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Abstract

Regular physical activity is essential to maintain or even improve an individual’s
health. There exist various guidelines on how much individuals should do. There-
fore, it is important to monitor performed physical activities during people’s daily
routine in order to tell how far they meet professional recommendations. This thesis
follows the goal to develop a mobile, personalized physical activity monitoring sys-
tem applicable for everyday life scenarios. From the mentioned recommendations,
this thesis concentrates on monitoring aerobic physical activity. Two main objectives
are defined in this context. On the one hand, the goal is to estimate the intensity of
performed activities: To distinguish activities of light, moderate or vigorous effort.
On the other hand, to give a more detailed description of an individual’s daily rou-
tine, the goal is to recognize basic aerobic activities (such as walk, run or cycle) and
basic postures (lie, sit and stand).

With recent progress in wearable sensing and computing the technological tools
largely exist nowadays to create the envisioned physical activity monitoring system.
Therefore, the focus of this thesis is on the development of new approaches for phys-
ical activity recognition and intensity estimation, which extend the applicability of
such systems. In order to make physical activity monitoring feasible in everyday life
scenarios, the thesis deals with questions such as 1) how to handle a wide range of e.g.
everyday, household or sport activities and 2) how to handle various potential users.
Moreover, this thesis deals with the realistic scenario where either the currently per-
formed activity or the current user is unknown during the development and training
phase of activity monitoring applications. To answer these questions, this thesis pro-
poses and developes novel algorithms, models and evaluation techniques, and per-
forms thorough experiments to prove their validity.

The contributions of this thesis are both of theoretical and of practical value. Ad-
dressing the challenge of creating robust activity monitoring systems for everyday
life the concept of other activities is introduced, various models are proposed and
validated. Another key challenge is that complex activity recognition tasks exceed
the potential of existing classification algorithms. Therefore, this thesis introduces a
confidence-based extension of the well known AdaBoost.M1 algorithm, called Conf-
AdaBoost.M1. Thorough experiments show its significant performance improvement
compared to commonly used boosting methods. A further major theoretical contri-
bution is the introduction and validation of a new general concept for the personal-
ization of physical activity recognition applications, and the development of a novel
algorithm (called Dependent Experts) based on this concept. A major contribution
of practical value is the introduction of a new evaluation technique (called leave-
one-activity-out) to simulate when performing previously unknown activities in a
physical activity monitoring system. Furthermore, the creation and benchmarking
of publicly available physical activity monitoring datasets within this thesis are di-
rectly benefiting the research community. Finally, the thesis deals with issues related
to the implementation of the proposed methods, in order to realize the envisioned
mobile system and integrate it into a full healthcare application for aerobic activity
monitoring and support in daily life.
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Introduction

Regular physical activity is essential to maintain or even improve an individual’s
health. There exist various guidelines on how much individuals should do. Therefore,
there is a need to monitor performed physical activities in order to compare them to
professional recommendations. For a long time, questionnaires about the individual’s
physical activity practice represented the main choice of clinical personnel, resulting
in a highly imprecise control. However, with recent progress in wearable technology,
unobtrusive mobile long-term physical activity monitoring has become reasonable.

The overall goal of this thesis is the development of a physical activity monitoring
system, with two main objectives. On the one hand, the goal is to monitor how far
individuals meet professional recommendations. Concentrating on aerobic activity,
this means the intensity estimation of performed activities: to distinguish activities
of light, moderate and vigorous effort. On the other hand, to give a more detailed
description of an individual’s daily routine, the goal is to recognize basic aerobic
activities and basic postures.

Since the technological tools to create the envisioned physical activity monitoring
system largely exist nowadays, the focus of this thesis is on developing methods to
extend the applicability of such systems. In order to make physical activity monitor-
ing feasible in everyday life scenarios, the thesis deals with questions such as 1) how
to handle a wide range of e.g. everyday, household or sport activities and 2) how to
handle various potential users. Moreover, this thesis deals with the realistic scenario
where either the currently performed activity or the current user is unknown during
the development and training phase of activity monitoring applications. To answer
these questions, this thesis proposes and developes novel algorithms, models and
evaluation techniques, and performs thorough experiments to prove their validity.

This chapter first presents facts on overweight and obesity in Section 1.1, followed
by defining the motivation of work performed within this thesis in Section 1.2. Sec-
tion 1.3 defines the key challenges addressed in this thesis. Section 1.4 briefly de-
scribes the contributions, each presented in the following chapters of this work. Fi-
nally, Section 1.5 gives an outline of the thesis.
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1.1 Background

According to the World Health Organization (WHO) the number of overweight and
obese people increases rapidly [191]. Increased body mass index (BMI) is a major risk
factor for medical conditions such as diabetes, cardiovascular diseases, musculoskele-
tal disorders and certain types of cancer. This makes overweight and obesity the fifth
leading risk factor for global deaths.

Overweight and obesity is caused by an energy imbalance between calories con-
sumed (through food and beverages) and calories expended (through e.g. physical
activity). The two main factors according to WHO are [191]:

* An increased intake of energy-dense food that are high in fat, salt and sugars
but low in vitamins, minerals and other micronutrients.

* A decrease in physical activity due to the increasingly sedentary nature of many
forms of work, changing modes of transportation and increasing urbanization.

Recent studies suggest that the increasing number of overweight and obese peo-
ple is more driven by a reduction in energy expenditure than by a rise in energy
intake. The key facts given by the WHO fact sheet on obesity and overweight are the
following (cf. [191], the fact sheet was last updated in March 2013):

* Worldwide obesity has more than doubled since 1980.

* 65% of the world’s population live in countries where overweight and obesity
kills more people than underweight (the fifth leading risk factor for global
deaths).

e In addition, 44% of the diabetes burden, 23% of the ischaemic heart disease
burden and between 7% and 41% of certain cancer burdens are attributable to
overweight and obesity.

* More than 40 million children under the age of five were overweight in 2010.

* Overweight and obesity are preventable. Beside a balanced diet the engagement
in regular physical activity is a key element in reducing an individual’s BMI.

1.2 Motivation

In response to the above presented facts, regular physical activity is essential. Its
importance has been proven, there exist various guidelines and recommendations on
how much individuals should do. Therefore, this section will argue that there is a
need for monitoring individual’s physical activities in their daily routine. Moreover,
this section will show that with recent progress in wearable sensing and computing
the technological tools exist nowadays to create the envisioned physical activity mon-
itoring systems.
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1.2.1 The Need of Regular Physical Activity

The health benefits associated with regular physical activity have been investigated
in many research studies over the last decades. Strong evidence has been found that
physical activity indeed reduces the risk of many diseases, including diabetes, cardio-
vascular diseases and certain types of cancer. Alford [4] gives an overview of the most
recent studies on this topic, and argues that — apart from not smoking — being phys-
ically active is the most powerful lifestyle choice individuals can make to improve
their health. A list of all the health benefits, where strong or moderate evidence was
found that they can be associated with regular physical activity is given e.g. in [92].
The major research findings are the following:

* Regular physical activity reduces the risk of many adverse health outcomes.
* Some physical activity is better than none.

* For most health outcomes, additional benefits occur as the amount of physical
activity increases through higher intensity, greater frequency and/or longer du-
ration.

* Most health benefits occur with at least 150 minutes of moderate-intensity phys-
ical activity per week, such as brisk walking. Additional benefits occur with
more physical activity.

* Both aerobic (endurance) and muscle-strengthening (resistance) physical activ-
ity are beneficial.

* Health benefits occur for children and adolescents, young and middle-aged
adults, older adults, and those in every studied racial and ethnic group.

* The health benefits of physical activity occur for people with disabilities.

* The benefits of physical activity far outweigh the possibility of adverse out-
comes.

There exist various recommendations on how much physical activity individuals
should perform. The main idea behind these guidelines is that regular physical activ-
ity over months and years can produce long-term health benefits. However, physical
activity must be performed each week to achieve these benefits [92]. The original rec-
ommendation of minimum 30 minutes per day of moderate intensity physical activity
has been recently updated and refined [66]. According to the updated recommenda-
tion statement, “to promote and maintain health, all healthy adults aged 18 — 65 yr
need moderate-intensity aerobic physical activity for a minimum of 30 min on five
days each week or vigorous-intensity aerobic activity for a minimum of 20 min on
three days each week. Also, combinations of moderate- and vigorous-intensity activ-
ity can be performed to meet this recommendation.” In addition to aerobic activity,
Haskell et al. [66] also recommend muscle-strengthening activity for at least twice a
week. Moreover, they also point out that greater amounts of activity provide addi-
tional health benefits. Similar recommendations specifically for elderly are given by
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Nelson et al. [113]. Important differences compared to the recommendations given in
[66] are that they take into account the elderly’s aerobic fitness, they recommend ac-
tivities that maintain or increase flexibility, and balance exercises are recommended
for older adults at risk of falling. Furthermore, Leavitt [92] gives key guidelines for
different age groups separately: for children/adolescents, for adults and for elderly.

Apart from the above mentioned general guidelines, physicians could also give
specific recommendations (e.g. as part of a custom care plan) to individuals. However,
in both cases it is important to monitor how much activity individuals perform when
unsupervised (e.g. at home or when carrying out their daily routine), to be able to tell
how far they meet the recommendations. This is the main motivation of this thesis,
focusing only on the recommendations given for aerobic physical activity.

The different guidelines mostly instruct to perform a certain amount of moderate-
or vigorous-intensity aerobic activities. Concrete examples of activities of these in-
tensity levels are given e.g. in the recommendations of Haskell et al. [66]: A table
of common physical activities classified as light, moderate or vigorous intensity is
presented!. For simplicity and availability reasons, there are a few traditionally rec-
ommended aerobic activities: walking, cycling, running and - in certain countries
such as Germany — Nordic walking. Together with the postures lying, sitting and
standing, most of an individual’s daily routine can be described from the physical
activity point of view. Therefore, the recognition of these activities and postures is
essential in a system for aerobic activity monitoring.

The overall goal of this thesis is the development of a physical activity monitoring
system, with two main objectives. On the one hand, the system aims to support the
monitoring of an individual’s daily routine to be able to tell in what way the individ-
ual meets the recommendations of e.g. [66] on aerobic activity. For this purpose, the
system should classify miscellaneous activities performed by the individual accord-
ing to their intensity level — in respect of the aforementioned guidelines — as activities
of light, moderate or vigorous effort (intensity estimation task). On the other hand, to
give a more detailed description of an individual’s daily routine, the system should
identify with a high reliability the aerobic activities traditionally recommended and
the basic postures (activity recognition task).

1.2.2 The Tools Provided by Wearable Technology

The previous subsection concluded that there is a need for monitoring individuals’
physical activities in their daily routine. Until recently questionnaires were the main
choice of clinical personnel to assess how much and what type of activities their pa-
tients performed. However, this method is a clearly imprecise control of an individ-
ual’s physical activity practice. With recent progress in wearable technology, unob-
trusive and mobile activity monitoring has become reasonable. Therefore, this sub-
section will argue that the technological tools nowadays exist to create the previously
defined physical activity monitoring system.

IThis table uses the Compendium of Physical Activities [1] as the source of the metabolic equivalent
(MET) of different activities, which is a common reference in the field of energy expenditure estimation
of physical activity.
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The progress of wearable computing can be followed when examining the contri-
butions of the yearly IEEE International Symposium on Wearable Computers (ISWC),
the arguably most important conference in this research field. Since the first ISWC
conference (held in October 1997) most of the key topics of this field advanced tremen-
dously, as pointed out by Thomas [175].

On the one hand, wearable sensing advanced in many ways. Nowadays small,
lightweight, low-cost and accurate sensor units are commercially available, support-
ing wireless data transfer, internal data storage, etc. With this progress it becomes
feasible for individuals to wear various sensor units all day. Further miniaturizing
the sensors, integrating them into worn devices (e.g. the concept of a smart watch,
cf. the eZ430-Chronos system from Texas Instruments [44] or the Sony SmartWatch
[163]) and garment integration (the concept of e-textiles, presented e.g. in [26]) will
result in the completely unobtrusive wearing of sensors.

On the other hand, with the appearance of smartphones, the original goals set for
wearable computers were even exceeded [175]. With the smart phone technology a
pervasive control unit is widely available, providing also a large amount of computa-
tion and graphics power to individuals. Different sensors integrated in smartphones
have reached the quality to e.g. monitor the movement of their owners. Moreover, cur-
rent mobile operating systems (e.g. Android) ensure a comfortable way of developing
applications for smartphone-based solutions.

Overall, with the presented advances in wearable sensing and wearable comput-
ing, the technological tools exist to develop a mobile, unobtrusive and accurate phys-
ical activity monitoring system. Therefore, the realization of long-term monitoring
of individuals’ physical activities while performing their daily routine — the goal set
and motivated in the previous subsection — has become feasible.

1.3 Problem Statement

The development of a physical activity monitoring system, supporting the recogni-
tion of performed activities and the assessment of their intensity level, has been mo-
tivated in the previous section. Moreover, Section 1.2.2 argued that the creation of
such systems is feasible in an unobtrusive way, based on current smartphones and
miniaturized wearable sensors. Therefore, the focus of this thesis is on developing
methods for physical activity recognition and intensity estimation, which are applica-
ble to available hardware components.

The recognition of basic physical activities (such as walk, run or cycle) and basic
postures (lie, sit, stand) is well researched [42, 93, 100, 117], and is possible with just
one 3D-accelerometer. Moreover, the intensity estimation of these basic activities has
been the focus of recent studies, e.g. in [118, 173]. However, since these approaches
only consider a limited set of similar activities, they only apply to specific scenarios.
Therefore, one of the key challenges in the research field of physical activity monitor-
ing is to not only include these traditional basic activities and postures, but also other
activities: examples of e.g. everyday, household or sport activities.
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There are countless number of physical activities (e.g. 605 different activities are
listed in [1]), thus it is not feasible to recognize all of them. Moreover, in practice,
activity monitoring systems usually focus on only a few activities. Nevertheless, all
the other activities should not be completely ignored, but different solutions should
be investigated to deal with them, in order to enhance the applicability of developed
systems. On the one hand, this includes the investigation of how to model these
other activities in classification problems defined for activity monitoring tasks. On
the other hand, proper evaluation techniques should be introduced to deal with this
issue, to simulate the effect of (known or unknown) other activities.

Compared to when only dealing with basic activities and postures, the introduc-
tion of a large number of other activities clearly increases the complexity of the ac-
tivity recognition and intensity estimation tasks. Therefore, it should be investigated
how well existing classification approaches perform on these tasks. In case the de-
sired accuracy can not be reached, novel algorithms should be developed. In order to
evaluate the proposed methods, proper datasets — including a wide range of physical
activities — would be required. However, in the field of physical activity monitoring
there is a lack of such commonly used, standard datasets. Therefore, the thesis will
also address this issue by creating and releasing such datasets, and by benchmarking
various activity monitoring problems.

Another key challenge addressed in this thesis is related to the fact that activ-
ity monitoring systems are usually trained on a large number of subjects, and then
used by a new subject from whom data is not available in the training phase. More-
over, there is a high variability — concerning e.g. age, weight or physical fitness — of
potential users, thus individual accuracy can vary a lot. Therefore, personalization
approaches for activity recognition have become a topic of interest recently. However,
existing solutions have several practical limitations, concerning e.g. computational
time or their applicability for complex classification tasks. The goal of this thesis
is to overcome these limitations by developing a fast and accurate personalization
approach for mobile physical activity recognition applications.

Altogether, the overall goal of this thesis can be refined: To develop a mobile, per-
sonalized physical activity monitoring system applicable for everyday life scenarios.
The next chapters will present the proposed methodology to deal with the here dis-
cussed challenges, and how these proposed algorithms can be realized as part of a
state-of-the-art mobile activity monitoring application. The system created this way
can be used with less constraints under realistic, everyday conditions than systems
presented in previous, related work.

1.4 Contributions

This section briefly describes the contributions presented in each of the following
chapters of this thesis. Moreover, this section provides with the information where
these contributions have been published.

Chapter 3 addresses the lack of a commonly used, standard dataset in the field
of physical activity monitoring. Two new datasets (the PAMAP and the PAMAP2
dataset) are created and both made publicly available for the research community.
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The PAMAP dataset is first described in the conference paper [133],

Attila Reiss and Didier Stricker. Towards global aerobic activity monitor-
ing. In Proceedings of 4th International Conference on Pervasive Tech-
nologies Related to Assistive Environments (PETRA), Crete, Greece, May
2011.

The PAMAP?2 dataset is introduced in [136],

Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset
for activity monitoring. In Proceedings of IEEE 16th International Sym-
posium on Wearable Computers (ISWC), pages 108-109, Newcastle, UK,
June 2012.

and described in more detail in [135],

Attila Reiss and Didier Stricker. Creating and benchmarking a new da-
taset for physical activity monitoring. In Proceedings of 5th Workshop
on Affect and Behaviour Related Assistance (ABRA), Crete, Greece, June
2012.

The subsequent chapters heavily rely on both new datasets, using them for the
evaluation of proposed methods. Moreover, there has been a certain impact in the
research community by making these datasets publicly available, cf. Section 3.5.

Chapter 4 addresses the lack of established benchmarking problems in the field
of physical activity monitoring. A benchmark is given, using a complete data process-
ing chain (DPC) and comparing commonly used classification algorithms on a set of
defined physical activity monitoring tasks. The benchmark shows the difficulty of
different classification problems and reveals some of the challenges in this research
field. The description of the benchmark and results are given in [135, 136]. The ap-
plied DPC is first described in [133], an extended description is given in the journal
paper [137],

Attila Reiss and Didier Stricker. Aerobic activity monitoring: towards a
long-term approach. International Journal of Universal Access in the In-
formation Society (UAIS), March 2013.

Chapter 5 addresses a usually neglected point of view in the development of phys-
ical activity monitoring systems: It creates the means for simulating everyday life sce-
narios. This chapter focuses on the one hand on the subject independency of activity
monitoring systems. The effect of applying subject dependent and subject indepen-
dent evaluation techniques is first investigated in [139],

Attila Reiss, Markus Weber, and Didier Stricker. Exploring and extending
the boundaries of physical activity recognition. In Proceedings of 2011
IEEE International Conference on Systems, Man and Cybernetics (SMC),
Workshop on Robust Machine Learning Techniques for Human Activity
Recognition, pages 46-50, Anchorage, AK, USA, October 2011.
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Further results on this matter are shown in the benchmark of [135, 136], providing
evidence that overall subject independent validation techniques should be preferred
for physical activity monitoring.

On the other hand, Chapter 5 focuses on including various other activities in ac-
tivity monitoring classification tasks. Different models are proposed and evaluated,
as described in the conference paper [142],

Attila Reiss, Gustaf Hendeby, and Didier Stricker. Towards robust activity
recognition for everyday life: methods and evaluation. In Proceedings of
7th International Conference on Pervasive Computing Technologies for
Healthcare (PervasiveHealth), Venice, Italy, May 2013.

Moreover, a new evaluation technique is introduced in this chapter (leave-one-
activity-out), in order to simulate when an activity recognition system is used while
performing a previously unknown activity. Applying the proposed methods has two
important benefits compared to previous related work. First of all it is estimated how
a system behaves in various everyday life scenarios, while this behaviour would be
otherwise undefined. Second, the best performing methods and algorithms can be
selected during the development phase of the system, with the desired generalization
characteristic. Therefore, it is possible to develop a robust physical activity recogni-
tion system, as justified by the detailed results given in [142].

Chapter 6 addresses one of the main challenges revealed by the benchmark of
[135, 136]: The difficulty of the more complex activity monitoring classification prob-
lems (caused by e.g. the introduction of other activities into these tasks) exceeds the
potential of existing classifiers. Therefore, this chapter introduces a confidence-based
extension of the well-known AdaBoost.M1 algorithm, called ConfAdaBoost.M1. The
new algorithm is evaluated on various benchmark datasets (inside and outside of
the research field of physical activity monitoring), comparing it to the most com-
monly used boosting techniques. Results show that ConfAdaBoost.M1 performs sig-
nificantly best among these algorithms, especially on the larger and more complex
physical activity monitoring problems. The ConfAdaBoost.M1 algorithm, along with
the mentioned thorough evaluation, is presented in the conference paper [143],

Attila Reiss, Gustaf Hendeby, and Didier Stricker. Confidence-based mul-
ticlass AdaBoost for physical activity monitoring. In Proceedings of IEEE
17th International Symposium on Wearable Computers (ISWC), Zurich,
Switzerland, September 2013.

Moreover, ConfAdaBoost.M1 is applied on a further dataset, created for human ac-
tivity recognition on smartphones. The new classification method outperforms com-
monly used classifiers on this dataset as well, as presented in the paper [141],

Attila Reiss, Gustaf Hendeby, and Didier Stricker. A competitive approach
for human activity recognition on smartphones. In Proceedings of 21st
European Symposium on Artificial Neural Networks, Computational In-
telligence and Machine Learning (ESANN), Bruges, Belgium, April 2013.
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Chapter 7 addresses another challenge revealed by the benchmark of [135, 136]:
The diversity in how individuals perform different physical activities, and the so
caused large variance in per-user accuracy of activity recognition applications. This
chapter introduces a novel general concept for the personalization of such applica-
tions. An important benefit of the proposed concept is its low computational cost
compared to other approaches, making it also feasible for mobile activity recognition
applications. Moreover, a novel algorithm (called Dependent Experts) is introduced
in this chapter, further increasing the performance of the personalized system. Both
the proposed general concept and the new algorithm are evaluated on activity recog-
nition classification tasks defined on the PAMAP2 dataset. A description of the novel
general concept for personalization and the algorithm Dependent Experts, and re-
sults of the thorough evaluation are all given in the conference paper [138],

Attila Reiss and Didier Stricker. Personalized mobile physical activity
recognition. In Proceedings of IEEE 17th International Symposium on
Wearable Computers (ISWC), Zurich, Switzerland, September 2013.

Chapter 8 presents several contributions towards creating a mobile, unobtrusive
physical activity monitoring system. First of all the idea of a modular activity mon-
itoring system is presented, where different sets of sensors are required for different
activity recognition and intensity estimation tasks. This idea was first described and
justified with practical experiments in the publication [134],

Attila Reiss and Didier Stricker. Introducing a modular activity monitor-
ing system. In Proceedings of 33rd Annual International IEEE EMBS Con-
ference, pages 5621-5624, Boston, MA, USA, August-September 2011.

A further contribution of Chapter 8 is a set of empirical studies showing that more
complex, meta-level classifiers (boosted decision trees as a concrete example) are fea-
sible and thus a considerable choice for mobile applications, there are no limitations
regarding the computational costs. Part of these experiments is presented in [139].

Finally, this chapter describes the integration of the mobile system into a full
healthcare application for aerobic activity monitoring and support in daily life. A
key benefit of such an integrated system is the possibility to give feedback to both the
patient (preserving or even increasing the motivation to follow a defined care plan)
and the clinical personnel (providing valuable information on program adherence).
The integrated mobile system is described in the conference paper [140],

Attila Reiss, Ilias Lamprinos, and Didier Stricker. An integrated mobile
system for long-term aerobic activity monitoring and support in daily life.
In Proceedings of 2012 International Symposium on Advances in Ubiqui-
tous Computing and Networking (AUCN), Liverpool, UK, June 2012.
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1.5 Thesis Outline

This thesis is organized in the following way:

Chapter 1 Introduction (this chapter) Motivates research work in the field of phys-
ical activity monitoring, defines challenges related to this topic and lists the
contributions of this thesis.

Chapter 2 Related Work Gives an overview of human activity monitoring research,
addressing four major topics: the type of monitored activities, applied sensing
modalities, different machine learning methods and various application areas.

Chapter 3 Datasets for Physical Activity Monitoring Introduces two new datasets,
recorded from a reasonable number of subjects performing a wide range of
physical activities. Both datasets include ground truth and are publicly avail-
able to the research community.

Chapter 4 Data Processing and Classification Presents a data processing chain, de-
scribing the steps feature extraction and classification in more detail. It also
introduces a benchmark, comparing commonly used classification algorithms
on different physical activity monitoring tasks.

Chapter 5 Robust Activity Monitoring for Everyday Life: Methods and Evaluation
Investigates the development and evaluation of robust methods for everyday
life scenarios, with focus on the tasks of aerobic activity recognition and inten-
sity estimation.

Chapter 6 Confidence-based Multiclass AdaBoost Proposes a confidence-based ex-
tension of the well-known AdaBoost.M1 algorithm, called ConfAdaBoost.M1.
It also presents a large number of experiments, confirming that the novel algo-
rithm outperforms existing boosting methods.

Chapter 7 Personalization of Physical Activity Recognition Introduces a novel gen-
eral concept for the personalization of physical activity recognition applica-
tions. It also presents a novel algorithm based on this concept, and shows its
benefits over existing approaches.

Chapter 8 Physical Activity Monitoring Systems Presents a modular, mobile activ-
ity monitoring system which implements methods introduced in the previous
chapters. It also describes the integration of the mobile system into a full health-
care application for aerobic activity monitoring and support in daily life.

Chapter 9 Conclusion Summarizes the thesis, draws conclusions and gives ideas for
possible future extension of the presented research work.

Appendix A Abbrevations and Acronyms

Appendix B Datasets: Supplementary Material Presents supplementary material
related to the two introduced physical activity monitoring datasets.



Related Work

2.1 Introduction

This thesis focuses on monitoring the user’s physical activity, one of the main topics of
context awareness. The term context-aware computing was first introduced by Schilit
et al. [156], with the goal to promote and mediate users’ interaction with computing
devices and other people, and to help navigate in unfamiliar places. For this purpose,
situational and environmental information is used. Therefore, the user’s activity and
location are essential to provide the user with relevant information about his current
context (activity recognition and location awareness).

With recent advances in hardware technology related to mobile sensing and com-
puting, pervasive and ubiquitous computing has evolved tremendously. In the past
decade, a vast amount of research has been performed in these research areas, result-
ing in various solutions and applications affecting our everyday life. Therefore, this
chapter gives a general overview of recent, state-of-the-art research related to activ-
ity monitoring. Section 2.2 categorizes the wide range of activities which have been
monitored and recognized in related work. Section 2.3 describes the different sens-
ing modalities that have been used to monitor these activities. Section 2.4 reviews
machine learning methods applied for activity recognition in related work. Finally,
Section 2.5 describes and categorizes applications based on the results of research
performed for activity monitoring and recognition.

The rest of this thesis will focus on a very specific case, on a fraction of the here
presented activity monitoring research: The monitoring of low-level physical activi-
ties with wearable sensors, with the intention to be used mainly for fitness and health-
care applications. Therefore, Section 2.6 defines where this thesis is positioned with
respect of the major topics discussed in this chapter. Moreover, it should be noted
that related work directly relevant to the different contributions of this thesis will be
presented in the respective chapters.

11
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2.2 Activities

There exist a wide range of activities that have been monitored and recognized in
related work. Nevertheless, a definite and commonly used categorization of them
is not provided in the literature. Huynh [74] presents a possible way to categorize
activities by grouping them based on duration and complexity. This categorization
defines 3 groups: gestures (brief and distinct body movements), low-level activities
(sequence of movements or a distinct posture) and high-level activities (collection of
activities). Gesture recognition is a large research topic in itself, but is not within the
focus of this thesis. A brief overview of related work performed for low-level and
high-level activity monitoring will be given in following subsections.

There are various classes of activities which can not be clearly grouped into the
above defined 3 categories. A class of activities relevant for this thesis are the ac-
tivities of daily living (ADL). A brief overview of existing literature related to these
activities is presented in Section 2.2.3. Further important topics of activity monitor-
ing research are e.g. fall detection [24, 67, 95,104, 151], sleep monitoring (wake-sleep
patterns, quality of sleeping) [23, 150, 183], the recognition of workshop or assembly
activities [101, 165, 188], etc. Since these latter topics are outside of the scope of this
thesis, they are not further investigated here.

2.2.1 Low-Level Activities

The monitoring and recognition of low-level activities is well researched. It has been
shown that reliable recognition of a few activities (usually locomotion activities and
postures) is possible with just one sensor, a 3D-accelerometer. An example is given
by Lee et al. [94], where only a tri-axial accelerometer is used to create a real-time per-
sonal life log system, based on activity classification. The authors selected 7 activities
to be distinguished: lying, sitting, standing, walking, going upstairs, going downstairs
and driving. Further examples of recognizing a few low-level activities with just one
3D-accelerometer are given in [42, 93, 100, 117].

A nowadays popular research topic is the monitoring of low-level activities while
only using sensors provided by smartphones. For example, Kwapisz et al. [86] recog-
nize the activities walking, jogging, going upstairs, going downstairs, sitting and standing
by using the embedded accelerometer of Android-based cell phones. However, using
mobile phones for activity monitoring generates several new challenges. For example,
both the position (in user’s hand, in user’s pocket, in a bag carried by the user, etc.)
and the orientation of the device is not determined during regular usage, which has
to be taken into account during the training phase of such applications [16]. Another
key challenge is the fact that activity monitoring applications constantly drain the bat-
tery of mobile phones, which could limit the regular use of these devices. Therefore,
energy-efficient solutions have recently been investigated for activity recognition on
mobile phones, presented e.g. in [62, 196].

A further topic of interest nowadays is the recognition of a wide range of low-level
activities with multiple sensors, placed on multiple locations of the user’s body. For
example, Patel et al. [122] use 10 Shimmer nodes (each including an accelerometer
and a gyroscope) [160] to distinguish different activities performed during gym exer-
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cising and the user’s daily routine. Another example is presented in [8]: 19 activities
(mainly aerobic sport activities, such as cycling, rowing or exercising on a cross trainer)
are recognized using 5 inertial measurement units. Since this thesis mainly focuses
on the monitoring of low-level activities (cf. Section 2.6 ), mostly on the recognition
of a wide range of activities with multiple sensors, further examples of related work
on this topic will be presented in the remaining chapters.

2.2.2 High-Level Activities

High-level activities are composed of a set of low-level activities, e.g. the high-level
activity shopping can consist of driving car, walking, standing, etc. Moreover, high-level
activities usually last longer than low-level activities, they can last up to a few hours.
Although the recognition of high-level activities is important for the description of an
individual’s daily routine, research has so far mainly focused on low-level activities.
Furthermore, with the knowledge obtained about an individual’s high-level activities,
the recognition of his low-level activities can be improved. For example, if the recog-
nized high-level activity is shopping, during this time the probability of the activity
walking is much higher than Nordic walking.

An example on how the recognition of low-level activities can be utilized for high-
level activity recognition is shown by Huynh et al. [78]. They recorded a realistic
dataset including 3 high-level activities: preparing for work, going shopping and doing
housework. Each of these activities is composed of a set of low-level activities, for
example going shopping consists of driving car, walking, working at computer, waiting in
line in a shop and strolling through a shop. Both low-level and high-level activity labels
are given in their recorded dataset. The authors used simple features and common
algorithms (kNN, HMM, SVM). One of their key findings was that the recognition
of high-level activities can be achieved with the same algorithms as the recognition
of low-level activities. Moreover, they could distinguish between the 3 defined high-
level activities with a recognition rate of up to 92%.

