each propagation path of block i

are stored to provide the initial samples for the ZPF in the next time step.

Processing block i twice, in time steps i − 1, as well as time step i, increases the

computational cost of channel filtering by a factor of two, but greatly reduces the final

channel estimation error at the start and the end of each block. With sufficiently large

M , the transient effects of the ZPF are nearly completely absent, and the remaining

error floor effect is moved to cases of Eb/N0 > 20 dB, which allows for acceptably low

error performance (BER ≪ 10−6 with 64-QAM) for most applications. Without the

two stage processing, an error floor was observed of about 10−5 for 64-QAM, which is

too high for most applications of interest.

This procedure is similar to the overlap-and-save method used for filtering of long

signals [10]. The method used in this research is integrated into the iterative pro-

cessing. It must consider the interaction of detection/decoding with signal filtering,

which is not considered in the prior art of overlap-and-save signal processing.

The channel estimation problem is posed as the estimation of CE-BEM coefficients

given by (2.8). The complex exponential functions capture fast variations of the

channel, and the evolution of the CE-BEM coefficients are assumed to obey a first-
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order AR model given by [92],

h(n) = αh(n − 1) +w(n), (3.1)

where α represents the AR model coefficient and the driving noise w(n) is aQ(L+1)×1

vector and assumed to be zero-mean white Gaussian process with the autocorrelation

matrix Q ∶= E [w(n)w(n)H] = σ2
wIQ(L+1) and σ2

w = (1 − ∣α∣2) /Q(L + 1). Each channel

taps is assumed to have equal mean gain power of Pl = 1/(L + 1). 1

The dynamic model for the fixed-lag KF is based on the evolution of a state vector

defined as

ha(n) ∶= [hTa,0(n) hTa,1(n) . . .h
T
a,D(n)]

T
,

where ha,d(n) ∶= h(n − d), and D is the number of lags for the filter. Using (2.2), the

state and measurement equations for the KF are written as [144]

ha(n) = Fa(n)ha(n − 1) +Gaw(n), (3.2)

y(n) = Ea(n)ha(n) + v(n), (3.3)

for n =1 , 2, . . . , NE ∶= 2N +ME, where ME symbols from the previous block are used

for the KF training. In addition, we have

Fa ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

αIQ(L+1) 0 . . . 0

IQ(L+1) 0 . . . 0

⋮ ⋮ ⋱ ⋮

0 0 IQ(L+1) 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.4)

Ga ∶= [IQ(L+1) 0Q(L+1)×DQ(L+1)]
T

, Ea(n) ∶= [s̄T (n)B(n) 0DQ(L+1)×1], E [v(k)v∗(j)] =

σ2
vδkj, and s̄(n) ∶= [s̄(n) s̄(n − 1) . . . s̄(n −L)]

T
as the updated symbol estimates pro-

vided by the “LLR to symbol” block.

The autocorrelation matrix, Qa of the driving noise is given by

Qa = E [Gaw(n)w(n)HGH
a ] = GaQGH

a . (3.5)

1This algorithm can also be used with non-uniform delay-power profiles. The autocorrelation

matrix is computed as Q = diag([P0⋯PL])⊗Q0, where Q0 ∶=
(1−∣α∣2)

Q
IQ.
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The KF is used to compute the estimates of ha(n), which is denoted by ĥa(n),

from which a sequence of fixed-lag estimates of the CE-BEM coefficients {ĥ(n) ∶=

E [h(n)∣y(1), . . . , y(n +D)] ;n = 1, 2, . . . , NE} is obtained as

ĥ(n) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ĥa,D(n +D), n = 1,2, . . . ,NE −D

ĥa,NE−n(NE), n = NE −D + 1, . . . ,NE

(3.6)

where ĥa,D(n + D) denotes the last Q(L + 1) elements of ĥa(n) [cf. (3.2)], and

ĥa,NE−n(NE) is used to compute the last D − 1 estimates, for which fewer than D

future samples of y(n) are available. From (2.11), the channel gains are computed

as ĝ(n) = B(n)ĥ(n). The measurements up to the time n + D contribute to the

computation of the channel gains at time n, i.e.,

ĝ(n)=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

E [g(n)∣y(1), . . . , y(n +D)] , n=1,2, . . . ,NE−D;

E [g(n)∣y(1), . . . , y(NE)] , n=NE−D+1, . . . ,NE.
(3.7)

To take the uncertainty in the detected symbols into account, the variance γ(n) of

the symbol estimates is exploited to modify the measurement noise. This variance is

calculated by the “LLR to symbol” block and reflects the uncertainty in the detected

symbols. The detected symbols are modeled as being contaminated with error as

s(n) = s̄(n) + u(n), where u(n) ∶= [u(n) u(n − 1) . . . u(n −L)]
T

with the variance of

Γ(n) ∶= [γ(n) γ(n − 1) . . . γ(n −L)]
T

. Thus, (2.2) can be written as

y(n) = (s̄(n) + u(n))
T

g(n) + v(n)

= s̄(n)Tg(n) + v′(n)

where v′(n) = gT (n)u(n) + v(n). Assuming that the gain and symbol error vectors

are independent and E [u(n − l)u∗(n − l′)] = γ(n− l)δll′ , the variance of v′(n) is given

as

σ2
v′ = σ

2
v(n) +

L

∑
l=0

pg(n; l)γ(n − l), (3.8)

where pg(n; l) = E [∣g(n; l)∣2]. pg(n; l) is approximated by

pg(n; l) ≈ ∣E[g(n; l)]∣
2
+E [∣g(n; l) −E[g(n; l)]∣

2
] (3.9)

where all expectations are calculated using all measurements made up to time n −
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1. The first term of the right-hand side of (3.9) is estimated to be the element l

of ∣B(n)ĥ
1∶Q(L+1)
a (n∣n − 1)∣2, and the second term is entry (l, l) of R̂gg(n∣n − 1) ∶=

B(n)P1∶Q(L+1)(n∣n − 1)BT (n).

The calculations of the fixed-lag KF are described in Algorithm 1.

Algorithm 1 Channel estimation fixed-lag KF
Inputs:

• Matrix Ea(n) for n = 1,⋯,NE

• Signal measurements: y(n) for n = 1,⋯,NE

• Symbol detection error variances: γ(n) for n = 1,⋯,NE

Output:

• Channel gain estimates: ĝ(n) for n = 1,⋯,NE

Working variables:

• CE-BEM vector estimates: ĥa(n∣n − 1), ĥa(n − 1∣n − 1)

• Covariance matrices for the estimated CE-BEM vector: P(n∣n − 1), P(n −
1∣n − 1)

• KF gain: K(n)

1: ĥa(0∣0)← E[ĥa(0)] = 0(D+1)(L+1)Q×1

2: P(0∣0) ← (1/(L + 1)Q)I(D+1)(L+1)Q

3: for n = 1,2, . . . ,NE do
4: ĥa(n∣n − 1)← Faĥa(n − 1∣n − 1)
5: P(n∣n − 1) ← FaP(n − 1∣n − 1)FT

a +Qa

6: R̂gg(n∣n − 1)← B(n)P1∶Q(L+1)(n∣n − 1)BT (n)
7: Γ(n)← [γ(n) γ(n − 1) . . . γ(n −L)]T

8: σ2
v′(n)← σ2

v(n) + [∣B(n)ĥ
1∶Q(L+1)
a (n∣n − 1)∣2 + diag(R̂gg(n∣n − 1))]TΓ(n)

9: K(n)← P(n∣n − 1)EH
a (n)[Ea(n)P(n∣n − 1)EH

a (n) + σ2
v′]

−1

10: ĥa(n∣n)← ĥa(n∣n − 1) +K(n)[y(n) −Ea(n)ĥa(n∣n − 1)]
11: P(n∣n)← [IQ(L+1)(D+1) −K(n)Ea(n)]P(n∣n − 1)
12: if n >D then
13: ĝ(n −D) = B(n −D)ĥ

DQ(L+1)+1∶(D+1)Q(L+1)
a (n)

14: end if
15: end for
16: for k = 1,2, . . . ,D do
17: ĝ(NE −D + k) =

18: B(NE −D + k)ĥ
Q(L+1)(D−k)+1∶Q(L+1)(D−k+1)
a (n)

19: end for
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Figure 3.3: The magnitude response of an elliptic low-pass filter.

3.4 ZPF Design

The component IIR filter of the ZPF must be designed to match the characteristics of

the fading process without being of unnecessary high order. The IIR filter parameters

to be determined are the passband edge frequency fp, passband ripple Rp, stopband

attenuation Rs, and cut-off edge frequency fa, as shown in Fig. 3.3. The channel gain

variations are band limited to Doppler frequency fD. Thus, one sets fp = fD. The

Doppler frequency may be either estimated using methods described in [51,77,78] or

the maximum value encountered in the application can be used. The impact of this

overestimation on the performance will be demonstrated through simulation.

The other filter parameters are selected to keep the error of the ZPF output

as close as possible to the minimum error calculated using the Wiener bound. In

the following, a method to select these parameters is described. The input to the

ZPF is the estimated channel gain ĝ(n, l) from the KF, which is given by ĝ(n; l) =

g(n; l) + e(n; l), where e(n; l) denotes the estimation error of the KF for path l. The

estimation error e(n; l) is assumed to be uncorrelated with ĝ(n, l) and have constant

PSD, i.e., See(f ; l) = σ2
v , uniformly distributed over the normalized frequency range

of [-1/2,1/2]. At each iteration, the estimated channel gains from the KF are passed

through the ZPF with the forward (and backward) magnitude response A(f). The

PSD of the output of the ZPF for propagation path l, i.e., Sğğ (f ; l), can be written
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as

Sğğ (f ; l) = A4 (f) [Sgg (f ; l) + See (f ; l)] (3.10)

where Sgg (f ; l) is the PSD of g (n; l), band limited to [−fD, fD]. The power of e(n; l)

is given by

Pe = Pr + Pt + Ps (3.11)

where Pr ,Pt and Ps denote the power of the error over the passband, transition band,

and stopband of the filter, respectively. The passband component Pr is given by

Pr = ∫
fp

−fp
Sgg(f ; l) (1 −A2(f))

2
df + 2σ2

vfp (3.12)

where the first term of the right-hand side represents the power of the estimation error

introduced by the ZPF’s passband ripple, and the second term is the power of the

estimation error of the KF within the passband of the ZPF. For an elliptic filter with

the average magnitude of unity over the passband, if 1− ∆ ≤ A2(f) ≤ 1+∆ for ∣f ∣ < fp,

then (1 −A2(f))
2
≤ ∆2. Defining ∆ = Rp/2, an upper bound on Pr is found to be

P +
r ∶=

R2
p

4

fp

∫

−fp

Sgg(f ; l)df + 2σ2
vfp =

R2
p

4
Pl + 2σ2

vfp (3.13)

where Pl denotes the power of path l.

Similar bounds on the power of the error residing in the stopband and the transi-

tion band are P +
s = 2σ2

vR
2
s(1/2− fa) and P +

t = 2σ2
v(fa − fp), respectively. Substituting

these results in (3.11), and using 1/2 − fa ≈ 1/2 and 2σ2
vfp ≈W , the upper bound on

Pe is found to be

P +
e ∶=

R2
p

4
Pl + σ

2
vR

2
s + 2σ2

v(fa − fp) +W. (3.14)

Note that P +
e ≥W . Therefore, the filter is designed so that

P +
e −W =

R2
p

4
Pl + σ

2
vR

2
s + 2σ2

v(fa − fp) ≪W. (3.15)

The trivial minimizer (Rp = Rs = fa−fp = 0) of the left-hand side of (3.15) is infeasible.

A strategy for quickly calculating good values for the filter parameters is to select the

values so that each of the values of Pr, Pt and Ps are a fraction of the Weiner bound.

We select P +
r −W = P +

t = P +
s = 0.1W . Alternatively, one may fix the filter order
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Nf and then try to minimize the left-hand side for the best filter parameters. Our

simulations confirm that any selection of parameters satisfying (3.15) works almost

as well for BER performance as the optimal values.

Example: For a 64-QAM receiver with L + 1 = 3 equi-power propagation paths

(Pl = 1/3), fD = 0.01, and Eb/N0 = 13dB, we have σ2
v ≈ 0.0167, and W ≈ 3.3 × 10−4.

The passband edge frequency is obtained as fp = fD = 0.01. Having each component

of the left-hand side of (3.15) to be 0.1W , we get Rp =
√

4 × 0.1 ×W /Pl = 0.02 or

Rp(in decibels) = −10 log10(1−Rp) ≈ 0.09dB, Rs =
√

0.1 ×W /σ2
v ≈ 0.045 or Rs(in dB) =

−10 log10Rs ≈ 14dB, fa = fp + 0.1 ×W /(2σ2
v) = 0.011, with P +

e = 1.3 ×W , which are

realizable using an Elliptical approximation filter of order Nf = 5.

3.5 Soft-in-Soft-Out Equalizer and Decoder

The soft-in-soft-out equalizer was proposed in [101] to detect data symbols and pro-

duce the extrinsic information required by decoder blocks. For this purpose, a KF

with a ladder-type structure from [101] is employed, as shown in Fig. 3.4. Note that

at time n, the output of the ladder ŝ(n) is independent from the input s̄(n), so the

output ŝ(n) is extrinsic to s̄(n), but does use information for other time periods. The

inputs to the equalizer are the channel gain estimates ğ(n) along with the received

signal, as well as the symbol estimates and their variances from the previous iteration.

The system equations used in the equalizer KF are obtained as follows. Given the

equalization delay δ ≥ L, we follow [101] to define a vector of δ samples as

xs(n) = [s(n) s(n − 1) . . . s(n − δ)]
T

(3.16)

where s(n) is either a data symbol or a pilot symbol. Using (2.2), the system can be

characterized as follows

xs(n + 1) = Fs(n)xs(n) + e0s(n) +ws(n) (3.17)

y(n) = Hs(n)xs(n) + v(n) (3.18)

where e0 ∶= [1 01×δ]
T
,Hs(n) ∶= [g(n) 01×δ−L] and

Fs ∶=

⎡
⎢
⎢
⎢
⎢
⎣

01×δ 01×1

Iδ 0δ×1

⎤
⎥
⎥
⎥
⎥
⎦

. (3.19)
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Figure 3.4: Soft-in-soft-out equalizer.

In (3.18), g(n) is replaced with the smoothed estimated gains ğ(n) and s(n) with

the a priori data symbol estimates s̄(n) generated by the “LLR to symbol” module

from the previous iteration. At each iteration, a more accurate estimate of the data

symbols is obtained. The data symbol estimates, and the pilots are fed to the channel

estimator in the next iteration to refine the channel estimation. The updated channel

estimate is used anew by the equalizer and the decoder to improve the estimation

accuracy of the data symbols in the subsequent iteration. The noise process ws(n)

represents the error in s̄(n), has a variance of γ(n), and is uncorrelated with the

measurement noise v(n). So, the variance of s̄(n) is also γ(n). For pilot symbols,

γ(n) = 0.

The soft-in-soft-out equalizer embodies two branches, as shown in Fig. 3.4. The

vertical branch is initialized by the horizontal branch to generate extrinsic information

for the soft-in-soft-out decoder by fixed-lag Kalman filtering. The calculations of the

equalizer KF are shown in Algorithm 2.
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Algorithm 2 Equalizer KF
Inputs:

• Smoothed channel gains ğ(n) for n = 1,⋯,2N

• Signal measurements: y(n) for n = 1,⋯,2N

• Symbol estimates based on the decoded bits: s̄(n) for n = 1,⋯,2N

• Symbol detection error variances: γ(n) for n = 1,⋯,2N

Output:

• Symbol estimates and their variances: ŝ(n), σ2(n) for n = 1,⋯,2N

Working variables:

• Covariance matrices for the estimated symbol vector: Ps(n∣n − 1), Ps(n −

1∣n − 1)

• Covariance matrices for the estimated symbol vector on the ladder: Pv(n∣n−

1), Pv(n − 1∣n − 1)

• KF gain matrices: K(n), Kv(n)

• Channel gain matrix: Ĥs(n)

1: x̂s(0∣0)← 0

2: Ps(0∣0) ← Iδ+1

3: for n = 1,2, . . . ,2N do

4: Ĥs(n)← [ğ(n) 01×δ−L]

5: if s(n) is a data symbol, then

6: xv(n − 1∣n − 1)← x̂s(n − 1∣n − 1)

7: Pv(n − 1∣n − 1)← Ps(n − 1∣n − 1)

8: xv(n∣n − 1) ← Fsxv(n − 1∣n − 1)

9: Pv(n∣n − 1) ← FsPv(n − 1∣n − 1)FT
s + e0eT0

10: Kv(n)← Pv(n∣n − 1)ĤH
s (n)[Ĥs(n)Pv(n∣n − 1)ĤH

s (n) + σ2
v]
−1

11: xv(n∣n)← xv(n∣n − 1) +Kv(n)[y(n) − Ĥsxv(n∣n − 1)]

12: Pv(n∣n)← [Iδ+1 −Kv(n)Ĥs(n)]Pv(n∣n − 1)

13: for m = n + 1 ∶ min(n + δ,2N) do

14: Ĥv(m)← [ğ(m) 01×δ−L]

15: xv(m∣m − 1) ← Fsxv(m − 1∣m − 1) + s̄(m)e0

16: Pv(m∣m − 1) ← FsPv(m − 1∣m − 1)FT
s + γ(m)e0eT0

17: Kv(m)← Pv(m∣m − 1)ĤH
v (m)[Ĥv(m)Pv(m∣m − 1)ĤH

v (m) + σ2
v]
−1

18: xv(m∣m)← xv(m∣m − 1) +Kv [y(m) − Ĥvxv(m∣m − 1)]

19: Pv(m∣m)←[Iδ+1 −Kv(m)Ĥv(m)]Pv(m∣m − 1)

20: end for

Continued on the next page
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Algorithm 2 Equalizer KF (Continued)

21: ŝ(n) = (δ + 1)th component of xv(n + δ∣n + δ),

22: σ2(n) = (δ + 1, δ + 1)th entry of Pv(n + δ, n + δ).

23: end if

24: x̂s(n∣n − 1)← Fsx̂s(n − 1∣n − 1) + s̄(n)e0

25: Ps(n∣n − 1)← FsPs(n − 1∣n − 1)FT
s + γ(n)e0eT0

26: K(n)← Ps(n∣n − 1)ĤH
s (n)[Ĥs(n)Ps(n∣n − 1)ĤH

s (n) + σ2
v]
−1

27: x̂s(n∣n)← x̂s(n∣n − 1) +K(n) [y(n) − Ĥs(n)x̂s(n∣n − 1)]

28: Ps(n∣n)← [Iδ+1 −K(n)Ĥs(n)]Ps(n∣n − 1)

29: end for

3.5.1 Generating Equalizer Extrinsic Information on Data

Bits

The equalizer outputs are mapped into extrinsic information on data bits as follows.