The work presented in [79] uses topic models to recognize daily routines as a
probabilistic combination of activity patterns. First of all, the authors recognize a
large set of low-level activities using a wearable sensor platform. By using this in-
formation, they show that the modeling and recognition of daily routines is possible
without user annotation. Overall, 4 daily routines (high-level activities) were recog-
nized: commuting, office work, lunch routine and dinner activities.

Finally, the Opportunity framework and dataset [103, 144] also provides the means
to analyze how high-level activities can be composed of a set of recognized low-level
activities. The dataset provides a sensor rich, kitchen like scenario. The work in [69]
presents an approach based on the dynamic configuration of HMMs, evaluated using
the Opportunity framework. The authors define and recognize 3 composite activities:
coffee making, coffee drinking and table cleaning.

2.2.3 Activities of Daily Living

A specific set of activities, called activities of daily living, was first proposed by Katz
et al. [84] in order to provide a standardized way to estimate the physical well-being
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of elderly and their need for assisted living. The following activities are included in
the set of ADLs: bathing, dressing, toileting, transferring, continence and feeding. More-
over, Lawton and Brody [91] proposed another set of activities, called instrumental
activities of daily living (IADL), in order to assess how well elderly interact with the
physical and social environment. The set of IADLs consists of the following activities:
using telephone, shopping, food preparation, housekeeping, doing laundry, transportation,
taking medications and handling finances.

Various approaches exist for the monitoring and recognition of specific subsets of
ADLs/IADLs. For example, Stikic et al. [166] combine RFID tags and accelerometers
to recognize 10 housekeeping activities (such as dusting, ironing or vacuum cleaning).
With these sensing modalities they combine two main assumptions related to ADLs:
1) the objects people use during the execution of an activity robustly categorize that
activity (RFID tags) and 2) the activity is defined by body movements during its exe-
cution (accelerometers). The authors of [106] use a wrist-worn device to distinguish
15 ADLs. This device includes the following sensors: accelerometer, microphone,
camera, illuminometer and digital compass. Results show that the camera is the most
important single sensor in the recognition of this subset of ADLs, followed by the
accelerometer and the microphone. The work by Maekawa et al. [107] introduces
the concept of mimic sensors: the mimic sensor node has the shape of objects like a
AA battery or an SD memory card, and provides the functions of the original object.
Moreover, these sensor nodes provide additional information (e.g. current flow of the
device), which can be used to detect electrical events. These events can then be used
to recognize ADLs such as shaving or vacuum cleaning. Further recent examples of re-
search work on the topic of monitoring and recognizing ADLs/IADLs are presented
e.g.in [30, 182, 197].

2.3 Sensors

A wide range of sensors have been investigated and used in related work of activity
monitoring, from binary switches to cameras. Generally, two types of sensors can be
distinguished in this field: wearable sensors (placed on the user) and ambient sensors
(placed around the user). It mainly depends on the application what type and how
many sensors should be used. However, the selection of sensors is important when
developing an activity monitoring system, several factors should be considered:

* How intrusive the user experiences the sensor. In case of wearable sensors this
means e.g. how comfortable they are, and in case of ambient sensors if they are
in sight e.g. in a home environment.

* Privacy issues: how much and how sensitive information is recorded and stored
by the sensor (one of the main concerns with sensors such as cameras or micro-
phones).

* Ease of setup, e.g. in case of wearable sensors the user should be able to put on
the sensors without external help and in a short time.



2.3 Sensors 15

* Maintenance, e.g. battery time or how easy it is to repair/replace components
deployed in a home environment.

* Cost factor: how expensive the entire setup is.

¢ What the sensor measures, thus the most activities should be differentiated with
the provided sensor data.

This section presents the most commonly used sensing modalities applied in the
literature of activity monitoring: inertial sensors, physiological sensors, cameras, au-
dio sensors, sensors deployed in objects and radio-based sensing. Finally, the com-
bination of complementary sensors applied in related work is discussed in the last
subsection.

2.3.1 Inertial Sensors

Inertial measurement units, and especially accelerometers (cf. Section 4.1) are proba-
bly the most broadly used sensors for activity monitoring. These sensors are inexpen-
sive, small, lightweight, can be characterized with relatively low energy consumption
and are usually experienced as less intrusive than many other sensors. Moreover,
high recognition rates can be achieved with inertial sensors on e.g. ambulation or
sport activities. For example, Altun et al. [8] recognize 19 physical activities by using
5 inertial measurement units, placed on the subject’s torso and left/right arms/legs.
Another example is presented in [38], where the authors use 5 tri-axial accelerometers
to recognize a set of locomotion and everyday activities.

Ugulino et al. [179] give an overview of recent work in human activity recognition
based on accelerometer data. Moreover, since this thesis mainly uses acceleration data
for the monitoring of physical activities, a large amount of further examples will be
presented in the following chapters concerning related work on this topic.

2.3.2 Physiological Sensors

Physiological sensors have been applied for the monitoring of human activities in
various previous work. On the one hand, they are usually more expensive and more
intrusive than inertial sensors. Moreover, contrary to e.g. acceleration data, physio-
logical signals react slower to activity changes. For example, after performing physi-
cally demanding activities (e.g. running) the subject’s heart rate remains elevated for
a while, even if he is inactive (e.g. lying or sitting). On the other hand, physiological
sensors are somewhat complementary to inertial sensors. For example, distinguish-
ing between walking and walking with load is practically impossible with just inertial
sensors, but a significant difference can be observed in selected physiological signals.
Therefore, various related work proposes the combination of inertial and physiolog-
ical sensing for activity monitoring, cf. Section 2.3.7. Moreover, this thesis adapts
this concept by using acceleration and heart rate data together throughout the entire
work.

In a large study carried out with wearable sensors, Parkka et al. [117] also investi-
gated the use of various physiological sensors for human activity classification. The



16 2 Related Work

following vital signs were included in their study: ECG (electrocardiogram), heart
rate, respiratory effort, oxygen saturation, skin resistance and skin temperature. How-
ever, they found that physiological signals did not provide very useful data for activ-
ity recognition. They concluded that physiological signals correlate with the intensity
level of performed activities, but they do not reflect the type of the activity. Moreover,
Parkka et al. [117] observed larger interindividual difference in measured vital signs
than e.g. in inertial signals, thus further limiting the applicability of physiological
Sensors.

The work presented by Lara et al. [89] comes to a different conclusion than [117]:
The authors state that vital signs are indeed useful to discriminate between certain
activities. They are using the BioHarness BT chest sensor strap [199], which measures
several physiological attributes beside of 3D-acceleration: heart rate, respiration rate,
breath amplitude, skin temperature and ECG amplitude. The authors apply structure
detectors on the physiological signals, and propose two new features for vital signs:
magnitude of change and trend. With these features, the discrimination between
activities during periods of vital sign stabilization can be improved.

This paragraph mentions further examples of using different physiological sen-
sors for activity monitoring. Respiration rate is measured and applied for the as-
sessment of physical activities e.g. in [98, 112]. Features extracted from GSR signal
(galvanic skin response) are good indicators to identify the presence of mental stress,
even when the user performs different activities [170]. Haapalainen et al. [64] address
a similar problem, the real-time assessment of cognitive load while the user is active,
relying mainly on features extracted from GSR and ECG data. Finally, Chang et al.
[29] use a non-contact portable heart rate monitor to predict driver drowsiness.

2.3.3 Image-based Sensing

The recognition of activities and gestures using external cameras has been the focus of
extensive research. A survey on the recognition of human actions and activities from
image data is given in [125]. However, using cameras for activity monitoring has
several major issues. First of all, although video is very informative, automatically
recognizing activities from video data is a complex task. A solution to this issue
is to extract certain features from images, related to e.g. the location of the user or
which objects in the environment are used. Such approaches could enable real-time
recognition of various ADLs. An example is presented by Duong et al. [40]. Multiple
cameras are installed in a room, observing a person performing different activities.
The room is divided into squared regions, some of these including objects of interest
(e.g. a stove). The multi-camera system tracks the person, returning a list of visited
regions. This list can then be used to recognize actions such as using the stove.

A second major issue of camera-based activity monitoring systems is their lack
of pervasiveness. The cameras are usually installed indoors, individuals have to stay
within the field of view of the imaging sensors, defining a very strong limitation of
the applicability of such systems. A way to overcome this limitation is to use wear-
able cameras instead of static ones, which is feasible due to recent miniaturization
concerning hardware components. An example of this wearable vision concept is
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presented in [172], where a camera is worn on the shoulder of the user, observing
the interaction with various objects. Moreover, the wrist-worn device presented by
Maekawa et al. [106] to recognize different ADLs, also includes a small camera com-
plementing the other sensors. From this camera, a colour histogram is computed in
each image. This information is used to determine how well a colour performs to
distinguish a certain ADL class from other ADL classes.

A further major issue of using video sequences for human activity monitoring is
privacy: Most individuals would have severe concerns about being permanently mon-
itored and recorded by cameras. Wearable imaging sensors could at least partially
solve this issue by simply enabling the user to turn off the sensor when monitoring
and recording is undesired. Another way to ensure the privacy of the user is when a
certain abstraction of raw image data is directly performed on the sensor device, and
only this abstracted information is stored or used for further processing.

Despite the above described major issues and the fact that using cameras is an
expensive way of monitoring activities, they can be used as a source of additional
information to improve the performance of e.g. a wearable system. Bahle et al. [14]
investigates this concept by using vision-based devices in the user’s environment in
an opportunistic way to improve wearable activity recognition. In case video data is
available (e.g. the user is passing through a space observed by a camera), body motion
information derived from the video signal is correlated with on-body sensor informa-
tion. The goal is to improve the on-body system by e.g. determining the location of
the sensors on the user’s body.

2.3.4 Audio-based Sensing

Many human actions and activities produce characteristic sound. Therefore, activity
monitoring based on audio sensing is a valid approach. There exist several examples
in related work showing that the recognition of a well defined set of human activi-
ties is possible from just audio data. For example, Stork et al. [167] present a single
microphone-based system recognizing 22 different sounds, corresponding to human
actions and activities in a bathroom and kitchen context (e.g. brushing teeth, boiling
water or eating cornflakes). They use mel-frequency cepstral coefficient (MFCC) fea-
tures and a segmentation-free approach, and reach a recognition rate of over 85%.

The work in [197] presents a wearable acoustic sensor, called BodyScope, to record
the sounds produced in the user’s throat area and classify them into human activities.
The sensor is attached to the user’s neck and consists of a modified Bluetooth headset
with a uni-directional microphone embedded into one of its earpieces. Since posi-
tioned on the side of the neck, the device amplifies the sounds produced inside the
throat and minimizes audio from external sources. The BodyScope system is used
to distinguish 12 different activities, such as eating, drinking, speaking, laughing, and
coughing.

Another example of using a wearable acoustic sensor is presented by Zhan and
Kuroda [200]. They rely on environmental background sound, which is a rich in-
formation source for identifying individual and social behaviours. The background
sounds of 18 personal activities (vacuum cleaning, shaving, drinking, etc.) and 4 social
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activities (e.g. shopping or outside dining) are distinguished. During these activities,
the sensor node including the microphone was hung in front of the user’s chest. The
authors propose the use of Haar-like sound features and an HMM classifier, and claim
an average recognition accuracy of nearly 97%.

Apart from using audio sensing for human activity monitoring, Rossi et al. [146]
propose to apply audio data for context recognition. They discriminate a wide range
of daily life situations, defined by objects (e.g. coffee machine, shaver), locations (e.g.
office, restaurant) or animals and persons (e.g. dog, speech), all producing characteris-
tic sound. In order to model these 23 sound context categories, they use crowdsourc-
ing, thus the large amount of openly available audio samples annotated by various
web users.

Although the above described approaches achieve promising results, human activ-
ity monitoring based on audio sensing has several limitations. First of all, the above
mentioned results were mostly achieved under laboratory conditions. Under realistic
settings, due to background noise, the performance of such systems is significantly
lower, as pointed out e.g. in [197]. Moreover, while certain activities produce charac-
teristic sound (e.g. typically ADLs), many other activities (e.g. different ambulation
or sport activities) have no specific audio pattern. Nevertheless, using audio data
in combination with other types of sensors is beneficial, as discussed in Section 2.3.7.
Finally, similar to image-based sensing, privacy is a major issue when using audio sen-
sors. A solution could be to compute sound-features directly on the wearable device,
as proposed by [106].

2.3.5 Object Use

Many activities, especially ADLs/IADLs, can be characterized by the objects the user
interacts with while performing that activity. Therefore, human activity monitoring
based on object use is a well researched topic. The most typical approach is to in-
strument objects in the environment with RFID tags, and use data from a wearable
RFID tag reader. An example of realizing this concept is presented by Philipose et al.
[123]. They tag objects of interest in a home environment, and equip the user with
a glove which includes an embedded RFID reader. From this setting it is possible to
detect when and which objects the user interacts with. This provides useful informa-
tion to recognize user activities such as food preparation or personal hygiene. In total
14 ADLs were chosen to be monitored by this system. For each of these activities a
probabilistic model is created, which uses observations of object usage as input.

Another approach based on inferring activities from object use is presented in
[180]. This work relies on simple sensors with discrete or even binary output, such
as contact switches used to monitor the open/closed state of doors or cupboards. A
sensor network consisting of wireless sensor nodes is created in a home setting. The
sensor readings are utilized by temporal probabilistic models to recognize several
ADLs, such as showering or having breakfast.

Either instrumenting objects with RFID tags or deploying a wireless sensor net-
work of binary switches, the installation and maintenance of such systems usually
entails high costs. Moreover, the attached RFID tags or sensor nodes might lower the
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aesthetics of objects in the home. A solution to overcome these issues is to apply the
mimic sensors proposed in [106] (cf. Section 2.2.3). Another issue of activity monitor-
ing based on object use is that this concept is restricted to mainly home settings, but
is not feasible otherwise. Moreover, activities not requiring object interaction can not
be dealt with relying only on this concept. Therefore, to recognize all kind of activi-
ties of individuals’ daily routine (including also e.g. locomotion or sport activities), a
combination with other types of sensors is required, as suggested in Section 2.3.7.

2.3.6 Radio-based Sensing

An interesting, relatively new field of activity monitoring is device-free radio-based
activity recognition (DFAR). The definition of a DFAR system is the following: A sys-
tem which recognizes the activity of a person using analysis of radio signals while
the person itself is not required to carry a wireless device [158]. The basic idea of
DFAR is that if a human moves between transmitter and receiver wireless nodes,
nearby receivers will show fluctuations in the received signals’ power. The parameter
describing this signals” power is the RSSI (received signal strength indicator) value.
Therefore, the feature RSSI variance can be used to detect human movement.

Only few works exist related to DFAR. An example of such a system is presented
by Scholz et al. [157]. They use two software defined radio nodes, placed to the right
and left side of an office door. One node is configured to send a continuous sine signal
on the 900 MHz band, and the other node receives and analyzes this signal. With this
setup, the activities walking and talking on the mobile phone can be recognized, and
the state of the office door (open/closed) can be determined.

While initial results achieved with DFAR systems are promising, this concept has
several major drawbacks. For example, the application of the system is restricted to
indoor environments. Moreover, current approaches can only recognize very few ac-
tivities, and are limited to a single user. Nevertheless, the convenient setup for the
user (no wearable sensors required, basically no privacy issues) motivates further in-
vestigation of this idea. An introduction into DFAR and the description of the current
status of this field is given in [158].

2.3.7 Combination of Different Types of Sensors

As discussed in the previous subsections, each of the here presented sensing modali-
ties have their benefits and drawbacks. Moreover, these sensors are complementary
to each other to some extent. Therefore, a combination of two or more types of sen-
sors might be beneficial for activity monitoring applications. This subsection will
give examples of different combinations of sensors applied in related work.

Adding information about user’s location could improve existing activity monitor-
ing systems. For example, when outdoors, GPS information could be used to derive
the user’s speed, which would help to distinguish e.g. between walking and running.
An approach to estimate user’s low-level activities and spatial context is presented
in [169], using GPS and a set of wearable sensors. Indoors, information about e.g. in
which room the user is located when performing a certain activity could be of interest.
An example application is presented by Chen et al. [30]. Information about the user’s
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location (sub-areas, such as kitchen or living room, are defined in a smart home) is
used to improve the recognition rate of a system which uses RFID tags to recognize
ADLs performed by elderly. They investigate two different ways to include the loca-
tion information into their existing system: by introducing a new feature based on the
location information, and by using location information to filter out irrelevant sensor
readings.

The combination of inertial data and RFID tags is presented by Stikic et al. [166]
to recognize 10 housekeeping activities. The combination of inertial sensors and mi-
crophones is used by Lukowicz et al. [101] to recognize workshop activities. Finally,
the combination of inertial and physiological sensors has been used successfully for
physical activity monitoring. For example, Crouter et al. [36] show that combining
acceleration and heart rate data improves on the intensity estimation of performed
activities compared to when only using inertial data. Moreover, the combination of
accelerometers and a heart rate monitor will be used throughout this thesis for phys-
ical activity recognition and intensity estimation.

As a final note of this section, it should be noted that integrating different types
of sensors into one device is clearly beneficial over deploying them separately. This
statement is especially true for long-term wearable sensing, where the user’s comfort
should be taken into account. For this reason, modern smartphones are clearly inter-
esting for activity monitoring applications, especially if sensors are required where
the orientation and location of the device in respect to the user’s body is not crucial.
Most state-of-the-art smartphones provide with a long list of sensors: camera, GPS,
accelerometer, gyroscope, microphone, compass, ambient light sensor, proximity sen-
sor, etc. A survey on mobile phone sensing can be found e.g. in [88].

2.4 Learning Methods

This section gives an overview of the wide range of machine learning methods applied
for the recognition of human activities. Typically, data samples recorded in an activity
monitoring system are transformed into feature vectors, which are then used as input
for training a classifier (cf. Section 4.2). The appropriate learning approach depends
on many factors, e.g. the type of activities to be classified or the type of recorded
data. Dependent on whether labeled training data is available or not, the distinction
between supervised and unsupervised learning methods can be made.

Supervised learning approaches have been the most common choice in the litera-
ture of activity monitoring. These methods require annotations (ground truth) along
with the recorded raw sensory data for training. Commonly used supervised classifi-
cation methods in the field of human activity monitoring are the following:

* Decision tree classifiers, including custom decision trees [15, 43, 117] and vari-
ous automatically generated decision tree algorithms (C4.5, ID3) [15, 61, 117].

* Bayesian classifiers, e.g. the Naive Bayes classifier [15, 61, 100].

* Instance based classifiers, such as the k-nearest neighbors (kNN) method [61,
108, 197].
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* Artificial neural networks (ANN) [43, 63, 117].
* Support vector machines (SVM) [39, 98, 197].

* Markov models, including hidden Markov models (HMM) [68, 78, 182, 200]
and conditional random fields (CRF) [171, 180].

* String-matching-based methods [165].

* Fuzzy logic-based classifiers [16, 93].

A comparison of different supervised classification approaches applied for activ-
ity recognition can be found e.g. in [8, 122]. Since supervised machine learning al-
gorithms are one of the main focuses of this thesis, more information about these
methods can be found in the subsequent chapters (cf. e.g. the data processing chain
in Section 4.2). Moreover, some of the above listed classifiers have been used as part of
an ensemble or meta-level classifier. Examples of ensemble learning algorithms used
for activity recognition are boosting, bagging or plurality voting [131]. More infor-
mation about these methods is given in Section 4.2.4, and specifically about different
boosting variants in Chapter 6.

Unsupervised learning approaches are by far less commonly used for activity mon-
itoring. These methods construct models directly from unlabeled data, using e.g.
density estimation or clustering. Examples of unsupervised learning of different ac-
tivities are presented e.g. in [31, 77, 96]. Finally, semi-supervised learning methods
have been applied for human activity monitoring recently, delivering promising re-
sults. These methods combine a usually small amount of labeled data with large
amounts of unlabeled data. Examples of realizing semi-supervised approaches for
activity recognition are given in [3, 5, 37, 76].

2.5 Applications

This section discusses application areas of human activity monitoring. Related work
presents different forms of activity recognition, and shows that these are broadly ap-
plicable. Lockhart et al. [99] give a survey on mobile activity recognition applications.
They argue that little practical work has been done in the area of applications in mo-
bile devices so far. Moreover, they define three major types of applications: those
that benefit end users, those that benefit developers and third parties, and those that
benefit crowds and groups. However, these types of applications are not mutually
exclusive. Therefore, the following subsections will give a list and short description
directly of different application areas.

2.5.1 Fitness, Sport

One of the most advanced application areas is the monitoring of fitness and sport
activities. This application area can even show a wide range of commercially avail-
able products. The first such devices were traditional pedometers, which offer the
assessment of features like distance traveled or calories burned. Most recent products
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and applications utilize a broader range of sensors and provide with more detailed
information, e.g. about the intensity and duration of performed physical activities,
stairs climbed, etc. An example commercial product is the Fitbit system [50], which
is a small chip-on device containing a 3D motion sensor, and provides the above
described functionality. Concerning research performed in this area, there exist a
large amount of related work on assessing the intensity (e.g. in [118, 187]) or recog-
nizing the type of performed physical activities (e.g. in [28, 43]), or both [137, 173].
Moreover, it was also shown that by detecting the type of performed activities, the
estimation of energy expenditure can be improved [2, 22].

Apart from applications monitoring an individual’s physical activities in general,
there exist work on monitoring specific sport activities. For example, Strohrmann
et al. [168] investigate the potential of wearable sensors to derive kinematic features
in running. With two miniature inertial measurement units, attached to the athlete’s
foot and hip, the authors could distinguish between experienced and unexperienced
runners. Another example of monitoring a specific sport is given by Bachlin et al. [13],
who analyze ski-jumping from on-body acceleration data. With sensors attached to
the athlete’s legs, arms and chest, the authors could identify characteristic motion pat-
terns and extract biomechanically descriptive parameters. Furthermore, Ladha et al.
[87] present a climbing performance analysis system. They capture a climber’s move-
ments through an accelerometer-based wearable sensing platform, automatically de-
tect climbing sessions and moves, and assess parameters related to core climbing
skills: power, control, stability and speed.

2.5.2 Healthcare

As discussed in Section 1.2, developing healthcare applications is one of the most
important motivations to investigate human activity monitoring. One major goal of
such applications is to monitor how far individuals follow recommendations, given
in form of either general guidelines or as part of a custom care plan. This information
can be used either in the rehabilitation process (for e.g. cardiovascular patients) or to
promote a more active lifestyle, thus to prevent e.g. age-related diseases.

An important factor in healthcare applications related to physical activity moni-
toring is to motivate the user. By providing online feedback, the user can reflect on
his progress and gain insights about his behaviour anywhere and at anytime. This
could encourage to continue or do even more physical activity. Related work also
investigated how the representation of the results could further improve the user’s
motivation. For example, using living metaphors [97] or rewarding certain accom-
plishments with trophies [50] are common motivational tools. In a study conducted
by Consolvo et al. [33], users were given an exercise program and a mobile device
showing the image of a virtual garden. The users received virtual rewards — e.g. flow-
ers appearing in the virtual garden — when performing a certain amount of exercises.
The study showed that participants using this system spent significantly more time
performing exercises than participants who did not use the system.

Apart from monitoring general physical activity, healthcare applications can also
provide valuable information to clinicians to monitor and diagnose certain patients.
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For example, the long-term monitoring of a patient’s daily life can be used to detect
changes or unusual patterns that could indicate early symptoms of diseases such as
Alzheimer’s or Parkinson’s disease. These symptoms might not even occur during
short medical appointments. Therefore, integrating results of activity monitoring
into out-of-hospital services is of importance. Lau et al. [90] investigate how ac-
tivity recognition with a smartphone can support patient monitoring and improve
telemedicine services.

Finally, a mobile healthcare application called BeWell [27] is shortly described
here. It shows how mobile activity monitoring can be integrated into our daily life,
and promote multiple aspects of physical and emotional well-being. The BeWell ap-
plication continuously tracks user behaviour along three distinct health dimensions
without requiring any user input. It automatically infers the user’s sleep duration
(based on phone usage), physical activity (based on the phone’s accelerometer, dis-
tinguishing between the activity classes walking, running and stationary) and social
interaction (based on ambient speech during a day and the usage of social applica-
tions on the smartphone). For all three components a score between 0 and 100 is
computed. Using these scores, persuasive feedback is given to the user in form of
an animated aquatic ecosystem, rendered as an ambient display on the smartphone’s
home screen [27].

2.5.3 Assisted Living, Elderly Care

A major goal of current research in human activity monitoring is to develop new tech-
nologies and applications for the aging. Assisted living is an important application
area, with the aim that elderly people live more independent lives. For example, activ-
ity recognition systems can assist people suffering from dementia, who tend to forget
certain steps while performing an activity. A realization of such a system is presented
by Siet al. [161], who developed a prototype of a context-aware reminding system for
daily activities. This system helps elderly with dementia to complete different ADLs
(e.g. making tea or brushing teeth), instead of them relying on caregivers. The system
is based on a wireless sensor node, which can obtain the information of the elderly
person’s tool usage in different ADLs. Based on this information, the system provides
elderly with a personalized guidance to complete ADLs.

Another important aspect in assisted living is to detect potentially dangerous situ-
ations in a person’s life and call for external help automatically. Such systems are espe-
cially interesting for people living alone, which is the case for many elderly. An exam-
ple usage is to detect when a person’s vital signs indicate imminent health threats, e.g.
a system to assess heart failure [186]. A further important application area is fall de-
tection, which has been investigated in numerous related work [24, 67, 95, 104, 151].

2.5.4 Industry: Manufacturing and Services

Human activity monitoring has the potential to support workers in their tasks, both
in the manufacturing and service sectors. In the context of a large European project
called wearIT@work, Lukowicz et al. [102] investigated the use of wearable comput-
ing technology for real-life industrial scenarios. Four pilot applications were consid-
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ered in the following fields: aircraft maintenance, car production, healthcare, and
emergency response. The goal was to use wearable technology and activity recogni-
tion to provide a summary of performed activities, to provide hands-free access to
e.g. electronic manuals, or to assist in the training of new workers.

Concrete examples of the monitoring and support of manufacturing tasks are
given e.g. in [165, 188]. Ward et al. [188] show an approach of continuous activity
recognition using on-body sensing. They combine data from wearable microphones
and accelerometers, and recognize a set of workshop activities such as sawing, ham-
mering or drilling. Stiefmeier et al. [165] present a system for tracking workers in
car manufacturing plants, investigating two scenarios. In the scenario of an assem-
bly task (the installation of the front lamp) both wearable and environmental sensors
are used. This scenario is not feasible in production due to the instrumentation of
the cars, thus is restricted to training environments. The second scenario investigates
the quality check in the manufacturing process and relies only on wearable sensors
integrated into a jacket.

Examples of using human activity recognition for supporting workers in the ser-
vice sector, concretely in hospital environments are given e.g. in [7, 47]. Altakouri
et al. [7] investigate to what degree automatic activity recognition could support the
use of prioritized lists for mobile phone-based nursing documentation. They show
that the activity recognition-based list selection improves both the system’s usability
and acceptance, considering parameters such as time effort, interaction complexity, er-
ror rate and subjective system perception. Finally, Favela et al. [47] demonstrate that
mobile activity recognition systems can build pervasive, context- and activity-aware
networks for the monitoring of hospital staff, thus providing important information
for colleagues.

2.5.5 Other Application Areas

The number of potential application areas of human activity monitoring is numerous.
This subsection gives further examples in addition to the above listed areas. The goal
of surveillance applications is to automatically recognize suspicious behaviour, thus
to detect deviations from regular patterns. These systems usually rely on the large
number of cameras present in public locations, and face the difficulty of detecting
activities from multiple sources. An example is given by Zajdel et al. [198] who detect
aggressive human behaviour in public environments, using a fusion of audio and
video sensing.

In the application area of entertainment, the monitoring and recognition of user’s
activities has become the focus of interest with the appearance of video games con-
trolled by accelerometers (e.g. Nintendo Wii) or even controlled by the player’s body
(e.g. using the Kinect on the Xbox 360 platform). Moreover, many applications of
human activity monitoring exist for serious games. An example is presented by Fu-
jiki et al. [59], who monitor the user’s performed activities throughout the day. The
so calculated activity points are used in a pervasive gaming platform, where players
race against each other. Moreover, earned activity points can be spent to get hints in
mental games played on the platform, such as Sudoku. The overall goal of the authors
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is to encourage physical activity and to modify the user’s daily behaviour (e.g. taking
the stairs instead of the elevator).

In the field of robotics, social robots require to detect and track humans and rec-
ognize their activities [167]. This is a key aspect to effectively integrate robots into
people’s workflows, and to natural human-robot interaction in a variety of scenarios.
An example of a military application is presented by Minnen et al. [111]. They use
activity recognition for the automatic generation of post-patrol reports, thus to sum-
marize what happened during a patrol of several hours. Finally, targeted or context-
aware advertising is an evolving application area. An example is given by Partridge
and Begole [121], who display ads that are relevant to the user, based on the user’s
current or frequent activities.

2.6 Conclusion

In this chapter a general overview of recent, state-of-the-art research related to hu-
man activity monitoring has been presented. A wide range of technologies, methods
and solutions have been highlighted for the different components and aspects of such
systems. Four major topics have been discussed in this chapter, namely the type of
monitored activities, the type of applied sensing modalities, different machine learn-
ing methods, and finally various application areas of activity monitoring systems.
The rest of this thesis will only focus on a fraction of the here presented approaches,
which is specified in this section.

From the wide range of activities monitored and recognized in related work, this
thesis focuses on low-level activities. The term physical or aerobic activities will be
used throughout this work, referring both to basic locomotion activities (e.g. walking,
running or cycling) and further everyday, household and fitness activities. Moreover,
the stationary activities (or inactivities) lying, sitting and standing are included, since
in many scenarios distinguishing activity and inactivity is important. Overall, the
goal is to describe most of an individual’s daily routine from the physical activity
point of view. The concrete list of included activities will be given in the respective
chapters. Generally, this depends on the used dataset, as described in Chapter 3.

Due to the defined list of activities, the usage of ambient sensors is not feasible in
this thesis. Therefore, only wearable sensors are considered hereafter. As discussed
in Section 4.1, the combination of accelerometers and a heart rate monitor will be
used throughout this work. As pointed out in Section 2.3, these types of sensors are
complementary to each other. Therefore, as suggested by various related work, the
combination of them will be beneficial for recognizing the type and estimating the
intensity of performed physical activities.

Considering machine learning methods, Section 4.2 will present a complete data
processing chain for physical activity monitoring. This also includes an analysis and
evaluation of a wide range of classification methods, focusing thereby only on super-
vised approaches. Moreover, an important topic of this thesis are meta-level classi-
fiers, especially various boosting algorithms, as presented in Chapter 6.

Finally, as discussed in Section 1.2, the main motivation for developing different
methods in this thesis is to be used in healthcare applications. With the precise moni-
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toring of physical activities, the here presented solutions can tell how far individuals
follow general or custom recommendations. However, the proposed approaches can
also be directly used in general fitness applications, where detailed information about
the intensity and duration of performed physical activities is of interest for the user.



Datasets for Physical Activity Monitoring

3.1 Introduction

Most established research fields are characterized amongst others with publicly avail-
able, standard, benchmarked datasets. Such datasets have many benefits: different
and new approaches can be compared to each other, no research time has to be spent
on laborious data collection, standardized testbeds can be created, etc. In the field
of physical activity monitoring ideally datasets reflect natural behaviour, they are
recorded from many different subjects performing a wide range of activities, and are
fully annotated with ground truth. Unfortunately, due to various difficulties concern-
ing hardware and annotation (all discussed below in this chapter) and due to privacy
issues, only a few datasets are publicly available. Moreover, even these few data-
sets show significant limitations, thus there is a lack of a commonly used, standard
dataset. Therefore, this chapter presents two new datasets for physical activity mon-
itoring, both made publicly available for the research community. Moreover, these
datasets are used for benchmarking in Chapter 4, showing the difficulty of common
classification problems and exposing some challenges in this research field.

3.1.1 Related Work

Recently, datasets for different fields of activity and context recognition have become
publicly available. A live-in laboratory was created for the MIT PlaceLab dataset
[80]. Volunteers were recorded using devices integrated into the home setting, and
cameras installed throughout the house were used for the annotation. Another data-
set observing activities performed in a home environment was introduced in [180].
This dataset uses simple binary sensing nodes (e.g. reed switches, pressure mats) and
particularly contains very long readings (month-long). The dataset presented in [79]
focuses on the daily routine of individuals, recording the daily life of one person
over a period of 16 days. The Opportunity dataset [103, 144] provides a large record-
ing of 12 subjects performing morning activities (activities of daily living, ADL) in a

27
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room equipped with a kitchen. This dataset uses numerous sensors attached to the
body of the participants and in the environment, and contains over 25 hours of sen-
sor data. The TUM Kitchen dataset [174] was created and made publicly available
for research in the areas of markerless human motion capture, motion segmentation
and human activity recognition. The dataset provides video data from 4 fixed cam-
eras, RFID (radio-frequency identification) tag and reed switch readings and action
labels. Finally, Banos et al. [10] presented a benchmark dataset with the specific goal
to evaluate sensor displacement in activity recognition. The dataset includes 33 fit-
ness activities, recorded using 9 inertial sensor units from 17 subjects.

The goals of physical (aerobic) activity monitoring are to estimate the intensity of
performed activities and to recognize activities like sitting, walking, running or cycling.
The focus and challenges in this field are — compared to activity recognition in e.g.
ADL or industrial scenarios — different, due to differing conditions (considering e.g.
the sensor setup: only a few, wearable sensors can be used). Since the characteristic of
the activities in this field also significantly differ from the specific activities of home
or industrial settings, different approaches are required, e.g. features are calculated
usually on longer intervals, etc.

Therefore, datasets specifically created for physical activity monitoring are nec-
essary. However, only a few, limited datasets are publicly available in this research
field. The DLR dataset [53] contains 4.5 hours of annotated data from 7 activities per-
formed by 16 subjects, wearing one belt-mounted inertial measurement unit (IMU).
Bao and Intille [15] present a data recording of 20 different activities with 20 subjects,
wearing five 2-axis accelerometers, and show results in activity recognition with 4
different classifiers. The Opportunity dataset contains 4 basic modes of locomotion:
lying, sitting, standing and walking [103, 144]. Finally, in the dataset introduced by
Xue and Jin [195] a protocol of 10 different activities was followed by 44 subjects,
wearing one 3-axis accelerometer.

3.1.2 Problem Statement and Contributions

Data recording for physical activity monitoring faces some difficulties compared to
data collection in e.g. home environments, resulting in less comprehensive and estab-
lished datasets. For instance, a robust hardware setup consisting of only wearable
sensors is required. The reason is that activities such as running are highly stressing
the setup. Moreover, parallel video recording for the purpose of offline annotation — a
widely used method in other fields, such as the monitoring of daily activities in home
environments — is not feasible if outdoor activities are included in the data collection.
Therefore, only online annotation of the performed activities is possible for creating
a reliable ground truth. As a result, there is a lack of a commonly used, standard
dataset and established benchmarking problems for physical activity monitoring.
This chapter introduces two new datasets for physical activity monitoring, both
made publicly available. Based on the conditions and limitations of the public da-
tasets described above, the following criteria were defined for the creation of the
datasets: a wide range of everyday, household and fitness activities should be per-
formed by an adequate number of subjects, wearing a few 3D-IMUs and a heart rate
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(HR) monitor. The reason for requiring a HR-monitor in addition to the commonly
used inertial sensors is that physiological sensing — missing in other public datasets
— is especially useful for the intensity estimation of physical activities. For example,
inertial sensing alone can not reliably distinguish activities with similar movement
characteristic but different energy expenditure, e.g. walking and ascending stairs, or
an even more difficult example: walking and walking with a load.

A further requirement for the new datasets is that the participating subjects should
have the freedom to execute activities however they want. It has been pointed out in
previous work (e.g. in [15]) that (semi-)naturalistic data collection provides a more
realistic training and test data, and permits greater subject variability in behaviour
than data recorded in a laboratory setting. For example, subjects should be allowed
to freely walk in- or outdoors during data capture, instead of specifying locomotion
activities on e.g. a treadmill.

The rest of this chapter is organized in the following way: Section 3.2 introduces
the PAMAP dataset and Section 3.3 presents the PAMAP2 dataset. The PAMAP data-
set contains data from 14 activities and 8 subjects, wearing 3 IMUs and a HR-monitor.
The PAMAP?2 dataset was recorded with a similar sensor setup from 9 subjects, per-
forming 18 different physical activities. For both datasets, the hardware setup, the
data collection protocol, etc. will be described in detail. Moreover, lessons learnt
from these data recordings are discussed in Section 3.4. Finally, the chapter con-
cludes in Section 3.5, reflecting also on the impact of making these datasets publicly
available.

3.2 The PAMAP Dataset

The PAMAP dataset was recorded with an early system prototype developed in the
PAMAP (Physical Activity Monitoring for Aging People) project [116], as part of the
aerobic activity monitoring use case. The data collection took place in August 2010.
Wired 3D-IMUs and a HR-monitor were used as sensors, and a Sony Vaio ultra-mobile
PC (UMPC) as collection unit during data recording. Each of the 8 test subjects fol-
lowed a predefined data collection protocol of about one hour. Approximately 8
hours of data were collected altogether. The recorded dataset has been made publicly
available for research purposes, and can be downloaded from the project’s website!.
This section describes the dataset in more detail, focusing on the hardware setup, par-
ticipating subjects and the data collection protocol. Supplementary material related
to the PAMARP dataset is presented in Appendix B.

3.2.1 Hardware Setup

Inertial data was recorded using 3 wired Colibri inertial measurement units from
Trivisio [178]. The sensors are lightweight (22 g without cable) and small (30 x 30 x
13mm). Each IMU contains a 3-axis MEMS (micro-electro-mechanical system) ac-
celerometer, a 3-axis MEMS gyroscope, and a 3-axis magneto-inductive magnetic sen-
sor, all sampled at 100 Hz. During data processing in the rest of this thesis, only the

Thtt p: / / www. parmap. or g/ deno. ht i, entry “PAMAP_Dataset”.
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Figure 3.1: PAMAP dataset: placement of IMUs (red dots) and the data collection
unit (blue rectangle).

3-axis accelerometer is used from an IMU, which has a resolution of 0.038 ms~2 in the
range +16g. Of the 3 IMUs, one was attached above the wrist of the dominant arm,
one on the chest of the test subjects, and one sensor was foot-mounted.

A Sony Vaio VGN-UX390N UMPC was used as inertial data collection unit, car-
ried by the subjects in a pocket fixed on their belt. The placement of the sensors and
this data collection unit is shown in Figure 3.1. The IMUs were connected to the Sony
Vaio UMPC by USB-cables, which were taped to the body so that they did not restrict
normal movements of the subjects. To obtain heart rate information, the Garmin
Forerunner 305, a GPS-enabled sports watch with integrated HR-monitor, was used.

The applied sensors (3 IMUs and a HR-monitor) define 3 positions on a subject’s
body, since the chest IMU and the HR-monitor are both placed at the same position.
Previous work in e.g. [122] showed that in the trade-off between classification per-
formance and number of sensors, using 3 sensor locations is the most effective. In
systems for physical activity monitoring the number of sensor placements should be
kept at a minimum, for reasons of practicability and comfort — since users of such
systems usually wear them for many hours a day. On the other hand, a thorough ana-
lysis of sensor positions in Section 8.2 shows that less than 3 sensor positions are not
sufficient for accurate activity recognition.

During data collection, a supervisor accompanied the test subjects and marked
the beginning and end of each of the different activities. These timestamped activity
labels were stored on the data collection unit. Synchronization of the timestamped
inertial data, annotations and heart rate data was carried out offline. The data format
used in the published dataset is given in Appendix B, Table B.1.
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Table 3.1: PAMAP dataset: protocol of data collection. Left side: indoor activi-
ties, right side: outdoor activities.

Activity Dum.tion Activity Durftion
[min] [min]
Lie 3 Walk very slow 3
Sit 3 Break 1
Stand 3 Normal walk 3
Iron 3 Break 1
Break 1 Nordic walk 3
Vacuum clean 3 Break 1
Break 1 Run 3
Ascend stairs 1 Break 2
Break 2 Cycle 3
Descend stairs 1 Break 1
Break 1 Run 2
Ascend stairs 1 Normal walk 2
Descend stairs 1 Break 2
Play soccer 3
Break 2
Rope jump 2

3.2.2 Subjects

Eight subjects participated in the data collection, seven males and one female. The
subjects were employees at a research institute, aged 27.88 +2.17 years, and had a
BMI of 23.68 +4.13 kgm~2. One subject was left-handed, all the others were right-
handed. Detailed information about each of the test subjects is given in Appendix B,
Table B.3.

3.2.3 Data Collection Protocol

The protocol of performing indoor and outdoor activities for the data collection is
described in Table 3.1, left and right side, respectively. A criterion for selecting ac-
tivities was on the one hand that the basic activities (walking, running, cycling and
Nordic walking) and postures (lying, sitting and standing), traditionally used in related
work, should be included. On the other hand, everyday (ascending and descending
stairs), household (ironing, vacuuming) and fitness (playing soccer, rope jumping) activ-
ities were also included to cover a wide range of activities. Moreover, the activity
walk very slow was introduced to have walking related activities of different intensity
levels: walk very slow — normal walk — run.

A total of 14 different activities were included in the data collection protocol. The
protocol was split into an indoor and an outdoor scenario. The main reason was the
limited battery time of the collection unit, but also to avoid the overloading of the test
subjects. Each of the subjects had to follow the presented protocol, performing all de-
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fined activities in the way most suitable for the subject. Therefore, a semi-naturalistic
data collection was carried out when recording the PAMAP dataset, following the
specifications defined in Section 3.1.2. A brief description of each of the activities
can be found in Appendix B, Table B.5.

One of the goals of physical activity monitoring is to estimate the intensity of
performed activities. A HR-monitor is included in the hardware setup of the data
collection, this way heart rate related features can be considered for this task during
data processing (cf. Chapter 4). Therefore, a short break is inserted in the data col-
lection protocol after most of the activities. The duration of the breaks were chosen
so that the heart rate of the subjects was allowed to return to the “normal” range
after performing an activity. The goal was to ensure that the measured heart rate
was unaffected by the previous activities. For this purpose, a 1-minute break was
sufficient after most of the activities, except for the most exhausting ones (ascending
stairs, running and playing soccer), after which activities a 2-minutes break was in-
serted. However, since in everyday situations the influence of activities on the next
performed ones can not be excluded, this influence was also simulated in the data
collection protocol: descending stairs was performed directly after ascending stairs and
normal walking directly after running (cf. Table 3.1).

3.3 The PAMAP2 Dataset

Although the PAMAP dataset provides a good basis to develop and evaluate data pro-
cessing and classification techniques for physical activity monitoring, a new dataset
was recorded for several reasons. First of all, an improved hardware prototype was de-
veloped within the PAMAP project [116]. The main advantages are the usage of only
wireless sensors and the significantly extended battery time of the collection unit,
both clearly making data recording easier. Moreover, the PAMAP dataset includes a
significant amount of recordings where data from at least one sensor is missing, thus
limiting the applicability of the respective dataset entries. A further goal of a new
data collection was to extend the number of activities in the dataset.

Therefore, this section presents the PAMAP?2 dataset, recorded in autumn 2011.
It includes data from 9 subjects, wearing 3 IMUs and a HR-monitor, and performing
18 different activities. Over 10 hours of data were collected altogether, from which
nearly 8 hours were labeled as one of the 18 activities. The dataset has been made pub-
licly available, and can be downloaded from the PAMAP project’s website?. Moreover,
the dataset is included in the UCI machine learning repository [12], named “PAMAP2
Physical Activity Monitoring Data Set” [132].

This section first describes the hardware setup and the subjects participating in
the data recording, then the data collection protocol is presented. Supplementary
material related to the PAMAP?2 dataset is given in Appendix B.

2htt p: / / wwy. parmap. or g/ deno. ht ni, entry “PAMAP2_Dataset”.
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Figure 3.2: PAMAP?2 dataset, GUI used for the data collection: start screen of
the labeling tool. This screenshot is made while the subject is performing the
activity sit during data collection. All sensors are operating correctly according
to the green symbols in the top left corner. Moreover, the subject’s heart rate is
63 beats per minute in the moment of this screenshot, as indicated in the top left
corner as well.

3.3.1 Hardware Setup

Three IMUs and a heart rate monitor were used as sensors during the data collection.
For the inertial measurements, Colibri wireless IMUs from Trivisio [178] were used.
The sensors are relatively lightweight (48 g including battery) and small (56 x 42 x
19mm). Each IMU contains two 3-axis MEMS accelerometers (range: +16g / +6g,
resolution: 13-bit), a 3-axis MEMS gyroscope (range: +1500°/s, resolution: 13-bit),
and a 3-axis magneto-resistive magnetic sensor (range: +400 uT, resolution: 12-bit),
all sampled at 100Hz. To obtain heart rate information, a BM-CS5SR HR-monitor
from BM innovations GmbH [21] was used, providing heart rate values with approxi-
mately 9 Hz. The sensors were placed onto 3 different body positions. A chest sensor
fixation includes one IMU and the heart rate chest strap. The second IMU is attached
over the wrist on the dominant arm, and the third IMU on the dominant side’s ankle3,
both are fixed with sensor straps.

A Viliv S5 UMPC (Intel Atom Z520 1.33GHz CPU and 1GB of RAM [185]) was
used as data collection unit. The main advantage of this device is a battery time of
up to 6 hours. A custom bag was made for this collection unit and the 2 USB-dongles
additionally required for the wireless data transfer — one for the IMUs and one for the
HR-monitor. The bag was carried by the subjects fixed on their belt.

Labeling of the currently performed activities was done via a GUI (graphical user
interface) specifically developed for this purpose on the UMPC, cf. Figure 3.2 and

31t should be noted that, compared to the hardware setup of the PAMAP dataset recording, this
sensor is placed on the ankle instead of the subject’s foot. This has several reasons: the sensor is easier
to mount on the ankle position and is less noticeable. Moreover, the inertial measurements are less
dependent from the type of shoes subjects are wearing, thus ensuring a more reliable sensor placement.



34 3 Datasets for Physical Activity Monitoring

@ 126
-
Labeling Other Eating Watching TV Covrvn;)rl:(ter
Activity

Summary

Ascending Descending
Stairs Stairs

Quit Car Driving Back

Figure 3.3: PAMAP?2 dataset, GUI used for the data collection: labeling of various
everyday activities.

Figure 3.3. This labeling tool offers the possibility to label the basic activities and
postures on its start screen, as shown in Figure 3.2. Moreover, on various other pages,
the labeling of a wide range of everyday, household and sport activities is possible
as well. Figure 3.3 shows the labeling screen for various everyday activities as an
example, while a subject is performing the activity ascend stairs. In addition, symbols
in the top left corner of the GUI (cf. both Figure 3.2 and Figure 3.3) indicate whether
the three IMUs and the HR-monitor are continuously operating, thus whether the
data acquisition is running smoothly.

During data collection, the beginning and end of each of the different performed
activities were marked with the described labeling tool on the Viliv UMPC, thus pro-
viding timestamped activity labels along with the raw sensory data. The collection
of all raw sensory data and the labeling were implemented in separate threads in an
application running on the collection unit, to ease the synchronization of all collected
data. The data format of the PAMAP2 dataset is given in Appendix B, Table B.2.

3.3.2 Subjects

In total nine subjects participated in the data collection, eight males and one female.
The subjects were mainly employees or students at a research center, aged 27.22 +3.31
years, and having a BMI of 25.11 +2.62 kgm~2. One subject was left-handed, all the
others were right-handed. Detailed information on each of the test subjects is given
in Appendix B, Table B.4.

3.3.3 Data Collection Protocol

A protocol of 12 activities was defined for the data collection, shown in Table 3.2.
The criterion for selecting these activities was similar to the explanation given for the
PAMAP dataset (cf. Section 3.2.3): apart from the basic activities and postures, a wide
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Table 3.2: PAMAP?2 dataset: protocol of data collection.

Activity Dura_tion Activity Dura.tion
[min] [min]

Lie 3 Descend stairs 1
Sit 3 Break 2
Stand 3 Normal walk 3
Iron 3 Break 1
Break 1 Nordic walk 3
Vacuum clean 3 Break 1
Break 1 Cycle 3
Ascend stairs 1 Break 1
Break 2 Run 3
Descend stairs 1 Break 2
Break 1 Rope jump 2
Ascend stairs 1

range of other activities should be included. Each of the subjects had to follow this
protocol, performing all defined activities in the way most suitable for them.

Furthermore, a list of optional activities to perform was also suggested to the sub-
jects. The idea of these optional activities was to further enrich the range of activities
in the recorded dataset. Activities from this optional list were only performed by
some of the subjects if the circumstances made it possible, e.g. if the subject had ad-
ditional free time after completing the protocol, if there was equipment available to
be able to perform an optional activity, and if the hardware setup made further data
recording possible. In total, 6 different optional activities were performed by some of
the subjects: watching TV, computer work, car driving, folding laundry, house cleaning
and playing soccer.

The created PAMAP?2 dataset therefore contains in total data from 18 different ac-
tivities. A brief description of each of these activities can be found in Appendix B, Ta-
ble B.6. Most of the activities from the protocol were performed over approximately
3 minutes, except ascending/descending stairs (due to limitations of the building where
the indoor activities were carried out) and rope jumping (to avoid exhaustion of the
subjects). Breaks between activities in the protocol were inserted for the same reason
as explained in Section 3.2.3 for the PAMAP dataset. The optional activities were
performed as long as the subjects wished, or as long as it took to finish a task (e.g.
arriving with the car at home or completely finishing dusting a bookshelf).

3.4 Data Collection: Lessons Learnt

This section gives a brief description of lessons learnt during the data capture of the
two datasets. The hardware setup used to record the PAMAP dataset was cumber-
some. It took over 30 minutes to attach all the sensors and fix the cables. Moreover,
the Sony Vaio collection unit’s battery time of less than an hour clearly hindered the
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data capturing. On the other hand, attaching the sensors and the custom bag for
recording the PAMAP?2 dataset was straightforward, the entire setup time was not
more than 5 minutes. All subjects reported that the sensor fixations were comfortable
and did not restrict normal movements at all. Only the custom bag felt sometimes
uncomfortable during intensive movements (e.g. running). A smaller solution for the
collection unit — using e.g. a smartphone — would be recommendable for similar data
collections.

One aspect, which should not be underestimated, is the weather. Opposed to
most of the datasets collected in the research field of activity recognition (recorded
e.g. in home or industrial settings), a significant part of the two datasets presented in
this chapter had to be recorded outdoors. Since most of the subjects preferred not to
run or cycle in too hot, cold or rainy conditions, and the entire data collection took
several days, careful planning and consulting the weather forecast was required when
making the schedule for the subjects.

Problems occurring during such complex and long data recordings are inevitable.
The setup belonging to the PAMAP dataset had several weaknesses, due to the wired
connection of the IMUs. Overall, this caused a significant amount of data loss, mo-
tivating the improvement of the system. As for the setup belonging to the PAMAP2
dataset (using the improved prototype, as described above), there were two main rea-
sons for data loss. The first reason is data dropping caused by glitches in the wireless
data transfer. However, this was not too significant: the 3 IMUs had a real sampling
frequency (a calculated sampling rate corrected with overall data dropping occur-
rence) of 99.63Hz, 99.78 Hz and 99.65 Hz on the hand, chest and ankle placements,
respectively (compared to the nominal sampling frequency of 100 Hz). Data loss on
the wireless HR-monitor appeared even more rarely, and is also less critical than on
the IMUs.

The second, more severe reason for data loss in the PAMAP?2 recording was the
somewhat fragile system setup due to the additionally required hardware compo-
nents: 2 USB-dongles, a USB-hub and a USB extension cable were added to the collec-
tion unit in the custom bag. Especially during activities like running or rope jumping
the system was exposed to a lot of mechanical stress. This sometimes caused losing
connection to the sensors, or even a system crash, when the data recording had to
be restarted — and in a few cases the data collection could not be recovered even this
way. As a result, some activities for certain subjects are partly or completely missing
in the dataset. To try to minimize such problems, it is preferable to use the entire
sensor setup from one company (so that no second dongle is needed), or even better
would be using sensors with standard wireless communication (although the Trivisio
sensors use the 2.4 GHz ISM band, they use a specific communication protocol, and
thus a USB-dongle is needed for wireless data streaming). As an alternative, local
storage on the sensors should be considered for future data collection, made possible
by new sensor solutions recently appearing on the market.
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3.5 Conclusion

In the field of physical activity monitoring there is a lack of a commonly used, stan-
dard dataset and established benchmarking problems. Therefore, this chapter pre-
sented two new datasets (the PAMAP and the PAMAP?2 dataset), both made publicly
available. The PAMAP dataset was recorded on 14 physical activities with 8 subjects,
wearing 3 IMUs and a HR-monitor. The PAMAP?2 dataset was recorded with a similar
sensor setup from 9 subjects, performing up to 18 different activities. In the respec-
tive sections of this chapter the hardware setup, participating subjects and the data
collection protocol have been described in detail for both datasets.

Since the introduced new datasets provide a wide range of physical activities, per-
formed by a reasonable number of subjects, challenging classification problems can
be defined. This is shown in Chapter 4 where e.g. different intensity estimation and
activity recognition classification tasks, defined on the PAMAP?2 dataset, are bench-
marked. The so exposed challenges motivate the improvement of existing data pro-
cessing and classification approaches, resulting in e.g. a new classification algorithm
presented in Chapter 6. Moreover, the introduced rich datasets allow the evaluation
of everyday life scenarios, and the development of robust techniques and personal-
ization approaches for physical activity monitoring, as shown in Chapter 5 and Chap-
ter 7, respectively.

Apart from using the two introduced datasets in this work, there has been a
certain impact in the research community by making them publicly available. The
PAMAP dataset was published in October 2011 [139], while the PAMAP2 dataset
was published in June 2012 [135, 136]. Moreover, the PAMAP?2 dataset was included
in the UCI repository in August 2012 [132]. Despite the relatively short time passed
since publishing the datasets (this chapter is written in August 2013), several research
groups have already made use of them, and state that releasing the datasets is a great
service to the research community. Moreover, the number of page hits of the PAMAP2
dataset in the UCI repository [132] passed 11500 (last accessed on 2013-08-29).

Concluding the chapter, this paragraph briefly presents a few major publications
from other research fields, which also make use of the PAMAP or PAMAP?2 data-
set. Rakthanmanon et al. [130] use the PAMAP dataset to demonstrate their multi-
dimensional time series clustering algorithm. The PAMAP dataset is used by Hu
et al. [71] as one of the examples for real-world problems to evaluate a novel time
series classification algorithm under more realistic assumptions. Moreover, Rakthan-
manon and Keogh [129] use the PAMAP dataset to evaluate their proposed time series
shapelet discovery algorithm, and to demonstrate that shapelets can also be used as
a high accuracy classification tool for activity recognition. Huang and Schneider [73]
propose spectral learning algorithms for hidden Markov models (HMMs) that incor-
porate static data, and use the PAMAP?2 dataset in their experiments to demonstrate
the performance of the new algorithms on real (not synthetic) data. Finally, Clifton
et al. [32] introduce an extreme function theory for novelty detection, and illustrate
their proposed method on the PAMAP?2 dataset, used as a benchmark time-series da-
taset.






Data Processing and Classification

4.1 Introduction

The goals of this thesis in physical activity monitoring are to estimate the intensity
of performed activities and to identify basic or recommended activities and postures.
These goals are motivated by various health recommendations, as discussed in Chap-
ter 1. For these purposes two datasets have been created: the PAMAP and PAMAP2
datasets, both presented in Chapter 3. These datasets will be used in this chapter to
apply different data processing methods and classification algorithms, and to create
a benchmark of physical activity classification problems.

The created PAMAP and PAMAP?2 datasets provide raw sensory data from 3 in-
ertial measurement units and a heart rate monitor. Previous work shows that for
different tasks in physical activity monitoring accelerometers outperform other sen-
sors. Concerning intensity estimation of physical activities, work in e.g. [118, 173]
show that 3D-accelerometers are the most powerful sensors. In [118] for example,
accelerometers and gyroscopes attached to wrist, hip and ankle were used to estimate
the intensity of physical activity, and it was found that accelerometers outperform
gyroscopes. Concerning the recognition of physical activities, a study carried out by
Parkka et al. [117] analyzed the effect of various sensors. In this study subjects carried
a set of wearable sensors (3D-accelerometer, 3D-compass, microphone, temperature
sensor, heart rate monitor, etc.) while performing different activities. According to
the results, accelerometers proved to be the most information-rich and most accurate
sensors for activity recognition. Parkka et al. [117] found that accelerometer signals
react fast to activity changes and they reflect the type of activity well. Therefore, from
all 3 IMUs, only data from the accelerometers is used hereafter.

In addition to acceleration data, the heart rate signals provided by both datasets
will also be used. Physiological signals were closely examined in previous work for
intensity estimation. For example, Crouter et al. [36] conclude that combining ac-
celerometer and heart rate data, or using only heart rate information enables good in-
tensity estimation. On the other hand, Tapia et al. [173] show that introducing heart

39
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Figure 4.1: Example raw acceleration (chest IMU up-down direction, shown in
the top row of both plots) and heart rate data (shown in the middle row of both
plots) from the PAMAP?2 dataset (activity IDs as given in the dataset are shown
in the bottom row of both plots). The top and bottom plots together show one
subject’s collected data while performing the 12 activities of the defined data
collection protocol. Note: data from the break intervals and transient activities
has been removed from these plots.
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rate related features has no significant improvement on the differentiation of activi-
ties performed with various intensity levels, compared to when only using features
derived from acceleration data. Nevertheless, heart rate data will be used in the data
processing chain of Section 4.2. Moreover, experiments performed in Section 8.2 will
show that heart rate data indeed has the potential to improve the intensity estimates
of physical activities.

Figure 4.1 shows raw acceleration (from the chest IMU, up-down direction) and
heart rate data from one subject, while performing the various activities defined in
the PAMAP?2 dataset’s data collection protocol. These plots show that different tasks
have a different signature, most of them can be easily identified by visual inspection!.
Therefore, it is clear that with the appropriate data processing steps (e.g. the right fea-
tures extracted or the right classifiers chosen) these differences can be captured, mak-
ing activity recognition and intensity estimation possible. For example, the posture
lying can be easily distinguished from the postures sitting and standing with just the
mean value of the presented acceleration signal. Another example is that activities
including steps (walking-related activities) can be distinguished from other activities
(e.g. cycling or different postures) by e.g. the standard deviation of the up-down di-
rection on the chest or foot/ankle acceleration signal. Moreover, the heart rate signal
can be used to distinguish certain activities of differing intensity levels, e.g. ascending
and descending stairs.

This chapter is organized in the following way: Section 4.2 presents how raw sen-
sory data is processed, describing the subsequent processing steps in detail. This data
processing chain will be used throughout the rest of this thesis. For the steps prepro-
cessing, segmentation and feature extraction standard, commonly used techniques
are applied. The focus of this thesis is on the classification step, for which various
algorithms are compared in this chapter and new algorithms will be introduced in
the next chapters. Section 4.3 defines the performance measures and evaluation tech-
niques used in the benchmark of Section 4.4. These definitions serve partially as
basis for the development of evaluation techniques for robust activity monitoring in
Chapter 5. The benchmark presented in Section 4.4 compares commonly used classi-
fication algorithms on several tasks, showing their difficulty and exposing challenges
in the field of physical activity monitoring. The chapter is summarized in Section 4.5,
which also defines some of the main goals addressed in the next chapters.

4.2 Data Processing Chain

This section presents the data processing used in the benchmark in Section 4.4. It
can be described as a chain of processing steps, starting from raw sensory data and
resulting in a prediction of an intensity and activity class (cf. Figure 4.2). It follows
a classical approach, which is similar e.g. to the activity recognition chain (ARC)
presented in [145]. For the first three steps of the here presented data processing

IThis is true when using raw data from multiple sensors for the comparison. For example, there is
little difference in the acceleration measured on the chest IMU while performing normal walking and
Nordic walking (cf. Figure 4.1). However, the difference is clearly noticeable between these two activities
when comparing acceleration measured on the arm IMU
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Figure 4.2: The data processing chain. From raw sensory data synchronized,
timestamped and labeled 3D-acceleration and heart rate data is obtained during
the preprocessing step (P). This data is segmented in the segmentation step (S)
with a sliding window, using a window size of 512 samples. A total of 137 dif-
ferent features are extracted in the next, the feature extraction step (F). These
features serve as input to the classifiers, which output the estimated intensity
level class and the recognized activity class.

chain (DPC) - preprocessing, segmentation and feature extraction — common choices
are made and justified in the next subsections. As for the classification step, various
classifiers are introduced and compared, highlighting their benefits and drawbacks.

Compared to the ARC of [145], the decision making consists of only one step:
a classifier module takes the entire feature set as input, and outputs a class of the
given classification problem. Another example of a similar DPC for physical activity
recognition was presented by Banos et al. [11]. They argue to perform sensor fusion at
the classification level (sensor fusion is performed at the feature extraction level in the
DPC applied in this chapter). The benefit is that when sensors are added or removed,
the system does not require a complete retraining. The challenges of the approach
proposed by Banos et al. [11] are robustness and scalability, thus the system has to be
accurate enough independent of the topology or the number of sensors considered.

In this thesis, since both activity recognition and intensity estimation are regarded
as classification problems (cf. Section 4.4.1), the same data processing steps can be ap-
plied on both of them. The goal in this chapter is not aiming for the best performance
on the defined classification tasks, but to provide a baseline characterization with the
benchmark. The results presented here and the challenges exposed serve as motiva-
tion to improve existing methods, as shown in Chapter 6 with the introduction of a
new boosting algorithm, and in Chapter 7 with the development of novel personal-
ization approaches.
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Table 4.1: Data processing: list of extracted features.