The “Symbol to LLR” block takes the symbol estimates ŝ(n) and their variances

σ2(n) as well as the fed back decoder extrinsic information and generates the equalizer

extrinsic information defined as

LMe (cd(n)) ∶= log
P (cd(n) = 1 ∣y)

P (cd(n) = 0 ∣y)
− log

P (cd(n) = 1)

P (cd(n) = 0)
(3.20)

for d = 1,⋯,Nmod, where the second term represents a priori LLR and y ∶= [y(1),⋯, y(N)] [92].

Approximating P (cd(n) = b ∣y) ≈ P (cd(n) = b ∣ŝ(n)), b ∈ {0,1} and using P (cd(n) =

b ∣ŝ(n)) = P (ŝ(n) ∣cd(n) = b)/P (ŝ(n)) one has

LMe (cd(n)) ∶= log
P (ŝ(n) ∣cd(n) = 1)

P (ŝ(n)∣cd(n) = 0)
(3.21)

Assuming that the symbol estimation error has a Gaussian distribution with variance

σ2(n), it can be shown that [92]

LMe (cd(n)) ∶= log

∑
x∈χ(d,1)

exp(−∣ŝ(n) − x∣2/σ2(n))
Nmod

∏
j=1
j≠d

P (cj(n) = cxj (n))

∑
x∈χ(d,0)

exp(−∣ŝ(n) − x∣2/σ2(n))
Nmod

∏
j=1
j≠d

P (cj(n) = cxj (n))

(3.22)
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where χ(d, b) is the set of all bit sequences in the constellation χ with dth bit equal

to b and cxj (n) denotes the jth bit of the bit string mapped to symbol x ∈ χ.

3.5.2 Generating Decoder Extrinsic Information

The equalizer extrinsic LLR’s are de-interleaved to LMe (cd(n′)) and go to the soft-in-

soft-out decoder, which computes the decoder extrinsic LLR as

LDe (cd(n
′)) ∶= log

P (cd(n′) = 1 ∣LMe (cd)

P (cd(n′) = 0 ∣LMe (cd)
−LMe (cd(n

′)) (3.23)

where LMe (cd) is the equalizer extrinsic LLR on all bits of the codeword. The first

term at the right hand side of the above equation is the decoder intrinsic LLR,

LDa (cd(n′)). At the first iteration, there is no a priori information for the equalizer

and thus, LDe (cd(n′)) = 0.

3.5.3 LLR to Symbol Conversion

The LLR information on data bits from the decoder are converted to data symbol

estimates used by the equalizer and channel estimator KF. The intrinsic LLR from

the decoder is converted to the mean and variance of data symbols as follows.

s̄(n) =∑
x∈χ

x
Nmod

∏
d=1

P (cj(n) = cxj (n)) (3.24)

γ(n) =∑
x∈χ

∣x − s̄(n)∣2
Nmod

∏
d=1

P (cj(n) = cxj (n)) (3.25)

where

P (cj(n) = 1) = [1 + exp(−LDa (cj(n)))]
−1 (3.26)

P (cj(n) = 0) = [1 + exp(LDa (cj(n)))]
−1 (3.27)

3.6 Computational Cost

In this section, the computational cost of the proposed method is compared with that

of the EKF-based method. The computational complexity of the EKF method of H.
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Kim and Tugnait [92] is O((δE + 2)[δE + 1 + QE(L + 1)]2) complex multiplications

per symbol per iteration, where δE and QE denote the memory of the EKF and the

number of basis functions, respectively. The computational complexity of the pro-

posed method is O(2(δ + 2)(δ + 1)2 + 2[Q(L + 1)(D + 1)]2 + 4(L + 1)Nf) per symbol,

per iteration, where D represents the memory of the channel estimation KF in sam-

ples. Keeping the dominant terms, the relative complexity of the proposed method

compared with the EKF method is given by

Relative complexity ≈
2 (δ3 + [Q(L + 1)D]

2
)

δE [δE +QE(L + 1)]
2 . (3.28)

Thanks to the smoother at the output of the channel estimator, the order of the KF

in the proposed method can be much smaller than that of the EKF to achieve the

same performance, or equivalently , Q ≪ QE. The cost of using a lower order EKF

is, of course, an inferior performance. First, let us consider the case of a three-tap

channel L = 2 as described in the work of H. Kim and Tugnait [92], where δE = 5

and QE = 5. In the simulations, we picked Nf = 5,D = 4 and δ = 5. For the 4-

QAM and 16-QAM schemes, the value of Q =1 was selected which corresponds to a

simple temporal AR(1) model of the channel coefficients. Comparing with [92], the

complexity of our method would be three times lower than the EKF. For the 64-QAM

case, the CE-BEM-based channel estimator with Q = 3 slightly outperforms Q = 1;

therefore, we select Q = 3. On the other hand, for the EKF method to have the same

performance, one needs to choose QE =15 and δE =9, and its complexity is about ten

times that of the proposed method.

As another scenario, consider a typical third-generation (3G) wideband code-

division multiple-access (CDMA) channel with L =7 [155]. For the proposed method,

we select Q = 1,D = 8 and δ = 8, whereas for the EKF method, one would need to

take QE = 15 and δE = 8, to provide comparable error performance.

As mentioned earlier, the reduction in computational cost is due to the smoother,

which nearly removes the out-of-band estimation error signal, the removal of which

would otherwise require a high order Kalman filtering. Based on the argument made

in Section 3.4, this out-of-band estimation error is proportional to 1− 2fD, the width

of the band. Since 1 − 2fD ≪ 1 for most channels of interest, the out-of-band error

constitutes a major portion of the overall estimation error. Therefore, the smoother

is responsible for most of the error reduction in all cases of interest. Consequently,

the order of magnitude reduction in the computational cost when a smoother is used,
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is likely to be the case for all channels of interest.

3.7 Simulation Results

The performance of the proposed method is demonstrated by evaluating the normal-

ized MSE (NMSE) and the BER versus SNR for 4-QAM, 16-QAM, and 64-QAM

constellations. The sensitivity of the system to the ZPF design is also shown. A

doubly selective Rayleigh channel with three taps (L =2) is considered. For each tap,

the time-variant channel impulse response g(n; l) is a complex Gaussian process with

zero-mean and variance Pl =1/3, independent from other taps impulse responses. The

Rayleigh channel was simulated based on the method used in [175].

The sampling interval was Ts = 25 µs. The Doppler spread was fd = 400 Hz,

equivalent to a normalized Doppler spread fD = fdTs = 0.01, which matches a fading

process for a radio signal with a carrier frequency of 2 GHz, to communicate with

a vehicle moving at 216 km/h. Our channel parameters are taken from the work of

H.Kim and Tugnait [92] to provide a fair comparison with prior art.

Data blocks were coded by a nonsystematic convolutional code of rate 1/2 with

an octal generator of (133,171). The performance of the technique with an LDPC

code is also examined.

Coded bits were interleaved and Gray-mapped onto either a 4-QAM, 16-QAM, or

64-QAM constellation with unit mean power to form transmit blocks. Every ls = 20

data symbols were multiplexed with lp = 5 pilots including an impulse of magnitude
√
lp guarded by zeros (as in [157] and [105]), resulting in a pilot overhead of 20%.

The pilot cost of 0.97 dB is not included in the Eb/N0 values used in the x-axis of

the following performance plots. The length of the transmit blocks was 104 symbols.

Each block was prefixed with M = 2000 samples from the previous block, as described

in Section 3.3. A number of ME = 500 symbols from the previous block were used for

the channel estimation KF training (see Section 3.3).

The channel estimator and equalizer were fixed-lag KFs with delays of D = 4 and

δ = 5, respectively. The IIR component of the ZPF was a fifth-order elliptic filter

with a normalized passband edge frequency of fp = fD = 0.01 and designed based

on (3.15) for a 64-QAM modulation type at Eb/N0 = 13 dB. The filter parameters

were calculated as Rp = 0.09 dB, Rs = 14 dB and fa = 0.011 (see Example (1) of

Section 3.4). We used a Q =1 model for the 4-QAM and 16-QAM simulations. For

the 64-QAM, a more accurate model, i.e., a CE-BEM with Q = 3 and Tp = 100 was
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used and compared to the Q = 1 case. The length of the channel estimation KF’s

state vector was 15 and 45, for the Q = 1 and Q = 3 models, respectively. The time

correlation of the CE-BEM coefficients for all the three schemes was set to α = 0.98.

The BER versus Eb/N0 for the 4-QAM and 16-QAM schemes, based on a Q = 1

model for channel variations, are depicted in Figs. 3.5 and 3.6. The performance of

the proposed method is compared with the EKF method of H. Kim and Tugnait [92]

and the perfect CSI performance. For the EKF method, a CE-BEM with Q = 5 was

employed with α = 0.996. In Fig. 3.7, the case of a 64-QAM scheme is considered,

where the Q = 1 and Q = 3 models’ performances are compared with the perfect

CSI receiver. The EKF method did not reliably converge for the 64-QAM scheme;

therefore the corresponding results are not included in this figure. It can be seen that

the Q = 1 model performs almost as well as the CE-BEM for BER < 10−6, but starts

to deteriorate afterward. With the proposed method, all BER curves are within 0.3

dB of the perfect-channel receiver. In addition, the system convergence is fast. The

average number of iterations it takes for system to converge was approximately three

iterations per trial for the case of the 64-QAM scheme.

The 64-QAM setup was also used to contrast the performance of ZPF with that

of FIR and IIR filters in Fig 3.8, to justify the use of a ZPF. The IIR filter is de-

signed using the same specifications as the IIR component of the ZPF, except for

the passband ripple and stopband attenuation in decibels being doubled (since the

magnitude response of a ZPF is equivalent to two cascaded component IIR filters).

The FIR filter was designed using the least squares method, where the parameters

were selected to be the same as the ZPF designed previously. It can be seen that it

requires 2000 taps for an FIR filter to achieve the same performance as a ZPF with

only a fifth-order component IIR filter; an obvious cost savings. Moreover, the IIR

filter introduces a phase distortion that significantly degrades the performance of the

receiver.

The performance of the system was also evaluated in terms of the NMSE of the

channel estimator. Fig. 3.9 illustrates how the NMSE improves as the number of lags

is increased under different channel models. The normalized Wiener filter bound,

approximated as 2(L + 1)fDσ2
v , is also plotted (see Eq. (2.20)). We set Eb/N0 = 13

dB, and used known symbols in the receiver. A significant improvement is observed

by increasing the lag of the KF to four and there is a fairly small difference between

the Q = 1 and Q = 3 cases. However it is obvious from this plot that no noticeable

improvement should be expected by increasing the order of the CE-BEM beyond Q =
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Figure 3.5: BER versus Eb/N0 for a 4-QAM receiver.

3.

In Fig. 3.10, the NMSE versus Eb/N0 is plotted and compared with the normalized

Wiener bound. A four-lag KF filter was used (D = 4). A consistent and linear decrease

in the NMSE with increasing Eb/N0 is observed, and no error floor is evident.

LDPC and turbo codes have attracted huge interest in recent years. The perfor-

mance of the proposed estimator when used with an LDPC code is also examined.

The LDPC code is the rate- 1/2 code from DVB-S.2 standard for the satellite trans-

mission of digital television. Fig. 3.11 shows the BER performance of a 4-QAM

scheme, transmitting over an eight-tap (L = 7) radio channel with a power delay

profile of [0 -2.4 -6.5 -9.4 -12.7 -13.3 -15.4 -25.4] dB, normalized to a total power of

unity. This profile is typical of a vehicular 3G wideband CDMA system moving at

120 km/h [155]. For this simulation, we select Q = 1. Based on the research by Ma

et al. [105], the optimal number of pilots per pilot segment is 2L+1. The bandwidth

efficiency of the optimal BER arrangement is reduced to ls/(lp + ls) ≈ 57% for this

particular channel with lp = 15 and ls = 20. This efficiency is considered unacceptably

low; therefore we maintained the 80% efficient pilot scheme with lp = 5 and ls = 20 for
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Figure 3.6: BER versus Eb/N0 for a 16-QAM receiver.

the LDPC simulations. The first iteration only estimates the gains for the first three

propagation paths, while the following iterations estimate all propagation path gains.

It should be noted, however, that for our sampling period of Ts = 25 µs, a delay of

L = 7 samples corresponds to an extra propagation distance of over 52 km, which is

unlikely to be encountered in a well designed deployed system.

It is seen that the perfect-CSI BER curve drops off at SNR = 2.2 dB. The knee

point of the BER graph for our method is 5 dB, whereas that of the EKF method

is 6.4 dB. Therefore, the proposed method would start to converge to low BER at

a 1.4 dB less SNR, compared to the EKF. Yet, the complexity of our method is an

order of magnitude less. At SNR = 5 dB, we did not observe any error in 2×108 data

symbols, which is indicated by a downward arrow in the figure. The performance

can be improved by increasing the number of pilots to lp = 15 from lp = 5, but the

reduction of signaling efficiency is significant.

As shown, the proposed system provides excellent performance at the SNR values

required for low error reception. Real wireless systems employ power control to keep

the mean received SNR within a specified range. However, the sensitivity of the
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Figure 3.7: BER versus Eb/N0 for a 64-QAM receiver.

ZPF design to the assumed value of the Doppler frequency within the receiver is a

legitimate concern. Here, the most influential parameter is the ZPF’s passband edge

frequency fp. Fig. 3.12 depicts the BER of a 64-QAM receiver versus fp at Eb/N0 =13

dB when the Doppler frequency is fixed at fD =0.01. It is clear that as long as fD is

overestimated, i.e., fp > fD, the BER remains within the close vicinity of the perfect-

channel case over a reasonable range of fp. The price of using too high a value of fp

is, of course, an increased computational cost. In the next section, we will perform

an EXIT analysis to infer the superior BER performance of the proposed method.

3.8 Extrinsic Information Transfer Chart Analysis

An EXIT chart is a powerful tool to analyze and predict the performance of iter-

ative receivers by depicting the exchange of information between the decoder and

equalizer in a diagram [29, 92]. It helps select the combination of error correcting

code, modulation and SNR needed for convergence to low BER state for a given
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Figure 3.8: BER versus Eb/N0 for a 64-QAM scheme, comparing ZPF, ordinary IIR
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Figure 3.11: Performance of a 4-QAM turbo receiver with LDPC code over an eight-
tap channel compared with the perfect-channel and the EKF method.

detector and channel such that the receiver would quickly converge to a low bit er-

ror state. EXIT charts have been employed to verify the adequacy of a proposed

estimation/equalization and decoding system without having to perform expensive

simulations [92, 120]. EXIT charts have been shown to provide insight into turbo

processing and are widely used for analysis [6, 7, 73, 80, 88, 92, 120, 125, 142, 166] and
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is fixed at fD =0.01.

design [26, 99, 100, 151] of iterative receivers. A near capacity modulation scheme is

designed by Ng et al. [124] based on EXIT charts. The analytic properties of EXIT

charts have been exploited to design iterative processors by Ashikhmin, Kramer, and

Brink [12].

Mutual information proves an accurate measure to predict the performance of

iterative algorithms [29, 39, 160, 162]. Detector and decoder modules in the receiver

can be viewed as soft-input-soft-output functional blocks whose performance is char-

acterized by mapping input mutual information to the output mutual information.

This concept is used in building EXIT charts, where the function of each block is

represented by a curve depicting output mutual information versus input mutual in-

formation. The extrinsic mutual information transfer functions of the decoder and

equalizer are plotted in a single diagram as shown in Fig. 3.13. For the equalizer,

the input mutual information denoted by ID is shown along the abscissa, whereas

the output mutual information, IE, is plotted along the ordinate. Since the input of

the equalizer is the output of the decoder and vice versa, the axes are swapped when

the decoder curve is drawn. The exchange of the extrinsic information between the

decoder and the equalizer can be represented by a “zigzag” path, i.e., a trajectory,

bouncing back and forth between the two curves. The trajectories start at the origin,

with each segment representing either the decoder task (horizontal segments) or the

equalizer task (vertical segments). The convergence of the iterative process to low

BERs is possible if the curves intersect only at a high ID value. The speed of the
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Figure 3.13: An EXIT chart.

convergence can also be inferred from the width of the tunnel; a wide tunnel indicates

fast convergence.

In general, the equalizer curve gets closer to the decoder curve for higher order

modulations or when the SNR or the length of the error-correcting code is reduced.

As a result, the tunnel between the decoder and equalizer curves becomes narrower,

and more iterations are needed for convergence. A very low BER will be possible at

high-enough SNRs if the system can be designed so that the curves always cross very

close to line ID = 1. A system can achieve good BER with very few iterations if the

equalizer curve is well above of the decoder curve for all values of ID.

The simulation setup used to generate the EXIT function is shown in Fig. 3.15.

The input to the soft-in-soft-out decoder LMe {ci(k′)} was modeled by a Gaussian

random process with mean ci(k′)σ2
L/2 and variance σ2

L. The mutual information

values IE and ID were measured at the input and output of the decoder and are

functions of σL, where σL was varied in the range [0.001, 200]. The interleaver size in

this setup was 105 bits. We used the MATLAB code developed by Maunder available

online [110]. The EXIT curves and average trajectories for the 4-QAM and 16-QAM

under different Eb/N0s are given in Figs. 3.16 and 3.17. Fig. 3.18 shows the case of a

64-QAM scheme with Eb/N0 = 13 dB. The number of channel taps was L+1 = 3 with

a uniform power profile, and the aformentioned convolutional code was employed.
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Figure 3.14: Block diagram used to generate the EXIT charts: Decoder setup

Figure 3.15: Block diagram used to generate the EXIT charts: Equalizer setup

In this figure the equalizer curves for the most significant bit (MSB) and the least

significant bit of the symbols are also plotted. The major contribution of the MSB

in the convergence is obvious. In Figs. 3.16–3.18, the EXIT curves of the channel

estimation/detection subsystem are well above the EXIT curve of the decoder and

convergence to a low BER state is achieved after only few iterations.

The convergence performance of a 4-QAM modulation scheme over an L+1 = 8

tap channel using the previously described LDPC error-correcting code is compared

with the EKF method in Fig 3.19. The LDPC code’s curve has a higher value IE for

lower values of ID, creating a higher “knee” point, where the code curve transitions

from a steep slope to shallow slope, as compared with the convolutional code. The

channel estimation/detector EXIT curve must be above this “knee” for convergence.

It can be seen in Fig 3.19, that the proposed channel estimator/detector has a higher

EXIT curve, providing convergence at lower SNR values than the EKF. These charts
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Figure 3.16: EXIT charts for a 4-QAM receiver under different Eb/N0 including the
average trajectory for Eb/N0 =4dB.

are predicting that in comparison with the EKF method, the intersection of the

equalizer and decoder curves of the proposed method would occur at a higher value

of ID and IE, for 1.4 dB less SNR. Thus, the proposed method is expected to have a

lower BER, at lower SNR.
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Figure 3.17: EXIT charts for a 16-QAM receiver under different Eb/N0 including the
average trajectory for Eb/N0 =8 dB.
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Figure 3.18: EXIT charts for a 64-QAM receiver using CE-BEM with Q =3 and
Eb/N0 =13 dB.
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3.9 Estimation of Fast Fading Radio Channels Based

on AR(4) for 256-QAM

Using sufficiently large state vectors, the prior methods may be applied to higher order

modulation schemes, but the computational cost becomes prohibitive, particularly

when the radio channel entails a large number of taps. In this section, instead of

a high order CE-BEM we use a lower order AR model to characterize the channel.