Time domain features Frequency domain features

Mean Energy

Median Entropy

Standard deviation Dominant frequency

Peak of absolute data Power ratio of certain frequency bands

Absolute integral
Correlation between axes
Gradient

4.2.1 Preprocessing

The previously introduced datasets provide timestamped raw sensory data from the
3 IMUs and the heart rate monitor, and timestamped activity labels. All this data is
synchronized in the preprocessing step. After this step synchronized, timestamped
and labeled acceleration (as justified above, only data from the accelerometers is used
from all IMUs) and heart rate data is available.

To deal with wireless data loss (thus handling missing values when applying
data processing and classification techniques), Saar-Tsechansky and Provost [148] pro-
posed different methods. Linear interpolation was selected from these approaches for
simplicity reasons. Further processing of the raw signals (e.g. filtering) is included in
the extraction of various features, as described in Section 4.2.3. Finally, to avoid deal-
ing with potential transient activities, 10 seconds from the beginning and the end,
respectively, of each labeled activity is deleted.

4.2.2 Segmentation

Previous work shows (e.g. [75]) that for segmentation there is no single best win-
dow length for all activities. To obtain at least two or three periods of all different
periodic movements, a window length of about 3 to 5 seconds is reasonable. For
example, experiments presented by Lara et al. [89] showed best results with a win-
dow size of 5 seconds when using acceleration data for physical activity recognition.
Therefore, and to assure effective discrete Fourier transform (DFT) computation for
the frequency domain features?, a window size of 512 samples was selected. Since
the sampling rate of the raw sensory data was 100 Hz in both the PAMAP and the
PAMAP2 datasets, the segmentation step results in signal windows of 5.12 seconds
length. Therefore, the preprocessed data is segmented using a sliding window with
the defined 5.12 seconds of window size, shifted by 1 second between consecutive
windows.

2Compare e.g. the commonly used Cooley-Tukey fast Fourier transform (FFT) algorithm [34], which
recursively breaks down a DFT of a discrete signal of length N into smaller DFTs. This procedure is the
most computationally effective when N is a power of 2.
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4.2.3 Feature Extraction

From the segmented 3D-acceleration data, various signal features are computed in
both time and frequency domain (cf. [48] for an overview and classification of ex-
tracted features from sensory data). In addition to the most commonly used features
in related work (mean, median, standard deviation, peak acceleration and energy),
some other features — also proved to be useful in previous work — are computed, too.
The absolute integral feature was successfully used to estimate the metabolic equiva-
lent in e.g. [118]. Correlation between each pair of axes is especially useful for differ-
entiating among activities that involve translation in just one or multiple dimensions,
e.g. walking, running vs. ascending stairs [131]. Power ratio of the frequency bands
0-2.75Hz and 0-5Hz proved to be useful in [134]. Peak frequency of the power spec-
tral density (PSD) was used for the detection of cyclic activities in e.g. [42]. Spectral
entropy of the normalized PSD is a useful feature for differentiating between locomo-
tion activities (walking, running) and cycling [42]. A list of all extracted features is
given in Table 4.1.

For a mathematical definition of the extracted features the following notation is
used. After the segmentation step of the DPC a discrete-time sequence of N elements
is given (N = 512). This can be represented as an N x 1 vector: x = [xg, X1,..., Xn_1]7,
where x; refers to the ith element of the data sequence. The mean value of this vector
is computed as follows:

zZ

mean(x) = p, = % X;. (4.1)
i

Il
o

The median value is defined as follows: After arranging all the xg, xq,..., xNx_1
data from the lowest to the highest value, the median is the middle element. The
standard deviation of the data vector is defined as:

1 N-1

std(x) = 0x =\ 77 ) (%~ )2 (4.2)

=0
The peak of the absolute data is defined as follows:
MAX ;ps(x) = max(|x]). (4.3)

The feature absolute integral on the discrete-time sequence is defined as:

N-1
INTe(x) = ) Ixil (4.4)
i=0

Finally, correlation between one pair of axes is defined as follows, assuming the
two discrete-time sequences are denoted as x and y:

_ cov(x,y)

xy = (4.5)

0x 0y
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For the frequency-domain features first the power spectral density is computed:
Xo, X1,..., Xn_1, Wwhere X refers to the kth element of the PSD. The feature energy is

defined then as following:
N-1

Energy = Z X,f. (4.6)
k=0

The feature spectral entropy is defined as:

N-1
Entropy = - Z X log Xy (4.7)
k=0

The dominant frequency of the PSD is defined as follows:

e = fin = arg max X (4.8)

Finally, the power ratio of two frequency bands which consist of the first p and g
elements of the PSD, respectively, is defined as follows:

Yoo X
Zzzé X

The signal features extracted from the 3D-acceleration data are computed for each
axis separately, and for the 3 axes together, too. This results in 108 (= 9 types of fea-
tures x3 sensors x4, since all 3 axes and their combination is calculated) plus 9 (for the
feature correlation between each pair of axes, calculated for all 3 sensors) extracted
features. Moreover, since synchronized data from the 3 IMUs is available, combining
sensors of different placements is possible. From the above mentioned features (and
calculated on 3 axes of each of the IMUs) mean, standard deviation, absolute integral
and energy are pairwise (e.g. arm plus chest sensor placement) weighted accumu-
lated. Furthermore, a weighted sum of all the 3 sensors together is also added®. This
combination of different sensors results in 16 additionally extracted features. From
these derived features it is expected that they would better describe and distinguish
activities with e.g. both upper and lower body movement, thus improving the recogni-
tion of activities involving movements of multiple body parts. Moreover, considering
especially the features containing all 3 sensor placements, these features could im-
prove the intensity estimation of activities. Overall, 133 (= 108 + 9 + 16) features are
extracted from the segmented IMU acceleration data.

From the heart rate data, the features (normalized) mean frequency and the fre-
quency gradient are calculated. Normalization is done on the interval defined by
resting and maximum HR. The resting HR of a test subject is extracted from the 3
minutes [ying task in the data collection protocol (cf. Section 3.2.3 and Section 3.3.3
for the PAMAP and PAMAP?2 datasets, respectively), and is defined as the lowest HR

Power_ratio, , = (4.9)

3The weights were selected heuristically, and are set to 0.5, 0.2 and 0.3 for the chest, arm and
foot/ankle sensor locations, respectively. The goal was to receive more meaningful features compared
to when simply accumulating the feature values from the different sensor placements.
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Figure 4.3: Data processing: example visualization of the feature space. The 6 se-
lected physical activities can mostly be distinguished with the 3 chosen features
(computed from acceleration and heart rate data).

value measured over this period. As for the maximum HR (MHR), the subject’s age-
predicted MHR (M HR = 220 — age) is used [173]. The feature gradient, both on the
raw and normalized heart rate signal, is defined as the difference between the first
and last element of a window segment:

grad(x) = xy_1 — Xo. (4.10)

Overall, 4 features are extracted from the segmented heart rate data. Therefore, in
total 137 (= 133 +4) features are derived from each of the 5.12 seconds long signal seg-
ments, yielding a large feature vector. Different techniques have been applied in the
field of physical activity monitoring to reduce the feature space, e.g. principal com-
ponent analysis (PCA) [8, 192] or Sammon’s mapping [38]. Moreover, various feature
selection methods were applied in other previous work. For example, distribution
bar graphs were created in [117], a heuristic greedy forward search was performed
in [187] and a forward-backward sequential search algorithm was applied in [124] to
select the best features. However, in this thesis, no feature selection or reduction of
the feature space is applied on the extracted feature set. The reason is that the focus
of this thesis is on the classification step of the DPC, thus all features will be used for
each of the classifiers presented hereafter.

Figure 4.3 visualizes a part of the feature space: samples of 6 selected activities
are shown using 3 selected features. The purpose of this plot is to show that differen-
tiating between the performed physical activities is feasible with the set of extracted
features. For example, due to larger arm movements, samples of walk and Nordic walk
can mostly be separated with e.g. the feature peak absolute value, computed on the
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forward-backward direction on the arm accelerometer. Another example can be ob-
served when using the mean value of the normalized heart rate: This feature is very
useful when distinguishing between ascend stairs and walk or Nordic walk. Depending
on the complexity of the classification task (thus e.g. the number of activities to be
distinguished) a larger set of features might be required. The selection of these fea-
tures and how they are used to separate different classes is realized by the respective
classification algorithms, which are presented in the next subsection.

4.2.4 Classification

The extracted features serve as input for the next processing step, the classification. In
the field of physical activity monitoring research, especially activity recognition, dif-
ferent classification approaches exist and yielded good results. The benefit of using
the data processing chain of Figure 4.2 is amongst others its modularity. This allows
to easily remove any module and replace it with a different approach, thus different
classifiers can easily be tested and compared to each other. This subsection presents
various classification algorithms which are commonly used in related work. Prelimi-
nary studies are carried out, using data provided by the PAMAP dataset. Based on the
results of these studies, several classifiers are selected for the benchmarking process,
as described in Section 4.4.2.

In this thesis, both intensity estimation and activity recognition are regarded as
classification problems. For the preliminary studies of this subsection, one classifi-
cation task is defined for each, which are justified and described in more detail in
Section 4.4.1. For the intensity estimation task 3 classes are defined: The goal is to
distinguish activities of light, moderate and vigorous effort. From the 14 physical
activities included in the PAMAP dataset lying, sitting, standing, ironing and very
slow walking are regarded as activities of light effort; vacuum cleaning, descending
stairs, normal walking, Nordic walking and cycling as activities of moderate effort;
ascending stairs, running, playing soccer and rope jumping as activities of vigorous
effort. For the activity recognition task 7 classes are defined: lying, sitting/standing
(forming one class), normal walking, Nordic walking, running, cycling and other.
The latter class includes all remaining activities from the PAMAP dataset*: ironing,
vacuum cleaning, ascending and descending stairs, playing soccer and rope jumping.

For the training and evaluation of all classifiers within the preliminary studies
of this subsection (except of the custom decision tree classifier), the Weka toolkit is
used [65]. Weka (Waikato Environment for Knowledge Analysis) is a free machine
learning software written in Java. It provides tools for analyzing and understanding
data, including the implementation of a large amount of data mining algorithms, and
a graphical user interface for easy data manipulation and visualization. A great de-
scription of the Weka toolkit can be found in [193], along with a thorough grounding
in the machine learning concepts the toolkit uses, and practical advice for using the
different tools and algorithms.

4Except of very slow walking since this activity was only included in the dataset for the intensity
estimation task, in order to have walking related activities in all 3 intensity classes.
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Lie

Figure 4.4: Structure of the custom decision tree classifier, created for the activity
recognition task (PAMAP dataset).

The various classification schemes and results of the preliminary studies are pre-
sented in the following paragraphs.

Custom decision tree

Custom decision tree classifiers have been successfully applied to activity recognition
in numerous previous work [15, 17, 43, 83, 117]. The advantages of custom decision
trees include low computational requirements, simple implementation and a good
understanding of the classifier’s structure. Figure 4.4 shows the structure of the cus-
tom decision tree constructed for the above defined activity recognition task. The
tree has 7 binary decision nodes and 8 leaf nodes, the latter representing the different
activities. The first decision node divides all activities into activities with and with-
out footsteps, all other decisions are used to separate one activity from the remaining
other activities. If the current sample is not recognized into any of the activities while
passing the decision tree, it falls through to the default other class. Features for the
decision nodes were selected using the cluster precisions method, introduced in [75].
More details about applying custom decision tree classifiers for physical activity mon-
itoring problems can be found in [133].

Although custom decision trees have some benefits, the results in [133] indicate
that for more complex classification problems (e.g. including an increased number of
activities) more advanced classification techniques are required. The main drawback
of custom decision trees is that they do not necessarily provide the most suitable clas-
sifier for a given set of features. In order to exhaustively explore the solution space,
other classifiers (e.g. automatically generated decision trees) have to be investigated.

Base-level classifiers

Base-level classifiers have been widely used for activity monitoring classification tasks.
For example, automatically generated decision trees are applied in [15, 17, 61, 117], k-
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Table 4.2: Accuracy on the activity recognition task with 4 different base-level
classifiers, applied on the PAMAP dataset.

Classifier ‘ Accuracy [%]
C4.5 85.03
kNN 87.62
SVM 62.31
Naive Bayes 74.14

nearest neighbors (kNN) in [61, 108], support vector machines (SVM) in [39], Naive
Bayes classifiers in [61, 100], or artificial neural networks (ANN) in [43, 63, 117].
A comparison of base-level classifiers for activity recognition can be found e.g. in
[8, 122]. From the different classification approaches, C4.5 decision tree, kNN, SVM
and Naive Bayes classifiers are tested in a preliminary study performed on the activity
recognition task, defined above on the PAMAP dataset. Each of these 4 classification
methods were named as one of the top 10 data mining algorithms, identified by the
IEEE International Conference on Data Mining (ICDM) in December 2006 [194].

A detailed introduction into decision tree classification can be found in [147].
C4.5 is a widely used algorithm to generate decision tree classifiers and is imple-
mented in the Weka toolkit. A practical description of choices and settable param-
eters of this algorithm is given in [193].

The k-nearest neighbor algorithm (originally proposed by Fix and Hodges [51])
belongs to the instance-based learning methods. In kNN, a new feature vector is
classified based on the k closest training examples in the feature space.

Support vector machine classifiers select a small number of critical boundary in-
stances called support vectors from each class, and build a linear discriminant function
that separates them as widely as possible [193]. SVM is a useful and popular classi-
fication technique not only because it constructs a maximum margin separator, but
also because — by using different kernel functions — it is possible to form nonlinear
decision boundaries with it. The Weka toolkit uses the libsvm library, practical advice
for using this tool can be found in [70].

Finally, the Naive Bayes classifier is a simple probabilistic classifier, probably the
most common Bayesian network model used in machine learning. The model as-
sumes that the features are conditionally independent of each other, given the class.
The Naive Bayes model works surprisingly well in practice, even when the conditional
independence assumption is not true. A great overview on probabilistic learning,
Bayesian classifiers and learning Bayesian models is given in[147].

The preliminary study with these 4 classification methods was carried out with
the Weka toolkit [65]. For evaluation, leave-one-subject-out 8-fold cross-validation
protocol was used (more details on this subject independent evaluation technique
can be found in Section 4.3.2). The accuracy (performance measures are described
in more detail in Section 4.3.1) of the different base-level classifiers is shown in Ta-
ble 4.2, overall good results were achieved. However, the results also indicate a pos-
sible further improvement on classification accuracy, since even the best result was
only 87.62%. Therefore, there is a reasonable demand for developing more complex
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and more advanced classifiers to obtain better results in activity monitoring classifi-
cation tasks.

Meta-level classifiers

The use of meta-level classifiers for physical activity monitoring problems (cf. e.g.
[205]) is not as widespread as using various base-level classifiers. However, the com-
parison of base-level and meta-level classifiers on different activity recognition clas-
sification tasks in [131] showed that meta-level classifiers (such as boosting, bagging,
plurality voting, etc.) outperform base-level classifiers, thus applying them is of inter-
est. Detailed information on ensemble learning (meta-level classifiers) can be found
e.g. in [147,193].

From the various meta-learning algorithms provided by the Weka toolkit, two
ensemble learning methods are selected and evaluated in this chapter: bagging and
boosting. The idea behind these methods is to iteratively learn weak classifiers by ma-
nipulating the training dataset, and then combining the weak classifiers into a final
strong classifier. To briefly describe bagging and boosting, assume that the training
dataset contains N instances: (x;,v;) i = 1,..., N (x; is the feature vector, y; is the an-
notated class of the instance: y; € 1,...,C),and t = 1,..., T iterations are performed
with the weak classifier f(x). In bagging, N instances are randomly sampled with re-
placement in each ¢ iteration from the instances of the training dataset. The learning
algorithm (the f(x) weak classifier) is applied on this sample, the resulting model is
stored. After learning, when classifying a new instance, a class is predicted with each
of the T stored models. The final decision is the class that has been predicted most
often.

The difference in boosting is that the training dataset is reweighted after each
iteration, and the single learning models are also weighted for constructing the final
strong classifier. This way, the weak learners built in the subsequent iterations focus
on classifying the difficult instances correctly. Moreover, when constructing the final
classifier, more influence is given to the more successful models. There exist many
variants based on the idea of boosting, cf. Chapter 6 for a thorough description of
them. One of the most widely used variants is AdaBoost, which is also implemented
in the Weka toolkit. Moreover, AdaBoost is identified as one of the top 10 data mining
algorithms by Wu et al. [194], thus it will be used by the further experiments of this
chapter.

Both bagging and boosting use the same learning algorithm (the same type of
weak classifier, e.g. a decision tree classifier) in each iteration, and combine these
T models into the final strong classifier. In a preliminary study all 4 above tested
base-level classifiers (C4.5 decision tree, kNN, SVM and Naive Bayes) are evaluated
as learning algorithms for both bagging and boosting, using the Weka toolkit. On
the kNN classifier (which performed best in the experiments performed above, cf.
Table 4.2) no improvement was observed applying neither boosting nor bagging. This
observation is in accordance with the results of [131]. On the other hand, boosting
and bagging the C4.5 classifier resulted in a significant improvement of classification
accuracy. Moreover, from all the base-level and meta-level classifiers tested within
this subsection, best results were achieved with boosted decision trees.
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Table 4.3: Confusion matrix on the intensity estimation task, performed on the
PAMAP dataset. The results were achieved with an AdaBoost C4.5 classifier. The
table shows how the intensity class of different annotated samples is estimated
in [%].

Annotated Estimated intensity
intensity light moderate  vigorous
light 3.15 0
moderate 5.02
vigorous

Table 4.4: Confusion matrix on the activity recognition task, performed on the
PAMAP dataset. The results were achieved with an AdaBoost C4.5 classifier. The
table shows how different annotated activities are classified in [%].

Annotated Recognized activity

activity 1 2 3 4 5 6 0
1 lie 0 0 0 0 0
2 sit/stand 0 0 0 0.26 16.42
3 walk 0 042 354 0 899
4 Nordic walk 0 0 514 0 14.48
5run 0 0 0 0 3.29
6 cycle 0 3.10 0 0 13.96
0 other 0 437 0.04 0.04 0.13 0.08

This paragraph gives more detailed results from the preliminary experiments,
achieved with the best performing classifier (AdaBoost with C4.5 decision trees) on
the PAMAP dataset. Table 4.3 shows the confusion matrix on the intensity estima-
tion task. The overall accuracy using leave-one-subject-out 8-fold cross-validation
is 94.37% with the boosted decision tree classifier. It is worth mentioning that mis-
classifications only appear into “neighbour” intensity classes, thus no samples an-
notated as light intensity were classified into the vigorous intensity class, and vice
versa. Table 4.4 shows the confusion matrix on the activity recognition task, defined
on the PAMAP dataset. The overall accuracy using leave-one-subject-out 8-fold cross-
validation is 90.65% with the boosted decision tree classifier. Most of the misclas-
sifications can be explained with the introduction of the other, background activity
class: The characteristics of some of the other activities overlap with some of the ba-
sic activity classes to be recognized. For example, the activities standing and ironing
or running and playing soccer have similar characteristics. The problem of dealing
with background activities for activity recognition is further analyzed in Chapter 5.
There, methods will be proposed and evaluated in order to develop robust activity
monitoring systems for everyday life.
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Table 4.5: General confusion matrix of a classification task.

Annotated Recognized class
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4.3 Performance Evaluation

This section introduces and describes the methods used for evaluation in the bench-
mark. This includes the definition of performance measures and evaluation tech-
niques applied.

4.3.1 Performance Measures

For physical activity monitoring, data is usually collected following a given protocol,
as presented during the recording of the PAMAP and PAMAP?2 datasets in Chapter 3.
It is common practice to delete the beginning and the end of each labeled activity (10
seconds are deleted in the presented preprocessing step of the DPC, cf. Section 4.2.1).
Therefore, contrary to e.g. activity recognition in home or industrial settings, the
ground truth is much less fragmented, and there is less variability in event (activ-
ity) length. For continuous activity recognition, new error metrics were introduced
recently, e.g. insertion, deletion, merge, fragmentation, overfill, etc. [181, 189]. How-
ever, the goals of physical activity monitoring — as justified above — are usually re-
stricted to frame by frame recognition (thus not the events are important, but the
time spent performing each of the activities). Therefore, the frame by frame evalua-
tion methods describe the performance of the used classifiers well, and are regarded
as sufficient for benchmarking in this chapter.

The commonly used performance measures are applied for creating the bench-
mark: precision, recall, F-measure and accuracy. For the definition of these metrics cf.
the notation in the general confusion matrix in Table 4.5. The performance measures
are defined generally and will be used for different classification problems (activity
recognition and intensity estimation tasks) in the benchmark of Section 4.4.

Assume that a confusion matrix is given by its entries P, ;, where i refers to the
rows (annotated classes), and j to the columns (recognized classes) of the matrix (cf.
Table 4.5). Let S; be the sum of all entries in the row i of the matrix (referring to the
number of samples annotated as class i), and R; the sum of all entries in the column
j of the matrix (referring to the number of samples recognized as class j). Let N be
the total number of samples in the confusion matrix. Let the classification problem
represented in the confusion matrix have C classes: 1,2,... C. Using this notation,
the performance measures precision and recall are defined as follows:
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Therefore, precision can be interpreted as a measure of exactness (how reliable the
results are in a class), while recall can be interpreted as a measure of completeness
(how complete the results are of a class). Considering both the precision and the
recall, F-measure is traditionally defined as the harmonic mean of them:

precision-recall
precision + recall’

F-measure = 2 (4.11¢)

Finally, the measure accuracy is defined as the percentage of correctly classified
samples out of all samples:

C
1
accuracy = N ZPM-. (4.114d)
i=1

It should be noted that, from the above defined metrics, accuracy only consid-
ers the total number of samples. As for the other metrics, class imbalance is taken
into account: normalization is done using the total number of samples for each class
separately. This different behaviour of the performance measures is important since
fewer samples from some activities in a dataset are not necessarily due to lesser im-
portance of these activities, but could be caused by e.g. a more difficult data capture
of these activities. For example, the created PAMAP and PAMAP?2 datasets are also
characterized by being imbalanced, thus certain activities occur more frequently than
others (cf. Chapter 3). Some results in Section 4.4.3 will also point out the difference
between the performance metrics, and how these results should be interpreted.

4.3.2 Evaluation Techniques

A commonly used evaluation technique to validate machine learning methods is k-
fold cross-validation (CV). This technique randomly partitions a dataset into k equal
size subsets. From these k subsets, k — 1 are used as training data and the remaining
subset as test data. This procedure is repeated k times, so that each of the k subsets
are used exactly once as test data.

In the field of physical activity monitoring, one of the evaluation goals is to simu-
late how the developed methods apply to a new user. Therefore, to simulate subject
independency, the evaluation technique leave-one-subject-out (LOSO) CV is applied.
Since benchmarking is performed on the PAMAP?2 dataset which provides data from
9 subjects, LOSO 9-fold CV is performed. This means that data from 8 subjects is
used for training and data from the remaining subject is used for testing, repeating
this procedure 9 times leaving always another subject’s data for testing.
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Section 5.1.2 will reflect on the differences between subject dependent and inde-
pendent evaluation, concluding that for physical activity monitoring systems usually
subject independent validation techniques should be applied. However, in order to
create a widely used and comparable benchmark, both subject dependent and subject
independent evaluation is carried out. As for the subject dependent evaluation, stan-
dard 9-fold cross-validation is applied in the benchmark (k = 9 was chosen to have
the same number of folds as for the subject independent evaluation).

4.4 Benchmark of Physical Activity Monitoring

Benchmarked classification problems are important for a research field for various
reasons, e.g. to show the difficulty of different tasks or to show where the challenges
lie. However, the field of physical activity monitoring lacks established benchmark-
ing problems. This is due to the fact that only a few datasets are publicly available in
this area, as discussed in Chapter 3. Bao and Intille [15] use their recorded dataset to
show results with 4 different classifiers on an activity recognition task. The Opportu-
nity dataset [103, 144] contains 4 basic modes of locomotion, on which a recognition
task is defined and included in the benchmark of [149]. Finally, Xue and Jin [195]
present a benchmark on an activity recognition task defined on their created dataset.
They use an SVM classifier with different sets of features.

The above listed existing benchmarks of activity monitoring problems are very
limited, concerning the number of physical activities and sensors included in the
dataset, and concerning the applied classification algorithms. Moreover, they only
define one activity recognition task each, thus classification problems with different
complexity and an intensity estimation task are not included. Therefore, to overcome
the limitations of existing benchmarks, this section presents benchmarking on the
PAMAP?2 physical activity monitoring dataset. First different classification tasks are
defined, then a set of classifiers is selected. The benchmark is created with the stan-
dard data processing chain, as presented in Section 4.2. The performance measures
and evaluation techniques, as defined in Section 4.3, are applied for the benchmark.
Overall, 4 classification tasks are benchmarked with 5 different classifiers. The bench-
mark results are shown and discussed in Section 4.4.3.

4.4.1 Definition of the Classification Problems

The definition of classification tasks for the benchmark follows two goals. First of all,
both activity recognition and intensity estimation tasks should be included to cover
the main objectives of physical activity monitoring. Furthermore, classification tasks
of different complexity should be included. Therefore, 4 classification problems are
defined in total for benchmarking, which are described below. These tasks only focus
on the 12 activities performed during the data collection protocol of the PAMAP2
dataset, the 6 optional activities are left out from this benchmark.

Intensity estimation task

Intensity estimation is regarded as a classification task throughout this chapter. Three
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classes are defined for this problem: activities of light, moderate and vigorous effort.
Obtaining ground truth for this task is less straightforward than for activity recogni-
tion tasks, hence requires a short explanation.

In various previous works on estimating intensity of physical activity (e.g. in
[35, 118]), reference data was collected with a portable cardiopulmonary system (e.g.
Cortex Metamax 3B or Cosmed K4b?). This method has the advantage that it pro-
vides precise measurements on an individual’s oxygen consumption. It makes mea-
sured metabolic equivalents (METs) available, which is essential if the task is to use
these values to e.g. estimate metabolic equivalent from other features [35, 118]. How-
ever, in this thesis the goal is to only estimate whether a performed activity is of light,
moderate or vigorous effort, since for the physical activity recommendations only
this information is needed (cf. Section 1.2). Therefore, it is sufficient to use the Com-
pendium of Physical Activities [1] to obtain reference data for the defined intensity
estimation task. This compendium contains MET levels assigned to 605 activities. It
was e.g. used in the recommendations given by Haskell et al. [66] to provide example
activities of moderate and vigorous intensities. Moreover, the compendium was used
for validation of MET estimation in related work, e.g. in [109].

The ground truth for the defined rough intensity estimation task is thus based
on the metabolic equivalent of the different activities, provided by Ainsworth et al.
[1]. Therefore, the 3 classes are defined as following using the set of activities from
the PAMAP?2 dataset: lying, sitting, standing and ironing are regarded as activities
of light effort (< 3.0 METs); vacuum cleaning, descending stairs, normal walking,
Nordic walking and cycling as activities of moderate effort (3.0-6.0 METs); ascending
stairs, running and rope jumping as activities of vigorous effort (> 6.0 METs).

Basic activity recognition task

Five activity classes are defined for this problem: lying, sitting/standing, walking,
running and cycling. All other activities are discarded for this task. This classification
problem refers to the many existent activity recognition applications only including
these, or a similar set of few basic activities. The ground truth for this task — and for
the other two activity recognition tasks presented below — is provided by the labels
made during data collection. The activities sitting and standing are forming one class
in this problem. This is a common restriction made in activity recognition (e.g. in
[43, 120]), since an extra IMU on the thigh would be needed for a reliable differenti-
ation of these postures. The numerous misclassifications between these two postures
appearing in the results belonging to task ‘all’ in the benchmark (cf. Section 4.4.3)
confirm that these two activities can not be reliably distinguished with the given set
of sensors.

Background activity recognition task

Six classes are defined for this problem: lying, sitting/standing, walking, running, cy-
cling and other. The latter class consists of the remaining 6 activities of the PAMAP2
data collection protocol: ironing, vacuum cleaning, ascending stairs, descending stairs,
Nordic walking and rope jumping. The idea behind the definition of this task is that
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in physical activity monitoring users always perform meaningful activities. However,
there are countless number of activities, and — apart from a few, for the particular ap-
plication relevant activities — an exact recognition is not needed. On the other hand,
ignoring these other activities would limit the applicability of the system. Therefore,
the introduction of a background activity class is justified. Section 5.1.1 will reflect
more on the introduction of other activities, describing the concept of a background
activity class in detail.

All activity recognition task

Twelve activity classes are defined for this problem, corresponding to the 12 activities
of the data collection protocol.

4.4.2 Selected Classifiers

This subsection presents and justifies the selection of a set of classifiers used in the
benchmarking process. Section 4.2.4 introduced various classifiers for physical ac-
tivity monitoring, preliminary studies were carried out with them on the PAMAP
dataset. Based on these experiments, the best performing base-level and meta-level
classifiers are selected for the benchmark. From the base-level classifiers, the C4.5 de-
cision tree, Naive Bayes and kNN are selected, based on the results of Table 4.2. More-
over, since boosting and bagging of the C4.5 classifier showed the most significant
improvement in the experiments with meta-level classifiers, these ensemble learners
are selected as well for creating the benchmark.

Therefore, 5 different classifiers are selected, a thorough comparison of these clas-
sification techniques will be given in the benchmark results of Section 4.4.3 on the
PAMAP?2 dataset. Each of these classification approaches are frequently used in re-
lated work. Overall they represent a wide range of classifier complexity. The experi-
ments for creating the benchmark are all performed with the Weka toolkit [65]. The
five classifiers are listed below, together with the parameters differing from the de-
fault values set in the Weka toolkit. These parameters were determined heuristically
and used successfully in the preliminary studies in Section 4.2.4 . Moreover, for repro-
ducibility and easier comparability with future results, the exact definition (scheme)
of each of the classifiers — as given in the Weka toolkit — is included in the following
list of the five classifiers:

1. Decision tree (C4.5)
- confidenceFactor = 0.15
- minNumObj = 50
- Scheme:weka.classifiers.trees.J48 -C 0.15 -M 50

2. Boosted C4.5 decision tree
- confidenceFactor = 0.15 (in the decision tree)
- minNumODbj = 50 (in the decision tree)
- Scheme:weka.classifiers.meta.AdaBoostM1 -P 100 -S 1 -1 10 -W
weka.classifiers.trees.J48 — -C 0.15 -M 50
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3. Bagging C4.5 decision tree
- confidenceFactor = 0.15 (in the decision tree)
- minNumObj = 50 (in the decision tree)
- Scheme:weka.classifiers.meta.Bagging -P 100 -S 1 -1 10 -W
weka.classifiers.trees.J48 —-C 0.15 -M 50

4. Naive Bayes
- Scheme:weka.classifiers.bayes.NaiveBayes

5. kNN
- KNN = 7 (number of neighbours)
- Scheme:weka.classifiers.lazy.IBk -K 7 -W 0

4.4.3 Results and Discussion

This subsection presents and discusses the benchmark on the 4 classification tasks
(cf. Section 4.4.1), performed with the 5 selected classifiers (cf. Section 4.4.2). Both
subject dependent and subject independent evaluation (cf. Section 4.3.2) results are
shown for all classifier/classification problem combinations. Tables 4.6 — 4.9 present
the results in form of the 4 defined performance measures (cf. Section 4.3.1). In the
rest of this subsection, some conclusions are drawn and discussed.

Overall, the best performance was achieved with the kNN and the boosted de-
cision tree classifiers. This confirms the results of the preliminary studies in Sec-
tion 4.2.4. Concerning the Naive Bayes classifier, it is interesting to observe how it
performs on the different tasks among the evaluated base-level classifiers. On classifi-
cation problems having clear class boundaries (the tasks ‘basic’ and ‘all’) it performs
better than the decision tree classifier. On the other hand, the decision tree classifier
outperforms the Naive Bayes classifier on the other two problems (the classification
tasks ‘intensity’ and ‘background’): These tasks have classes containing multiple ac-
tivities, thus it is difficult to define the class boundaries with the Naive Bayes classifier
— contrary to the decision tree classifier.

Another general observation can be made when comparing the results of subject
dependent and independent evaluation: The former indicates highly “optimistic” per-
formance. Due to this significant performance difference, usually subject indepen-
dent validation techniques should be preferred for physical activity monitoring, in
order to present results with practical meaning. This issue will be discussed in more
detail in Chapter 5.

Results on the different classification tasks are generally in accordance with pre-
vious observations. For instance, the best classifiers not only achieve approximately
96% on the intensity estimation task, but misclassifications only appear into “neigh-
bour” intensity classes, as already observed in Table 4.3. Concerning the ‘background’
task, all performance measures significantly decreased compared to the ‘basic’ task,
e.g. from 97.94% to 94.33% with the boosted decision tree classifier. The reason why
the complexity of the classification problem increased so significantly was briefly dis-
cussed with the results of Table 4.4: The characteristics of some of the introduced
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Table 4.6: Benchmark on the PAMAP?2 dataset: performance measures on the ‘Intensity estimation task’.

Standard 9-fold cross-validation LOSO 9-fold cross-validation
Classifier Precision Recall ~ F-measure Accuracy || Precision Recall ~ F-measure Accuracy
C4.5 decision tree 0.9796 0.9783 0.9789 0.9823 0.9490 0.9364 0.9426 0.9526
Boosted C4.5 0.9989 0.9983 0.9986 0.9988 0.9472 0.9564 0.9518 0.9587
Bagging C4.5 0.9853 0.9809 0.9831 0.9866 0.9591 0.9372 0.9480 0.9552
Naive Bayes 0.9157 0.8553 0.8845 0.9310 0.8986 0.8526 0.8750 0.9251
kNN 0.9985 0.9987 0.9986 0.9982 0.9488 0.9724 0.9604 0.9666

Table 4.7: Benchmark on the PAMAP?2 dataset: performance measures on the ‘Basic activity recognition task’.

Standard 9-fold cross-validation LOSO 9-fold cross-validation
Classifier Precision Recall ~ F-measure Accuracy || Precision Recall ~ F-measure Accuracy
C4.5 decision tree | 0.9968 0.9968 0.9968 0.9970 0.9349 0.9454 0.9401 0.9447
Boosted C4.5 0.9997 0.9994 0.9995 0.9995 0.9764 0.9825 0.9794 0.9785
Bagging C4.5 0.9971 0.9968 0.9970 0.9971 0.9346 0.9439 0.9392 0.9433
Naive Bayes 0.9899 0.9943 0.9921 0.9923 0.9670 0.9737 0.9703 0.9705
kNN 1.0000 1.0000 1.0000 1.0000 0.9955 0.9922 0.9938 0.9932




Table 4.8: Benchmark on the PAMAP?2 dataset: performance measures on the ‘Background activity recognition task’.

Standard 9-fold cross-validation LOSO 9-fold cross-validation
Classifier Precision Recall ~ F-measure Accuracy || Precision Recall ~ F-measure Accuracy
C4.5 decision tree | 0.9784 0.9701 0.9743 0.9709 0.8905 0.8635 0.8768 0.8722
Boosted C4.5 0.9991 0.9979 0.9985 0.9980 0.9559 0.9310 0.9433 0.9377
Bagging C4.5 0.9881 0.9766 0.9823 0.9787 0.9160 0.8937 0.9047 0.9042
Naive Bayes 0.8905 0.9314 0.9105 0.8508 0.8818 0.8931 0.8874 0.8308
kNN 0.9982 0.9966 0.9974 0.9957 0.9428 0.9458 0.9443 0.9264

Table 4.9: Benchmark on the PAMAP?2 dataset: performance measures on the ‘All activity recognition task’.

Standard 9-fold cross-validation LOSO 9-fold cross-validation
Classifier Precision Recall ~ F-measure Accuracy || Precision Recall ~ F-measure Accuracy
C4.5 decision tree | 0.9554 0.9563 0.9558 0.9546 0.8376 0.8226 0.8300 0.8244
Boosted C4.5 0.9974 0.9973 0.9974 0.9969 0.8908 0.8947 0.8928 0.8796
Bagging C4.5 0.9660 0.9674 0.9667 0.9666 0.8625 0.8489 0.8556 0.8554
Naive Bayes 0.9419 0.9519 0.9469 0.9438 0.8172 0.8561 0.8362 0.8365
kNN 0.9946 0.9937 0.9942 0.9925 0.9123 0.9097 0.9110 0.8924
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background activities overlap with some of the basic activity classes to be recognized.
This issue will be further investigated in Chapter 5.

Altogether, good performance is achieved on all 4 classification tasks: approxi-
mately 90% or more with the best performing classifiers. However, there are two
important challenges defined by the benchmark, where more advanced approaches
in future work should improve the performance. On the one hand, by increasing the
number of activities to be recognized — while keeping the same sensor set — the diffi-
culty of the task exceeds the potential of standard methods. This not only applies for
the task ‘all’, but for the ‘background’ task as well: By introducing an other activity
class for all the background activities, the complexity of the classification problem sig-
nificantly increases, thus the performance drops using the same standard approaches.
On the other hand, when comparing classification performance individually for the
9 subjects, a high variance can be observed. This strongly increases with the increase
of task complexity: The individual performance on the ‘basic’ task (using the boosted
decision tree classifier) varies between 93.99% and 100%, while on the ‘all’ task it
varies between 74.02% and 100%. Therefore, especially on the more difficult clas-
sification problems, personalization approaches (subject dependent training) could
significantly improve compared to the results of the benchmark.

45 Conclusion

This chapter presented data processing methods and classification algorithms for
physical activity monitoring. A data processing chain is defined including prepro-
cessing, segmentation, feature extraction and classification steps. For the first three
steps common approaches are used in this thesis. For the classification step, different
algorithms are introduced and compared. First preliminary studies are carried out
with a wide range of classifiers using the PAMAP dataset. Moreover, a benchmark
is given in this chapter by applying 5 selected classifiers on 4 defined classification
tasks.

The presented results mainly serve to characterize the difficulty of the different
tasks. The benchmark reveals some challenges in physical activity monitoring, which
will be addressed in the next chapters. For example it shows that complex activity
recognition tasks exceed the potential of existing approaches. This motivates the in-
troduction of new classification algorithms, as presented in Chapter 6. Moreover, the
large variance of individual classification performance motivates novel personaliza-
tion approaches, as discussed in Chapter 7.

The definition and benchmark of classification problems including the 6 optional
activities from the PAMAP?2 dataset remains for future work. Furthermore, it should
be noted that a post-processing step is not included in the DPC as defined in this
chapter. Therefore, no temporal information is taken into account when classifying
activities. The reason is that when following a protocol during data collection, there
is no practical meaning how different activities follow each other. However, in real-
life situations patterns in the order of performed activities exist: For example driving
car is usually preceded and followed by walking and not e.g. by sitting or especially
not e.g. by ironing clothes. To simulate this, datasets recorded directly from subjects’
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everyday life have to be created. Then, methods such as HMMs can be applied for
determining the transition between different types of physical activities. However,
this problem exceeds the purpose of this thesis.






Robust Activity Monitoring for Everyday
Life: Methods and Evaluation

5.1 Introduction

In literature, the monitoring of physical activities under realistic, everyday life con-
ditions — thus while an individual follows his regular daily routine — is usually ne-
glected or even completely ignored. Therefore, this chapter investigates the develop-
ment and evaluation of robust methods for everyday life scenarios, with focus on the
tasks of aerobic activity recognition and intensity estimation. Two important aspects
of robustness are investigated: dealing with various (unknown) other activities and
subject independency, both explained in more detail in the next subsections. Methods
to handle these issues are proposed and compared. The usage of activity monitoring
applications in common everyday scenarios is thoroughly evaluated in simulations.
Moreover, a new evaluation technique is introduced (leave-one-activity-out, LOAO)
to simulate when an activity monitoring system is used while performing a previ-
ously unknown activity. Through applying the proposed methods it is possible to
design a robust physical activity monitoring system with the desired generalization
characteristic.

The outline of this chapter is the following: the current section describes the prob-
lem statement related to the other activities and subject independence. Section 5.2
defines the basic conditions (classification problems, data processing and classifica-
tion methods) of the experiments carried out in this chapter. Section 5.3 proposes
four different models for dealing with the other activities in the activity recognition
classification task. The measures used to quantify the classification performance of
the different approaches are defined in Section 5.4, adjusted to the focus of the ac-
tivity recognition and intensity estimation tasks. Section 5.5 presents the evaluation
techniques used in the experiments in this chapter. Results on each of the defined
classification tasks are presented and discussed in Section 5.6. A detailed analysis of
the results is supported by various confusion matrices achieved with different com-
binations of classifier, other activity model and evaluation technique. Finally, the
developed methods and obtained results are summarized in Section 5.7.
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5.1.1 Problem Statement: Other Activities

The recognition of basic aerobic activities (such as walk, run or cycle) and basic pos-
tures (lie, sit, stand) is well researched, and is possible with just one 3D-accelerometer
[42, 100]. However, since these approaches only consider a limited set of similar ac-
tivities, they only apply to specific scenarios. Therefore, current research in the area
of physical activity recognition focuses amongst others on increasing the number of
activities to recognize. For example, 11 different activities are recognized in [122],
16 different activities of daily living (ADL) in [78], 19 different activities (with fo-
cus on locomotion and sport activities) in [8], and 20 different everyday activities are
distinguished in [15], etc. However, there are countless different activities (e.g. 605
different activities are listed in [1]), thus it is not feasible to recognize all of them
- not only due to the highly increased complexity of the classification problem, but
also due to the fact that collecting data from those hundreds of different activities is
practically not possible.

In practice, activity monitoring systems usually focus on only a few activities of
interest. Therefore, the main goal is to recognize only these few activities, but as part
of a classification problem where all other activities are included as well. Thus the
other activities do not need to be recognized, but should not be completely ignored
either. One possible way to handle uninteresting other activities is to add a null-class
rejection stage at the end of the activity recognition chain, thus discard instances of
classified activities based on the confidence of the classification result [145]. Another
possibility is to handle them as sub-activities clustered into the main, basic activity
classes, e.g. ascend/descend stairs considered as walk [100]. The drawback of this
solution is that there still remain many activities which can not be put into any of the
basic activity classes (e.g. vacuum clean or rope jump). The concept of a null-class
(also called background activity class) has been successfully used in the field of activ-
ity spotting, e.g. in [115]. This concept will be further investigated for aerobic activity
recognition in this chapter: Apart from the few activities to be recognized, all other
activities are part of this null activity class in the defined problem. This inclusion
of the other activities increases the applicability of the system, but also significantly
increases the complexity of the classification problem, as shown by different experi-
ments performed within this chapter.

—— Example 5.1
Here a practical use case is given where introducing and dealing with other activities
would be beneficial. The authors of [196] present an approach for energy-efficient
continuous activity recognition on mobile phones by introducing the ‘A3R’ (Adaptive
Accelerometer-based Activity Recognition) strategy. In A3R, both the accelerometer
sampling frequency and the choice of the classification features are adapted in real-
time, based on the currently performed activity. However, the A3R strategy goes into
an unknown state when not confident enough in the estimation of the activity class.
In this unknown state, the energy consumption is the highest (maximum sample rate
and using all features). Yan et al. [196] noted that in the in-site Android study users
performed many other activities beyond the 6 labeled ones, causing the appearance
of the unknown state more frequently, thus resulting in higher energy consumption.
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With an additional other activity class, covering a large number of usually performed
other activities and assigning an adequate sampling rate and feature set to it, the un-
known state would occur less frequently, thus reducing the overall energy consump-
tion of the mobile application.

The above mentioned approaches represent a first important step towards dealing
with various other activities. However, they only handle a given set of other activities
(the entire set of other activities is known when developing the system), thus neglect
to simulate the — in practice important — scenario when the user of the system per-
forms an activity previously unknown to the system. Therefore, it remains an open
question what happens to all the activities not considered during the monitoring sys-
tem’s development. To give a concrete example, assume that an activity monitoring
system has the goal to recognize 5 basic physical activities (walk, run, etc). When
developing this system, in addition to the activities to recognize, 10 other activities
are considered as well (vacuum clean, play soccer, etc). The system is specified so that
if a user performs any of these other activities, it is not recognized as a basic activity
but as an other activity or is rejected. Furthermore, assume that the activity ‘rope
jump’ is neither included in the basic, nor in the set of other activities. Therefore, it
is undefined how the system handles the situation when a user performs this ‘rope
jump’ activity. By not dealing with this issue, existing approaches leave basically two
possibilities: either the user is limited to scenarios where only the considered activ-
ities occur (even if 20 — 30 different activities are included in the development of a
system, this still is a significant limitation for the user), or the user is permitted to
perform any kind of physical activity, but it is not specified how the monitoring sys-
tem handles an activity not considered during the system’s development phase (e.g.
whether it is recognized as one of the basic activities). Either way, by neglecting this
issue, the applicability of an activity monitoring application is significantly limited.

5.1.2 Problem Statement: Subject Independency

Another important aspect of robustness is the subject independency of an activity
monitoring system. In [122], a comparison of subject dependent and independent
validation is shown, and a large difference of classifier performance is reported be-
tween the two validation techniques (1.26 —5.92% misclassification vs. 12.09-29.47%
misclassification for different classifiers, respectively). Moreover, the benchmark in
Section 4.4 also compared subject dependent and independent evaluation, pointing
out the significant performance difference between the two methods. Overall, for
physical activity monitoring — unless the development of personalized approaches
is the explicit goal — subject independent validation techniques should be preferred.
This best simulates the common scenario that such systems are usually trained on a
large number of subjects and then used by a new subject (similar to the concept of
unknown other activities as discussed above, here the user of the system is unknown
during the development phase). In contrast, subject dependent evaluation leads to
too “optimistic” performance results. However, still many recent research works use
subject dependent validation techniques (e.g. in [89, 177]). Hence, neglecting that
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although they present high performance using their approach, these results might
not have as much practical meaning as if subject independent validation would have
been applied. Further results comparing subject dependent and independent evalua-
tion techniques will be shown in this chapter.

5.2 Basic Conditions of the Experiments

This section defines the 3 classification problems used within this chapter: the ‘basic’,
‘extended’ and ‘intensity’ tasks. The main motivation to define these classification
tasks is to cover the two essential goals of physical activity monitoring, namely ac-
tivity recognition and intensity estimation. Moreover, this section specifies the data
processing and classification methods applied to solve the introduced classification
problems.

5.2.1 Definition of the Classification Problems

The experiments performed within this work are all based on the PAMAP?2 dataset,
a physical activity monitoring dataset created and released recently [136, 135], and
included in the UCI machine learning repository [12]. This dataset is used since it
not only includes the basic physical activities (walk, run, cycle, Nordic walk) and pos-
tures (lie, sit, stand), but also a wide range of everyday (ascend and descend stairs,
watch TV, computer work, drive car), household (iron clothes, vacuum clean, fold
laundry, clean house) and fitness activities (rope jump, play soccer). The dataset was
recorded from overall 18 physical activities performed by 9 subjects, wearing 3 iner-
tial measurement units (IMU) and a heart rate monitor. A more detailed description
of the dataset can be found in Section 3.3.

The overall goal of activity recognition in this chapter is to develop a physical
activity monitoring system which can recognize a few, basic activities and postures
of interest, but is also robust in everyday situations. In their daily routine, users of
activity monitoring systems perform a large amount of different activities, many of
them are not of interest from the activity recognition point of view. Therefore, to
simulate this common usage of activity monitoring systems, the activity recognition
task is defined as follows.! There are 6 different basic activity classes to recognize:
lie, sit/stand?, walk, run, cycle and Nordic walk. In addition, 9 different activities are
regarded as other/background activities: iron clothes, vacuum clean, ascend stairs,
descend stairs, rope jump, fold laundry, clean house, play soccer and drive car. These
other activities should not be recognized as one of the basic activities, but as part of
an other activity class or should be rejected. The additional activities will be used
to simulate the scenario when users perform other activities than the few basic ones,

I'The defined classification task uses 16 different activities from the PAMAP2 dataset. The remaining
2 activities (computer work and watch TV) are discarded here due to their high resemblance to the basic
postures.

%It is a common restriction made in activity recognition (e.g. in [43]) that the postures sit and stand
form one activity class, since an extra IMU on the thigh would be needed for a reliable differentiation of
them.
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and are also used to simulate the scenario when users perform an activity unknown
to the system. This defined classification problem will be referred to as ‘extended’
activity recognition task throughout this chapter. Moreover, for comparison reasons,
the classification problem only including the 6 basic activity classes will also be used,
and will be referred to as ‘basic’ activity recognition task.

The defined activity recognition tasks focus on the monitoring of traditionally
recommended aerobic activities (walk, run, cycle and Nordic walk), and can thus be
justified by various physical activity recommendations — as given in [66]. Especially
patients with diabetes, obesity or cardiovascular disease are often required to follow
a well defined exercise routine as part of their treatment. Therefore, the recognition
of these basic physical activities is essential to monitor the progress of the patients
and give feedback to their caregiver. Moreover, a summary of resting activities (lie,
sit and stand still) also gives feedback on how much sedentary activity the patients
“performed”. However, in other use cases the focus of an activity monitoring applica-
tion could be different, thus the definition of the classification problem (the definition
of the basic and other activity classes) would differ. Nevertheless, the methods pre-
sented in this chapter could be applied to those other classification tasks as well.

Apart from the activity recognition tasks presented above, an intensity estimation
classification task is also defined on the PAMAP2 dataset. This task will be referred
to as the ‘intensity’ classification problem, and will be used to demonstrate the neces-
sity of subject independent evaluation and to simulate the estimation of the intensity
of previously unknown activities. The ‘intensity’ task includes all 18 activities from
the PAMAP?2 dataset, the goal is to distinguish activities of light, moderate and vig-
orous effort. The ground truth for this rough intensity estimation task is based on
the metabolic equivalent (MET) of the different physical activities, provided by [1].
Therefore, the 3 intensity classes are defined as follows: lie, sit, stand, watch TV, com-
puter work, drive car, iron, fold laundry and clean house are regarded as activities of
light effort (< 3.0 METs); walk, cycle, Nordic walk, descend stairs and vacuum clean
as activities of moderate effort (3.0-6.0 METs); run, ascend stairs, play soccer and
rope jump as activities of vigorous effort (> 6.0 METs). Overall, the ‘intensity’ task is
regarded as a 3-class classification problem in this chapter.

5.2.2 Data Processing and Classification

The PAMAP2 dataset provides raw sensory data from the 3 IMUs and the heart rate
monitor, which needs to be first processed in order to be used by classification algo-
rithms. A data processing chain is applied on the raw data including preprocessing,
segmentation and feature extraction steps (these data processing steps are further
described in Section 4.2). In total, 137 features are extracted from the raw signal:
133 features from IMU acceleration data (such as mean, standard deviation, energy,
entropy, correlation, etc.) and 4 features from heart rate data (mean and gradient).
These extracted features serve as input for the classification step, together with the
activity class labels provided by the dataset.

Previous work in physical activity monitoring showed that decision tree based
classifiers, especially boosted decision trees, usually achieve high performance (cf.
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e.g. [137] or the benchmark results in Section 4.4). Moreover, decision tree based clas-
sifiers have the benefit to be fast classification algorithms with a simple structure, and
are thus also easy to implement. These benefits are especially important for physical
activity monitoring applications since they are usually running on mobile, portable
systems for everyday usage, thus the available computational power is limited. There-
fore, the C4.5 decision tree classifier [126] and the AdaBoost.M1 (using C4.5 decision
tree as weak learner) algorithm [55] are used and compared in the experiments on the
defined classification problems.

5.3 Modeling Other Activities

As discussed above, the focus of the activity recognition tasks is on the recognition
of the basic activity classes, but all the other activities should not be completely ne-
glected either. Therefore, 4 different models are proposed for dealing with these
other activities. The main goal of these solutions is a high recognition rate of the
basic activities, and also robust behaviour concerning unknown activities, thus hav-
ing good generalization characteristic. The 4 proposed methods are listed below, and
are visualized — by means of the concrete example of the defined ‘extended’ activity
recognition task: 6 basic activity classes and 9 other activities — in Figure 5.1.

* The ‘allSeparate’ model: for each of the other (or also called background) ac-
tivities a separate activity class is defined (‘bgl’ ... ‘bg9’), and all these classes
are regarded as activities not belonging to the 6 basic activity classes (‘1”... ‘6).
The concept of the method is visualized in Figure 5.1a. This model refers to the
nowadays common approach of dealing with a large number of activities: most
research work is focused on increasing the number of recognized activities, thus
to have a high number of separate activity classes.

* The ‘bgClass’ model: in addition to the basic activity classes a background
activity class (‘bg’ in Figure 5.1b) is defined, containing all the other activities.
This approach of a null-class for physical activity recognition was proposed in
[137] to increase the applicability in everyday life scenarios.

* The ‘preReject’ model: it basically inserts a null class rejection step before the
actual classification. The concept of this two-level model is visualized in Fig-
ure 5.1c. On the first level the basic activities are separated from all the other
activities (‘bg’ class). The second level — only on the ‘basic’ branch of the first
level — distinguishes the 6 different basic activity classes. When constructing a
classifier based on this model, all training samples are used to create the sub-
classifier of the first level, while for the second level only training samples from
the basic activity classes are used.

* The ‘postReject’ model: similar to the ‘preReject’” model, this is also a two-
level model, as shown in Figure 5.1d. However, the null class rejection step is
applied after classifying the basic activities. This solution is similar to e.g. the
decision filtering step applied after activity classification in the activity recog-
nition chain of [145]. Only samples from the basic activity classes are used to
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(a) The ‘allSeparate’ model.

OJOROAOXOXORIE

(b) The ‘bgClass’ model.

basic bg

(c) The ‘preReject’ model.

(d) The ‘postReject’ model.

Figure 5.1: The 4 proposed models for dealing with the other activities.
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create the first level of this classifier, while the second level consists of 6 sub-
classifiers: each created using the respective basic activity class and all samples
from the other activities.

5.4 Performance Measures

The common performance measures, as derived from the general confusion matrix
in Section 4.3.1, are used to quantify the classification performance of the different
approaches: precision, recall, F-measure and accuracy. However, these measures are
adjusted to the specific focus of the defined activity recognition and intensity estima-
tion classification tasks, as shown in Section 5.4.1 and Section 5.4.2, respectively.

Table 5.1: Confusion matrix used for the adjusted definition of the performance
measures for the activity recognition tasks.

Annotated Recognized activity

activity 1 2 . C 0

1 Py P, ... P P ca S

2 P4 By, ... P P i1 S,

C Pcq Pco ... Pcc  Pccn Sc

C+1 Pciin Py oo Perie Pesice1| Scar

C+B Pcip1 Peipr - Pcipc Peypcs1| Sces
Ry Ry ... Rc Ry

5.4.1 Activity Recognition

The focus of the activity recognition classification tasks in this chapter is on the recog-
nition of the basic activity classes, thus the performance measures are adjusted ac-
cordingly. This adjusted definition of the 4 measures uses the following notation (cf.
also the confusion matrix in Table 5.1). Assume that a confusion matrix is given by
its entries P; ;, where i refers to the rows (annotated activities), and j to the columns
(recognized activities) of the matrix. Let S; be the sum of all entries in the row i of
the matrix (referring to the number of samples annotated as activity i), and R]- the
sum of all entries in the column j of the matrix (referring to the number of samples
recognized as activity j). Let N be the total number of samples in the confusion ma-
trix. Let the classification problem represented in the confusion matrix have C basic
activity classes: 1,..., C and B other activity classes: 1,..., B. Let the activity classes
ordered so in the confusion matrix that the background activity classes follow the ba-
sic activity classes (cf. the order of the annotated activity classes in Table 5.1). Since
the classification of the samples belonging to the other activities is not of interest, this
is represented as a null activity class in the confusion matrix (cf. the column referred
to as P; c,1 in Table 5.1). Samples classified as one of the background activity classes
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Table 5.2: General confusion matrix of the intensity estimation task, using an-
notated intensity classes.

Annotated Estimated intensity

intensity light moderate vigorous

light Py P, P S1
moderate P2,1 P2,2 P2’3 52
VigOI‘OIlS P3y1 P3y2 P3,3 53

(‘allSeparate” model), or classified into the other activity class (‘bgClass” model), or
rejected before or after the classification of the basic activities (“preReject” or “postRe-
ject’ model, respectively) are counted into this null class. Using this notation, the
performance measures precision and recall are defined as following:

Q-
-
il

precision = (5.1a)

i=1 !

C
== = 5.1b
reca C ; 5 ( )
For F-measure, the original definition as presented in Section 4.3.1 remains:
1

F-measure = 2- precision: reca (5.1¢)

precision + recall’

Finally, since the correct classification of only the basic activities is of interest, the
measure accuracy is defined as following:

accuracy = P ;. (5.1d)

C

C+B Z ’
- Z] C+1 P] C+1 j=1

The above introduced adjusted performance measures can be applied on both ac-
tivity recognition tasks of this chapter. It should be noticed that since the ‘basic’ task
does not include any other activities, the adjusted measures reduce to the original
measures of Section 4.3.1. Concrete confusion matrices on the defined ‘basic” and ‘ex-
tended’ classification problems are shown as results in Section 5.6.1 and Section 5.6.2,
respectively. Moreover, those confusion matrices are used to understand the results
in more detail and compare different approaches.

5.4.2 Intensity Estimation

Regarding the intensity estimation problem as a 3-class classification task, the perfor-
mance measures can be defined similarly to that of the activity recognition tasks. The
notation of Table 5.2 is similar to the generalized confusion matrix of Table 5.1. Here,
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Table 5.3: General confusion matrix of the intensity estimation task, using an-
notated activity classes.

Annotated Estimated intensity

activity light moderate  vigorous

1 P4 P, P 3

2 P4 P, P

L Py Py Pr3

L+1 Priia Prii Prii3

L+M Prinv Priv Prims

L+M+1 Primetn Pram+12 Pram+a3

L+M+V | Poopeva Pramave  Pramavs
R, R, R,

S; refers to the number of samples annotated as either the annotated intensity class

light, moderate or vigorous, and R; refers to the number of samples recognized as one

of the intensity classes. Using this notation, the 4 performance measures are defined
the following way:

precision = l(m + Pon + Bos

3'Ry R, Rj

1 Py Py Py

“Lly 222 758

) (5.2a)

== 5.2b
reca 3( 5, 55 55 ) ( )
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F-measure =2 prec‘zs‘zon reca (5.2¢)
precision + recall
3
D P .
accuracy = 3Zl*+ (5.2d)
i=1 Lj=1 Pi,j

The drawback of the representation of Table 5.2 is that only the confusion between
the 3 intensity classes are shown, no information about e.g. the intensity of which
specific activities is estimated inaccurately. A more detailed representation can be
given when using the annotated activity classes in the confusion matrix, as shown in
Table 5.3. For this representation, assume that the ‘intensity’ task consists of L light
effort activities: 1,...,L and M moderate effort activities: 1,..., M and V vigorous
effort activities: 1,..., V. Moreover, let A be the set of all different activities: A =
LUMU V. Itis worth to note that the confusion matrix of Table 5.2 can be considered
as the result of merging all the rows in Table 5.3 of activities belonging to the same
intensity level.
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The R; (j = 1,...,3) number of samples recognized as one of the intensity classes

can be determined as
R; = ZPI?J" (5.3)
ieA
while the S; (i = 1,..., 3) number of samples annotated as one of the intensity classes
can be determined as follows:

51 = Z(Pi,l + P+ Pi3) (5.4a)
iel

S2=) (Pa+Po+Ps) (5.4b)
ieM

Ss=) (Py+Po+Ps). (5.4c)
eV

Using the definitions of (5.3) and (5.4), the performance measures precision and
recall can be defined as follows:

1 YieL Pin . Yiem i . Licv Pis

precision = 3( R, R, R, ) (5.5a)
1Y P iem P v B
recall = —(ZZEL oLy Liew Fia + Licv L3, (5.5b)
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The definition of F-measure remains unaltered:
ision - 1
F-measure =2 prec'ls'lon reed ) (5.5¢)
precision + recall
while the measure accuracy can be determined as
cL Pii+2iemPio+Xicv P
accuracy = Lict it * Diew P + Liev L3 (5.5d)

3
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Results on the ‘intensity’ classification task are shown in Section 5.6.3, using the
representation form of Table 5.3 and the performance measures as defined by (5.5).

5.5 Evaluation Techniques

This section presents the evaluation methods used to obtain the results in Section 5.6.
The goal of the evaluation of the created classifiers is to estimate their behaviour in
everyday life scenarios, thus to simulate how they would perform in named situations.
The commonly used standard k-fold cross-validation (CV) is not adequate for this
task, since it only estimates the behaviour of the scenario in which the classifier was
trained, thus on a limited and known set of users and physical activities. Nevertheless,
standard 10-fold CV is also applied as an evaluation technique in the experiments of
this chapter for comparison reasons. These results will show how “optimistic” k-fold
CV is for validation, that is, how unrealistic the so achieved performance is in real
life scenarios.
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The simulation of everyday life scenarios means concretely to simulate how the
created system behaves when used by a previously (in training time) unknown per-
son, or when a previously unknown activity is performed. To simulate subject in-
dependency the evaluation technique leave-one-subject-out (LOSO) CV is applied.
Since the used PAMAP?2 dataset provides data from 9 subjects, LOSO 9-fold CV is
applied in the experiments of this chapter. Moreover, to simulate the scenario of per-
forming unknown other activities a new evaluation technique is introduced: leave-
one-activity-out (LOAO). The basic idea of LOAO is similar to the LOSO evaluation
technique. However, the concrete definition of LOAO for the activity recognition and
intensity estimation tasks of this chapter is described in more detail in the next two
subsections.

5.5.1 Activity Recognition

In both activity recognition tasks defined in this chapter (‘basic’ and ‘extended’) the
set of basic activities is known during training time. Therefore, only the simulation
of performing unknown other activities within the ‘extended’ task is required. The
concept of the LOAO technique applied on the ‘extended’ task will thus be referred
to as leave-one-other-activity-out (LOOAO) hereafter: for this classification problem
including B other activities, data from B — 1 other activities is used for training and
data from the remaining other activity for testing, repeating this procedure B times
leaving always another activity’s data for testing.