It is demonstrated that, compared to the previous method, this technique provides

a superior bit error rate performance with a low computational cost for fast-fading

channels. In contrast to other techniques for fast-fading channels, the error floor

for this technique is at a much higher SNR level. The improvement in the BER is

significant for a 256-QAM scheme, where the BER does not show any error floor for

an Eb/N0 of as high as 17dB.

3.9.1 Channel Estimation

The receiver structure shown in Fig. 3.1 is considered. The channel is described

by (2.2). Since a CE-BEM is not matched to the long-term statistics of the channel,

a richer channel model than (2.12) is needed. The evolution of each channel path

over time is characterized by the AR(p) process with

g(n; l) = −
p

∑
j=1

ajg(n − j; l) +w(n; l), (3.29)

for l = 0, . . . , L, where w(n; l) represents the noise process of path l. Define the

vector of the AR model for path l as a ∶= [a1 ⋯ ap]T . By solving the Yule-Walker

equations [30], one obtains

a = −R−1
l rl (3.30)

where Rl represents the p × p correlation matrix for tap l, defined as

(Rl)i,j = PlJ0(2πfD∣i − j∣), (3.31)

with J0(⋅) denoting the first-kind, zeroth order Bessel function. Also, (rl)i ∶= PlJ0(2πfDi)

for i = 2, ..., p + 1. The variance of the channel noise process for path l, σ2
w(l), is cal-

culated as

σ2
w(l) = Pl − aHRla (3.32)
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for l = 0,1, ..., L. The system state is characterized by an (L + 1)p × 1 vector, defined

as

hp(n) ∶= [g(n; 0)⋯g(n − p + 1; 0) ⋯ g(n;L)⋯g(n − p + 1;L)]
T
. (3.33)

The system equations are given by

hp(n) = Fhp(n − 1) +w(n), (3.34)

y(n) = E(n)hp(n) + v(n), (3.35)

where F = IL+1⊗K with

K ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a1 −a2 −a2 . . . −ap

1 0 0 . . . 0

0 1 0 . . . 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 . . . 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.36)

E(n) ∶= [s(n) s(n − 1) ⋯ s(n −L)]⊗eT0 , e0 = [1 01×(p−1)]
T , w(n) = [w(n; 0) 01×p−1 ...

, w(n;L) 01×p−1]
T . The autocorrelation matrix for w(n) is Qw = diag([σ2

w(0) 01×p−1 ...

σ2
w(L) 01×p−1]).

A KF is used to obtain gain estimates, ĝ(n) ∶= [ĝ(n; 0) ⋯ ĝ(n;L)]T as presented

in Algorithm 3, where

ĝ(n; l) = E[g(n; l)∣y(1),⋯, y(n + p)] = (hp(n + p))lp+p (3.37)

for l = 0,1,⋯, L.

The KF makes use of the detected data symbols, s̄(n), fed back by the LLR-to-

symbol block. These symbols are contaminated with detection error, u(n), of variance

γ(n); that is s̄ = s(n) + u(n). To take this error into account in the KF calculations,

the noise variance is augmented with an additional term to give the “effective noise”

v′(n) given by

v′(n) = [ĝ(n; 0)...ĝ(n;L)] [u(n)...u(n −L)]
T
+ v(n) (3.38)

Assuming that the detection errors are uncorrelated with each other and independent
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from the channel gains,

σ2
v′ = σ

2
v +

L

∑
l=0

E [∣g(n; l)∣2]γ(n − l) (3.39)

In Algorithm 3, E ∣g(n; l)∣2] is approximated with (ĥ(n∣n−1))
2

1∶p∶Lp+1
+(diag(P))

2

1∶p∶Lp+1
.

3.9.2 Complexity Analysis

The computational complexity of the EKF method of [92] is approximated as O(δ[δ+

Q(L + 1)]2) floating point multiplications per symbol, per iteration, where δ and Q

denote the equalizer delay and the number of basis functions, respectively. However,

this method has a significantly high estimation error floor which is too high to allow

low bit error rate operation for any modulation scheme with an order higher than

16-QAM. Since higher-order modulations are being proposed to provide the higher

spectral efficiency needed for the latest generation of multimedia wireless applications.

The computational cost of the CE-BEM based method of [112,120] (called “KF/ZPF-

CE-BEM” herein) is on the order of O (2δ3 + 2 [Q(L + 1)]
2
). The proposed method

has a cost of O (2δ3 + 2 [p(L + 1)]
2
), where p represents the order of the AR model.

The cost of the ZPF is comparatively negligible for small Nf , and is not considered.

In the simulations, we used L = 2 (3-tap channel), Nf = 5, p = 4 and δ = 5. Comparing

with the EKF, where typically δ = 5 and Q = 9, the complexity of the proposed method

is about one order of magnitude less. For “KF/ZPF-CE-BEM” with 256-QAM, one

needs to select Q = 9, at least. Therefore, the cost of “KF/ZPF-CE-BEM” is at least

three times that of the proposed method. Even with the extra cost, “KF/ZPF-CE-

BEM” exhibits a severe error floor for the case of 256-QAM, as illustrated in the next

section.

3.9.3 Simulations

An equipower fast-fading Rayleigh channel with L+1 = 3 taps and Pl = 1/(L+1) = 1/3

was considered. The channel was simulated based on [175]. A sampling interval of

Ts = 25× 10−6, and a Doppler frequency of fd = 400Hz were used, giving a normalized

Doppler frequency of fD = 0.01. This Doppler frequency corresponds to a vehicle

moving at the speed of 216 km/h, when the carrier frequency is 2GHz. A convolutional

code of rate 1/2 and octal generator [133,171] were employed. Every symbol block
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Algorithm 3 Channel estimation Kalman filter for the 256-QAM scheme
Inputs:

• Matrix E(n) for n = 1,⋯,NE

• Signal measurements: y(n) for n = 1,⋯,NE

• Symbol detection error variances: γ(n) for n = 1,⋯,NE

Output:

• Channel gain estimates: ĝ(n) for n = 1,⋯,NE

Working variables:

• CE-BEM vector estimates: ĥp(n∣n − 1), ĥp(n − 1∣n − 1)

• Covariance matrices for the estimated CE-BEM vector: P(n∣n − 1), P(n −

1∣n − 1)

• KF gain: K(n)

1: ĥp(0∣0)← E [ĥp(0)] = 0(L+1)p×1

2: P(0∣0) ← 1
(L+1)I(L+1)p

3: for n = 1,2, . . . ,NE do

4: ĥp(n∣n − 1)← Fĥp(n − 1∣n − 1)

5: P(n∣n − 1) ← FP(n − 1∣n − 1)FH +Qw

6: Γ(n)← [γ(n) γ(n − 1) . . . γ(n −L)]
T

7: r̂gg(n∣n − 1)← (ĥp(n∣n − 1))
2

1∶p∶Lp+1
+ (diag(P))

2

1∶p∶Lp+1

8: σ2
v′(n)← σ2

v(n) +Γ(n)r̂gg(n∣n − 1)

9: K(n)← P(n∣n − 1)EH(n)

10: × [E(n)P(n∣n − 1)EH(n) + σ2
v′]

−1

11: ĥp(n∣n)← ĥp(n∣n − 1)

12: +K(n) [y(n) −E(n)ĥp(n∣n − 1)]

13: P(n∣n)← [Ip(L+1) −K(n)E(n)]P(n∣n − 1)

14:

15: if n > p − 1 then

16: ĝ(n − p + 1) = (ĥp(n∣n))p∶p∶Lp+p
17: end if

18: end for

19: for k = 1,2, . . . , p − 1 do

20: ĝ(NE − k + 1) = (ĥp(n∣n))p−j∶p∶Lp+p−j
21: end for

comprised N = 104 symbols, in which lp = 5 pilots were inserted per ls = 20 data

symbols. Pilot segments consisted of an impulse of magnitude
√
lp, guarded by two
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zeros on each side. The pilot cost is 10 log10(lp + ls)/ls ≈ 0.97dB, and is not taken

into account on the x-axis of the BER plots. The ZPF’s normalized passband edge

frequency was fp = fD = 0.01. To pick other parameters, we note that the Wiener

bound on the estimation error at the highest SNR of interest, that is at Eb/N0 = 17dB

for 256-QAM with a rate 1/2 code, is calculated as W ≈ 2fDσ2
v ≈ 10−4. Based on the

discussion made in Section 3.4, we selected the passband ripple Rp = 0.1dB, stopband

attenuation Rs = 15dB, and the filter order Nf = 5. In block processing, M = 4000

and ME = 1000 symbols from the previous block were used to deal with the unwanted

ZPF’s transient response and to train the KF, respectively (see Section 3.9.1).

An AR process of order p = 4 represented the gains variations. A lower p gives

inferior BER, while higher order AR models become computationally unstable. The

variance of the noise process as given by (3.32) is computed as σ2
w(l) ≈ 6 × 10−13

for l = 0,1, ..., L. A better tracking behaviour is obtained with higher values (also

reported in [92]), so we selected σ2
w(l) = 10−7. The equalizer KF was a fixed-lag KF

as described in [101], with δ = 5 lags.

The bit-error rate performances of Gray-mapped 16-QAM, 64-QAM and 256-QAM

receivers are demonstrated in Fig. 3.20. In this figure, legend “KF/ZPF; CE-BEM(9)”

refers to a CE-BEM based channel modeling using KF and ZPF with Q = 9 bases;

legend “EKF; CE-BEM(Q=9)” refers to the EKF method of [92]. The proposed

method is labeled with “KF/ZPF; AR(4)”. The detector/decoder performance with

perfect channel state information (CSI) performance is indicated by the line marked

“Perfect channel.” For the competitor methods, Q = 9 was selected despite the

fact that the computational cost is at least twice as high as that of the proposed

method. The length of the KF’s state vector in the “ZP/KF, CE-BEM” method was

Q(L+1) = 27, and that of the channel and symbol estimator EKF was δ+Q(L+1) = 32,

while the length of the state vector for the proposed method is only p(L+ 1) = 12. It

can be seen that, in all cases, the performance of the proposed method over the SNRs

of interest is within 0.3dB from the perfect channel performance and outperforms

the other methods. Specifically, no BER floor is perceptible. The CE-BEM based

KF/ZPF method performs well for the 16-QAM case, but suffers serious error floor

under higher order modulations. The EKF method did not converge to low BERs

over the indicated range for the 256-QAM case.
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3.9.4 EXIT Chart Analysis

The convergence properties of the proposed method is analyzed with an EXIT chart.

Fig. 3.21 shows the EXIT curves for a 256-QAM receiver at Eb/N0 = 17dB. A sample

trajectory illustrates how the extrinsic information is exchanged between the SISO

components of the turbo receiver. A comparison with the EKF-based method of [92]

is also made. It can be seen that the proposed method will reliably converge to

high mutual information state, thus giving low bit error rates. On the contrary, the

EKF cannot make the above-mentioned tunnel for the receiver to converge to a low

BER. In addition, the equalizer and decoder curves intersect at higher values of ID, IE

with the proposed method, thereby predicting a superior BER performance. These

conclusions are in compliance with the BER results presented previously.

3.10 Summary

We have applied a low-cost ZPF to the output of a channel estimator KF to accurately

estimate a fast-fading channel in a turbo equalizer-decoder scheme. The BER plots

for the proposed estimator are within 0.3 dB of the perfect CSI case. The performance

of the proposed estimator when used with an LDPC codes is examined and compared

with the prior art. By virtue of the long memory of the smoother, the estimation error

can be reduced to less than 2 dB of the Wiener bound, without using high-order KFs.

An easy-to-deploy method was presented for ZPF design. The NMSE was shown to

be consistently decreasing with the SNR. An EXIT chart analysis was performed to

examine the convergence properties of the method. We showed that convergence to

a low BER state is achieved after only few iterations.

Finally, instead of a high order CE-BEM, we employed a lower order AR model

to characterize the channel and used the method to accurately estimate the channel

in a 256-QAM scheme. It is demonstrated that this technique provides a superior bit

error rate performance with a low computational cost for fast-fading channels.
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Chapter 4

MIMO-OFDM Channel Estimation

In this chapter, the channel estimation techniques used for SISO channels are ex-

tended to single-user MIMO-OFDM systems. The focus will be on semiblind channel

estimation to better accommodate channels with a large number of antennas, for

which previous pilot-assisted schemes do not scale well. From a security standpoint,

accurately estimated MIMO channels can provide higher secret key rates compared

to the SISO channels due to the larger number of propagation paths.

We propose an efficient and accurate semiblind channel estimation technique for

MIMO-OFDM turbo receivers. Once the channel is estimated using a few pilots, a

low-order Kalman filter is employed to progressively predict the channel gains for

the upcoming blocks. A BEM-based channel estimation scheme is used to allow the

channel to vary within a block to make the method compatible with fast-fading radio

channels. As the detected data symbols are iteratively used by the Kalman filter to

enhance the estimation accuracy, the proposed method compares with iterative pilot-

aided systems in terms of computational cost and competes in spectral efficiency

with semiblind and blind estimation techniques in fast-fading environments. The

BER performance of the proposed estimation approach is 0.3 dB off the perfect CSI

case, whereas the computational complexity is on the order of that of near-optimal

pilot-assisted methods.

The chapter is organized as follows. The basic structure of a MIMO-OFDM sys-

tem is described in Section 4.1. The key idea of the approach taken in this chapter

concerns a block processing technique, presented in Section 4.2. The channel estima-

tion method is described in Section 4.3. The algorithm used for symbol detection is

discussed in Section 4.4. Section 4.5 presents the computational complexity analysis.

The simulation results in Section 4.6 compares the BER performance of the method
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with that of the perfect-CSI. The chapter is summarized in Section 4.7.

4.1 Basic MIMO-OFDM Structure

OFDM is an efficient modulation technique for high data rate communications over

frequency selective channels. It simplifies the equalization problem by exploiting the

properties of the FFT transform and circulant matrices to convert a delay-dispersive

channel into a group of memory-less channels [115]. MIMO-OFDM systems are used

for broadband wireless networks and applications such as real time video conferencing

and mobile video streaming. As such, MIMO-OFDM techniques have been at the

center of interest in many recent works.

MIMO systems offer either spatial diversity to provide reliability or spatial multi-

plexing gain to maximize the communication throughput [67]. Reliability is attained

by transmitting the signal through multiple independent paths, hence combating the

adverse effects of fading and increasing the delay-limited capacity [68]. The spatial

diversity may be achieved by space-time codes such as the Alamouti code [9, 149]

or space-frequency codes in frequency selective channels [25]. In space-time codes,

coding is performed over the space (transmit antennas) and the time, whereas in

space-frequency codes, coding may be applied across the space and the subcarriers of

OFDM symbols as in [25], or over the space and the OFDM blocks [98].

The focus in this dissertation is on the multiplexing gain of the MIMO channel.

The spectral efficiency of the channel in this case increases linearly with the number

of antennas. The model for the MIMO-OFDM system is illustrated in Fig. 4.1.

Figure 4.1: MIMO-OFDM structure.

Semi-blind Channel Estimation

As mentioned in Chapter 2, semi-blind channel estimation can save much of the
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pilot overhead in MIMO systems. The semi-blind technique in this section is based

on a BEM representation of the channels as was described in Chapter 3. The channel

variations over a block of OFDM symbols are modeled by a BEM. A block processing

method then uses the channel estimates of the current BEM block to predict the

channel gains over the following block. The variations of the BEM coefficients are

modeled by a multi-variate AR model, and tracked by a KF over consecutive blocks.

To initialize the KF, the channel is estimated at the beginning of transmission using a

few pilots. The KF predicts the channel gains for the upcoming block. For each block,

the detected data symbols are iteratively decoded and fed back to the Kalman filter

to enhance the estimation accuracy. The proposed method’s performance compares

favorably with iterative pilot-aided systems and competes with semiblind and blind

estimation techniques. The diversity of the MIMO channel is exploited to reduce the

interleaver size and, equivalently, the latency, in practical scenarios.

4.2 System Model

In this section, the structure and input-output relationship of the MIMO-OFDM

system in the time and frequency domain are presented. It is described how the

symbol stream is divided into blocks and processed at the receiver.

A bit-interleaved coded modulation system transmitting as described in Sec-

tion 2.3.2 over a MIMO time-varying fading channel is considered. The MIMO

antenna array consists of N transmitters and M receivers. Each MIMO channel

component is characterized by the model described in Eq. (2.2) of Section 2.1. For

the fading rates considered in this chapter, the channel gains are assumed to be

constant over an OFDM symbol of length K + L where K is the number of OFDM

subcarriers.

At transmitter n, a vector un(i) ∶= [un(i,1),⋯, un(i,K)]T is first obtained by com-

puting the inverse FFT ofK consecutive modulated symbols, sn(i) ∶= [sn(i,1)⋯, sn(i,K)]T .

The modulation constellation is selected to have a mean power of unity. The vector

un(i) is then prefixed with L cyclic prefix (CP) symbols defined as un(i,−L + 1) =

un(i,K −L + 1),⋯un(i,0) = un(i,K) to form the ith OFDM symbol of length K +L.

One has un(i) = BHsn(i) where B is the FFT matrix. At the receiver, the CP is first

removed from each block of the received signal and the remaining K output samples

are used to iteratively estimate the channel, detect the data symbols, and decode the

codewords. The channel output corresponding to subcarrier k of OFDM symbol i at
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receiver m, ytm(i, k) can be written as

ytm(i, k) =
N

∑
n=1

L

∑
l=0

gnm(i, l)un(i, k − l) + v
t
m(i, k) (4.1)

for m = 1,⋯,M and k = 1,⋯,K, where gnm(i, l) denotes the channel gain from trans-

mit antenna n to receive antenna m for a relative propagation delay of l samples for

l = 0,⋯, L, un(i, k − l) represents the symbol sent by transmitter n at subcarrier k − l

of the OFDM symbol and vtm(i, k) is the white Gaussian noise of variance σ2
v . The

mean power of the received signal to any receive antenna is unity.

The stream of OFDM symbols is logically divided into BEM blocks of length Nb.