To receive the best possible understanding of the developed system’s behaviour
in everyday life scenarios, the newly introduced LOOAO evaluation technique is com-
bined with the LOSO technique. This combined evaluation method will be referred
to as LOSO_LOOAO throughout this chapter, the procedure is formally described in
Algorithm 5.1. With LOSO_LOOAO evaluation the following practical scenarios are
evaluated:

* The system is trained with a large amount of subjects for the ‘extended’ task.
Then the system is deployed to a new subject (thus for this subject no data was
available during the training phase of the system), and the new subject performs
one of the basic activities (estimated through the LOSO component).

* The system is trained with a large amount of subjects for the ‘extended’ task.
Then the system is deployed to a new subject, who performs one of the known
other activities (estimated through the LOSO component). This is the first step
in testing the robustness of the system in situations when the user performs
activities other than the few basic recognized ones.

* The system is trained with a large amount of subjects for the ‘extended’ task.
Then the system is deployed to a new subject, who performs a previously un-
known activity — thus an activity neither belonging to the basic activity classes,
nor to one of the other activities available during the training phase (estimated
through the LOOAO component). This scenario simulates basically the gener-
alization characteristic of the classifier’s other activity model, estimating how
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robust the system is in the usually neglected situation when unknown activities
are performed.

Algorithm 5.1 LOSO_LOOAO

Require: S is the set of S different subjects, {s: 1,2,... S}
C is the set of C different basic activities, {c: 1, 2,..., C}
B is the set of B different other activities, {b: 1,2,..., B}
A is the set of all different activities: A = C U B, an arbitrary activity is
referred to as a
N is the set of N different samples, where each sample consists of subject
and activity information and a feature vector, thus n: <s, a, features>
s(n) refers to the subject of the sample n
a(n) refers to the activity of the sample n
1: procedure LOSO_LOOAO(S,C,B,A,N)
2 fori < 1,S do
3 Pirain = {¥Yn € Nls(n) = i}
4 Piess = {¥n € N|s(n) = i}
5: Piest_basic = {Vn € Pyogila(n) € C}
6
7
8
9

Train classifier using P;,,;, — F;
Use F; on Pyost pasic % LOSO on basic activities
for j — 1,Bdo
Ptmin_other = {Vﬂ € Ptminl((a(ﬂ) eC ) v ((a(ﬂ) €B and (a(ﬂ) * ])))}
% thus the sample does not belong to the jth other activity

10: Piest_other = {¥n € Piesil((a(n) € B)) A (a(n) = j))}
% thus the sample belongs to the jth other activity
11: Train classifier using Py,4iy_otner — Fi
12: Use F; ; on Piest_other % LOOAO on jth other activity
13: end for % LOOAO with all B other activities is finished here

14: end for % The LOSO results with the basic activities and the LOOAO results with the
other activities together return the LOSO_LOOAO result
15: end procedure

5.5.2 Intensity Estimation

In the intensity estimation classification task defined in this chapter all 18 activities
are treated equally, there are no basic and other activities distinguished which are
handled differently. Therefore, the concept of the LOAO technique is applied on the
‘intensity’ task to simulate when one of the 18 activities is left out, while all the other
activities are known. Moreover, similar to the evaluation of the ‘extended’ task as
presented in the previous subsection, LOAO is combined with the LOSO technique.
This combined evaluation method will be referred to as LOSO_LOAO throughout this
chapter, the procedure is formally described in Algorithm 5.2. Overall, 3 different
evaluation methods are applied for the ‘intensity’ task: standard 10-fold CV, LOSO
9-fold CV and the newly introduced LOSO_LOAO technique.
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Algorithm 5.2 LOSO_LOAO

Require: S is the set of S different subjects, {s: 1,2,..., S}
A is the set of all 18 different activities, an arbitrary activity is
referred to as a
N is the set of N different samples, where each sample consists of subject
and activity information and a feature vector, thus n: <s, a, features>
s(n) refers to the subject of the sample n
a(n) refers to the activity of the sample n
1: procedure LOSO_LOAO(S,A,N)
2 fori < 1,S do
3: Pirain = {¥Yn € Ns(n) = i}
4 Piess = {¥n € N|s(n) = i}
5
6

for j — 1,Ado

Ptmin_loao = {Vﬂ € Ptminla(ﬂ) * ]}
% thus the sample does not belong to the jth other activity

7: Piest_1oao0 = {Vn € Pypgila(n) = j}
% thus the sample belongs to the jth other activity
8: Train classifier using Pty4in_joao — Fi)j
9: Use Fj j on Piest_joa0 % LOAO on jth other activity
10: end for % LOAO with all activities is finished here for subject i

11: end for % LOSO with all different subjects is finished here
12: end procedure

5.6 Results and Discussion

Table 5.4 shows the confusion matrix on the ‘basic’ classification task using the C4.5
decision tree classifier and standard CV as evaluation technique (the results are an av-
erage of 10 test runs). Almost no misclassifications can be observed, all performance
measures are clearly above 99%. Therefore, this result could indicate that physical
activity recognition is an easily solvable classification problem, even with a simple
classifier such as a decision tree. However, the result of Table 5.4 has two main draw-
backs: it is subject dependent (thus does not tell anything about the performance of
the system when used by a new subject), and only applies to the specific scenario
of these 6 basic activity classes. Therefore, an extension of this result is required to
increase the applicability of the system concerning both limitations. Further results
in this section will show that the performance of activity monitoring is much lower
under realistic, everyday life conditions.

5.6.1 The ‘Basic’ Classification Task

The ‘basic’ classification task serves only for comparison, thus to see the baseline
characteristic of physical activity recognition. Since all activities of the task are to be
recognized, only the subject independency of the system can be simulated from the
aforementioned two issues. The performance measures are shown in Table 5.5 for
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Table 5.4: Confusion matrix on the ‘basic’ task using the C4.5 decision tree clas-
sifier and standard CV evaluation technique. The table shows how different an-
notated activities are classified in [%].

Annotated Recognized activity

activity 1 2 3 4 5 6
1 lie 0 0 0 0 0
2 sit/stand 0 0.13 0
3 walk 0 0.02 0.27
4 run 0 0
5 cycle 0.29 0.25 0.11
6 Nordic walk 0 0.60 0

both standard CV and LOSO evaluation. Each of the tests is performed 10 times, the
table shows the mean and standard deviation of these 10 test runs.

The results of Table 5.5 show the significant difference between standard CV and
LOSO, for both classifiers. Table 5.6 shows the confusion matrix on the ‘basic’ task
using the C4.5 decision tree and LOSO as evaluation technique. Comparing the confu-
sion matrices of Table 5.4 (F-measure is 99.71%) and Table 5.6 (F-measure is 95.50%)
the differences between the results obtained with standard CV and LOSO can be ob-
served in more detail. The recognition rate of all 6 activities decreases with LOSO
evaluation, this is the most significant with the activity Nordic walk: the performance
decreases from 99.40% to 83.19%. The reason for the lower performance can be ex-
plained by the diversity in how subjects perform physical activities (e.g. the differing
pattern and intensity of arm movements during the activities walk and Nordic walk
by different subjects, which leads to the significant confusion between these two ac-
tivities in Table 5.6). Subject independent evaluation simulates this behaviour, while
subject dependent evaluation ignores it. Therefore, the latter method leads to highly
“optimistic” results as observed in Table 5.5, and will be shown in Table 5.7 and Ta-
ble 5.12 on the classification tasks ‘extended’ and ‘intensity’, respectively.

An interesting result in Table 5.5 is that the AdaBoost.M1 classifier only slightly
outperforms the C4.5 classifier on the ‘basic’ task (the difference between the two
classifiers on the ‘extended’ task is much more significant, as shown in the next sub-
section). This can be explained by the fact that the ‘basic’ task is a rather simple
classification problem where even base-level classifiers can reach the highest possi-
ble accuracy. Therefore, it is not necessarily worth using more complex classification
algorithms here. The lower performance when using LOSO evaluation is due to the
difficulty of the generalization in respect of the users, and not due to the difficulty of
the classification task.

Although using subject independent evaluation is the first step towards simulat-
ing the conditions of everyday usage of activity monitoring applications, the ‘basic’
task only estimates the system’s behaviour when activities of one of the 6 included ac-
tivity classes are performed, thus the system’s response is not defined when the user
performs activities such as descend stairs or vacuum clean. This issue is discussed in
the next subsection, by analyzing the results obtained on the ‘extended’ task.



5 Robust Activity Monitoring for Everyday Life: Methods and Evaluation

Table 5.5: Performance measures on the ‘basic’ activity recognition task. The results are averaged over 10 test runs, mean
and standard deviation is given for each experimental setup.

78

Classifier Evaluation method Precision Recall F-measure Accuracy

C4.5 standard CV 99.71 £ 0.04 99.70 £ 0.02 99.71 £0.03 99.71 £0.03
LOSO 96.05 £ 1.06 94.96 +1.40 95.50 +£1.20 95.14+1.10

AdaBoost.M1 standard CV 99.97 £0.02 99.97 £0.02 99.97 £0.02 99.97 £0.02
LOSO 95.91 +1.45 95.47 +1.45 95.69 +1.40 95.43 +1.54
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Table 5.6: Confusion matrix on the ‘basic’ task using the C4.5 decision tree clas-
sifier and LOSO CV evaluation technique. The table shows how different anno-
tated activities are classified in [%)].

Annotated Recognized activity

activity 1 2 3 4 5 6
1 lie 233 0 0 012 0
2 sit/stand 0 0.93 0
3 walk 0 0.75 1.71
4 run 1.69 0.07
5 cycle 1.94 0.29 0.14
6 Nordic walk 0 16.79 0.02 0

5.6.2 The ‘Extended’ Classification Task

The performance measures on the ‘extended’ task are presented in Table 5.7: for each
of the 4 other activity models, by using the 2 classifiers and the 3 different evaluation
techniques. The results are given in form of mean and standard deviation of the 10
test runs performed for every possible combination of the models, classifiers and eval-
uation methods. Overall it is clear that with the inclusion of the other activities the
classification task becomes significantly more difficult (cf. the comparison of the re-
sults achieved with standard CV and LOSO to the respective results on the ‘basic’ task
in Table 5.5). This can be explained not only by the increased number of activities in
the classification problem (it should be noted that the defined performance measures
for the ‘extended’ task only focus on the basic activity classes, thus the results are
comparable with that of the ‘basic’ task), but also by the fact that the characteristic of
some of the introduced other activities overlap with the characteristic of some of the
basic activity classes. For example, the other activity iron has a similar characteris-
tic to talking and gesticulating during stand, thus misclassifications appear between
these two activities. Similarly it is nontrivial to distinguish running with a ball (dur-
ing the other activity play soccer) from just running. Since the ‘extended’ task defines a
complex classification problem, it is worth to apply more complex classification algo-
rithms here — contrary to the ‘basic’ classification task. For example when considering
the ‘allSeparate’ model and LOSO evaluation, the C4.5 decision tree only achieves an
F-measure of 83.30% while with the AdaBoost.M1 classifier 92.22% can be reached.
From the results of Table 5.7 it is obvious that the performance measures achieved
with LOSO evaluation are significantly lower than results obtained with standard CV,
as already seen in Table 5.5 and explained in Section 5.6.1. If only considering subject
independency the ‘allSeparate’ model performs best, closely followed by the models
‘preReject’ and ‘bgClass’. However, on the ‘extended’ task it is also simulated when
the user of the system performs unknown other activities (LOOAQO). The results of
applying the evaluation method of Algorithm 5.1 are shown in Table 5.7 in the re-
spective rows of LOSO_LOOAO. Considering this combined evaluation technique the
‘bgClass’ model performs best, followed by the models ‘preReject’ and ‘allSeparate’.
From all the 4 other activity models the ‘allSeparate’ model shows the largest decrease
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Table 5.7: Performance measures on the ‘extended’ activity recognition task. The results are averaged over 10 test runs,
mean and standard deviation is given for each experimental setup.

Model Classifier Evaluation method Precision Recall F-measure Accuracy
‘allSeparate’ C4.5 standard CV 98.17+£0.23 | 98.00+£0.09 | 98.09+0.14 | 95.80+0.25
LOSO 89.77 £1.89 | 77.75+3.08 83.30£2.10 | 73.81 £2.21
LOSO_LOOAO 81.84+1.77 | 78.59 +3.43 80.16 £2.44 | 67.06+2.71
AdaBoost.M1 standard CV 99.94 +0.01 99.93+£0.04 | 99.93+£0.02 | 99.83+0.05
LOSO 95.42 +0.98 89.23 £2.00 92.22+1.40 | 86.60+2.09
LOSO_LOOAO 86.80+£0.99 | 88.72+1.28 87.75+1.07 | 78.83+1.29
"bgClass’ C4.5 standard CV 98.68 £0.17 | 98.66+0.11 98.67 £0.12 | 96.85+0.21
LOSO 89.85 +1.35 85.83 £3.11 87.78 £ 2.11 80.63 +£1.81
LOSO_LOOAO 83.64+2.46 | 85.56 £2.67 84.58 £2.39 | 73.76 £2.10
AdaBoost.M1 standard CV 99.96 £0.02 | 99.88 +0.03 99.92+£0.02 | 99.77 £0.05
LOSO 96.07 £0.99 | 85.76 £ 2.45 90.61 £+1.72 | 84.14+2.35
LOSO_LOOAO 91.81 + 0.82 86.82 +£1.71 89.24 +1.17 80.97 £1.20
‘preReject’”  C4.5 standard CV 98.28 £0.14 | 97.83+0.12 | 98.05+0.07 | 9546 +0.14
LOSO 88.58 £1.40 | 78.66 £2.51 83.30+1.36 | 71.78+1.76
LOSO_LOOAO 83.07 £1.68 78.83 £3.63 80.87 £2.53 67.32 +£2.74
AdaBoost.M1 standard CV 99.95+0.04 | 99.89+0.04 | 99.92+0.04 | 99.82+0.06
LOSO 93.85+1.57 | 88.46 +2.26 91.07 £1.83 85.20 £ 2.07
LOSO_LOOAO 87.99+1.47 | 87.98 +1.80 87.98 £1.58 79.11 £1.60
‘postReject” C4.5 standard CV 99.08 £0.09 | 98.21+0.15 | 98.64+0.10 | 96.89+0.20
LOSO 92.93 +£0.93 77.65 £3.05 84.59 +£2.11 74.89 +1.80
LOSO_LOOAO 89.02£0.62 | 78.96 +2.05 83.67 £1.23 71.59 £1.66
AdaBoost.M1 standard CV 99.93+£0.04 | 99.82+0.02 99.87 £ 0.03 99.75 £ 0.05
LOSO 95.76 +£1.38 81.18 £2.57 87.86 £1.87 | 80.92+2.50
LOSO_LOOAO 92.01 £1.80 | 80.65+3.02 85.94+240 | 77.78 £2.52
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in performance from LOSO evaluation to LOSO_LOOAOQO evaluation. Especially the
precision measure decreases largely, thus when the user performs unknown activities
they are more likely recognized as one of the basic activity classes compared to the
results of other models. This behaviour can be observed when comparing Table 5.8
(LOSO evaluation) with Table 5.9 (LOSO_LOOAO evaluation). The recognition rate
of the basic activities is similar in both cases since their evaluation method is the
same. However, the recognition rate of all other activities decreases significantly in
Table 5.9, e.g. descend stairs from 99.21% to 70.81% or rope jump from 99.24% to
91.90%. This significant decrease in the precision measure can be explained by the
fact that for the ‘allSeparate’ model separate activity classes are created and trained
for each of the known other activities, thus the generalization capability of the model
is rather limited when a previously unknown activity is performed. On the other
hand, the training instances belonging to the other/background activity class of the
‘bgClass’ model are scattered in the feature space, resulting in a large class with good
generalization characteristic. Moreover, since much more instances are used for the
creation of the background activity class during training than for the 6 basic activ-
ity classes, this class becomes more important, thus resulting in significantly higher
precision than recall result with the ‘bgClass’ model.

The ‘preReject’ other activity model performed second best in both the LOSO
and the LOSO_LOOAO evaluation, justifying the idea of first recognizing whether a
performed activity belongs to the basic activity classes or not. When analyzing the
trained classifiers for the two levels of this model, it can be noticed that the classifier
of the first level is much more complex: although representing only a binary decision,
the separation of basic activities from other activities is a difficult task. The classi-
fication problem defined in the second level of the model is identical to the ‘basic’
classification task defined in this chapter, and thus is — as discussed in the previous
subsection — a rather simple task. Finally, the ‘postReject” model performed worst
with both LOSO and LOSO_LOOAO evaluation, resulting in the lowest F-measure
and accuracy values. Since the basic activities are distinguished on the first level
of this model (without any other activities concerned), this model has the least con-
fusion between the basic activity classes. The confusion matrices belonging to the
evaluation of this model — one example is given in Table 5.10 — confirm this state-
ment: except for some misclassifications of Nordic walk samples as normal walk, all
confusion is done towards the other activity class. Moreover, due to the unbalanced
classification tasks defined on the second level of the model (only one basic activity
versus all other activities, thus these tasks are even more unbalanced than the classifi-
cation task defined by the ‘bgClass’ model), the precision values are comparable with
those of other models. Therefore, if the goal of an activity recognition application is
only the precise recognition of activities of interest the ‘postReject’ model can also be
considered, but otherwise one of the three other models should be used.

From the results of Table 5.7 the performance measures obtained with
LOSO_LOOAO evaluation should be regarded as most important, since this evalua-
tion technique simulates the widest range of practical scenarios. The approach achiev-
ing the best performance results with LOSO_LOOAO can thus be regarded as the ap-
proach which is the most robust in everyday life situations. Therefore, overall the
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Table 5.8: Confusion matrix on the ‘extended’ task using the ‘allSeparate’ model,
AdaBoost.M1 classifier and LOSO evaluation technique. The table shows how
different annotated activities are classified in [%].

Annotated Recognized activity

activity 1 2 3 4 5 6 0
1 lie 0 0 0 1.94
2 sit/stand 0.0 0 0 0 8.04
3 walk 0 0 0.21 10.71
4 run 0 0.01 26.23
5 cycle 0 0.01 0.03 0 0.06 3.85
6 Nordic walk 0 0 6.17 0 6.59
7 drive car 0 '47.64 O 0 0.83 0 51.54
8 asc. stairs 0 0 0.62 0 0 0
9 desc. stairs 0 0 0 0 0.79 0

10 vacuum clean 0 0.01 0 0 0.16 0

11 iron 0 2.83 0 0 0.03 0

12 fold laundry 0 5.33 0 0 0.02 0

13 clean house 0.02 5.53 0.01 0 0.31 0

14 play soccer 0 0 248 1066 0  0.28

15 rope jump 0 0 0 0.76 0 0

Table 5.9: Confusion matrix on the ‘extended’ task using the ‘allSeparate’ model,

AdaBoost.M1 classifier and LOSO_LOOAO evaluation technique.

The table

shows how different annotated activities are classified in [%].

Annotated Recognized activity

activity 1 2 3 4 5 6 0
1 lie 0 0 1.60
2 sit/stand 0 0 8.93
3 walk 0 0.22 8.55
4 run 0 0 24.11
5 cycle 0 0.19 4.64
6 Nordic walk 0 1254 0 0 5.68
7 drive car 0.02 149.67 0 0 0.12 0 [50.19
8 asc. stairs 0 0 1249 0 0.91 1.48
9 desc. stairs 0 0 9.29 0.02 17.92 1.97

10 vacuum clean 0 0.02 0 0 9.17 0

11 iron 0 22.02 0 0 0.00 0

12 fold laundry 0 6.53 0 0 0.03 0

13 clean house 0.09 9.71 0.02 0 0.35 0

14 play soccer 0 0 466 31.67 0 243

15 rope jump 0 0 0.35 6.33 1.41 0
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Table 5.10: Confusion matrix on the ‘extended’ task using the ‘postReject’
model, AdaBoost.M1 classifier and LOSO_LOOAO evaluation technique. The
table shows how different annotated activities are classified in [%].

Annotated Recognized activity

activity 1 2 3 4 5 6 0
1 lie 0.45 0 0 0 0 10.98
2 sit/stand 0.31 0 0 0 0 9.90
3 walk 0 0 0 0 013 18.58
4 run 0 0 0 /56.61 0 0.30 43.09
5 cycle 0 0 0 0 0.03 8.15
6 Nordic walk 0 0 600 0 F- 18.19
7 drive car 0 3670 O 0 0 0 163.30
8 asc. stairs 0 0 0.78 0 0
9 desc. stairs 0 0 022 0 1.22

10 vacuum clean 0 0 0 0 0.69

11 iron 0 16.54 0 0 0.05

12 fold laundry 0 235 0 0 0

13 clean house 0.41 6.37 0 0 0.09

14 play soccer 0 0 3.27 2522 0 1.77 169.75

15 rope jump 0 0 003 291 0 0 SR

‘bgClass’ model can be regarded as the model with the best generalization characteris-
tic: the approach using the ‘bgClass’ model and the AdaBoost.M1 classifier achieves
an average F-measure of 89.24% and an average accuracy of 80.97%. The confusion
matrix obtained with this approach is shown in Table 5.11 (the results represent the
average from the 10 test runs). It is obvious that most of the misclassifications occur
due to the other activities: either a sample belonging to a basic activity class is classi-
fied into the background class, or a sample from an other activity is confused with one
of the basic activities. For example, drive car and iron are in high percentage confused
with the basic class sit/stand. This is due to the overlapping characteristic of some
basic and other activities, as already discussed above. The strength of the ‘bgClass’
model is especially pointed out by the results obtained with other activities such as as-
cend stairs, descend stairs, vacuum clean or rope jump: although previously unknown to
the system, these activities were basically not misclassified as a basic activity. There-
fore, it can be expected that the proposed approach shows such robustness with most
of other unknown activities as well. Only unknown activities similar to the target
activities might be problematic for the ‘bgClass’ approach, as seen with drive car or
iron, or is expected with activities such as computer work or watch TV. However, it is
difficult to set the defining boundaries of some of the basic activity classes — e.g. if
computer work should be regarded as sitting or as a separate other class. Deciding this
question might highly depend on the actual application.
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Table 5.11: Confusion matrix on the ‘extended’ task using the ‘bgClass’ model,
AdaBoost.M1 classifier and LOSO_LOOAO evaluation technique. The table
shows how different annotated activities are classified in [%].

Annotated Recognized activity

activity 1 2 3 4 5 6 0
1 lie 0 0 0.72
2 sit/stand 0.1 0 0 9.80
3 walk 0 0 14.00
4 run 0 23.31
5 cycle 0 0.01 0 7.53
6 Nordic walk 0 8.71 0 11.60
7 drive car 0 39.10 0 0 0.06 0 60.84
8 asc. stairs 0 0 0.53 0 0 0.01
9 desc. stairs 0.08 0 1.97 0.02 0.84 0.06

10 vacuum clean 0 0 0 0 0.42 0

11 iron 0 20.02 0 0 0.01 0

12 fold laundry 0 370 0.01 0 0 0

13 clean house 0.26 7.10 0 0 0.06 0

14 play soccer 0 0 334 3208 0 0.13 64.46

15 rope jump 0 0 011 011 0 0 [OO8

5.6.3 The ‘Intensity’ Classification Task

The performance measures on the ‘intensity’ task are presented in Table 5.12: for each
of the 3 evaluation techniques, using the 2 classifiers. The results are given in form
of mean and standard deviation of the 10 test runs performed for every possible com-
bination of the classifiers and evaluation methods. Similar to the classification tasks
‘basic’ and ‘extended’, the performance measures achieved with LOSO evaluation are
significantly lower than results obtained with standard CV. Moreover, with the simu-
lation of performing previously unknown activities there is a further large decrease
in performance. This can be observed in detail when comparing the confusion matri-
ces of Table 5.13 (LOSO evaluation) and Table 5.14 (LOSO_LOAO evaluation), both
achieved with the AdaBoost.M1 classifier. When only considering subject indepen-
dency, the intensity of most activities is estimated reliably (cf. Table 5.13). However,
with the introduction of the LOAO component the intensity estimation of some activ-
ities completely fail, e.g. only 2.20% of the ascend stairs samples or only 12.19% of
the vacuum clean samples are estimated correctly. On the other hand, the intensity
of the different posture-related activities — such as sit, computer work or watch TV —
is estimated well. This can be explained by the fact that, although a certain activity
itself is unknown, during the training of the classifier enough samples from similar
activities are available.



Table 5.12: Performance measures on the ‘intensity’ classification task. The results are averaged over 10 test runs, mean and

standard deviation is given for each experimental setup.

Classifier Evaluation method Precision Recall F-measure Accuracy

C4.5 standard CV 97.50 £0.19 | 97.35+0.22 | 97.42+0.19 | 97.77 £0.11
LOSO 88.86 £1.08 | 89.93+0.43 | 89.39+0.66 | 91.70+0.41
LOSO_LOAO 56.92+3.02 | 58.29+3.21 57.59£3.09 | 70.07 £1.87

AdaBoost.M1 standard CV 99.88+£0.03 | 99.84+0.04 | 99.86+0.04 | 99.85+0.04
LOSO 93.76 £1.33 | 94.99+0.62 | 94.37+0.96 | 95.04+0.53
LOSO_LOAO 62.87+0.94 | 65.70+£0.80 | 64.25+0.86 | 73.93+0.63
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Table 5.13: Confusion matrix on the ‘intensity’ classification task using the Ada-
Boost.M1 classifier and LOSO evaluation technique. The table shows how differ-
ent annotated activities are classified in [%].

Annotated Estimated intensity
activity light moderate vigorous

1 lie 0.03 0

2 sit 0.02 0

3 stand 0.02

4 walk

5 run

6 cycle

7 Nordic walk

8 watch TV

9 computer work
10 drive car
11 asc. stairs
12 desc. stairs

13 vacuum clean 0.33

14 iron 1.15 0

15 fold laundry 9.64 0

16 clean house 26.74 0.29

17 play soccer 8.15

18 rope jump 0.03 -

Overall, the results on the ‘intensity’ task presented in this subsection (especially
the results in Table 5.14) show that the intensity estimation when subjects perform
previously unknown activities can be highly unreliable. On the one hand, this empha-
sizes on the importance of applying LOSO_LOAO evaluation, thus that the simulation
of a trained classifier’s performance on unknown activities should not be neglected.
On the other hand, these results also encourage to develop more robust approaches
for the intensity estimation of physical activities, such that they have better general-
ization characteristics.

5.7 Conclusion

This chapter developed the means for simulating everyday life scenarios and thus to
evaluate the robustness of activity recognition and intensity estimation — a usually
neglected point of view in the development of physical activity monitoring systems.
Experiments were carried out on classification problems defined on the recently re-
leased PAMAP?2 physical activity monitoring dataset. An activity recognition task
was defined, including 6 basic activity classes and 9 different other activities. The
goal of this classification task was the accurate recognition and separation of the ba-
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Table 5.14: Confusion matrix on the ‘intensity’ classification task using the Ada-
Boost.M1 classifier and LOSO_LOAO evaluation technique. The table shows how
different annotated activities are classified in [%].

Annotated Estimated intensity
activity light ~moderate vigorous
1 lie 0.03 0
2 sit 0.01 0
3 stand 0.14 0
4 walk 44.81 54.93
5run 0 3.28 [O62N
6 cycle 47.07
7 Nordic walk
8 watch TV

9 computer work
10 drive car
11 asc. stairs
12 desc. stairs
13 vacuum clean
14 iron
15 fold laundry
16 clean house
17 play soccer
18 rope jump

sic activities, while samples of the other activities should be recognized as part of
an other activity class or should be rejected. Moreover, an intensity estimation task
was defined including all 18 activities from the PAMAP?2 dataset. The goal of this
classification task was to distinguish activities of light, moderate and vigorous effort.
Common data processing and classification methods were used to achieve the classi-
fication goals, comparing two — in previous work successfully applied — classification
algorithms: the C4.5 decision tree classifier and the AdaBoost.M1 algorithm. More-
over, to deal with other activities in the activity recognition task, 4 different models
are proposed: ‘allSeparate’, ‘bgClass’, ‘preReject’ and ‘postReject’. Finally, the evalu-
ation of the proposed methods was performed with different techniques, including
standard CV, LOSO and the newly introduced LOAO. Standard 10-fold CV was only
included for comparison reasons: to underline how unrealistic the so achieved perfor-
mance is in everyday life scenarios. The LOSO technique serves to simulate subject in-
dependency, while LOAO simulates the scenario of performing unknown other activ-
ities. Considering the activity recognition task, the results of the thorough evaluation
process revealed that the ‘bgClass’ model has the best generalization characteristic,
while the generalization capability of the widely used ‘allSeparate” approach is rather
limited in respect of recognizing previously unknown activities. As for the intensity
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estimation task, the results showed that classification can be highly unreliable when
dealing with previously unknown activities, thus encouraging to improve existing
approaches.

Developing physical activity monitoring systems while also taking e.g. subject in-
dependency or unknown activities into account has two important benefits compared
to when standard CV evaluation is used only. First of all it estimates how the devel-
oped system behaves in various everyday life scenarios, while this behaviour would be
otherwise undefined. Moreover, the best performing models and algorithms can be se-
lected when applying LOSO and LOAO evaluation during the development phase of
the system, hence creating the best possible system from the robustness point of view
for everyday life. In future work it is planned to investigate how well the developed
approaches generalize with user groups (e.g. elderly) significantly differing from the
subjects (all young, healthy adults) included in the PAMAP?2 dataset. Moreover, it is
also planned to investigate the effect of increasing the number of known (thus in the
training included) other activities, with the goal to increase the robustness towards
unknown other activities even more while keeping the high performance regarding
the basic activity classes.



Confidence-based Multiclass AdaBoost

6.1 Introduction

The use of meta-level classifiers for physical activity monitoring problems is not as
widespread as using different base-level classifiers. However, comparing base-level
and meta-level classifiers on different activity recognition tasks shows that meta-
level classifiers (such as boosting, bagging, plurality voting, etc.) outperform base-
level classifiers [131]. A complex activity recognition problem including 13 differ-
ent physical activities is used to evaluate the most widely used base-level (decision
trees, k-Nearest Neighbors (kNN), Support Vector Machines (SVM) and Naive Bayes
classifiers) and meta-level (bagging, boosting) classifiers [137]. Best performance
was achieved with a boosted decision tree classifier. The benchmark results on the
PAMAP?2 dataset in Section 4.4 confirm that using a boosted C4.5 decision tree classi-
fier is one of the most promising methods for physical activity monitoring.

The boosted decision tree classifier has — apart from good performance results as
mentioned above — further benefits: it is a fast classification algorithm with a simple
structure, and is therefore easy to implement. These benefits are especially important
for physical activity recognition applications since they are usually running on mo-
bile, portable systems for everyday usage, thus the available computational power is
limited.! Section 8.3.2 will show the feasibility of using boosted decision tree classi-
fier for physical activity monitoring on a mobile platform. Moreover, boosting deci-
sion trees has been widely and successfully used in other research fields, e.g. recently
in multi-task learning [45]. Therefore, considering all the above mentioned benefits,
this chapter focuses on using boosting, and in particular using boosted decision tree
classifiers for physical activity monitoring.