Each BEM block overlaps with the previous and next block in Nd symbols and differs

in Na = Nb −Nd symbols as shown in Fig. 4.2. Consider tap l of the channel between

transmitter n and receiver m. Collect the channel gains over BEM block j in vector

glnm(j) ∶= [gnm((j − 1)Na + 1; l)⋯gnm((j − 1)Na +Nb; l)]T . To consider the correlation

between the blocks, define Rgg(l) ∶= PlJ0(2πfD(0 ∶ Nb +Na − 1)) where J0(⋅) denotes

the Bessel function of the first kind and Pl is the mean power of the path. Then

one may write Rg(1) ∶= E[glnm(j + 1)glnm(j)H] = Rgg(1 ∶ Nb,Na + 1 ∶ Na + Nb) and

Rg(0) ∶= E[glnm(j)glnm(j)H] = Rgg(1 ∶ Nb,1 ∶ Nb), where the correlation matrices are

assumed to be identical for all antenna pairs.

A vector form of (5.5) is obtained as

ytm(i) =
N

∑
n=1

Dnm(i)un(i) + vtm(i) (4.2)

where ytm(i) ∶= [ytm(i,1)⋯ytm(i,K)]T , Dnm(i) is a circulant matrix [69] with [gnm(i,0)

01×(K−L−1) gnm(i,L) ⋯ gnm(i,1)] as the first row and vtm(i) ∶= [vtm(i,1)⋯vtm(i,K)]T .

The counterpart of (4.2) in the frequency domain is obtained by multiplying the

equation by B to yield

ym(i) =
N

∑
n=1

Hnm(i)sn(i) + vm(i) (4.3)

where ym(i) ∶= Bytm(i),Hnm(i) ∶= BDnm(i)BH , sn(i) = Bun(i) and vm(i) = Bvtm(i).

The transmission begins with Nt pilot OFDM symbols. Since the number of

unknown channel gains per receive antenna for each BEM block equals NL, for pa-

rameter identifiability one needs to send at least ⌈NL/K⌉ pilot blocks. OFDM data
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Figure 4.2: Iterative processing of the last Na symbols of block j is performed using
the last Nd symbols of block j − 1.

follow the pilots. At time step j, the iterative processing for block j starts with es-

timating the channel gains for this block using the channel estimates as well as the

detected data symbols for block j − 1. Since the last Nd data symbols of block j − 1

have already been detected, these symbols are used as virtual pilots when block j is

processed. Having the channel estimates, Na OFDM data symbols from block j are

detected. The LLR of the detected symbols are input to the decoder to compute the

so-called intrinsic LLR information on coded bits [38]. The extrinsic LLR is calcu-

lated by subtracting the decoder’s input LLR from the intrinsic LLR before being fed

back to the detector for the next iteration, to prevent positive feedback. The intrinsic

LLR is sent to the channel estimator to enhance channel estimation accuracy in the

next iteration. The iterative process of channel estimation, symbol detection, and

data decoding for block j continues until convergence is reached, at which time the

receiver advances to process block j + 1.

If too short a block size is used, there may be low diversity within a block and

the KF may lose the track if the instantaneous SNR at the receiver is too low due

to channel taps being in deep fade. While this event happens quite frequently in

SISO systems with short interleaver size, it becomes less likely as the space diversity

of the MIMO channel increases. So, the mean-time before-failure (MTBF) time, the

time between blocks where channel estimation and data detection fails, is mainly

determined by the number of independent MIMO paths as well as the SNR. When

too many receiver errors occur in one block, the processing system can fail to properly

estimate the channel in the current block as well as for the following BEM blocks.

This loss of channel state estimation (tracking) accuracy may be treated by having

the transmitter to reset by sending a few pilots. Simulations show that the MTBF at

the SNR range of interest is long enough to make the method viable for most channels

of interest.
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4.3 Channel Estimation Algorithm

Coherent symbol detection at the receiver uses the channel estimates. A bank of

M Kalman filters, one per receive antenna, is employed to estimate the channel

jointly with the symbol detector and data decoder. The KFs operate independently

because the receive channels are assumed to be independent and thus the output

equations can be separated into M independent sets. For correlated channels, this

implementation would be sub-optimal. As in [166], the bandlimited channel gains are

optimally represented by a Karhunen-Love transform (KLT)-calculated BEM. The

BEM coefficients are assumed to be constant over a BEM block of length Nb OFDM

symbols, but are allowed to vary between blocks. In this chapter, a multivariate

AR(1) model [168] is used to capture the variations of the BEM coefficients between

blocks, as in [166].

Consider tap l of the channel between transmit antenna n and receive antenna

m. The channel gains over BEM block j for this tap are expressed as glnm(j) ∶=

Ehlnm(j) where E is the Nb ×Q BEM matrix with Q ≥ ⌈2fDNb⌉ + 1, and hlnm(j) ∶=

[hnm(j,1)⋯hnm(j,Q)]T . The BEM coefficients for NL taps from all transmit anten-

nas to receive antennam are put in a state vector defined as hm(j) ∶= [h0
1m(j)⋯hLNm(j)].

Using (4.3), the output equation in the frequency domain for the mth KF is written

as

ym(j) = F(j)hm(j) + vm(j) (4.4)

where F(j) ∶=
√
K[diag{s1(j)}E⋯diag{sN(j)}E] (INL⊗B(j, ∶)).

The evolution of the BEM coefficients over BEM blocks is captured by a vector

process AR(1) model [168] as

h(j + 1) = Fah(j) +w(j) (4.5)

where Qa ∶= E[w(i)wH(j)] = Rh(0)−FaRH(1), and Fa ∶= Rh(1)R−1
h (0) with Rh(1) ∶=

E[h(j + 1)hH(j)] and Rh(0) ∶= E[h(j)hH(j)]. These parameters can be computed

using the second-order statistics of channel gain vectors over the consecutive BEM

blocks as Rh(1) = BHRg(1)B, and Rh(0) = BHRg(0)B.

The channel estimator for processing the BEM block j follows Algorithm 4. To

save computational cost in the case of a tall matrix G(j), the measurement equation

is multiplied by GH(j).
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Algorithm 4 Channel estimation KF at step j
Inputs:

• Matrix F(n) for n = 1,⋯,Nb

• Signal measurements: ym(n) for n = 1,⋯,Nb

Output:

• Channel gain estimates: ĝ(∶, i) for n = 1,⋯,Na

Working variables:

• CE-BEM vector estimates: ĥm(j∣j − 1), ĥm(j − 1∣j − 1)

• Covariance matrices for the estimated CE-BEM vector: P(j∣j − 1), P(j −

1∣j − 1)

• KF gain: K

1: for m = 1,⋯,M do

2: G(j)← [F(1)T ⋯ F(Nb)
T ]T

3: y(j)← [yTm(1) ⋯ yTm(Nb)]
T

4: if G(j) is a tall matrix then

5: G(j)←GH(j)G(j)

6: y(j)←GH(j)y(j)

7: Rvv ← σ2
vG

H(j)G(j)

8: else

9: Rvv ← σ2
vINLQ

10: end if

11: ĥm(j∣j − 1)← Faĥm(j − 1∣j − 1)

12: Pm(j∣j − 1) ← FaP(j − 1∣j − 1)FT
a +Qa

13: K← P(j∣j − 1)GH[GP(j∣j − 1)GH +Rvv]
−1

14: ĥm(j∣j)← ĥm(j∣j − 1) +K[y(j) −G(j)ĥm(j∣j − 1)]

15: P(j∣j)← [INLQ −KG(j)]P(j∣j − 1)

16: for i = 1, . . . ,Na do

17: ĝ((m − 1)NL + 1 ∶mNL, i) = INL⊗B(Nb −Na + i, ∶)

18: end for

19: end for

4.4 Symbol Detection

The symbols are detected using an LMMSE filter with co-channel interference cancel-

lation as described in [2]. To cancel the interference, the extrinsic LLR from the de-

coder is first used to compute the mean s̄n(i, k) and variance γn(i, k) of the data sym-
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bol estimates (cf. Chapter 3). For each subcarrier k, to estimate sn(i, k), n = 1,⋯,N ,

the estimated interference of the other estimated symbols sn′(i, k), n′ ≠ n in the chan-

nel output is subtracted from it. Then the symbol is estimated using an LMMSE

estimator with the modified output.

Alternatively, one could employ a soft-output sphere decoder [34] for slightly bet-

ter performance but at a higher computational cost. Since the matrices Hnm(i)’s

are diagonal [75, p. 288], (ym(i))k in (4.3) would depend only on the kth entries

of the input vectors. So the system of MK equations given by (4.3) can be re-

grouped into K decoupled equation systems, each consisting of M equations. Define

y′(i, k) ∶= [(y1(i))k⋯ (yM(i))k]
T , as comprising the kth elements of the output vec-

tors, s′(i, k) ∶= [(s1(i))k⋯ (sN(i))k]
T , and

H′(i, k) ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(H11(i))k,k ⋯ (H1N(i))k,k
⋮ ⋮

(HM1(i))k,k ⋯ (HMN(i))k,k

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4.6)

that is, H′(i, k) is comprised of the kth diagonal elements of Hmn(i), m = 1,⋯,M, n =

1,⋯,N . One has

y′(i, k) = H′(i, k)s′(i, k) + v′(i, k) for k = 1,⋯,K (4.7)

For each of the K above-defined system, the soft-input-soft-output LMMSE detector

with interference cancellation is used to estimate the data symbols as described below.

To estimate s′n(i, k) ∶= (s′(i, k))n, define

Γ(i, k) ∶= [γ′1(i, k),⋯, γ
′
N(i, k)]T

s̄′(i, k) ∶= [s̄′1(i, k),⋯, s̄′N(i, k)]T

where γ′n(i, k) and s̄′1(i, k) denote the variance and mean of s′n(i, k), n = 1,⋯,N ,

respectively, as computed by the LLR-to-Symbol module from the decoder’s output

extrinsic LLR. Also,

Γn(i, k) ∶= Γ(i, k) ∣
(Γ(i,k))n=1

that is, Γn(i, k) is obtained by setting the nth element of Γ(i, k) to 1. So, the fed
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back prior information on s′n(i, k) is not considered by the detector. Likewise,

s̄′n(i, k) ∶= s̄′(i, k) ∣
(s̄′(i,k))n=0

because in estimating s′n(i, k), only the interference from other symbols is canceled.

To this end, the contributions made by those symbols must be subtracted from the

output. The modified output is defined as

ỹ′(i, k) ∶= y′(i, k) −H′(i, k)s̄′n(i, k)

The LMMSE filter is characterized by

wn = (H′(i, k)diag(Γn(i, k))H
′H(i, k) + σ2

vIM)
−1

H′
n(i, k)

where H′
n(i, k) is the nth column of matrix H′(i, k). The symbol estimate and

variance are obtained as

ŝ′n(i, k) = wH
n ỹ′(i, k)

γ̂′n(i, k) = (H′(i, k)diag(ζn(i, k))H
′H(i, k) + σ2

vIM)
−1

where ζn(i, k)) is obtained by setting the nth element of Γ(i, k) to zero, so that to

prevent forwarding the information fed back by the decoder to itself. ŝ′n(i, k) and

γ̂′n(i, k) are input to the Symbol-to-LLR module to generate extrinsic LLR for the

decoder, as explained in Chapter 3.

4.5 Computational Complexity

The computational complexity of our method is comparable with BEM-based pilot

assisted techniques. The proposed method employs a similar BEM model and Kalman

filtering as in [166], but each symbol is processed Nb/Na times. The computational

complexity of Algorithm 4 is on the same order as that of the pilot-assisted method in

[166]. In Algorithm 4, the two most expensive operations are the matrix multiplication

at line 5 with a cost of O(M2Nb(NLQ)2) and the inversion at line 13 with a cost

of O(M(NLQ)3) complex operations per symbol, for m receivers. The total cost is

therefore O((M2Nb(NLQ)2 +M(NLQ)3)/Na) complex multiplications per symbol.

The computational complexity of the channel estimator in [35] includes a matrix
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inversion required to resolve the phase ambiguity [177] with a cost of O(KN2+N3) as

well as O(M3K3L+M4K2L2) for matrix multiplication in [35, Eqn. 3.6]. The overall

cost is O((M4K2L2 +M3K3L +KN2 + N3)/Ns) operations per channel use where

Ns denotes the block size. This cost is greater than that of the proposed method

if K2Na > NbLQ3Ns and K3Na > ML2Q3Ns, assuming M = N and Na ≈ Nb. This

condition typically holds in the settings of interest in this research.

The approach of [94] incurs a cost of O(MK3 +MNLK2) for matrix inversion

and multiplications used in recursive least-squares algorithm. This cost is higher than

that of our approach when K > NLQ by a factor of Na.

For larger numbers of antennas (M,N > 2) however, the cost of symbol detector

used in the proposed method (and the method of [94]) is much less than the same

detector used with the method of [35]. Since precoding in [35] creates correlations

between the symbols, the output equations in frequency domain cannot be split up to

K independent sets as explained previously for the proposed method. The LMMSE

detector needs to inverse matrices as large as KN ×KN , which is not feasible when

KN is large. Approximate inversion algorithms may be used with a reduction of

accuracy. The proposed method requires inverting matrices of size M . Therefore the

computational cost of the detector for the proposed scheme is orders of magnitude

lower. The method can also benefit from sphere decoding to enhance the performance.

4.6 Simulations

The simulations consider a MIMO Rayleigh channel with eight-tap between each

antenna pair and a power-delay profile of [0 -2.4 -6.5 -9.4 -12.7 -13.3 -15.4 -25.4] dB,

normalized to a total power of unity. This profile belongs to a typical vehicular 3G

wideband system at a speed of 120 km/h [155]. A nonsystematic convolutional code of

rate 1/2 with a generator of (133,171) was used. The normalized Doppler spread was

fD = fdTs = 10−4 with Ts and fd denoting the sample duration and Doppler spread,

respectively.

Fig. 4.3 shows the BER performance of a 4-QAM 4 × 4 MIMO-OFDM system

compared to that of [33,35] labeled as “Statistical method” and the approach of [94]

tagged with “RLS based” in the figure. Each trial consisted of 2 training OFDM

symbols followed by 2 × 105 data symbols. The OFDM symbol length is K = 32. For

the proposed method, the BEM block size was Nb = 10. We picked Na = 8, hence

an overlap of Nb − Na = 2 between consecutive BEM blocks. The number of BEM
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coefficients was Q = 2. So, the size of the BEM vector was LNQ = 64. For the

method of [35], the parameters were tuned for the lowest possible BER. As such, a

block length of 50 symbols with precoding parameter τ = 0.8 [35] was used. The phase

ambiguity matrix1 for the method of [35] was assumed known, although a minimum

number of N impulse pilots would be required to resolve it and the estimation would

create some performance degradation.

The performance is as close as 0.3 dB to the perfect CSI case for the proposed

method and 1 dB for the other methods. It can also be seen that the pilot rate is at

least 0.25% for the statistical method but is practically zero for the proposed method

as well as the RLS based approach. Regarding computational cost of the LMMSE

detector, the method of [35] would need to invert matrices of size KM = 128, whereas

the proposed method would invert matrices of size M = 4. The pilot-assisted method

of [166] could be extended to estimate this channel, but it would require an overhead

of 39/288 ≈ 14% ≈ 0.6 dB for pilots.

Fig. 4.4 shows the BER performance for a 16-QAM modulation scheme when

Q = 3, Nb = 60, Na = 20, hence an overlap of Nb −Na = 40 symbols between adjacent

BEM blocks. The method of [35] fails to converge for this setup and is not shown.

In this case, failures in the convergence of the iterative receiver are observed, calling

for taking the MTBF into account. The MTBF would also depend on the SNR. For

the proposed method, the MTBF measured for 100 trials is as large as about 40,000

OFDM symbols at SNR=10dB, but reduces to about 4,000 at SNR=9dB and about

200 at SNR=8dB. It should be noted that in practice, these systems are designed for

target BER values of about 10−6 making the SNR value of 10 dB the most relevant.

In Fig. 4.4, the bursty errors account for the sharp rise of the BER curve at 8dB. It

is seen that our method is only 0.3dB off from the perfect CSI with a very small pilot

overhead. The MTBF for the RLS-based technique from [35] was about 50 symbols

on the average at SNR=10 dB in 500 trials.

4.7 Summary

We introduced an accurate semiblind estimation technique for fast fading MIMO

channels. The channel variations over a block of OFDM symbols are captured by

a KLT based BEM. A block processing technique then used the channel estimates

1The channel gain vector is the product of the phase ambiguity matrix and the vector obtained
from processing the output covariance matrix [35]
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Figure 4.3: 4-QAM 4 × 4 MIMO-OFDM receiver with LMMSE detector compared
with the statistical approach of [35] and the RLS based method of [94] at fD = 10−4.
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Figure 4.4: 16-QAM 4 × 4 MIMO-OFDM receiver with LMMSE detector compared
with the RLS based method of [94] at fD = 10−4.

of the current BEM block to project the channel gains over the next block. The

variations of the BEM coefficients were tracked by a KF over consecutive blocks. The

proposed method’s performance compares favorably with iterative pilot-aided systems

and competes with semiblind and blind estimation techniques. The performance is

as close as 0.3 dB to the perfect CSI case for the proposed method and 1 dB for

the other methods. The diversity of the MIMO channel was exploited to reduce

the interleaver size and, hence, the latency, in practical scenarios. Compared to the
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previous art, the proposed method was shown to excel in the MTBF, especially in

higher order modulations. The complexity of the proposed method is on the same

order as the pilot-based iterative methods. This technique specially lends itself to

large scale MIMO radio systems due to its tiny pilot overhead and can be considered

a viable approach in low-latency broadband systems as an important application of

MIMO-OFDM.

The iterative channel estimation techniques proposed in this dissertation, enhance

the accuracy of the channel estimates and provide better BER performances at lower

computational costs compared to the prior art. However, the effect of iterative channel

estimation on the capacity has not been discussed. In the next chapter, the capacity

gain provided by iterative processing is studied.
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Chapter 5

Capacity of Iteratively Estimated

Doubly-Selective Channels

Previously in this dissertation, efficient, low-complexity methods for iterative channel

estimation were introduced. It was not addressed however, how the achievable capac-

ity of the estimated channel would be affected by iterative processing. This chapter

explores the capacity of radio channels when iterative channel estimation, data detec-

tion, and decoding are employed. Knowing the capacity gain from iterative detection

versus purely pilot-based channel estimation helps a designer to compare the perfor-

mance of an iterative receiver against a non-iterative one and select the best balance

between performance and cost.

As the secrecy capacity of a communication channel between Alice and Bob is

determined by the capacity of their channel as well as the capacity of the Eve’s chan-

nel, the calculations of the secrecy capacity must also consider the effect of iterative

channel estimation on the capacity of these channels. Specifically, if performing iter-

ative channel estimation by Eve significantly affects the capacity of her channel, this

capacity gain must be taken into account by Alice and Bob when they rely on the

inferior capacity of Eve’s channel to secure the communication.

The interaction between the symbol detector and the decoder is analytically char-

acterized and depicted in an EXIT chart, where a bound on the detector curve is

found. With optimal LMMSE pilot-based channel estimation, the results of this

chapter demonstrate that iterative channel estimation provides insignificant capacity

advantage at fading rates below 1% of the symbol rate, though a computational-

cost gain is still available. Iterative channel estimation provides a capacity benefit if
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sub-optimal pilot signaling is used to provide initial channel estimates.

5.1 Introduction

The iterative approach to estimating wireless channels incorporates detected data

symbols into the channel estimation algorithm (see, e.g., [92,101,112,118,120]). This

chapter calculates the capacity of radio channels when an iterative channel estimation

system is used at the receiver.

This chapter concerns the capacity of iteratively estimated channels, where un-

like [4,105,178], both pilots and soft decisions on data symbols contribute in channel

estimation. Iterative processing provides a capacity gain by enhancing the accuracy

of channel estimation [84], thereby reducing the effective noise seen by the receiver.

The capacity is examined by evaluating the mutual information between the trans-

mitted signal and the signal at the receiver given the estimated channel. This mutual

information tends to increase as the result of interaction between the channel esti-

mator/equalizer (detector) and decoder modules as the receiver iterates. Knowing

the capacity gain helps a designer to compare the performance of an iterative re-

ceiver against a non-iterative one and select the best balance between performance

and computational cost.

The chapter presents bounds on the EXIT curve for the joint channel estimation

and detector system for iterative receivers. By calculating bounds on the LMMSE

channel estimation error, a lower bound on channel capacity is calculated. From

this channel error bound, a bound on the iterative detector/channel estimator EXIT

curve for multipath Rayleigh fading channels is derived. For a given receiver, it is

known that the available capacity is proportional to the area under the detector’s

EXIT curve [69]. Therefore, by bounding the EXIT curve in the presence of channel

estimation error, considering iterative channel estimation, bounds on the available

capacity for a given receiver are being measured. The EXIT curve also determines

the type of error correction codes that should be used with a given detector/channel

estimator to provide a given capacity [69]. To provide bounds on the EXIT curve, this

chapter derives bounds on the channel estimation error variance for different levels

of knowledge about the transmitted data signal provided by the extrinsic decoder

feedback in the previous iteration. The error variance is then used to put a lower

bound on the achievable channel capacity when iterative channel estimation is in use.

This chapter considers a receiver with an LMMSE channel estimator, soft-input-
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soft-output symbol detector, and soft-input-soft-output error correction code decoder.

LMMSE channel estimators and soft-input-soft-output decoders are ubiquitous in dig-

ital radio receivers [120,166]. To improve the accuracy, the channel estimation block

uses the estimated data symbol values based on the extrinsic information fed back

from the decoder. To prevent unwanted positive feedback, the input to a given block

at each iteration must be almost independent of its output from the previous iteration.

As in turbo decoders, this independent-information requirement is fulfilled by inter-

leaving the coded bits before modulation. If a long memory interleaver is used and

the extrinsic information from the decoder is fed back to the channel estimator/data

detector of the next iteration, the estimated channel error will be independent of the

feedback information. This independence assumption is parallel to the independence

assumption used in EXIT chart analysis for error correction codes [29]. Ideally, the

interleaver should be of infinite length. In practice, the interleaver need only be long

enough to capture multiple (10 or more) independent samples of the channel gains

for the system performance to approach that predicted by the EXIT chart.

To the best of our knowledge, no prior work has analytically investigated the

capacity gain from iterative estimation of a doubly selective channel. The effect

of non-iterative channel estimation error on capacity has been extensively stud-

ied [44,113,123,174]. The capacity of pilot-based estimation schemes in non-iterative

receivers has been explored in [85–87,105]. A lower bound on the capacity of flat fad-

ing radio channels for iterative receivers in slow fading channels was derived in [53],

but the detected symbols’ uncertainty was not addressed. An upper bound on the

capacity of non-iteratively-estimated frequency-selective channels is derived in [36].

Knowing the capacity gain of iterative processing is important when the secrecy ca-

pacity of a communication channel is evaluated based on the capacities of the main

and Eve’s channel. In particular, Eve’s channel capacity must be calculated based

on the assumption that she is capable of iterative channel estimation. Otherwise, the

true secrecy capacity may be significantly lower than the one calculated based on the

assumption that Eve does not perform iterative channel estimation.

The chapter demonstrates that the worst case for pilot-based channel estimation

is when the received signal power is equally spread over all propagation paths with

the gain of each propagation path being independent. This also holds for data aided

estimation under low fading rates. This permits the easy calculation of a general

lower bound on channel capacity.

The major results of this research assume that the data symbols sequence are
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sampled independently from a Gaussian distribution to reduce the cost of the calcu-

lations. The Gaussian assumption is made in [88] for EXIT analysis of MMSE turbo

equalizers. To validate the Gaussian assumption to other realistic scenarios, the case

of finite-order modulations used in practical systems is also explored. It is shown that

the Gaussian approximation provides a good approximation of the EXIT curves for

higher order modulations which can be calculated at a much lower cost than the full

discrete modulation constellation capacity calculations.

The chapter is organized as follows. In Section 5.2, a model of the channel for the

transmitted and received signals is presented. In Section 5.3, a bound on the mean-

square error (MSE) for channel estimation using prior estimated data symbol values

is presented. Section 5.4 presents the capacity bound of the radio channel using the

channel estimates. The case of finite order modulation is explored in Section 5.5.

Section 5.6 contains numerical results on the use of the capacity calculations for

fast-fading radio channels. More bandwidth efficient pilot schemes are discussed in

Section 5.7. A summary of this chapter is presented in Section 5.8.

5.2 System model

The linear model of a communication channel is described by y = Hs + v, where H is

the M ×N impulse response matrix, and s, y and v are the input, output and noise

vectors, respectively. The capacity is achieved by Gaussian inputs and given by the

mean value of the conditional information as

C = (1/N)E[max
Rss

I(s,y∣H)] bits/s/Hz, (5.1)

where Rss is the auto-covariance of the input vector, and the average input power

is constrained to some Ps. With Gaussian noise and power-constrained input, the

average capacity with known H is [150]

C = (1/N)E [max
Rss

log det (I +R−1
vvHRssH

H)] bits/s/Hz (5.2)

with Rvv being the auto-covariance matrix of the noise and (1/N)trace(Rss) = Ps.

The goal of this study is to bound (5.2) for iteratively estimated channels using

the analytical properties of EXIT charts. The receiver iteratively performs channel

estimation, symbol equalization and decoding as shown in Fig. 5.1. The equalizer and



84

Figure 5.1: Receiver structure

soft-input-soft-output decoder generate soft information on the coded bits denoted

as LE and LD, respectively. This soft information consists of a vector of the LLR

information for the bits. The LLR for each bit is the log of the ratio of the proba-

bility of the bit’s value being one over its probability of having the value zero. The

equalizer and decoder blocks in Fig. 5.1 can alternatively be viewed as functions of

the input mutual information. The mutual information measured at the output of the

decoder, ID, is a function of IE coming from the equalizer. The mutual information

at the equalizer’s output is a function of ID as well as the power of channel noise

σ2
v . The problem is how iterative processing affects the channel capacity when perfect

channel state information (CSI) is not available at the receiver. To make the problem

tractable, the following assumptions are made:

(A1) The interleaver is sufficiently long to permit the EXIT analysis and validate

the independence of channel estimates from detection errors.

(A2) An orthogonal pilot scheme such as that of [105] or [87] is used. The former was

shown to be optimal in terms of bounds on capacity and LMMSE and has been used

in numerous works for channel estimation, see, e.g., [120, 121, 130, 148, 157, 166, 171].

The latter is effective at high SNR regimes.

(A3) The gains for each channel propagation path are assumed to be independent.

We will show that this assumption corresponds to the worst-case scenario for pilot-

based estimation (cf. Lemma 2) and thus, is needed when one calculates a lower

bound on capacity.

These assumptions are common in the literature of iterative systems and do not

invalidate the applicability of our approach to commonly proposed iterative receiver

practical systems.

For the iterative model considered in this chapter, the channel capacity is propor-
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tional to the area under the equalizer’s EXIT curve IE(ID, σ2
v) as described below.

In [12], some analytical properties of EXIT charts for a general abstract model of

interacting component decoders are presented. It was shown that the area under the

EXIT chart is related to the mutual information between the input ant output of

the communication channel. We use this property to prove a lemma on the channel

capacity for the turbo-equalizer model of Fig 5.1. It will be shown that the capacity

is the average value of the equalizer EXIT function IE(ID, σ2
v). Before that, we recite

the relevant results of [12] with slight notational changes as follows. A message is

encoded to codeword {xi; i = 1,⋯,m}, sent through the communication channel, and

received as {yi; i = 1,⋯,m} by a component decoder. The codeword is also scrambled

with a long interleaver, transmitted through an independent extrinsic channel, and

received by the decoder as wi. This independence is a common assumption in EXIT

analysis that is approximated in practical receivers through the use of long interleavers

between the encoding and modulation stages of the transmitter. In turbo decoders,

the extrinsic channel models a priori information coming from a second component

decoder. The first decoder then uses yi and wi to compute the extrinsic information ei

for the other decoder. This model includes the turbo equalizer model of this chapter

as a special case where the component decoders correspond to the equalizer and de-

coder blocks in Fig 5.1. Moreover, the extrinsic channel corresponds to the feedback

path from the decoder to the equalizer. The random variables corresponding to xi,

wi, ei, and yi are denoted as Xi, Wi, Ei and Yi, respectively. The mutual informa-

tion at the input and output of the decoder is defined as IE ∶= (1/m)∑
m
i=1 I(Xi,Wi)

and ID ∶= (1/m)∑
m
i=1 I(Xi,Ei), respectively. The area under the IE(ID), A, is given

by [12]

A = I2
D,max [1 −

H(X,Y)

∑
m
i=1H(Xi)

] (5.3)

where ID,max ∶= (1/m)∑
m
i=1H(Xi), X ∶= [X1,⋯,Xm]T and Y ∶= [Y1,⋯, Ym]T . The

following lemma can be verified.

Lemma 1. For an M-ary modulation scheme, the average value of IE(ID, σ2
v) is the

channel capacity given by

C =
1

ID,max
∫

ID,max

0
IE(ID, σ

2
v)dID (5.4)

where ID,max ∶= log2M .
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Proof. In the case of M-ary modulation with all symbols having equal transmission

probability, H(Xi) = log2M , therefore ID,max = log2M . Inserting this into (5.3) and

using C = I(Y,X) = ∑
m
i=1H(Xi) −H(X,Y) and the definition of A yields (5.4).

This chapter considers a bit interleaved coded modulation scheme. A block of N

transmit symbols, z = [z1 . . . zN]T is expressed as the sum of data symbols si and

pilots pi, i = 1, ...,N as z = s + p, where s = [s1 ⋯ sN]T and p = [p1 ⋯ pN]T . If a

data symbol is sent at instant i then pi = 0 and if a pilot symbol is transmitted at

instant i then si = 0. It is assumed that E[∣si∣2] = 1 for data symbol with index i.

Moreover, data symbols are Gaussian distributed unless otherwise stated. We mainly

focus on the pilot arrangement of [105], where every ls data symbols in s are followed

by lp null data symbols, corresponding to the positions of the lp pilot symbols in

p. The pilot pattern is comprised of an impulse of magnitude
√
lp guarded by at

least L zeros on each side. This scheme has widely been employed for estimating

fast-fading channels, and it has been shown that periodic use of this pilot pattern

maximizes channel capacity for purely pilot-based channel estimation [105]. We used

this arrangement in [120,121].

The transmit signal is distorted by a doubly-selective noisy channel with a nor-

malized Doppler frequency of fD = fdTs with Ts and fd denoting the sampling interval

and Doppler spread, respectively. The channel is modeled as a linear time-varying

filter with L + 1 taps. The mean power of path l is denoted Pl, for l = 0, ..., L. The

channel gain at time n for a relative propagation delay of l samples is denoted g (n; l).

One can write the channel output y(n) at time n as

y(n) =
L

∑
l=0

g(n; l)z(n − l) + v(n) (5.5)

for n = 1,2, . . . ,N , where v(n) denotes the Gaussian zero-mean complex white noise

with variance σ2
v .

The channel gains for N samples are stored in vector g ∶= [g(1; 0) . . . g(N ; 0) . . .

g(1;L) . . . g(N ;L)]T . The received signal, y ∶= [y1 ... yN]T is described as

y = (S +P)g + v (5.6)

with the measurement noise vector v = [v1 . . . vN]T with auto-correlation matrix

Rvv = σ2
vIN . Matrix S is formed by data symbols s, as S = [D0[s] . . .DL[s]], where

Dl[s] denotes a diagonal matrix with main diagonal as the l-sample delayed version



87

of vector s, i.e., vector s prefixed with l zeros. Matrix P is defined likewise in terms

of p. To calculate the channel capacity, (5.6) is rewritten as

y = Hss + v (5.7)

where Hs is the Ns ×Ns matrix of channel gains corresponding to data symbols in

the channel output equation [105].

The channel estimator calculates the optimal LMMSE estimate of g, denoted as ĝ,

based on the measurement in (5.6). The estimation uses estimates of the transmitted

symbols, calculated in the previous iteration of the receiver algorithm. At the first

iteration, data symbols are unknown and channel estimation is based solely on the

pilot symbols. At each iteration, the data symbol estimates s̄, fed back to the channel

estimator, are assumed to be contaminated with detection error u ∶= [u1 ... uN]T so

that s̄ = s − u or

u ∶= s − s̄. (5.8)

The detection error is zero mean and independent for each symbol with the variance

for each symbol’s error stored in vector Γ ∶= [γ1 ... γN]T . The detection variance for

pilot symbols is zero. The data symbol’s estimates are based on the extrinsic informa-

tion from the error correction code decoder which makes the detection error indepen-

dent for each sample if a long memory interleaver is used [92]. Extrinisic information

is obtained by subtracting the LLR input to the decoder from the intrinsic LLR of the

decoder output [29]. Extrinsic information feedback creates statistical independence

of channel estimation/data detection and decoder blocks’ extrinsic outputs, simpli-

fying the analysis of these systems [66]. The error of the channel estimation using

the feedback information is derived below. This error is then used to find bounds on

the EXIT curve of the detector. Equation (5.6) may be rewritten to consider symbol

uncertainty as

y = (S̄ +P)g + Ug + v, (5.9)

where S̄ = [D0[̄s ] . . .DL[̄s ]], and U = [D0[u] . . .DL[u]].

The channel gains for N samples and L + 1 propagation paths can be described

using a length Q (L + 1) vector h where Q << N using a CE-BEM [60], so that

h ∶= [h0(1) . . . h0(Q) h1(1) . . . h1(Q) . . . hL(1)

. . . hL(Q)]T , and g = Bh, where B ∶= IL+1⊗E and (E)ik = (1/
√
N)eωki for i =

1, ...,N ; k = 1, ...,Q when Q ≥ ⌈2fDN⌉, ωq ∶=
2π
N (q−(Q+1)/2) , q = 1, ...,Q correspond-
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ing to normalized frequency range of [−fD, fD]. We let Q = ⌊2fDN⌋ + 1. Defining

F ∶= (S̄ +P)B, the measurement equation (5.9) is then rewritten into a more useful

form for channel estimation as

y = Fh + Ug + v, (5.10)

As mentioned before, the detection errors are ideally independent and identically

distributed for the data symbols if a long interleaver and extrinsic feedback is used.

In practice, the analysis seems to give good predictions of system performance for an

interleaver length N > 10/fD. The vectors Fh and Ug are therefore uncorrelated; so,

Ug can be treated as noise for LMMSE estimation.

5.3 Bound on the Mean Square Error for Channel

Estimation

The estimate of the channel coefficients is denoted as ĥ so the channel coefficient error

is defined as h̃ ∶= ĥ−h. The autocorrelation matrix of h̃ when an LMMSE estimator

is used can be written as [90]

Rh̃h̃ = (FHG−1F +R−1
hh)

−1
(5.11)

where Rhh represents the autocorrelation matrix of h and

G ∶= cov(Ug + v) = E[UggHUH] + σ2
vIN . (5.12)

The channel estimation error is defined as g̃ ∶=g − ĝ = Bh̃. Since BHB=I, we have

tr{Rg̃g̃} = tr{Rh̃h̃}. Using (5.11), the mean squared error of the channel estimator

denoted by σ2
g̃g̃ is given by

σ2
g̃g̃ = (1/N)tr{(FHG−1F +R−1

hh)
−1}

=
1

N

Q(L+1)

∑
i=1

λ−1
i (FHG−1F +R−1

hh) (5.13)

An upper bound on σ2
g̃g̃ is found by using the Weyl’s inequality1 [20] to obtain

λi(FHG−1F+R−1
hh) ≥ λi (F

HG−1F)+λmin (R−1
hh) in (5.13). When Rhh = rI, λi (FHG−1F +R−1

hh) =

1For Hermitian matrices A and B, λmin(A +B) ≥ λmin(A) + λmin(B)
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λi (FHG−1F) + r−1.

The rest of this section relies on the following lemmas to present a derivation for

σ2
g̃g̃ containing the effect of detection error on channel estimation error.

5.3.1 Worst case scenario for channel estimation error

The following lemma describes the worst case scenario for channel estimation error

with purely pilot based estimation and serves as a basis to (A3).

Lemma 2. If data symbols are unknown, then the LMMSE channel estimator’s mean

squared error is maximized if all channel taps are uncorrelated with equal mean power

and the power spectral density of each tap is flat.

Proof. If no transmitted data symbols are known at the receiver, FHG−1F becomes a

scaled identity matrix as N →∞, then channel estimation variance approaches

σ2
g̃g̃ =

1

N
tr(

lp
σ2
v(ls + lp)

I +R−1
hh)

−1

=
1

N

Q(L+1)

∑
i=1

(
lp

σ2
v(ls + lp)

+ λ−1
i (Rhh))

−1

(5.14)

using λi(A + αI) = λi(A)+α,∀A. The sum of eigenvalues of Rhh is equal to the known

mean received power from the channel. Using the fixed received channel power, the

optimization of Lagrange multipliers is used to maximize (5.14) if

λi =
N

Q(L + 1)
=

1

2fD(L + 1)
∀i (5.15)

So, Rhh will be (1/2fD(L + 1))IQ(L+1). As Rgg = BRhhB
H and B is block diagonal,

then Rgg is block-diagonal also, implying that the channel taps are uncorrelated.

Lemma 3. The matrix G defined by (5.12) is diagonal with diagonal elements given

by

(G)ii = σ
2
v +

L

∑
l=0

Plγi−l for i = 1,2, ...,N. (5.16)

Proof. Consider the block form of the (L + 1)N × (L + 1)N matrix Rgg, given by

Rgg ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R0,0
gg ⋯ R0,L

gg

⋮ ⋮

RL,0
gg ⋯ RL,L

gg

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.17)
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Using the definition of U in (5.12) and applying the property E[ABAH] = E[A(E[B])AH]

for uncorrelated matrices A and B we have

G = E [
L

∑
l′=0

L

∑
l=0

Dl(u)Rl′,l
ggDl′(u)H] + σ2

vIN .