The benchmark results on the PAMAP2 dataset reveal that the difficulty of the
more complex tasks exceeds the potential of existing classifiers. Moreover, the re-

IThis is the reason why e.g. kNN (which also showed generally good performance results on activity
recognition tasks) is not further considered here: it is a computationally intensive algorithm, even the
more advanced versions of it where the number of distance comparisons is reduced.

89
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sults in Chapter 5 show rather low performance when fully simulating how the most
common classifiers perform in everyday life scenarios: None of the results reached
an F-measure of 90% on the ‘extended’ task when using LOSO_LOOAO evaluation
technique. Therefore, there is a reasonable demand for modifying and improving
existing algorithms. This chapter proposes a confidence-based extension of the well-
known AdaBoost.M1 algorithm, called ConfAdaBoost.M1. It builds on established
ideas of existing boosting methods. The main contribution of this chapter is thus the
ConfAdaBoost.M1 algorithm itself and to show that ConfAdaBoost.M1 significantly
improves the results of previous boosting algorithms.

This chapter is organized in the following way: Section 6.2 gives an overview of
existing boosting algorithms, highlighting their benefits and drawbacks. The new
ConfAdaBoost.M1 algorithm is introduced in Section 6.3. In Section 6.4 the new al-
gorithm is evaluated on various benchmark datasets from the UCI machine learning
repository, comparing it to the most commonly used existing boosting methods. Sec-
tion 6.5 presents the evaluation on a complex activity recognition and intensity esti-
mation problem defined on the PAMAP?2 dataset. The main motivation for presenting
the ConfAdaBoost.M1 algorithm is the better performance it achieves, compared to
existing algorithms, on activity monitoring classification tasks. Finally, the chapter is
summarized in Section 6.6.

6.2 Boosting Methods: Related Work

Boosting is a widely used and very successful technique for solving classification prob-
lems.? The idea behind boosting is to iteratively learn weak classifiers by manipulat-
ing the training dataset, and then combine the weak classifiers into a final strong
classifier. Contrary to another ensemble learning method, bagging [25] — where the
training dataset is sampled with replacement to produce the training instances for
each iteration — boosting uses all instances at each repetition. It introduces a weight
for each instance in the training dataset, which reflects the instance’s importance.
The training dataset is reweighted after each iteration, adjusting the weights so that
the weak learners focus on the previously misclassified, difficult instances. The fi-
nal strong classifier is constructed from the weighted combination of weak learners,
defining the weights of the single learning models on the basis of their accuracy.

6.2.1 Binary Classification

Boosting was introduced in the computational learning theory literature in the early
and mid 90’s [54, 55, 152]. To improve a single classifier (weak learner), the first ver-
sions of boosting trained additional similar classifiers on filtered versions of the train-
ing dataset and produced a majority vote, thus “boosting” the performance
[54, 152]. The adaptive boosting algorithm — called AdaBoost — evolved from these
algorithms [55], and became the most commonly used technique of boosting, from
which many versions have been developed. Moreover, AdaBoost is considered as one

2For an extension of boosting to regression problems, the reader is referred to e.g. the AdaBoost.R
algorithm [55] or to the work by Avnimelech and Intrator [9].
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Algorithm 6.1 Discrete AdaBoost

Require: Training dataset of N instances: (x;,v;) i = 1,..., N (x;: feature vector,
i €{-1,+1})
New instance to classify: x,

1: procedure TRAINING((x;,v;)i=1,...,N)
2 Assign equal weight to each training instance: w; = %, i=1,...,N
3 fort < 1,T do
4 Fit weak learner on the weighted dataset: f;(x) € {-1, +1}
5: Compute error e; of weak learner on weighted dataset: e; = Zi:yiif,(g,.) w;
6 Compute a; = log 1;_:3,
7 fori < 1,N do
8 if y; # fi(x;) then
9: w; «— w;e™
10: end if
11: end for
12: Normalize the weight of all instances so that } ; w; = 1

13: end for
14: end procedure

15: procedure PREDICTION(x,,)
16: The output class is: sign[ZtT:1 aifi(x,)]
17: end procedure

of the most important ensemble methods, and is named one of the top 10 data mining
algorithms by Wu et al. [194].

Already the first version of AdaBoost defines the main ideas of the boosting tech-
nique [55]. Assume that a training dataset of N instances is given: (x;,v;)i =1,..., N
(x; is the feature vector, y; € {—1,+1}). The algorithm trains the weak learners f;(x)
on weighted versions of the training dataset, giving higher weight to instances that
are currently misclassified. This is done for a predefined T number of iterations.
The final classifier is a linear combination of the weak learners from each iteration,
weighted according to their error rate on the training dataset. This first version of the
AdaBoost algorithm was only designed for binary classification problems. As a weak
learner, any kind of classifier can be used as long as it is better than random guessing.
However, this version of AdaBoost only uses the binary output of the weak learners
(=1 or +1), thus was called Discrete AdaBoost in [58]. The algorithm is shown in
Algorithm 6.1.

A generalization of Discrete AdaBoost is to use real-valued predictions of the weak
learners rather than the {—1, +1} output. Friedman et al. [58] introduced the algorithm
Real AdaBoost, shown in Algorithm 6.2. In this version of AdaBoost the weak learn-
ers return a class probability estimate p,(x) in each boosting iteration, from which the
classification rule f;(x) is derived. The sign of f;(x) gives the classification prediction,
and |f;(x)| gives a measure of how confident the weak learner is in the prediction. Ex-
periments by Friedman et al. [58] on various datasets from the UCI machine learning
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Algorithm 6.2 Real AdaBoost

Require: Training dataset of N instances: (x;,v;) i = 1,..., N (x;: feature vector,
yi € {-1,+1})
New instance to classify: x,,
1: procedure TRAINING((x;,v;)i=1,...,N)
2 Assign equal weight to each training instance: w; =
3: fort < 1,T do
4 Fit weak learner on the weighted dataset to obtain a class probability
estimate: p;(x) = Pw(y =1|x) € [0,1]
1

1 .
N,Zzl,...,N

5: Compute f;(x) = 5 log %

6: fori < 1,N do -

7: w; «— wie_yifr(ii)

8: end for

9: Normalize the weight of all instances so that } ; w; =1
10: end for

11: end procedure

12: procedure PREDICTION(x,,)
13: The output class is: sign[ZtT:1 fi(x,,)]
14: end procedure

repository, [12], show that this confidence-based version of AdaBoost outperforms the
original Discrete AdaBoost algorithm. However, Real AdaBoost is limited to binary
classification problems as well.

Apart from Discrete and Real AdaBoost, further boosting methods have been de-
veloped for the binary classification case the past decade. Friedman et al. [58] show
that the Discrete and Real AdaBoost algorithms can be interpreted as stage-wise esti-
mation procedures for fitting an additive logistic regression model, optimizing an ex-
ponential criterion which to second order is equivalent to the binomial log-likelihood
criterion. Based on this interpretation of AdaBoost, they introduce the LogitBoost al-
gorithm, which optimizes a more standard (the Bernoulli) log-likelihood. Moreover,
Friedman et al. [58] also present the Gentle AdaBoost algorithm, a modified version
of Real AdaBoost. It uses Newton stepping rather than exact optimization at each
boosting iteration. Another variant of Real AdaBoost — that uses a weighted emphasis
function - is presented in [60], called Emphasis Boost. Finally, the Modest AdaBoost
algorithm is mentioned here [184]. It not only considers the updated weight distri-
bution for training a classification rule in each boosting step, but also considers the
inverse weight distribution to decrease a weak learner’s contribution if it works “too
good” on data that has already been correctly classified with high margin. As a result,
although the training error decreases slower than for comparable methods, Modest
AdaBoost produces less generalization error.
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Algorithm 6.3 Real AdaBoost.MH

Require: Training dataset of N instances: (x;,v;) i = 1,..., N (x;: feature vector,
Vi € [1,,C])
New instance to classify: x,
1: procedure TRAINING((x;,v;)i=1,...,N)
2: Transform the C class problem into a binary classification problem, the NC
new instances are: ([x;, 1], vi1), ([x;, 2], vi2), ..., ([x;, Cl,vic) i =1,..., N and

Vic € {=1,+1} according to the original class response of x;
3: Assign equal weight to each training instance: wy = %, k=1,...,NC

4 fort < 1,T do
5: Fit weak learner on the weighted dataset to obtain a class probability
estimate: p;(x, ¢) = P, (v = 1|(x, ¢)) € [0,1]

6: Compute f;(x,c) = %log 12}?(3:)

7: fork — 1,NC do

8: wy — wye Vie/tXi0)

9: end for
10: Normalize the weight of all instances so that } , wy =1
11: end for

12: end procedure

13: procedure PREDICTION(x,,)

14: Create C instances out of x,: (x,,1),...,(x,, C)

15: The output class is: argmax,} ;_; fi(x,,¢) c=1,...,C
16: end procedure

6.2.2 Pseudo-multiclass Classification

The first extensions of AdaBoost for multiclass classification problems can be re-
garded as pseudo-multiclass solutions: they reduce the multiclass problem into mul-
tiple two class problems [153, 155]. One of the most common solutions using binary
boosting methods for multiclass problems is AdaBoost.MH, introduced by Schapire
and Singer [155]. It converts a C class problem into that of estimating a two class clas-
sifier on a training set C times as large, by adding a new “feature” which is defined
by the class labels. Thus the original number of N instances is expanded into NC
instances. On this new, augmented dataset a binary AdaBoost method (e.g. Discrete
or Real AdaBoost) can then be applied. Algorithm 6.3 shows the Real AdaBoost. MH
algorithm: the extension of the previously presented Real AdaBoost algorithm for the
multiclass case using the AdaBoost.MH technique.

There exist other solutions to reduce the multiclass problem into multiple bi-
nary classification problems. Schapire [153] combined error-correcting output codes
(ECOC) with the original binary AdaBoost method to solve multiclass problems, re-
sulting in the AdaBoost.MO algorithm. Friedman et al. [58] showed how the binary
LogitBoost algorithm can be applied for the multiclass case by introducing a “class
feature” similar to the AdaBoost.MH method. In [153] experimental results are given
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comparing a few pseudo-multiclass algorithms on a set of benchmark problems from
the UCI repository, which show that Real AdaBoost.MH performs best amongst these
methods.

However, reducing the multiclass classification problem into multiple two class
problems has several drawbacks. For instance, as the class label becomes a regular
feature in the AdaBoost.MH method, its importance is significantly reduced. Ada-
Boost.MH is an asymmetric strategy, building separate two class models for each
individual class against the pooled complement classes. Pooling classes can pro-
duce more complex decision boundaries that are difficult to approximate, while sep-
arating class pairs could be relatively simple [58]. Moreover, pseudo-multiclass al-
gorithms might create resource problems by increasing (basically multiplying) e.g.
training time or memory requirements, especially for problems with a large number
of classes. Therefore, to overcome these drawbacks direct multiclass extensions of
the AdaBoost method should be developed and investigated. Nevertheless, pseudo-
multiclass methods will remain interesting since they can be used for the multiclass
multilabeled case: when instances may belong to more than one class [155]. An appli-
cation scenario for this case is e.g. text categorization: one document can be assigned
to more than one topic. If the goal is to predict all and only all of the correct labels,
the AdaBoost.MH algorithm is a valid solution.

6.2.3 Multiclass Classification

The first direct multiclass extension of the original AdaBoost algorithm, AdaBoost.M1,
was introduced in [55] and is the most widely used multiclass boosting method. It is
also the basis of many further variants of multiclass boosting. The AdaBoost.M1 al-
gorithm is shown in Algorithm 6.4. Similar to the binary AdaBoost methods, it can
be used with any weak classifier that has an error rate of less than 0.5. However, this
criterion is more restrictive than for binary classification, where an error rate of 0.5
means basically random guessing. In [55] a second multiclass extension of the orig-
inal AdaBoost algorithm, AdaBoost.M2, was also introduced. In this algorithm the
weak classifiers have to minimize a newly introduced pseudo-loss, instead of mini-
malizing the error rate as done usually. The pseudo-loss of the weak classifiers has
to be less than 0.5, but this is a much weaker condition than the error rate being less
than 0.5. The drawback of AdaBoost.M2 is that classifiers have to be redesigned in
order to be used as weak learners within this algorithm, since almost all traditionally
used classifiers minimize the error rate and not the new pseudo-loss.

In [41, 203] another way to overcome the restriction on the weak learner’s error
rate is shown by adding a constant taking the number of classes (C) into account, this
way relaxing the requirement of the weak classifiers to an error rate of less than ran-
dom guessing (1 — %) Eibl and Pfeiffer [41] introduced the AdaBoost. M1W algorithm
based on this idea, and proved with experiments its benefits over AdaBoost.M1. The
SAMME (Stagewise Additive Modeling using a Multi-class Exponential loss function)
algorithm of Zhu et al. [203] is based on the same idea, as shown in Algorithm 6.5.
SAMME has the same structure as AdaBoost.M1, the only difference is on line 9 where
the term log(C — 1) is added. Zhu et al. [203] show that this extra term is not ar-
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Algorithm 6.4 AdaBoost.M1

Require: Training dataset of N instances: (x;,v;) i = 1,..., N (x;: feature vector,
Vi € [1,,C])
New instance to classify: x,

1: procedure TRAINING((x;,v;)i=1,...,N)

2 Assign equal weight to each training instance: w; = %, i=1,...,N

3 fort < 1,T do

4 Fit weak learner on the weighted dataset: f;(x) € [1,..., C]

5: Compute error e; of model on weighted dataset: e; = Zi:yiif,(g,.) w;

6

7

8

9

if e, = 0or ¢; > 0.5 then
Delete last f;(x) and terminate model generation.

end if

: Compute a; = log 1;_:3,
10: fori < 1,N do
11: if y; # f;(x;) then
12: w; «— w;eM
13: end if
14: end for
15: Normalize the weight of all instances so that } ; w; =1
16: end for

17: end procedure

18: procedure PREDICTION(x,)
19: Set zero weight to all classes: Hj = 0,j=1,...,C
20: fort < 1,T do

21: Predict class with current model: ¢ = f;(x,,)
22: Pe — e+
23: end for

24: The output class is argmax; y; j=1,...,C
25: end procedure

tificial: Similar to the interpretation of AdaBoost in [58], SAMME is equivalent to
fitting a forward stage-wise additive model using a multiclass exponential loss func-
tion. Obviously when C = 2, SAMME reduces to AdaBoost.M1. However, the extra
term log(C — 1) is critical in the multiclass case, since in order for «a; to be positive
only requires (1 — e;) > 1/C. Therefore, the error rate of the weak learners only has
to be better than random guessing rather than 0.5. Zhu et al. [203] compared the
SAMME algorithm with AdaBoost.MH on various benchmark datasets from the UCI
repository. They showed that SAMME'’s performance is comparable with that of the
AdaBoost.MH method, or even slightly better. The SAMME.R variation [202] of the
SAMME algorithm uses the probability estimates from the weak classifiers. However,
SAMME.R does not keep the structure of AdaBoost.M1: when updating the weights
for the training instances only the respective probability estimates are used, the er-
ror e; of the weak learner on the weighted dataset is not considered. Moreover, the
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Algorithm 6.5 SAMME

Require: Training dataset of N instances: (x;,v;) i = 1,..., N (x;: feature vector,

Vi € [1,,C])
New instance to classify: x,,

1: procedure TRAINING((x;,v;)i=1,...,N)
2 Assign equal weight to each training instance: w; = %, i=1,...,N
3 fort < 1,T do
4 Fit weak learner on the weighted dataset: f;(x) € [1,..., C]
5: Compute error e; of model on weighted dataset: e; = Zi:yiif,(g,.) w;
6 ifetzooretzl—%then
7 Delete last f;(x) and terminate model generation.
8 end if
9: Compute a; = log 1;’ +log(C -1)
10: fori < 1,N do
11: if y; # fi(x;) then
12: w; «— w;e%
13: end if
14: end for
15: Normalize the weight of all instances so that } ; w; =1
16: end for

17: end procedure

18: procedure PREDICTION(x,,)
19: Set zero weight to all classes: Hj = 0,j=1,...,C
20: fort < 1,T do

21: Predict class with current model: ¢ = f,(x,)
22: Pe < Mo+ a4
23: end for

24: The output class is argmax; y; j=1,...,C
25: end procedure

SAMME.R algorithm showed overall slightly worse performance results than SAMME
on different datasets [202], thus is discarded from further analysis in this work.

Another multiclass boosting method is introduced in [72]: GAMBLE (Gentle Adap-
tive Multiclass Boosting Learning) is the generalized version of the binary Gentle Ada-
Boost algorithm. However, GAMBLE fits a regression model rather than a classifica-
tion model at each boosting iteration, thus requires several additional steps in order
to be used for classification tasks (which is the actual focus of this chapter). First
the class labels have to be encoded (e.g. with response encoding), then the regression
model is fitted which is then used to obtain the weak classifier. Overall, the training
time and computational cost is significantly increased compared to AdaBoost models
using directly classification models.
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Algorithm 6.6 ConfAdaBoost.M1

Require: Training dataset of N instances: (x;,v;) i = 1,..., N (x;: feature vector,
Vi € [1,,C])
New instance to classify: x,

1: procedure TRAINING((x;,v;)i=1,...,N)

2 Assign equal weight to each training instance: w; = %, i=1,...,N
3: fort < 1,T do
4.
5

Fit weak learner on the weighted dataset: f;(x) € [1,..., C]
Compute the confidence of the prediction that instance x; belongs to the
predicted class: p;;, i =1,...,N

6: Compute error ¢; of model on weighted dataset: e; = ) ;. .. ) Priw;
7: if e, = 0or ¢; > 0.5 then
8: Delete last f;(x) and terminate model generation.
9: end if
10: Compute a; = 5 log 1;—:*
11: fori < 1,N do
12: w; — wie(%_H(yi:ft(&)))p”ar % 1() refers to the indicator function
13: end for
14: Normalize the weight of all instances so that } ; w; =1
15: end for

16: end procedure

17: procedure PREDICTION(x,)

18: Set zero weight to all classes: Hj = 0,j=1,...,C

19: fort — 1,T do

20: Predict class with current model:
[c, pt(x,)] = fi(x,), where p;(x,,) is the confidence of the prediction that
instance x,, belongs to the predicted class ¢

21: He < Mc+ pr(x,)ay
22: end for
23: The output class is argmax; y; j=1,...,C

24: end procedure

6.3 ConfAdaBoost.M1

Various boosting algorithms exist and were presented in the previous section. How-
ever, there are still classification problems where the difficulty of the task exceeds
the potential of existing methods. Examples of such complex tasks in the field of
physical activity monitoring were shown in the benchmark of [135, 136]. Moreover,
experiments presented in this chapter show a high error rate on the PAMAP2 phys-
ical activity monitoring dataset with selected, commonly used boosting algorithms.
Therefore, there is a need for further development of boosting techniques to improve
the performance on such complex classification tasks.
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This section introduces a new boosting algorithm, called ConfAdaBoost.M1: A
confidence-based extension of the well known AdaBoost.M1 algorithm. The Conf-
AdaBoost.M1 algorithm is based on the concepts and ideas of previously mentioned
boosting methods, and combines some of their benefits. First of all it is a direct multi-
class classification technique, thus it overcomes the drawbacks of pseudo-multiclass
boosting methods (cf. Section 6.2.2). Moreover, it keeps the structure of AdaBoost.M1,
thus when already using AdaBoost.M1 in a classification task it can be easily extended
to ConfAdaBoost.M1. Furthermore, the new algorithm uses the information about
how confident the weak learners are to estimate the class of the instances. This ap-
proach has been beneficial in both binary (when developing the Real AdaBoost algo-
rithm from Discrete AdaBoost in [58]) and pseudo-multiclass (the improvement of
Discrete AdaBoost.MH to Real AdaBoost.MH in [155]) classification. Therefore, this
work takes the next step by applying the idea of a confidence-based version of Ada-
Boost for the direct multiclass classification case. It is worth to mention that Quinlan
[127] already proposed to modify the prediction step of the AdaBoost.M1 algorithm
to allow the voting weights of the weak learners to vary in response to the confidence
with which x, (the new instance) is classified. However, no confidence-based exten-
sion of the training part of the AdaBoost.M1 algorithm has previously been proposed.

The main idea of the ConfAdaBoost.M1 algorithm can be described as follows. In
the training part of the algorithm the confidence of the classification estimation is
returned for each instance by the weak learner, and is then used to compute the new
weight of that instance: the more confident the weak learner is in a correct classifica-
tion the more the weight will be reduced, and the more confident the weak learner is
in a misclassification the more the weight will be increased. Moreover, the confidence
values are also used in the prediction part of the algorithm: The more confident the
weak learner is in a new instance’s prediction the more it counts in the output of the
combined classifier, as proposed in [127].

The ConfAdaBoost.M1 algorithm is shown in Algorithm 6.6. The structure of the
original AdaBoost.M1 algorithm is kept (cf. Algorithm 6.4), extending it on multiple
lines. First of all, after training the weak learner on the weighted dataset (line 4),
the confidence of the classification estimation is returned for each instance by this
weak learner (line 5). These p;; confidence values are used when computing the error
rate of the weak learner (line 6): the more confident the model is in the misclassi-
fication the more that instance’s weight counts in the overall error rate. The factor
% on line 10 of the ConfAdaBoost.M1 algorithm is used to compensate the lower e;
compared to the computed error rate of AdaBoost.M1. The p;; confidence values are
also used to recomputing the weights of the instances. The more confident the weak
learner is in an instance’s correct classification or misclassification, the more that in-
stance’s weight is reduced or increased, respectively (line 12). The factor % on line 12
(determined in an empirical study) is applied in addition compared to the original
AdaBoost.M1 algorithm, to compensate that weights are modified in both directions
before the renormalization of the weights. In the prediction part of ConfAdaBoost.M1
the only modification compared to the AdaBoost.M1 algorithm is that the confidence
of the prediction (p;(x,)) is computed (line 20), and then used to adjust the voting
weights of the weak learners (line 21).



6.4 Evaluation on UCI Datasets 99

It should be noted that the stopping criterion of e; > 0.5 in the original Ada-
Boost.M1 remains the same in the new ConfAdaBoost.M1 algorithm (line 7 of Al-
gorithm 6.6). This means that, similar to AdaBoost.M1, only classifiers achieving
a reasonably high accuracy value can be used as weak learners, thus e.g. decision
stumps are not suitable for multiclass problems. However, the stopping criterion
of e; > 0.5 is less restrictive in ConfAdaBoost.M1, since the computation of the er-
ror rate also uses the p;; confidence values, thus the computed e; is lower than in
the original AdaBoost.M1 algorithm. Therefore, when using the same weak learner,
ConfAdaBoost.M1 can perform significantly more boosting iterations before stopping
compared to AdaBoost.M1, as shown in the experiments of the next sections.

6.4 Evaluation on UCI Datasets

In this section experiments on various datasets from the UCI machine learning repos-
itory [12] are presented. These experiments compare the newly introduced ConfAda-
Boost.M1 algorithm to the most commonly used existing boosting methods. The first
part of this section presents the basic conditions of the experiments, then results are
given and discussed.

6.4.1 Basic Conditions

The experiments were performed on 8 datasets from the UCI repository. The selected
benchmark datasets include 3 small datasets: Glass, Iris [49] and Vehicle [162], as well
as 5 pre-partitioned larger datasets: Letter [57], Pendigits [6], Satimage, Segmentation
and Thyroid [128]. The parameters of the used datasets are summarized in Table 6.1.
These datasets were selected with the goal to cover a wide range of scenarios: The
size of the datasets ranges from 150 to 20 000 instances, the number of classes ranges
from 3 to 26, and the difficulty of the classification problems these datasets define
vary a lot as well according to experiments performed on these datasets in previous
work (cf. e.g. [155, 203]). A further selection criterion was to only include datasets
which directly provide the features of the classification tasks as attributes, thus no
domain knowledge (e.g. how to process the provided data, which features should be
extracted, etc.) of the datasets should be required. Using various datasets from the
UCI repository is common practice when introducing a new boosting method and
comparing it to existing algorithms. For instance, Zhu et al. [203] used 7 different UCI
datasets to compare their SAMME algorithm to AdaBoost.MH, and Jin et al. [81] used
23 UCI datasets to compare their proposed AdaBoost.HM algorithm to AdaBoost.M1
and AdaBoost.MH. Finally, using datasets which have been applied before allows a
real comparison to previous work.

On the selected datasets, the ConfAdaBoost.M1 algorithm is compared to 4 other
existing boosting methods. First of all to AdaBoost.M1 to provide the baseline perfor-
mance of the experiments (since, as many other boosting variants, ConfAdaBoost.M1
is also an extension of AdaBoost.M1). The proposed confidence-based modification
of the prediction step of AdaBoost.M1 in [127] is part of the ConfAdaBoost.M1 al-
gorithm. Therefore, it is of interest to compare ConfAdaBoost.M1 to this extension
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Table 6.1: Summary of the benchmark datasets used in the experiments

#Instances
Dataset Total Training | Testing | #Variables | #Classes
Glass 214 — — 9 6
Iris 150 — — 4 3
Vehicle 846 — — 18 4
Letter 20000 16000 4000 16 26
Pendigits 10992 7494 3498 16 10
Satimage 6435 4435 2000 36 6
Segmentation 2310 210 2100 19 7
Thyroid 7200 3772 3428 21 3
PAMAP2_AR 19863 — — 137 15
PAMAP2_IE 24197 — — 137 3

of the original AdaBoost.M1, to investigate whether possible performance improve-
ments come from only the confidence-based prediction step or the confidence-based
extension of both the training and prediction steps, as proposed by ConfAdaBoost.M1.
The confidence-based modification of the prediction step by Quinlan [127] will be
referred to as QuinlanAdaBoost.M1 hereafter: this algorithm is constructed from
the training step of the original AdaBoost.M1 algorithm and the prediction step of
the ConfAdaBoost.M1 algorithm. The QuinlanAdaBoost.M1 algorithm is to be ex-
pected slightly better than the original AdaBoost.M1, according to [127]. The next
boosting method used for comparison is SAMME (cf. Algorithm 6.5), since accord-
ing to [41, 203] this direct multiclass extension of AdaBoost.M1 outperforms tradi-
tionally used boosting techniques. Finally, the most common pseudo-multiclass clas-
sification technique is used for comparison: the Real AdaBoost.MH algorithm (cf.
Algorithm 6.3). It performs best amongst the pseudo-multiclass methods and is a
confidence-based boosting version similar to ConfAdaBoost.M1.

The C4.5 decision tree classifier [126] is used as weak learner in each of the eval-
uated boosting methods. This classifier is, together with decision stumps, the most
commonly used weak learner for boosting. It also fulfills the requirement of achiev-
ing a reasonably high accuracy on the different classification problems (it has an error
rate of significantly less than 0.5 on the various datasets, as shown below by the re-
sults), thus can be used with the algorithms AdaBoost.M1, QuinlanAdaBoost.M1 and
ConfAdaBoost.M1. Considering confidence-based versions of AdaBoost, the C4.5 de-
cision tree has another benefit: there is no need to modify the C4.5 algorithm, the
confidence values of the weak learners’ predictions can be directly extracted from
the trained decision trees. Assume that a C4.5 decision tree is trained as f;(x) weak
learner in the ConfAdaBoost.M1 algorithm (Algorithm 6.6, line 4). The p;; confidence
of the prediction that instance x; belongs to the predicted class (Algorithm 6.6, line 5)
can be computed as follows, based on [127]. In the trained C4.5 decision tree a single
leaf node classifies x;: ¢ = f;(x;). Let S be the training instances mapped to this leaf,
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and let S. be the subset of S belonging to class c. The confidence of the prediction is

then:
pii = ij / ij- (6.1)

jES. jE€S

On the 5 larger, pre-partitioned datasets pruned C4.5 decision trees are used. The
level of pruning is defined by 5-fold cross-validation (CV) on the training part of these
datasets, for each of the evaluated boosting methods separately. On the 3 smaller
datasets (Glass, Iris and Vehicle), non-pruned C4.5 decision trees are used as weak
learners. Between 1 and 500 boosting iterations are evaluated for all algorithms and
benchmark datasets (previous work e.g. in [41, 203] showed that the performance of
various boosting algorithms usually levels off at maximum 100 iterations). All results
presented below are averages of multiple test runs. On datasets providing a training
and test part training is performed 10 times on the training set, and the trained classi-
fier is then evaluated on the provided test set each time. On datasets without a prede-
fined test part, 10-fold CV is used and performed 10 separate times. All experiments
were performed within Matlab, random substreams are used to ensure randomness
between different test runs.

6.4.2 Results and Discussion

The averaged results of the 10 test runs on the selected 8 UCI benchmark datasets
are shown in Figure 6.1 and Figure 6.2. The test errors of the 5 evaluated boosting
methods are summarized in Table 6.2. Overall it is clear that the ConfAdaBoost.M1
algorithm performed best in the experiments: on 7 out of 8 datasets there is a no-
ticeable increase in performance compared to existing boosting methods, while on
one dataset (Thyroid) ConfAdaBoost.M1 has essentially the same performance as the
other algorithms. According to the results of Table 6.2, the second best boosting algo-
rithm is SAMME, closely followed by AdaBoost.MH, confirming the results of [203].
The original AdaBoost.M1 and its variation QuinlanAdaBoost.M1 performed overall
clearly worse, the latter algorithm being slightly but not significantly better.

A statistical significance test (the McNemar test [85] is used to pair-wise compare
the predictions of the different methods) indicates that the reduction of the test error
rate by ConfAdaBoost.M1 compared to SAMME is significant with p-value 0.01 on the
datasets Pendigits and Segmentation, significant with p-value 0.05 on the datasets Let-
ter and Satimage, and that on the remaining datasets no statistical significance was
observed. In conclusion, the ConfAdaBoost.M1 algorithm has more potential for im-
provement the larger the dataset and the more complex the classification problem is.
This statement is supported by the results on the PAMAP?2 classification tasks in the
next section. Moreover, similar observation was made by Schapire and Singer [155]
when comparing Discrete and Real AdaBoost.MH: the confidence-based method had
better capability for improvement the larger the datasets were. On the Thyroid data-
set on the other hand even AdaBoost.M1 reaches an accuracy of over 99% leaving only
a few outlier instances misclassified, thus explaining the minimal (not statistically sig-
nificant) difference between the results of the 5 algorithms. Furthermore, Friedman
et al. [58] conclude that interpreting results and slight performance differences on
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Figure 6.1: Test error of the 5 evaluated boosting algorithms on the UCI bench-
mark datasets Glass, Iris, Vehicle and Letter. The results are averages over 10 test
runs.

rather small datasets is difficult since it can occur due to sampling fluctuations, while
on the larger datasets clearer trends are observable.