The entries of G may be expressed as

(G)i,j =
L

∑
l=0

L

∑
l′=0

(Rl′,l
gg )i,j E[ui−lu

∗
j−l′] + σ

2
vδij

Since the channel taps are assumed to be uncorrelated as per (A3), for l ≠ l′, Rl′,l
gg =

0 and thus, (G)i,j = σ2
vδij. For l = l′, as the detection errors are assumed to be

uncorrelated according to (A1), E[ui−lu∗j−l] = 0 when i ≠ j, leading to (G)i,j = 0. For

i = j,

(G)i,i = σ2
v +∑

l

Plγ(i − l)

This result completes the proof.

Lemma 4. The matrix FHG−1F approaches a scaled identity matrix, namely,

lim
N→∞

FHG−1F = βIQ(L+1), (5.18)

almost surely, where

β ∶=
1

ls + lp
(
lp
σ2
v

+
ls (1 − σ2

u)

σ2
v + σ

2
u

) . (5.19)

Proof. Matrix F in (6.3) can be treated as the sum of Fs ∶= SB and Fp ∶= PB. Using

Assumption (A2), data and non-zero pilot symbols are fully decoupled at the channel

output; that is, Fs
HFp = 0. Therefore, one can write

FHG−1F = Fs
H
G−1Fs +Fp

H
G−1Fp. (5.20)

The diagonal entries of matrix G in (5.16) are approximated as being σ2
v for pilot

symbols and σ2
v + σ

2
u for data symbols. The exact entries of the diagonal would have

lower values for the L data symbols following each pilot block. Increasing these values

makes the following error variance calculations slightly pessimistic with respect to the
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true noise variances. As a result,

Fp
H
G−1Fp ≈ lp/(ls + lp)σ

2
vI (5.21)

by noting that Fp
HFp = lp/(ls+ lp)I It should be noted that this approximation is not

an essential part of the method. One may hold on to the exact values and perform

the analysis accordingly. Also note that the off-diagonal elements of the matrix are

strictly zero. For LMMSE estimators and at fading rates of up to 1%, ls >> lp,

the approximation is excellent. . Now define Ms ∶= Fs
H
G−1Fs = (IL+1⊗EH)S̄HG−1

S̄(IL+1⊗E) organized as

Ms ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ms
0,0

⋯ Ms
0,L

⋮ ⋮

Ms
L,0

⋯ Ms
L,L

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.22)

where Ms
l,l′

= EHDHl (s̄)G−1Dl′(s̄)E. Since the diagonal elements of the diagonal ma-

trix G−1 corresponding to data symbols are approximated as (σ2
v +σ

2
u)

−1, the elements

of block Ms
l,l′ can be written as

(Ms
l,l′

)i,j =
1

N(σ2
v + σ

2
u)

N

∑
n=1

s̄∗n−ls̄n−l′e
−(ωi−ωj)n (5.23)

Kolmogorov’s strong law of large numbers (SLLN) 2 [82, p. 178] can be invoked to

find the limit of (Ml,l′)i,j as N →∞. Two case are considered.

Case 1: l = l′

When l = l′ and i ≠ j, the SLLN applies to the RHS of (5.23) to obtain

lim
N→∞

(Ms
l,l′

)i,j = lim
N→∞

1

N(σ2
v + σ

2
u)

N

∑
n=1

E [∣s̄n−l∣
2] e−(ωi−ωj)n for l = l′ (5.24)

almost surely. To show that the RHS of (5.24) equals zero, note that E [∣s̄n−l∣2] is equal

to 1−σ2
u for n corresponding to data symbols and equal to zero elsewhere. Therefore,

it is periodic with a fundamental period of T0 ∶= ls+ lp, so its frequency representation

only has non-zero components at frequencies which are integer multiples of 2π/T0.

On the other hand, the sampling theorem requires 1/T0 > 2fD = Q/N in order for the

2Let X1,X2, ... be independent RVs and an > 0 with an being unbounded as N → ∞. Then

a−1N ∑
N
i=1{Xi −E(Xi)}

a.s.
→ 0 provided that ∑

∞

i=1 Var(Xi)/a
2
i <∞
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channel to be identifiable at the first iteration when the channel is estimated using

only pilots. This requirement implies that max ∣ωi −ωj ∣ = 2πQ/N < 2π/T0; that is the

frequency component of the sequence E [∣s̄n−l∣2] at ωi−ωj for all i ≠ j is zero assuming

that N =mT0 for some large integer m. So limN→∞(Ms
l,l
)i,j = 0 for i ≠ j.

When l = l′ and i = j, the SLLN-induced Equation (5.24) becomes

lim
N→∞

(Ms
l,l′

)i,j = lim
N→∞

1

N(σ2
v + σ

2
u)

N

∑
n=1

E [∣s̄n−l∣
2] } (5.25)

To simplify (5.25), recall E [∣s̄n−l∣2] is equal to 1 − σ2
u for n corresponding to data

symbols and equal to zero elsewhere. The average in (5.25) simplifies to

lim
N→∞

(Ms
l,l)

i.i
= lim
N→∞

1

N(σ2
v + σ

2
u)

N

∑
n=1

∣s̄n−l∣
2 ≈

ls (1 − σ2
u)

(ls + lp)(σ2
v + σ

2
u)

(5.26)

Equations (5.21) and (5.26) give the diagonal entries of FHG−1F as specified by (5.19)

Case 2: l ≠ l′

To apply the SLLN theorem to this case, the summation in (5.23) is split up into

separate summations with each of the r summations containing only independent

terms as as follows

lim
N→∞

(Ms
l,l′
)i,j = lim

N→∞

1

N(σ2
v + σ

2
u)

( ∑
n=rm+1
m=0,1,⋯

dl,l
′

i−j(n) +⋯ + ∑
n=rm+r
m=0,1,⋯

dl,l
′

i−j(n)) (5.27)

where dl,l
′

i−j(n) ∶= s̄
∗
n−ls̄n−l′e

−(ωi−ωj)n, and r is selected such that r does not divide l− l′.

For example, if r = l− l′+1, each sub-summation involves independent RVs only. One

can verify that the premise of the theorem that ∑
n

Var(dl,l
′

i−j(n))/n
2 <∞ is also satisfied

for each sub-summation. Using the SLLN, the right hand side of (5.27) goes to zero

when l ≠ l′ because E[dl,l
′

i−j(n)] = 0 for all n.

5.3.2 Approximation to LMMSE estimation error

It will be shown that if the assumptions of Lemma 4 hold true, the LMMSE of a

multipath channel given by (5.13) is approximated as

σ2
g̃g̃ ≈

1

N

Q(L+1)

∑
i=1

(β + λ−1
i (Rhh))

−1
(5.28)
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with β as in (5.19).

To validate the approximation of (5.28), the eigenvalues of matrix Ms are calcu-

lated to be substituted in (5.13) (Recalling from (5.20) and (5.21) that FHG−1F =

Fs
H
G−1F + lp/(ls + lp)σ2

vI). The matrix M1 ∶= FHFG−1 has the same non-zero eigen-

values as Ms [20]. M1 is a random Wishart matrix for which analysis techniques

have been developed in recent theoretical work [40]. The matrix F has N rows and

Q (L + 1) columns but is completely determined by the N estimated symbol values.

So, F is not a Wishart matrix. This creates a high degree of dependency between

most entries of F which cannot be handled by current random matrix theory. Current

state-of-the-art theory with random Wishart matrices of the form ZHZ only deal with

cases where most entries of Z are independent of each other [40]. In particular, the

current theory requires that each of row of Z is independent which is not the case

with M1. This strong dependency of the rows prevents us from applying currently

known methods of random matrix theory to eigenvalue analysis for M1.

Although the exact distribution of the eigenvalues seems to be beyond the cur-

rent random matrix theory, Monte Carlo simulations show that the Marc̆enko-Pastur

law [40] for Wishart matrices and the Gamma distribution are excellent approxima-

tions as far as the computation of σ2
g̃g̃ is concerned. The gamma distribution describes

the distribution of the sums of exponentially distributed random variables. These dis-

tributions are compared in Fig. 5.2 when σ2
u = 0 (for known-data case), fD = 0.01 and

SNR=10 dB. The parameters of the Marc̆enko-Pastur law and the Gamma distribu-

tion are selected such that the mean is equal to β = 10 and the variance is equal to

Q(L + 1)/N . The Gamma distribution is a good match to the actual eigenvalue dis-

tributions. Fig. 5.3 illustrates the variance of the channel estimation error σ2
g̃g̃ against

various fD for N = 2× 105. The case of identical eigenvalues as the approximation we

made in this chapter is also shown. As expected, this latter corresponds to a lower

variance of estimation error. The cases of Marc̆enko-Pastur law and the Gamma dis-

tribution are indistinguishable in the figure for the fading rates of interest, and either

can be used to obtain an upper bound σ2
g̃g̃.

In the worst-case scenario for channel estimation error as outlined by Lemma 2,

the channel estimation LMMSE takes an even simpler form as follows.

Corollary 1. For channels with flat power spectral density, the LMMSE is given by

σ2
g̃g̃ ≈ (

β

2fD(L + 1)
+ 1)

−1

(5.29)
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Figure 5.2: Distribution of eigenvalues for known data symbols (σ2
u = 1); L = 2,
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Proof. Inserting λi from (5.15) into (5.28) and noting Q ≈ 2fDN , gives (5.29).

The relevance of the above result comes from the experimental observation that

for Rayleigh channels, (5.29) and (5.28) can be used interchangeably, even if the

eigenvalues of channel process are not equal.

5.4 A Lower Bound on Capacity

In this section, a lower bound on the channel capacity is calculated using (5.4). For

an iterative receiver with perfect CSI at the receiver, where independent extrinsic
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information is fed back to the equalizer, Eq. (5.2) gives the mutual information at the

equalizer’s output, IE. With imperfect channel knowledge, if the channel estimates

are assumed to be independent of the decision on data symbols as per (A1), the results

of [105] on the capacity with channel estimation error hold. The output equation is

rewritten as y = (S +P)Bĥ − (S +P)Bh̃ + v. The effective noise [16] is defined as

v′ ∶= −(S +P)Bh̃ + v. Now (5.2) turns into the following lower bound on IE [105].

Lemma 5. For Gaussian transmit vector s, if the channel estimates are assumed to

be independent of the decision on data symbols, then the mutual information at the

equalizer’s output is lower bounded by

IE ≥
1

N
E [log det (I +R−1

v′v′ĤsĤ
H
s )] bits/s/Hz (5.30)

where Rv′v′ is the covariance matrix of the effective noise and Ĥs denotes the LMMSE-

estimated channel matrix.

Note that it is assumed Rss = INs in (5.2) because no CSI is available at the

transmitter [150]. The covariance matrix of the effective noise is written as Rv′v′ =

E[(S +P)BRh̃h̃B
H(S +P)

H
] + σ2

vI. This matrix has a similar structure to matrix

FHG−1F discussed in the previous section with σ2
u = 0 and thus, can be approximated

as a scaled diagonal matrix Rv′v′ ∶= (σ2
g̃g̃ +σ

2
v)I as N →∞ using the similar argument

and (5.11). Because for the LMMSE estimator of g one has σ2
ĝĝ = 1−σ2

g̃g̃, the effective

SNR for capacity calculation is obtained as ρeff = (1− σ2
g̃g̃)/(σ

2
g̃g̃ + σ

2
v). So, the SNR is

reduced by two different factors: an increase in effective channel noise and a reduction

in the variance of the channel gains [16]. Using the effective SNR and following the

approach of [16, 36], the lower bound on IE described by (5.30) can be written as

IE ≥
Ns

N2

Ns

∑
i=1

E [log(1 +
(1 − σ2

g̃g̃)

σ2
g̃g̃ + σ

2
v

λi (HsH
H
s ))]bits/s/Hz (5.31)

whereNs = lsN/(ls+lp) is the number of data symbols for the pilot scheme of [105], and

the scale factor Ns/N accounts for the throughput loss due to pilots. Equation (5.31)

takes into account the effect of detection error in the previous iteration when σ2
g̃g̃ is

given as in (5.28), and is used to analyze the turbo receiver performance using (5.4).

At low SNR’s, the effective noise v′ is almost Gaussian, and the bound in (5.31)

is tight [3, 71, 164]. At high SNR’s, as in [3], one may reasonably assume that (5.31)

presents a tight lower bound, since the likelihood that an error in channel estimation
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will improve the error performance is very slim.

In a turbo receiver, data symbols are detected based on the estimated channel.

Then an error correction decoder is used to reduce error in the data symbols. Refined

estimates of data symbols are fed back to the channel estimator to further gener-

ate more accurate channel estimates, which in turn contribute to improve symbol

detection. As the receiver iterates, more accurate data symbols are available to the

channel estimator. At the final stage when the receiver converges, the channel esti-

mation is performed with almost all data symbols being perfectly known. Therefore,

the “known data” performance of channel estimator determines the actual channel

capacity for the final iterations of the receiver.

The EXIT chart method of [29,66] combines the EXIT curve of the decoder with

the bound on the EXIT curve of the channel estimator and detector to find the full

capacity, IE, of the iterative receiver. The mutual information from the decoder’s

feedback is given by ID = I (s, s̄) where I (s, s̄) is the mutual information between

the true data symbols and the estimated data symbols. ID is expressed in terms of

the error variance of the estimated data symbols σ2
u. As E[∣s∣2] = 1, we have

ID ∶= I(s̄; s) = H(s) −H(s∣s̄) = log(1/σ2
u) (5.32)

where σ2
u ∈ [0,1] using that s and s̄ are jointly Gaussian [41]. Supposing that all other

parameters are fixed, the detector’s mutual information as given by (5.31) is a function

of σ2
g̃g̃, which is in turn a function of σ2

u through (5.28) and (5.19). Equation (5.32)

gives σ2
u as a function of ID. Therefore, IE, the mutual information at the output of

the symbol detector, is a function of ID. At each iteration, the error correction code

uses the output of the symbol detector to perform soft decoding and recompute the

extrinsic information to be fed back to the channel estimator and symbol detection

systems for the next round. This function of the decoder is represented by the code

curve in the EXIT plot, whereas the detector function is depicted with the detector

curve. The latter takes ID as input and outputs detector’s extrinsic information,

denoted with IE in (5.31). As one block’s output is the other’s input, the curves

can be plotted in the same diagram with an axis swap. The exchange of mutual

information between the detector and the decoder is shown by a trajectory bouncing

back and forth between the two curves. The information exchange continues until

the system converges to the state where the detector and code EXIT curves intersect.

The convergence state of the decoder’s mutual information is the actual capacity of
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the system, and evidently, depends on the performance of both blocks. The area

under the detector’s EXIT curve is proportional to the capacity of the system; a

higher EXIT curve indicates the system has higher capacity [69]. Prior literature on

detector EXIT curves are normalized for mutual information in the range [0,1]. To

convert the EXIT curves derived in this chapter to these curves, scale the ID and

IE values by B = log2M where M is the order of modulation used after clipping the

curves for ID > B and IE > B.

5.5 Finite Order Modulation

This section considers the case of channel capacity when symbols are selected from a

finite constellation χ = {ζ1, ζ2, ..., ζM} of size ∣χ∣ =M . Reference [23] derives a formula

for the capacity of a non-fading AWGN channel when inputs selected from a finite

order constellation. This formula is extended to doubly selective channels below.

Consider a transmit block of N symbols, s ∈ χs, where ∣χs∣ = NM . As in [23],

it is assumed that all data symbols have equal probability P (s = sj) = N−M for sj ∈

χs. Under this assumption, the channel capacity with finite order modulation as

a function of SNR, denoted with IEf
(SNR), is obtained by averaging over channel

realizations Hs as

IEf
(SNR) =

1

N
E{I(y; s∣Hs)} bits/s/Hz (5.33)

where

I(y; s∣Hs) = H(y∣Hs) −H(y∣s,Hs) (5.34)

The conditional random vector y given s and Hs is Gaussian with mean Hss and

covariance σ2
vIN . Using this fact and the properties of entropy, the channel capacity

given the channel condition is given as

I(y; s∣Hs) = −N log(πeσ2
v) − ∑

sj∈χs

N−M
∫

y∈Y

[p(y∣sj,Hs)

× log ∑
sk∈χs

N−Mp(y∣sk,Hs)]dy (5.35)

Note that p(y∣sj,Hs) = (πσ2
v)

−N exp(−(y −Hssj)
H (y −Hssj)/σ

2
v). The value of (5.35)

can be computed using Monte Carlo techniques.
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For estimated channels, Eq. (5.33) replaces Eq. (5.31) with Ĥs =
√

1 − σ2
g̃g̃Hs

replacing Hs in (5.33). The effective noise has a variance of E[∣sg̃ + v∣2] = σ2
g̃g̃ + σ

2
v .

Assuming that detection error u is Gaussian and noting that E∣ŝ∣2 = 1−σ2
u, Eq (5.32)

is rewritten in the finite modulation case as

ID = IEf
((1 − σ2

u)/σ
2
u) (5.36)

where function IEf
(⋅) is defined in (5.33).

5.6 Numerical Results

In this section, we first consider the case of Gaussian distributed symbols. A doubly

selective Rayleigh model with three equal power taps (delay L = 2 samples) char-

acterizes the radio channel. The time-variant channel impulse response g(n; l) for

tap l; l = 0,⋯, L is an independent complex Gaussian process with zero-mean and

variance Pl = 1/(L + 1), independent from other taps impulse responses, and is gen-

erated using the method of [175]. The lower bound on detector’s mutual information

as given by (5.31) is computed through Monte Carlo simulations with 500 trials per

experiment. The mean power of data symbols was taken to be P̄s = 1. For the worst-

case scenarios, (5.29) and (5.19) are used to compute σ2
g̃g̃. For the case of Rayleigh

channel, (5.28) and (5.19) are used to evaluate σ2
g̃g̃. The default setting for most of the

simulations is ls = 20, lp = 5, fD = 0.01. The normalized Doppler frequency of fD = 0.01

corresponds to a sampling interval of Ts = 25µs and a Doppler spread fd = 400Hz,

which matches a fading process for a radio signal with a carrier frequency of 2GHz,

to communicate with a vehicle moving at 216 km/h. The mutual information gener-

ated by the decoder ID is computed using (5.32), where σ2
u is varied in the interval

[10−4,1]. In the capacity calculations for finite order modulations, the pilot overhead

is taken into account by multiplying IEf
in (5.33) by ls/(ls + lp).

Fig. 5.4 shows the effect of pilot rate on capacity when lp = 5 and ls is varied. As ls

increases, the capacity with pilot based estimation (the value of the curves for ID = 0)

eventually hits a maximum value for ls = 30 after which it decreases. The starting

point is important to the convergence of the iterative receiver [29]. One may use

this plot to find the minimum pilot rate corresponding to the highest capacity. This

plot also shows how fast the receiver would converge to the final state of maximum

mutual information at the right, and what the capacity gain of iterative estimation
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and decoding would be.

As mentioned earlier, the attainable capacity is equal to the average value of the

detector curve IE(ID). For any detector curve, the non-iterative capacity is simply

the level of IE for ID = 0, the curve’s starting point. Fig. 5.5 depicts the effect

of the normalized Doppler frequency, fD, on the capacity gain at SNR=7dB. This

figure shows that with higher Doppler frequency, the more capacity gain that iterative

channel estimation provides. Iterative detection provides only a minor improvement

for fD = 0.005 but is significant for fD = 0.02. This shows that iterative channel

estimation for slower fading channels offers little extra capacity over purely pilot-

based channel estimation if optimal LMMSE channel estimation is used.

The SNR penalty at a given BER is defined by η ∶= (Eb/N0)1 − (Eb/N0)2, where

(Eb/N0)1 and (Eb/N0)2 represent the SNR required to achieve the BER by using

iterative and non-iterative estimation, respectively. The SNR penalty η of using a

purely pilot-based channel estimation is illustrated in Fig. 5.6 for various data to

pilot ratio ls/lp. Here, a 64-QAM receiver with a target BER of 10−7 is considered. In

Fig. 5.6 we set (Eb/N0)1 = 13dB. The data depicted in this figure clearly validate the

analytical results presented by this chapter, and are in accordance with the intuition

that the iterative estimation is more beneficial with lower pilot ratios.

In Fig. 5.7, a comparison between the theoretical capacity lower bound as ob-

tained in this chapter for ID → ∞, and that of a simulated turbo-receiver under

different modulation schemes has been made. The channel was estimated with a CE-

BEM based Kalman filter using Q = 15. The term “Gaussian” in the legends denote

Gaussian distributed data symbols, as opposed to the finite constellations of 4-QAM,

16-QAM and 64-QAM with a rate 1/2 convolution error correction code [120]. Leg-

ends “Known-data C.E” and “Pilot-based C.E.” refer to the cases when the channel is

estimated based on either known data symbols or only pilots symbols at the receiver.

Legend “Perfect CSI” refers to the capacity of a receiver with perfect channel state

information (CSI). These results show that optimal LMMSE pilot-based estimation

can achieve almost the same capacity as presented iterative receivers. Simulations

for finite-order modulation were performed by using (5.29) to calculate σ2
g̃g̃. Monte

Carlo method was used to evaluate the detector’s mutual information using (5.33).

For estimated channel, Ĥs = (1−σ2
g̃g̃)Hs replaced Hs in (5.33) and the effective noise

power was modified to σ2
g̃g̃ + σ

2
v (as in [105]). Eq. (5.36) was used to calculate ID in

the case of finite order modulation. The widening gap between the capacity of Gaus-

sian transmission and that of the finite-order modulations as SNR increases is due to
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the suboptimality of the modulation and code used in the simulations and has been

reported in the previous work [143]. Conventional coded modulation schemes allocate

the same amount of parity bits to different modulation levels, ignoring the fact that

less significant bits of modulated symbols need more error protection whereas more

significant bits need less [165]. This non-optimal use of the parity bits leads to an

SNR loss. By contrast, more efficient coding schemes such as multi-level codes make

better use of channel capacity at higher SNRs.

Fig. 5.8 illustrates the capacity of an iteratively-estimated single-tap fading chan-

nel at SNR=7dB, when finite constellations are used, lp = 1 and ls = 20. The capacity

of Gaussian transmission is also shown. In this figure, IE denotes the mutual informa-

tion at the output of the detector as given by (5.33). The capacity of an independent

identically distributed (i.i.d.) flat fading channel was obtained by setting N = 1

in (5.33). The functional curve of a nonsystematic convolutional code of rate 1/2

with an octal generator of (133,171) for the 4-QAM modulation is also shown. The

interchange of mutual information between the decoder and the detector is repre-

sented by a typical trajectory. Note that in this figure, the code curve for modulation

of order M spans the range [0 log2M] bits on both axes; an inverse scaling factor

of Rmax = log2M must be applied to convert to the ID ∈ [0,Rmax] and C ∈ [0,Rmax]

region of the capacity graphs to obtain the standard EXIT charts used in much of

the prior literature.

This type of plot can be used to select a code for the given modulation scheme.

The code should be selected so that a tunnel between the detector and decoder curves

to the low BER region of the exit chart (ID = 1) exists. After plotting the detector

curves, one for example can verify that while the code rate 1/2 would work for a

4-QAM at SNR=7dB, a code rate of 1/4 with generator (117,127,155,171) should be

used for 16-QAM at this SNR, but this code would waste a great deal of capacity

as indicated by the large area between the detector and code curves. It can also be

seen that iterative estimation benefits a Gaussian transmission roughly as much as

it does a sufficiently high order modulation. Also, for higher order modulations, the

capacity is close to the Gaussian case. This suggests that the results obtained in a

previous section for Gaussian symbols can be extended to finite order modulation,

provided that, for the given SNR, the order of modulation is large enough so that the

finite-order modulation performs close to the Gaussian transmission.
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Figure 5.5: Lower bound on capacity under various fading rates, for SNR=7dB,
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5.7 More bandwidth efficient pilot schemes

The operating SNR of the system can be traded for bandwidth efficiency if the pilot

segments are concentrated in the beginning of the block [87], where each pilot segment

is comprised of an impulse followed by L zeros. At lower SNRs, this technique calls for

a short block length, in which case the resulting truncation error of basis expansion

modeling can no longer be ignored. In this section, a somewhat more general form of
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the pilot scheme of [87] is considered. Given positive integers N , ls and M , we define

the pilot segment as p0 ∶= [0L p 0L ⋯ p 0L] of length Npb ∶= L+M(L+1). After each

pilot segment p0 are Mls data symbols. The arrangement for M = 1 corresponds to

the pilot symbol regime of [105]. The pilot power is fixed at Pp ∶= (2L+1)/(2L+1+ls),

and data power as Pd ∶= 1−Pp. This power allocation gives a mean power of unity to

both pilots and data symbols when M = 1 and is a common practice [92,101,120,157].

The performance of the iterative receiver with different pilot arrangements for
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N = 1000 is shown in Fig. 5.9. The “Lumped pilots” line refers to a system using

the scheme from [87] where a pilot block for M = ⌈(N − L)/(ls + L + 1)⌉ = 44 is

used to estimate a channel block for a block of length N samples. Larger values

of M give poor mutual information results for ID = 0, so these configurations will

give a poor performance with non-iterative receivers. The capacity with iterative

detection/decoding depends on the area under the whole detector curve so higher

values of M may give better performance overall. As M is reduced, the initial channel

estimate error is improved, making the capacity for ID = 0 higher, but lowering the

capacity as ID → ∞ as the pilot signals consume more of the transmitted signal

samples. For large M , the convergence of the receiver becomes an issue. If the

receiver is able to converge, these results show that iterative processing for M > 1

offers higher capacity gain compared to the case M = 1.

5.8 Summary

The capacity advantage of an iterative receiver over a non-iterative channel estimator

was evaluated. By taking the uncertainty in decoded data bits into account, the chan-

nel estimation LMMSE of an iterative receiver with a given pilot ratio was obtained.

The LMMSE was then used to derive a bound on capacity. The simulations results
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are consistent with theory and can aid with system design.
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Chapter 6

Secret Key Generation

6.1 Secret Key Generation In Vehicular Wireless

Networks

Wireless channels are intrinsically prone to unauthorized access and confidentiality

attacks. Securing the communication channel is vital in controlling the risks posed

by malicious acts in mobile networking. A solution to ensure data security uses the

characteristics of the communication channel to generate secret keys, known only to

the legitimate communicating parties. The secret keys can then be used to encrypt

the message. Using the channel to produce secret keys requires that the channel gains

be estimated. The rate of the secret key generated in this way, i.e, the key capacity is

determined by the estimation accuracy as well as the fading rate. The high accuracy

methods proposed in the previous chapters can be employed to generate the secret

keys at reasonable cost.

Upper bounds on the secret key capacity of estimated wireless channels is the

subject of discussion in this chapter. These bounds have not been studied in prior

art for realistic communication scenarios where the channel measurements at the two

ends may not be simultaneous. In this research, we investigate upper bounds on the

secret key capacity of doubly-selective channels assuming a practical IEEE 802.11

wireless network with full-duplex and half-duplex transmission modes. In the next

section, the impact of channel estimation error on the performance of a key generation

scheme is delineated.
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6.1.1 Channel Estimation Error

The iterative approach to radio channel estimation exploits the detected data symbols

to enhance the accuracy beyond the reach of purely pilot based systems. We proposed

low complexity high accuracy channel estimators for fast-fading channels in iterative

receivers in SISO and MIMO systems [112, 120]. The performance of the proposed

estimator was close to that of a Wiener estimator, which is the optimal in the LMMSE

sense. To start studying the theoretical aspects of key generation in iterative receivers,

we consider the case where a Wiener filter is used to estimate the channel gains. The

results will serve as a baseline to compare the performance of non-optimal estimators.

Wiener Estimator of Channel Gains

To take the full advantage of channel estimation in key generation, we assume that a

Wiener filter is used by the receiver to estimate the channel gains. A Wiener filter is

an LMMSE estimator, which for Gaussian RVs, is also the MMSE estimator. In this

section, the error of an LMMSE estimator is calculated.

An L + 1-tap Rayleigh fast-fading channel with a normalized Doppler frequency

of fD is considered. A block of N i.i.d. symbols, s = [s0 s1 . . . sN−1]
T with zero mean

and unit variance are input into the channel. The symbols are assumed to be known at

the iterative receiver, after sufficient rounds of channel estimation and data detection.

The corresponding channel gains are represented by g ∶= [g(0; 0) g(1; 0) . . . g(N −

1; 0) . . . g(0;L) g(1;L) . . . g(N − 1;L)]T . The output of the channel is contaminated

with additive noise v = [v0 v1 . . . vN−1]
T , with correlation Rvv = σ2

vIN .

The channel gains are expressed as

g = Bh (6.1)

where B = IL+1⊗E for some matrix E, is an N(L+ 1)×Q(L+ 1) non-singular trans-

formation matrix and h is the Q×1 vector to be estimated. In case of CE-BEM, B is

simply comprised of complex exponentials, with Q ≥ 2fDN . If Q < N , the CE-BEM

representation is only an approximate one [129].

Define

S = [diag (D0[s]) diag (D1[s]) . . .diag (DL[s])], (6.2)

where Dl[s] denotes an l-sample delayed version of vector s, i.e., vector s prefixed
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with l zeros. The channel output is given by

y = Fh + v, (6.3)

where

F ∶= SB

= {Fll′,ik = si−l′−1Eik

for l = 1, l′ = 1,2, ..., L + 1, i = 1,2, ...,N ; k = 1,2, ...,Q;}

in which Eik refers to the elements of E, and dummy symbols s−1 = s−2 = ... = 0 are

used to simplify the formulation. The Wiener estimator for (6.3) is expressed in terms

of cross-covariance and auto-covariance matrices as ĥ = CH
yhC−1

yyy [47,76]. Using (6.3)

we obtain that

ĥ = RhhFH (FRhhFH + σ2
vIN)

−1
y (6.4)

The estimation error for ĥ is defined as ε ∶= ĥ−h. Its covariance matrix is computed

as

Rεε = Rhh −RhhFH (FRhhFH + σ2
vIN)

−1
FRhh (6.5)

where we used identities Rhy = RH
yh = RhhFH and Ryy = FRhhFH + σ2

vIN . Using the

Searle’s identity for matrix inversion1, after some manipulations, (6.5) can be written

as

Rεε = σ2
vRhh (FHFRhh + σ

2
vI(L+1)N)

−1

= σ2
v (F

HF + σ2
vR

−1
hh)

−1

= (
1

σ2
v

FHF +R−1
hh)

−1

(6.6)

Least-squares Estimator

Assuming si ≠ 0 for i = 1,2, . . .N , F and FHF are full-rank and the LS estimator is

given by

ĥ = (FHF)
−1

FHy (6.7)

1(AB + I)−1A =A(BA + I)−1
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The correlation of the estimation error ε ∶= ĥ − h is obtained as

Rεε = σ
2
v(F

HF)−1. (6.8)

An expression for the correlation of the gain estimation error is obtained as Ree =

σ2
vB(F

HF)−1BH .

From (6.6), (5.18), and (6.8), when the CE-BEM coefficients are uncorrelated, the

estimation errors are uncorrelated also. This important conclusion will be used to

compute the key capacity of a multiple path channel.

Secret key generation from fast-fading channels has to consider the effect of time-

division duplexing (TDD) on the correlation between the gains estimated by Alice

and Bob. Also, the existing estimators need to be modified to be compatible with

TDD. The design is then optimized based on the criteria given in the previous section.

To put the problem into a context, consider an IEEE802.11p mobile system in which

Alice and Bob estimate a fading Rayleigh channel. At a speed of 100 km/h, a carrier

frequency of fc = 5.9 GHz, a sampling rate of fs = 10 MHz, a symbol duration of

Ts = 10−7 sec [139], the normalized Doppler frequency is fD = fdTs = vfcTs/c ≈ 0.00005,

where c is the speed of light. In order for Alice and Bob to be able to obtain the

same channel estimate sequence in a TDD transmission of period Td, one needs to

have Td < 1/2fd = Ts/2fD = 104Ts according to the sampling theorem. Therefore, the

frame length has to be < 10000/2 = 5000 symbols. The typical frame of IEEE 802.11p

consists of about 5000 bits [58, p. 181] or 5000/ logM symbols, where M denotes

the modulation order. An M -QAM modulation with M = 4 or higher will provide a

frame length of less than 5000/2 = 2500 < 5000 symbols. For lower order modulation,

the channel gains cannot be perfectly recovered from the samples, but there still

exist a correlation between the Alice’s and Bob’s measurements. Here, a relationship

between the key rate and the fading rate as well as the estimation accuracy may be

sought. When the fading rate increases, the channel gain samples de-correlate faster

over time. Therefore, the entropy of the samples per second is higher, which leads to

higher key rates. At the same time however, the correlation between the Alice and

Bob’s observations is reduced assuming the frame rate is fixed. Moreover, the more

accurate channel estimation corresponds to a higher correlation between the gain

estimates obtained by Alice and Bob, resulting in more mutual information between

Alice and Bob and, thus, more key capacity.

In the next section, we will study key generation in iterative receivers. Iterative
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estimation can significantly reduce the error, hence enable higher key rates, compared

to the present techniques.

6.1.2 Secret Key Capacity of Iterative Receivers: Full-duplex

Transmission

In this section, we give a closer look at the capabilities of a doubly-selective fast-fading

multipath channel as a source of common randomness for legitimate users. We study

the case where Alice and Bob estimate the same channel gains, g(n), contaminated

by their estimation errors εA(n) and εB(n), respectively, while an eavesdropper being

kept sufficiently away from them, will experience an almost independent channel if the

channel’s propagation effects are random and unpredictable [106]. This independence

condition only holds for the fast fading portion of the channel impulse response.

Shadow fading and the deterministic path losses and portions of the channel response

which can be predicted from ray-tracing are not suitable sources of key bits and must

be excluded when secret key generation is performed. The case of non-simultaneous

channel measurements will be studied in a following section. The estimation error for

either party is assumed to be a sequence of Gaussian RVs of zero mean and variance

σ2
ε , with a PSD Sεε(f) = σ2

ε/(2fD) over [−fD, fD], where fD ∈ [0,0.5] denotes the

normalized Doppler frequency. The channel gain process follows the Jake’s model

where the PSD of g(n) is Sgg(f) = P /(π
√
f 2
D − f

2), ∣f ∣ < fD, with P representing the

power of a channel tap.

Channel gain estimates are generally correlated over time. Secret key bits derived

from correlated RVs would not be independent. Before the estimated channel gains

are used to generate a key, a whitening procedure is in order, to produce a set of

uncorrelated RVs.

The input to the whitening module of Fig. 6.1 is qA(n) = g(n) + εA(n) for Alice,

and qB(n) = g(n) + εB(n) for Bob. In the frequency domain, the whitening process

is equivalent to first, passing the channel estimates through a low-pass filter with

a frequency response of W (f) = 1/
√
Sgg(f)/P =

√

π
√
f 2
D − f

2, ∣f ∣ < fD, and then,

downsampling with a rate of 1/2fD in the time domain, as shown in Fig. 6.2. This

procedure results in a flat power spectrum over all the frequency range for whitened

g(n), implying independence for jointly Gaussian RVs.

Whitening is parallel to the orthogonal decomposition of [173] and enables the use

of the key generation method described therein. It is inspired by the method used
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Figure 6.1: Signal model

by [175] to generate simulated Rayleigh channel fading sequence from i.i.d. RVs.

It also makes key distillation easier as the key bits obtained from different samples

would be independent.

Figure 6.2: Equivalent whitening process

An upper bound on secret key rate for a single-tap channel is the mutual infor-

mation I(qA(n); qB(n)) between Alice’s and Bob’s measurements [5, 111]. For the

case of jointly Gaussian RVs and stationary channel, the mutual information is given

by [13]

I(qA; qB) = −

fD

∫

−fD

log2 [1 −
∣SAB(f)∣2

SAA(f)SBB(f)
]df (6.9)

where SAA(f) and SBB(f) denote the PSD of qA and qB, respectively, and SAB(f)

represents the cross spectral density of qA and qB. Assuming that the estimation errors

εA(n) and εB(n) for Alice and Bob are uncorrelated, SAB(f) = Sgg(f) = P /∣W (f)∣2.

Inserting SAB(f) and SAA(f) = SBB(f) = P /∣W (f)∣2 + σ2
ε/(2fD) into (6.9), we have

I(qA; qB) = −∫
fD

−fD
log2

⎛

⎝
1 − (

P

P + [σ2
ε/(2fD)]∣W (f)∣2

)

2
⎞

⎠
df (6.10)

For a channel with flat PSD, ∣W (f)∣2 = 2fD and (6.10) simplifies to

I(qA; qB) ≈ −2fDlog2

⎛

⎝
1 − (

P

P + σ2
ε

)

2
⎞

⎠
(6.11)

Eq. (6.10) will be generalized to multipath channels in the next section.
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Key Capacity of Multiple Path Channels

The key capacity of multiple path channel is simply the addition of the secret key

generation capacity of each path, assuming that different channel paths are inde-

pendent. To simplify the derivation, let the channel power spectrum have a uniform

distribution over [−fD, fD]. Let Pl, l = 0, . . . , L denote the mean power of path l where

∑l Pl = 1. Using (6.11), the key capacity (bits per second per Hertz) is obtained as

Ck = −
L

∑
l=0

2fDlog2

⎛

⎝
1 − (

Pl
Pl + σ2

ε,l

)

2
⎞

⎠
(6.12)

with σ2
ε,l denoting the variance of estimation error for path l. When the PSD is

uniform, an intuitive closed form expression for the key capacity can be obtained. In

this case Rhh = (2fD(L + 1))
−1

IQ(L+1). Assuming equi-power channel taps, using (6.6)

and noting that FHF ≈ I, one may write

Rεε = (
1

σ2
v

+ 2fD(L + 1))

−1

IQ(L+1) (6.13)

In addition, the estimation errors for different paths are identical, i.e.,

σ2
ε,0 = ⋯ = σ2

ε,L = σ
2
ε =

Q

N
(

1

σ2
v

+ 2fD(L + 1))

−1

= 2fD (
1

σ2
v

+ 2fD(L + 1))

−1

(6.14)

Inserting (6.14) into (6.12) and noting that 2fD(L+1)σ2
v << 1 for the cases of interest

here (when fD ≤ 0.01), we have that

Ck ≈ −2(L + 1)fD log2 (4fD(L + 1)σ2
v) (6.15)

When fD is fixed, Ck approximates a linear function of SNR (dB), the slope of which

is determined by fD.

6.1.3 Secret Key Capacity of Iterative Receivers: Time-division

Duplexing

Consider a time-division-duplexing (TDD) radio link, through which Alice and Bob

take turns sending subblocks of length N symbols to each other. Further, suppose

that K subblocks are transmitted by each party. For simplicity of explanation, let
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K = 1. The results can easily be extended to K > 1. We only consider a single tap

channel here. The results are easily extended to the multipath case by adding the

key capacities of different channel paths when they are assumed to be independent.

Define yA ∶= [yA(1)...yA(N)]T and yB ∶= [yB(N+1)...yB(2N)]T as the received signals

by Alice and Bob, respectively. We have

yA = SAgA + vA (6.16)

yB = SBgB + vB (6.17)

where gA ∶= [g(1)...g(N)]T and gB ∶= [g(N + 1)...g(2N)]T denote the (common)

channel gains as seen by Alice and Bob respectively. Matrix SA represents a diagonal

N × N matrix with the symbols sent by Bob on diagonal. For Alice, vector vA

is the Gaussian i.i.d. noise, independent from vB. Define the covariance matrices

Rg
AA ∶= E[gAgHA ] = Rg

BB ∶= E[gBgHB ] and Rg
AB ∶= E[gAgHB ].

To avoid ill-conditioned matrices, the singular value decomposition (SVD) is used

as Rg
AB = UASUB where UA and UB are unitary matrices and S is a diagonal

matrix. Define EA ∶= UA(∶,1 ∶ Q) and EB ∶= UB(∶,1 ∶ Q) where Q ∶= ⌈2fDN⌉ + 1. Let

hA ∶= EH
AgA, hB ∶= EH

BgB. So,

Rh
AA ∶= E[hAhHA ] = EH

ARg
AAEA (6.18)

Rh
BB ∶= E[hBhHB ] = EH

BRg
BBEB (6.19)

Rh
AB ∶= E[hAhHB ] = EH

ARg
ABEB (6.20)

Assuming identical noise variances of σ2
v for both users, and defining FA ∶= SAE,

one may write the LMMSE estimator of hA as

ĥA = (IQ + σ
2
vR

h
AA

−1
)
−1

FH
AyA (6.21)

= (IQ + σ
2
vR

h
AA

−1
)
−1

FH
A (FAhA + vA) (6.22)

= (IQ + σ
2
vR

h
AA

−1
)
−1

(hA +FH
AvA) (6.23)

where (6.22) follows from FH
AFA ≈ IQ (in Lemma 4 set σ2

u = 0 so that β = 1 and

G = I). Similarly,

ĥB = (IQ + σ
2
vR

h
BB

−1
)
−1

(hB +FH
BvB) (6.24)
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The secret key capacity per channel symbol may be expressed in terms of the mutual

information between ĥA and ĥB as [134]

Ck =
1

2N
I(ĥA; ĥB) =

1

2N
log2

det{Rĥ
AA}det{Rĥ

BB}

det{Rĥ
AB,AB}

(6.25)

where

Rĥ
AA ∶= E[ĥAĥHA ] = MARh

AAMH
A + σ2

vMAMH
A (6.26)

Rĥ
BB ∶= E[ĥBĥHB ] = MBRh

BBMH
B + σ2

vMBMH
B (6.27)

Rĥ
AB ∶= E[ĥAĥHB ] = MARh

ABMH
B (6.28)

MA ∶= (IQ + σ
2
vR

h
AA

−1
)
−1

(6.29)

MB ∶= (IQ + σ
2
vR

h
BB

−1
)
−1

(6.30)

Rĥ
AB,AB ∶=

⎡
⎢
⎢
⎢
⎢
⎣

Rĥ
AA Rĥ

AB

(Rĥ
AB)

H Rĥ
BB

⎤
⎥
⎥
⎥
⎥
⎦

(6.31)

6.1.4 Analysis of Long Measurement Blocks

In practice, transmission over continuous-fading channels encompasses many sym-

bol blocks. Unfortunately, calculation of the secret key capacity using the method

described in the previous section involves matrices of large dimensions, handling of

which is a burden. In this section, the special structure of the covariance matrices

is exploited to extend the results of the previous section to the case where Alice and

Bob perform TDD transmission over a long period of time, i.e., K →∞. To simplify

the analysis, let SA = SB = I in (6.16). A sequence of K measurements by each party

is considered. Define YAB ∶= [(y1
A)

T (y1
B)

T⋯(yKA )T (yKB )T ]T , YA ∶= [(y1
A)

T⋯(yKA )T ]T

and YB ∶= [(y1
B)

T⋯(yKB )T ]T , where ykA ∶= [yA((k − 1)NC + 1)⋯yA((k − 1)NC +N)]T ,

ykB ∶= [yB((k − 1)NC +N + 1)⋯yB(kNC)]
T and NC ∶= 2N .

Note that yA(n) = ĝA(n) = gA(n) + vA(n) and yB(n) = ĝB(n) = gB(n) + vB(n).

Using a BEM representation, ykA and ykB can be replaced with xkA = EHykA and xkB =

EHykB. Now define XAB ∶= [x1
A x1

B⋯xKA xKB ]T , XA ∶= [x1
A⋯xKA ]T and XB ∶= [x1

B⋯xKB ]T .

The secret key capacity for infinitely long TDD transmission is defined as

C∞
k ∶= lim

K→∞

1

KNC

I(XA;XB) = lim
K→∞

1

KNC

log2

det{RX
AA}det{RX

BB}

det{RX
AB,AB}

(6.32)
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where the covariance matrices are defined similar to (6.26). Since the channel gain

process and the noise process are wide sense stationary, these matrices are block

Toeplitz given as below.

RX
AA ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0 A1 . . . AK−1

AH1 A0 . . . AK−2

⋮ ⋮ ⋱ ⋮

AHK−1 AHK−2 . . . A0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.33)

RX
BB is similarly defined.

RX
AB,AB ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0 C0 . . . AK−1 CK−1

CH
0 A0 . . . CK−2 AK−1

⋮ ⋮ ⋱ ⋮ ⋮

CH
K−1 AHK−1 . . . CH

0 A0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.34)

where

Ai = Bi ∶= E[xkA(x
k+i
A )H] = EHJAi E + σ2

vδiI (6.35)

Ci ∶= E[xkA(x
k+i
B )H] = EHJCi E (6.36)

where δi denotes the Kronecker delta function, (JAi )m,n ∶= J0(2πfD∣NCi + n − m∣),

(JCi )m,n ∶= J0(2πfD∣NCi +N + n −m∣), and A−k = AHk .

Algorithm 5 is used to compute the logarithm of the determinants in (6.32). This

algorithm is based on the Whittle recursion for the inversion of large Block-Toeplitz

matrices [108, 146]. To compute det{RX
AA} and det{RX

BB}, the matrices Ai and Bi

are fed to the algorithm for i = 0,⋯,K − 1. To compute det{RX
AB,AB}, the matrices

A0,C0,A1,C1,⋯,AK−1,CK−1 are input into the algorithm. To calculate C∞
k , the limit

as K → ∞ is needed. Fortunately, the prediction error covariances P̃ approach a

steady-state value as K → ∞ for the above inputs. Therefore, one only needs to

continue the computations up to the value of K where P̃ converges to its asymptotic

value.
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Algorithm 5 Block-Toeplitz Matrix Determinant Calculation
Inputs:

• Block matrices Ak for k = 0,⋯,K − 1

Output:

• Logarithm of determinant of matrix: LogDet

Working variables:

• Prediction error covariances: P and P̃

• Prediction matrix coefficients: Dm and D̃m for m = 1,⋯,K − 1

• Prediction matrix coefficients for previous iteration: Cm and C̃m for m =

1,⋯,K − 1

1: LogDet ← 0

2: P ← A0

3: P̃ ← A0

4: for k = 1,2, . . . ,K − 1 do

5: ∆← Ak +∑
k−1
m=1CmAk−m

6: Dk ← −∆P̃ −1

7: D̃k ← −∆HP −1

8: for m = 1,2, . . . , k − 1 do

9: Dm ← Cm +DkC̃k−m
10: D̃m ← C̃m + D̃kCk−m
11: end for

12: Cm ←Dm for m = 1,⋯, k

13: C̃m ← D̃m for m = 1,⋯, k

14: P ← P +Ck∆H

15: P̃ ← P̃ + C̃k∆

16: LogDet ← + log2 ∣P̃ ∣

17: end for

6.2 Simulations

First, the NMSE of a typical channel estimator versus SNR is shown in Fig. 6.3 and

compared with the optimal-MMSE (Wiener) estimator. In this figure, the line labeled

“KF Estimator” refers to a Kalman-filter based estimator followed by a low-pass filter

as described in [120]. It can be seen that practical system can indeed approach the

MMSE-optimal performance. This suggests that accurate estimators can be employed

for higher secret key rates.
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Figure 6.3: NMSE versus SNR for a Kalman filter compared to a Wiener filter .

The secret key rate for three different wireless standard scenarios, as shown in

Table 6.1, is computed from (6.12) and compared. Given the signal bandwidth Bw,

the symbol duration calculates as Ts = 1/Bw. As a rule of thumb, the number of

resolvable paths can be approximated as [89],

L + 1 ≈ ⌊2TD,rmsBw⌋ + 1, (6.37)

where TD,rms denotes the root-mean-squared (RMS) delay spread. The channel gains

have unit power (∑
l
Pl = 1). The power profile is uniform over paths, unless otherwise

noted. The PSD is uniformly distributed over normalized range of [−fD, fD]. The

vehicle’s velocity is 100 km/h or v ≈ 28m/s unless otherwise stated. The normalized

Doppler frequency is fD = vfc/c as noted earlier.

Table 6.1: Wireless Standard Parameters
Standard Carrier fre-

quency (fc)
Bandwidth
(Bw)

Symbol rate
(SR)

UWB (IEEE 802.15.4a) [8, 116] 4GHz 0.5GHz 112Msps
IEEE 802.11b 2.4GHz 20MHz 1.375Msps
IEEE 802.11p 5.9GHz 10MHz 10Msps

The secret key rate in bits per second is plotted in Fig. 6.4 for different wireless

standards. To generate this graph, the secret key capacity in (6.15) is multiplied by

the bandwidth Bw to give the key rate in bits per second. The number of propagation

paths for each standard is obtained from (6.37) for TD,rms = 100ns, typical of an
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urban microcellular radio channel [11]. According to (6.15) the slope of the curves is

determined by fD. In the “UWB” case, despite the low fading rate, the key rate is

significant due to its high bandwidth and the large number of propagation paths.

The effect of channel diversity on the key rate is illustrated in Fig. 6.5 for the IEEE

802.11p standard. It can be seen that channel diversity has a significant contribution

to the key capacity.

The effect of channel diversity on the key rate when a single path dominates the

rest is illustrated in Fig. 6.6, where several scenarios for an IEEE 802.11p network

with L + 1 = 10 paths are compared. The case of a single-tap channel is also shown

for comparison. For the non-uniform power profiles, there is one dominant path and

nine non-dominant path of a total power of either −10 dB, −20 dB or −30 dB. As far

as the channel capacity is concerned, there is no point in estimating non-dominant

paths. From a security point of view however, the difference made by estimating the

non-dominant paths in terms of key capacity is significant if the non-dominant paths

are not much weaker.

Fig. 6.7 shows the key capacity (bits per symbol) versus SNR for full-duplex

transmission using (6.12) as well as TDD with different block sizesN whenNK = 4000

symbols and fD = 0.01 based on (6.25). There exists a 3-dB penalty due to TDD at

N = 1 which is expected because the TDD in this case comes down to discarding half

the samples, leading to the estimation error being doubled. This fact can be deduced

from (6.14) noting that downsampling is equivalent to doubling fD and, thus, the

estimation error. Moreover, it is seen that as we start to go down the Nyquist rate,

the key capacity notably declines.
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Figure 6.4: Key rate in bits per second versus SNR for different wireless standards.
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Figure 6.5: Key capacity of IEEE 802.11p versus SNR for different number of paths.
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Figure 6.8: Key capacity versus fD under full-duplex and time-division duplexing at
SNR= 10dB.

In Fig. 6.8, the key capacity (bits per symbol) versus normalized Doppler frequency

fD for various block sizes is depicted when SNR= 10 dB. Algorithm 5 is used to

compute the key capacity for TDD transmission based on (6.32) when the channel

follows the Rayleigh fading model. The ideal half-duplex case corresponds to N = 1.

To explain the shape of the capacity curves, let us consider the case when N = 400. At

this N , the maximum normalized Doppler frequency less than which the channel gains

can be fully recovered from samples, is 1/2NC = 1/4N = 1/(4 × 400) = 6.25 × 10−4 by

sampling theorem. Therefore, one expects that the two curves grow at the same rate.

Then there is a turning point beyond which the performance of TDD transmission

rapidly deteriorates compared to the ideal half-duplex case, as the correlation between

the samples belonging to different blocks drops off. Yet, the figure shows that even at

higher speeds of the vehicle or large transmission blocks when fD > 1/4N , significant

secret key rates can be generated.

6.3 Summary

We studied secret key generation from the physical properties of the wireless chan-

nel. A realistic doubly selective channel scenario with half-duplex transmission was

considered and upper bounds on the secret key rate were calculated. It was shown

that even when the channel is sampled under the Nyquist rate, that is, when the
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transmission intervals are too long to allow for a full reconstruction of the channel

impulse response, a significant key capacity is still available.
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Chapter 7

Conclusions and Future Work

7.1 Research Results

In this dissertation, methods for iterative estimation of doubly selective radio channels

are proposed. The capacity gain of iterative channel estimation is studied. Upper

bounds on secret key rate generated from channel estimates are derived.

To enhance the performance of the channel estimator, a smoother is employed

to reduce the estimation error at the output of the Kalman filter, without requir-

ing a long memory Kalman filter, hence saving the computational complexity. The

computational cost can be reduced further by using higher order AR models instead

of CE-BEM. The results are compared to the previous art to demonstrate the ad-

vantages of the proposed techniques in terms of BER, convergence speed and cost.

Convergence analysis using EXIT charts demonstrates the fast convergence of the

proposed methods to low BER states. We show that convergence to a low BER state

is achieved after only few iterations.

In order to save the bandwidth, an accurate and efficient approach to semiblind

estimation of MIMO-OFDM channels based on KLT-BEM is proposed. A block

processing technique is employed to use the channel estimates of the current BEM

block to project the channel gains over the next block. Unlike the precoding-based

methods, the proposed scheme can be used with more accurate non-linear equalizers

such as sphere decoders without inflicting unacceptable computational cost. The

proposed method’s performance compares favorably with existing iterative pilot-aided

systems and competes with existing semiblind and blind estimation techniques. The

performance of our method is as close as 0.3 dB to the perfect CSI case for the
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proposed method and 1 dB for the other methods. Compared to the previous art,

the proposed method is shown to excel in the MTBF, especially in higher order

modulations.

To study the effectiveness of iterative processing, the capacity of iteratively esti-

mated radio channels is investigated. It is demonstrated that how the knowledge of

the capacity gain from iterative detection versus purely pilot-based channel estima-

tion helps a designer to compare the performance of an iterative receiver against a

non-iterative one and select the best balance between performance and cost. By tak-

ing the uncertainty in decoded data bits into account, the channel estimation LMMSE

of an iterative receiver with a given pilot ratio is obtained. The LMMSE is then used

to derive a bound on capacity. The simulations results are consistent with theory

and can aid with system design. The interaction between the symbol detector and

the decoder is characterized in an EXIT chart. With optimal LMMSE pilot-based

channel estimation, the results of this research reveal that iterative channel estima-

tion provides insignificant capacity advantage at fading rates below 1% of the symbol

rate, though a computational-cost gain is still available. Iterative channel estimation

provides a capacity benefit if sub-optimal pilots are used to provide initial channel

estimates.

In the last part of the research, we study the problem of secret key generation

from the channel gains. We consider a realistic doubly selective channel scenario

based on IEEE 802.11p standard, where half-duplex transmission is allowed and then

calculated upper bounds on the secret key rate. It is shown that even when the

transmission intervals in the half-duplex transmission mode are too long to allow for

a full reconstruction of the channel impulse response, a significant key capacity is still

available.

The main contributions of the dissertation are listed as follows.

• Introducing Low-complexity and accurate channel estimation algorithms for

iterative receivers

• Investigating the capacity of iteratively estimated channels

• Proposing a semiblind channel estimation technique for MIMO-OFDM

• Calculating bounds on secret key capacity in realistic scenarios
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7.2 Future Work

The error correction coding considered in this dissertation included conventional

LDPC or convolutional codes. Future work may consider also multilevel coding [165]

and analog codes [143].

The idea of using a low complexity zero phase filter designed with the method

introduced in Chapter 3 seems to have a good potential to be used in other estimation

algorithms. For instance, a smoother can be employed to enhance the performance

of the MIMO channel estimator of Chapter 4 and reduce the cost. For this to work,

the block processing scheme of Chapter 3 needs to be modified.

The capacity advantage of an iterative receiver over a non-iterative channel esti-

mator was evaluated. By taking the uncertainty in decoded data bits into account,

the channel estimation LMMSE of an iterative receiver with a given pilot ratio was

obtained. The LMMSE was then used to derive a bound on capacity. The simula-

tions results are consistent with theory and can aid with system design. Although this

study considers single-input single-output systems, the approach can be extended to

MIMO systems in a future work. Future work will also consider general distribution

of power and correlations of the channel tap gains. The calculation of capacity bounds

when different error correction codes are employed at different levels of modulation

will also be the subject of future research.

Calculations of the upper bounds on the secret key rate optimistically assumed

that the eavesdropper is completely ignorant about the communication channel. In

practice, there may exist cases where Eve is located close to either party, able to

measure the same channel as Alice and Bob do, and capable of performing iterative

channel estimation and decoding. Future work may use a technique to hinder Eve

from estimating the channel by sending “random” pilot symbols. The pilot pattern

is known to Alice and Bob, but unknown to Eve. As such, she will not be able to

initialize iterative processing and is bound to use blind techniques, which are not as

accurate. This gives Alice and Bob some advantage in deriving a secret key. Privacy

amplification is then used to obtain completely secret key bits.
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