One of the main reasons why AdaBoost.M1 and QuinlanAdaBoost.M1 performs
significantly worse than the other methods is that they reach the stopping criterion of
e; > 0.5 quickly. This can be observed especially on the results of the datasets Glass,
Vehicle or Satimage: the test error decreases at the beginning but levels off already
at around 10 to 20 boosting iterations, no further improvement can be reached with
the increase of the number of boosting rounds. This effect is not observed when us-
ing the ConfAdaBoost.M1 algorithm due to the modified computation of the error
rate of the weak learners. Another benefit of ConfAdaBoost.M1 over the other meth-
ods can be observed e.g. on the results of the datasets Vehicle, Letter and Satimage:
the test error even at lower numbers of boosting iterations is the lowest when using
ConfAdaBoost.M1. This means that for a particular level of accuracy fewer boosting
rounds are necessary with ConfAdaBoost.M1, thus a smaller classifier size is required
for the same performance compared to existing boosting algorithms. This quality is
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Figure 6.2: Test error of the 5 evaluated boosting algorithms on the UCI bench-
mark datasets Pendigits, Satimage, Segmentation and Thyroid. The results are
averages over 10 test runs.

especially beneficial when the available computational resources are limited, which
is usually the case for physical activity monitoring applications.

Finally, it is worth to discuss and compare the training time required for cre-
ating the different classifiers. Building a decision tree has the time complexity of
O(DMN log(N)), where N is the number of training instances, M is the dimension
of the feature vector of a training instance, and D is the average depth of the deci-
sion tree [202]. The computational cost of AdaBoost.M1 is then O(DMN log(N)T),
where T is the number of boosting iterations. The theoretical complexity of the al-
gorithms QuinlanAdaBoost.M1, SAMME and the newly proposed ConfAdaBoost.M1
is similar. The computational cost of AdaBoost.MH is O(DMN log(N)T C), where C
refers to the number of classes. During the experiments of this section, the train-
ing time of ConfAdaBoost.M1 was comparable to that of SAMME on all 8 evaluated
datasets. Compared to these two algorithms, the training time of AdaBoost.M1 and
QuinlanAdaBoost.M1 was almost an order of magnitude lower. This can be explained
with the early reaching of the stopping criterion, as discussed in the previous para-
graph (thus T gets smaller in the expression of O(DMN log(N)T)). On the other
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Table 6.2: Comparison of the 5 evaluated boosting algorithms: test error rates [%] on the selected benchmark datasets. The
results are averaged over 10 test runs (mean and standard deviation are given), the best performance is shown for each of
the methods.

Dataset AdaBoostM1 | dg;:)‘;l;“m A da;‘)’(‘:sft'.Ml SAMME AdaBoost.MH
Glass 26.26 + 1.42 | 26.17 =+ 2.60 | 21.12 + 1.22 | 22.29 + 1.38 | 22.24 + 1.81
Iris 473 + 0.73 5.00 £ 0.85 427 + 0.64 4,47 + 1.22 4.60 + 0.80
Vehicle 24.72 + 1.05| 24.52 + 1.10 | 21.75 + 0.44 | 22.35 + 1.14 | 23.48 + 1.21
Letter 3.28 + 0.14 3.19 £ 0.15 2.64 + 0.11 299 + 0.13 5.68 + 0.39
Pendigits 3.16 + 0.27 3.14 + 0.45 2.51 + 0.11 3.08 + 0.15 2.70 + 0.08
Satimage 10.63 + 0.80 | 10.47 + 1.01 8.07 + 0.15 8.79 £ 0.25 9.50 + 0.39
Segmentation 6.36 + 1.03 6.55 + 1.08 4,31 + 0.20 592 + 0.79 5.22 + 0.78
Thyroid 0.61 + 0.04 0.59 + 0.05 0.61 = 0.05 0.60 = 0.06 0.64 + 0.08
PAMAP2_AR | 29.28 + 1.40 | 27.90 + 1.06 | 22.22 + 0.77 | 27.98 + 1.34 —

PAMAP2_IE 7.98 + 1.04 7.73 + 0.66 5.60 + 0.31 7.81 + 0.60 —
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hand, the training time required for AdaBoost.MH was 20 to 40 times larger than for
ConfAdaBoost.M1 on the larger datasets (e.g. Letter or Pendigits). Therefore, training
AdaBoost.MH is not feasible for extremely large datasets.

6.5 Evaluation on the PAMAP2 Dataset

The PAMAP2 dataset is a physical activity monitoring dataset created and released
recently [135, 136], and is included in the UCI machine learning repository as well.
The dataset was recorded from 18 physical activities performed by 9 subjects, wearing
3 inertial measurement units (IMU) and a heart rate monitor. Each of the subjects
followed a predefined data collection protocol of 12 activities (lie, sit, stand, walk,
run, cycle, Nordic walk, iron, vacuum clean, rope jump, ascend and descend stairs),
and optionally performed a few other activities (watch TV, computer work, drive
car, fold laundry, clean house, play soccer). Therefore, the PAMAP2 dataset not only
includes basic physical activities and postures, but also a wide range of everyday,
household and fitness activities. A more detailed description of the dataset can be
found in Section 3.3.

In this section first an activity recognition and an intensity estimation classifi-
cation problem is defined on the PAMAP2 dataset. The reason for defining these
classification tasks is to show that ConfAdaBoost.M1 performs well on both main ob-
jectives of this thesis, namely both on activity recognition and on intensity estimation
(cf. Section 1.2). The two defined classification problems are described in detail, high-
lighting also the differences to the UCI benchmark datasets of the previous section
and pointing out the special challenge these problems pose. Using the defined classi-
fication tasks different boosting methods are evaluated and compared to the proposed
ConfAdaBoost.M1 algorithm.

6.5.1 Definition of the Classification Problems

The benchmark of Section 4.4 defined 4 different classification problems on the
PAMAP?2 dataset. One of these problems — called All activity recognition task — uses
the 12 activities of the data collection protocol, defining 12 classes corresponding to
the activities. This classification task is extended in this section with 3 additional
activities from the optional activity list: fold laundry, clean house and play soccer.?
This activity recognition task of 15 different activity classes will be referred to as
the ‘PAMAP2_AR’ task throughout this chapter. Moreover, an intensity estimation
classification task is defined on the PAMAP2 dataset: using all 18 activities, the
goal is to distinguish activities of light, moderate and vigorous effort (referred to as
‘PAMAP2_IFE’ task). The ground truth for this rough intensity estimation task is based
on the metabolic equivalent (MET) of the different physical activities, provided by [1].
Therefore, the 3 intensity classes are defined as follows: lie, sit, stand, drive car, iron,
fold laundry, clean house, watch TV and computer work are regarded as activities of

3The remaining 3 activities from the dataset are discarded from the activity recognition task for the
following reasons: drive car contains data from only one subject, while watch TV and computer work are
not considered due to their high resemblance to the sit class.
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light effort (< 3.0 METs); walk, cycle, descend stairs, vacuum clean and Nordic walk
as activities of moderate effort (3.0-6.0 METs); run, ascend stairs, rope jump and play
soccer as activities of vigorous effort (> 6.0 METs).

Contrary to the 8 UCI benchmark datasets used for the experiments in the pre-
vious section, the PAMAP?2 dataset does not directly provide a feature vector with
each of the instances, but provides only raw sensory data from the 3 IMUs and the
heart rate monitor. Therefore, the raw signal data needs to be processed first in or-
der to be used by classification algorithms. A data processing chain is applied on
the raw sensory data including preprocessing, segmentation and feature extraction
steps (these data processing steps are further described in Section 4.2). In total, 137
features are extracted: 133 features from IMU acceleration data (such as mean, stan-
dard deviation, energy, entropy, correlation, etc.) and 4 features from heart rate data
(mean and gradient). These extracted features serve as input to the classification step,
in which different boosting algorithms are evaluated. The main parameters of the
PAMAP?2 classification tasks are summarized in Table 6.1. It is clear that, compared
to the other datasets of Table 6.1, the classification problems defined on the PAMAP?2
dataset are significantly more complex, considering the number of instances and es-
pecially the number of variables. To get a first impression about the difficulty of
these tasks, experiments with a C4.5 decision tree classifier are performed: 65.79% is
reached on the PAMAP2_AR and 88.98% on the PAMAP2_IE task, averaged over 10
test runs. This result serves as baseline performance, showing that improvement is
required and to be expected while applying different boosting methods.

The experiments presented below in this section compare the newly introduced
ConfAdaBoost.M1 algorithm to the boosting methods AdaBoost.M1, QuinlanAda-
Boost.M1 and SAMME. The selection of these algorithms for comparison was already
explained in Section 6.4.1. The comparison to AdaBoost.MH is not considered here
due to the unfeasible training time it would require, given the complexity of the clas-
sification tasks and that the actual size of the training set is a multiple of that of the
other algorithms (cf. also the discussion in Section 6.4.2). Similar to the previous
section, the C4.5 decision tree classifier is used for each of the boosting algorithms
as weak learner. An important difference in the realization of the experiments in this
section is the applied evaluation technique. As discussed in Section 5.1.2, a subject in-
dependent validation technique simulates best the goals of systems and applications
using physical activity recognition. Therefore, leave-one-subject-out (LOSO) 9-fold
cross-validation is used in this section, while evaluating each method from 1 up to
500 boosting iterations.

6.5.2 Results and Discussion

The averaged results of the 10 test runs on the PAMAP2_AR classification task are
shown in Figure 6.3, and on the PAMAP2_IE task in Figure 6.4, respectively. The
test error rates of the 4 evaluated boosting methods are included in Table 6.2. Com-
pared to the baseline accuracy of the decision tree classifier, all boosting methods
significantly improve the performance. The ConfAdaBoost.M1 algorithm clearly out-
performs the other methods: e.g. on the PAMAP2_AR task, compared to the perfor-
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Figure 6.3: Test error of the 4 evaluated boosting algorithms on the PAMAP2_AR
classification task. The results are averages over 10 test runs.

mance of the second best SAMME algorithm a reduction of the test error rate by nearly
20% can be observed. This reduction of the test error rate is statistically significant
with a p-value smaller than 0.001. As discussed in Section 6.4.2, it was expected that
the most significant improvement from all the datasets evaluated in this chapter is
achieved on the PAMAP2_AR classification task, since it represents the largest and
most complex classification problem.

Similar to the results of Figure 6.1 and Figure 6.2, the algorithms AdaBoost.M1
and QuinlanAdaBoost.M1 reach the stopping criterion at lower boosting iteration
numbers. However, contrary to the results of the previous section, QuinlanAda-
Boost.M1 performs significantly better here (especially on the PAMAP2_AR task),
confirming that it is even worth to apply the confidence-based modification to only
the prediction step of the original AdaBoost.M1 algorithm, as proposed in [127]. How-
ever, compared to QuinlanAdaBoost.M1, ConfAdaBoost.M1 reduces the test error
rate by 20%. Therefore, the major part of the performance improvement achieved
by ConfAdaBoost.M1 comes from the confidence-based extension of both the train-
ing and prediction step of the original AdaBoost.M1 algorithm, as also confirmed
by the results on the 8 other UCI datasets. Therefore ConfAdaBoost.M1 is clearly a
significant improvement over QuinlanAdaBoost.M1.

The typical behaviour of boosting in respect of increasing the number of boosting
iterations shows the following scheme: the performance increases and levels off at a
certain number of boosting rounds, by further increasing the iteration number the per-
formance remains at the maximum level and does not decrease, thus boosting is usu-
ally resistant to overfitting. This behaviour of boosting was the topic of many research
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Figure 6.4: Test error of the 4 evaluated boosting algorithms on the PAMAP2_IE
classification task. The results are averages over 10 test runs.

work in the past (e.g. in [56, 58, 110]), only a limited number of examples is known
where overfitting with boosting occurs. All the results presented on the various UCI
datasets show this advantageous behaviour. ConfAdaBoost.M1 adopts this beneficial
characteristics of boosting: it rarely overfits a classification problem. The only result
indicating overfitting is on the PAMAP2_AR task (cf. Figure 6.3): after decreasing
the test error and reaching the best performance at 30 boosting rounds, the test error
slightly increases again with increasing numbers of boosting iterations. It is an inter-
esting question why overfitting occurs here, and why only on the PAMAP2_AR task
with only the ConfAdaBoost.M1 method, which needs further investigation. Nev-
ertheless, even with higher numbers of boosting iterations (e.g. with 500 boosting
rounds) the performance of ConfAdaBoost.M1 is significantly better than that of the
other evaluated boosting methods.

To better understand the results of this section, the confusion matrix of the best
performing classifier (ConfAdaBoost.M1 with 30 boosting iterations) on the
PAMAP2_AR task is presented in Table 6.3. The numbering of the activities in the
table corresponds to the activity IDs as given in the PAMAP2 dataset. The results
are averaged over 10 test runs, the overall accuracy is 77.78%. The confusion matrix
shows that some activities are recognized with high accuracy, e.g. lie, walk or even
distinguishing between ascend and descend stairs. Misclassifications in Table 6.3
have several reasons. For example, the over 5% confusion between sit and stand
can be explained with the positioning of the sensors: an IMU on the thigh would be
needed for a reliable differentiation of these postures. Moreover, ironing has a simi-
lar characteristics from the used set of sensors’ point of view, especially compared to



6.6 Conclusion 109

Table 6.3: Confusion matrix of the PAMAP2_AR classification task using the
ConfAdaBoost.M1 classifier and 30 boosting iterations. The table shows how
different annotated activities are classified in [%].

Annotated Recognized activity

activity 1 2 3 4 5 6 7 12 13 16 17 18 19 20 24
1 lie 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0
2 sit . 0.0 0.0 0.5 0.0 0.0 0.0 0.1 41 0.6 2.5 0.0 0.0
3 stand 0.0 6. 0.0 0.0 0.0 0.0 0.0 0.3 7.4 0.9 2.4 0.0 0.0
4 walk 0.0 0.0 0.0 0.0 0.5 6.8 0.0 0.0 0.0 0.0 0.0 0.4 0.0
5 run 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.1 0.0
6 cycle 0.0 0.0 0.0 1.1 0.0 0.4 0.5 0.0 1.3 0.1 0.0 49 0.0 0.0
7 Nordicwalk 0.0 0.0 0.0 2.7 0.0 0.0 1.1 0.1 0.0 0.0 0.0 0.1 7.0 0.0
12 asc. stairs 0.0 0.0 0.0 6.4 0.0 0.2 2.6 0.7 0.0 0.0 0.3 2.5 0.0

13 desc. stairs 0.0 0.0 0.0 0.1 0.1 0.0 0.2 6.7
16 vacuum clean | 0.0 0.0 0.1 0.0 0.0 1.1 0.0 0.3 0.4 0.3 23.1 0.0 0.0
17 iron 0.0 2.6 0.8 0.0 0.0 0.0 0.0 0.0 0.0 1.2 5.0 12.7 0.0 0.0
18 fold laundry |0.0 1.1 1.5 0.0 0.0 0.1 0.0 0.0 0.0 8.9 61.111.116.2 0.0 0.0
19 clean house 0.5 0.6 34 0.0 0.0 1.7 0.0 1.2 0.7 21.418.1 5.0 47.4 0.0 0.0
20 play soccer 0.0 0.0 0.0 5.1 27.6 1.4 2.8 7.3 20.6 1.7 0.0 0.0 0.1 20.712.8
24 rope jump 0.0 0.0 0.0 0.0 32.0 0.0 0.0 1.3 0.1 0.0 0.0 0.0 0.0 7.8 58.8

0.0 0.0 0.2 0.7 0.7

talking and gesticulating during standing. Another example of overlapping activity
characteristics comes from the introduction of playing soccer into this classification
problem. Playing soccer is a composite activity, and it is for instance not trivial to
distinguish running with a ball from just running. The significant confusion between
the different household activities (vacuum clean, iron, fold laundry and clean house —
the latter mainly consisting of dusting shelves) indicates that they can not be reliably
distinguished with the given set of sensors. However, arguably, the main reason for
the misclassifications in Table 6.3 is the diversity in how subjects perform physical
activities. Therefore, to further increase the accuracy of physical activity recognition,
personalization approaches should be introduced and investigated.

6.6 Conclusion

This chapter introduced a confidence-based extension of the well-known Ada-
Boost.M1 algorithm, called ConfAdaBoost.M1. The new algorithm builds on estab-
lished ideas of existing boosting methods, combining some of their benefits. The
ConfAdaBoost.M1 algorithm has been evaluated on various benchmark datasets, com-
paring it to the most commonly used boosting techniques. ConfAdaBoost.M1 per-
formed significantly best among these algorithms, especially on the larger and more
complex physical activity monitoring problems: on the PAMAP2_AR task the test
error rate was reduced by nearly 20% compared to the second best performing classi-
fier. Therefore, the main motivation of proposing this new boosting variant — namely
to overcome some of the challenges defined by recent benchmark results in physical
activity monitoring — was achieved successfully.
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This chapter presented experimental proof on various datasets in different appli-
cation areas that the ConfAdaBoost.M1 algorithm is superior to existing methods,
and using it improves on classification performance. The main concepts of the new
method are clear and comprehensible, but a theoretical interpretation of the algo-
rithm and explanation of its success remains for future work. Moreover, it is also
planned to slightly modify ConfAdaBoost.M1 — similar to e.g. the modification pro-
posed by SAMME over the original AdaBoost.M1 algorithm — to loosen the stopping
criterion of e; > 0.5, thus allowing the usage of “weak” weak learners (such as deci-
sion stumps). However, boosting decision trees proved to be very successful in the
experiments presented in this chapter, and will remain (due to its many benefits dis-
cussed above) one of the most widely used classifiers especially in the field of physical
activity monitoring.



Personalization of Physical Activity
Recognition

7.1 Introduction

The previous chapter introduced a novel classification algorithm with the goal to in-
crease the performance on physical activity monitoring tasks. Although the achieved
results were very promising, even the best performing classifier only achieved an
overall accuracy of 77.78% on the defined complex activity recognition task. The dis-
cussion of the respective confusion matrix given in Table 6.3 revealed that the main
reason of the remaining confusion between different activities is the diversity in how
individuals perform these activities. Therefore, to further increase the accuracy of
physical activity recognition!, this chapter introduces and investigates personaliza-
tion approaches.

7.1.1 Related Work

Personalization of physical activity recognition has become a topic of interest recently.
These approaches are motivated by the fact that activity recognition systems are usu-
ally trained on a large number of subjects, and then used by a new subject from
whom data is not available in the training phase. Further motivation is given due to
the high variance of per-subject activity recognition rates, reported in different pre-
vious works. For example, the benchmark results on the recently released PAMAP2
physical activity monitoring dataset (cf. Section 4.4) show that although very good
overall performance is achieved on various activity recognition tasks, the individual
performance of the included subjects varies a lot. Similarly, Weiss and Lockhart [190]

IResults presented in Section 6.5.2 show good performance on the defined intensity estimation task,
the ConfAdaBoost.M1 classifier achieved an overall accuracy of 94.40%. Therefore, from the two main
goals of physical activity monitoring systems, this chapter focuses on the task of activity recognition.
However, the here presented approaches can be also applied on the intensity estimation classification
task in a trivial way.

111
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also show that the per-user accuracy can have a large variance, resulting that the per-
formance for some users is very poor.

There exist personalization approaches focusing on the feature extraction step of
the activity recognition chain (ARC, defined in [145]), e.g. by using normalized heart
rate, where normalization is done with personal information such as age or resting
heart rate (cf. [173] or Section 4.2.3). These personalized features proved to be more
valuable than absolute (unnormalized) features: They are preferably selected in the
decision nodes of trained decision tree-based classifiers, as shown in the preliminary
studies of Section 4.2.4.

However, most approaches focus on the classification step of the ARC. A common
personalization concept is to adapt the parameters of a previously trained general
model to the new user. For example, Parkka et al. [120] create a custom decision
tree for the recognition of 5 basic activities, and change the thresholds of the deci-
sion nodes based on labeled data from the new user. In [201] the parameters of a
decision tree are updated using the K-means algorithm with unlabeled data from the
previously unknown subject. Furthermore, Berchtold et al. [16] use fuzzy inference
system: the new user has to record 1 — 3 minutes from each activity the system rec-
ognizes, and with this data first the best classifier is selected from a set of classifiers,
and then adapted to the new user’s data.

The drawback of changing the parameters of a general model is that either the
model is simple (e.g. the decision tree classifiers in [120, 201]) and thus only low
performance can be expected on more challenging activity recognition tasks, or the
general model is complex and thus resulting in unfeasible computational costs for
mobile applications. Another personalization concept is presented in [105]: based on
the physical characteristics of the new user a subset of users is selected from a dataset
of 40 subjects, and only this subset is used to model the physical activities of the new
user. Drawbacks of this approach are that a very large original dataset is required to
cover all different types of users, and no significant difference is shown between se-
lecting users based on their physical characteristics and random selection. The reason
is that there is not necessarily a high correlation between the physical characteristics
of subjects and their movement patterns. Therefore, it is more promising to directly
use activity data for the personalization of a general model.

7.1.2 Problem Statement and Contributions

The main focus of this chapter is on the personalization of physical activity recogni-
tion, concretely for mobile applications. Considering also the requirements of mobile
systems, the following specifications are defined. Since the computational resources
of mobile systems (cf. e.g. smartphone-based applications) are limited, a computa-
tionally not intensive approach is required. Moreover, it is expected that the user
(after recording new data) receives the personalized model within a short time. An-
other requirement is that the personalization concept can handle complex activity
recognition tasks (e.g. the recognition of not only a few basic, but a large number of
physical activities), thus the personalization of advanced classifiers should be feasi-
ble. Moreover, contrary to most existing personalization approaches, the new user
should not be required to record data from all activities the system recognizes.
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This chapter presents a novel general concept of personalization fulfilling the
above criteria: personalization is applied in the decision fusion step of the ARC. In
this concept the general model consists of a set of classifiers (experts) all weighted the
same. Using new labeled data from a previously unknown subject, only the weights
of the experts are retrained, the classifiers themselves remain the same. One of the
main contributions of this work is to show that this concept is a valid approach for
personalization: Different methods based on the idea of weighted majority voting are
successfully applied to increase the performance of the general model for new indi-
viduals. The second main contribution is the introduction of a new algorithm based
on the above concept. In the experiments of this chapter, data from a new user is
given by recording a certain amount of labeled data from the different activities, as
done in the above presented related work of personalization approaches. However, it
is worth to note that both the novel general concept and the new algorithm can also be
combined with semi-supervised methods (personalization through semi-supervised
learning is presented e.g. by Cvetkovié et al. [37]).

The rest of this chapter is organized in the following way: Section 7.2 presents
different methods to retrain the general model, including various weighted majority
voting based approaches and a novel algorithm. Section 7.3 first describes the basic
conditions of the experiments, then results are presented and discussed. Section 7.4
shows the feasibility of the proposed approaches for mobile activity recognition ap-
plications. Finally, the chapter is summarized in Section 7.5.

7.2 Algorithms

This section presents the different algorithms used for the experiments. The general
model consists of a set of S classifiers, created from the original training data. In this
chapter a single classifier corresponds to a single subject from the training dataset.
However, both the new concept of applying personalization in the decision fusion
step of the ARC and the novel algorithm based on this concept, can be used with any
set of classifiers if there is high variance between their training data.

Each classifier has the same weight in the general model: w; =1,i=1,...,S. Sec-
tion 7.2.1 presents different methods based on weighted majority voting, which can
be applied to retrain the weights of the classifiers. Moreover, Section 7.2.2 introduces
a novel algorithm to retrain the weights using new labeled samples. The baseline
performance for these approaches is given by Majority Voting (MV), thus when no
retraining of the weights is performed. For a new data instance to be classified each
of the equally weighted classifiers of the general model gives a prediction, and the re-
turning activity class is the one with the highest overall accumulated weight (in case
of multiple classes having the same highest weight a random selection is made).

7.2.1 Weighted Majority Voting

Given the set of S classifiers, this ensemble learner is personalized with a set of N
labeled samples from the new subject, modifying the w; weights. Several approaches
exist which can be applied for this general concept. Since there is no prior informa-
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tion about how well the experts perform on the new subject’s data, no assumptions
can be made about the quality of predicting the previously unknown subject’s activ-
ity labels. However, the below presented methods follow the natural goal to perform
at least nearly as well as the best expert of the general model would.

The first approach which will be used in the experiments of this chapter is the
Weighted Majority Algorithm (WMA), described by Blum [20]. In WMA, for each of

the N new training samples:

1
wW; < Ewi, (71)

if the ith classifier predicted the label wrong, otherwise w; remains the same. The
prediction of a new data instance is similar to MV, but using the adjusted w; weights.
Blum [20] also gives an upper bound for the M number of mistakes made by WMA:

M <2.41(m+log;,S), (7.2)

where m is the number of mistakes made by the best expert and S is the number of
experts.

A modified version of WMA is the Randomized Weighted Majority Algorithm
(RWMA), also presented in [20]. In this algorithm

w; < /))wz' (73)

is applied when the ith expert predicts a label wrong (a good choice for g is proposed
below). The upper bound for the M mistakes made by RWMA, dependent on the
parameters m, S and f, is the following;:

M < mln(1/8) +1In S
1-p

proof can be found in [20]. Using this upper bound, Schapire [154] proposes to up-
date p dynamically the following way:

, (7.4)

1

[2InS
1+ o

where m” is the number of mistakes made by the best classifier while the N labeled
samples are processed sequentially. The modified w; weights are used for the predic-
tion of a new instance: the prediction of one selected classifier is used, where the ith
classifier is selected with w;/W probability, W being the sum of all weights. Although
the upper bound given for RWMA is lower than for WMA, the practical use of this
modification is questionable. RWMA suggests that, although the best expert of the
ensemble is known, this expert should only be selected sometimes while other times
one of the experts known to be worse should be relied on. Experiments presented
later in Section 7.3.2 support this statement, showing that WMA generally performs
better than RWMA.

B= (7.5)
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Another approach presented here is the Weighted Majority Voting (WMV) [85].
In this algorithm a classifier’s weight only depends on its p; performance on the N
labeled samples:

w; = logy (pi/(1 - pi)). (7.6)

The prediction with WMV is similar to the MV and WMA methods.

In the experiments of Section 7.3.2 the above described methods MV, WMA,
RWMA and WMV will be compared to each other and to the novel algorithm pre-
sented in the next subsection. Further methods exist based on the idea of weighted
majority voting, but not fulfilling all the specifications given in Section 7.1.2. For ex-
ample, Stefano et al. [164] present another version of weighting the majority vote rule.
After training a set of experts for the general model, they define the search for the op-
timal w; weights as a global problem (thus to maximize the performance of the whole
set of experts), and apply a Genetic Algorithm (GA). They performed experiments on
a handwritten digit recognition problem, showing that their proposed approach out-
performs the traditionally used weighted majority voting approach where the weights
are obtained based on only each single expert’s performance. However, Stefano et al.
[164] also state that their proposed approach requires a very high computational cost,
and is thus not feasible for online mobile activity monitoring applications.

7.2.2 Dependent Experts

This section introduces a novel algorithm, called Dependent Experts (DE, cf. Algo-
rithm 7.1). Similar to the various methods presented above, DE also uses a set of
new labeled samples to train the weights of the experts, and uses weighted majority
voting to predict a new, unlabeled data instance. The DE algorithm proposes a new
approach to deal with the question of what is the confidence of an expert’s decision
when predicting a new, unlabeled sample. The main idea of DE is that this confi-
dence should depend on the prediction of all other experts in the ensemble learner -
thus the naming of this new algorithm. Therefore, the result of training the weights
with the new labeled samples is a matrix of size SC (W, line 13 of Algorithm 7.1),
where w; . stands for the weight of the ith expert when the majority vote of all other
experts is the class c (defined as the performance rate of the ith expert on this sub-
set of samples, cf. line 8-10). In the prediction step, the label of the x,,,, instance
is determined with an expert and with the ensemble of all other experts (cf. line 18
and line 19, respectively). The dependent weight obtained this way is added to the
accumulated weight belonging to the label predicted by the respective expert (cf. line
20), repeating this procedure for each of the individual experts.

Existing weighted majority voting based methods only train an overall weight for
each expert, while the w; . weights make the DE algorithm a more flexible method: it
supports the case when an expert is performing good on some classes, but poorly on
others. As a consequence, DE also handles missing data better — e.g. when an expert
has no knowledge on a part of the problem space. In the concrete case of personal-
ization of activity recognition, s; in Algorithm 7.1 refers to the classifier trained on
the data of the ith subject, C is the set of separate activity classes, and N is the new
labeled data from the previously unknown subject.
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Algorithm 7.1 Dependent Experts

Require: S is the set of S different experts (classifiers): s;, 1 =1,...,S
Cis the set of C classes the classification task is composed of:
Ci,i: 1,...,C
N is the set of N new labeled samples: n; = (x;,v;),i=1,...,N
(x;: feature vector, y; € [1,...,C])
New instance to classify: x, .,
1: procedure TRAINING_WEIGHT(S,C,N)
2 fori < 1,S do
3: for j < 1,N do
4: Predict label of x; with expert s;: 9;
5 Predict label of x; with the ensemble S N s; (all experts but s;),

using majority voting: ﬁ]-

6: end for
7 forc < 1,Cdo
PCZ{VEENWA:C}
% samples where the majority vote of the ensemble S N s; is the class c
9: Pc_good ={VneP, |}7 = y}
% correctly predicted samples by s; from the set of P,
10: Wi, = |Pc_good|/|Pc|
% the performance rate of the ith expert on P,
11: end for
12: end for
13: W is the return matrix of weights, composed of elements w; .

wherei=1,...,Sandc=1,...,C
14: end procedure

15: procedure PREDICTION(S,C,W,x,,...)

16: ue=0,c=1,...,C % initialize prediction of x,,,,

17: fori < 1,S do

18: Predict label of x,,,, with expert s;: class ¢

19: Predict label of x,,,, with the ensemble § N s;: class ¢
20: He < e+ wjg

21: end for

22: The output class is argmax, y, c=1,...,C

23: end procedure

7.3 Experiments

This section first describes the basic conditions of the experiments, including the def-
inition of activity recognition classification tasks and the decision on the used eval-
uation technique and performance measures. Afterwards, different aspects of the
suggested personalization approaches are analyzed. In a thorough evaluation of the
proposed general concept and the introduced novel DE algorithm, results are pre-
sented and discussed.
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7.3.1 Basic Conditions

The basic conditions of the experiments are defined as follows. As in the previous
chapters, the PAMAP?2 dataset is used for the evaluation of the proposed general con-
cept and new algorithm (cf. Section 3.3 for a more detailed description of the dataset).
In order to analyze the proposed methods in different scenarios, a simple and a more
complex physical activity recognition classification task is used in the experiments.
First, the ‘basic” activity recognition task (defined in Section 5.2.1) is used, which con-
sists of 6 activity classes: lie, sit/stand, walk, run, cycle and Nordic walk. Moreover,
as a complex classification problem, the PAMAP2_AR task is reused from Section 6.5.
This task will be referred to as the ‘extended’ activity recognition task in this chapter.
It consists of the following 15 activity classes: lie, sit, stand, walk, run, cycle, Nordic
walk, iron, vacuum clean, ascend stairs, descend stairs, fold laundry, clean house,
play soccer and rope jump.

The data processing chain defined in Section 4.2 is applied on the given raw data
including preprocessing, segmentation and feature extraction steps. As a result 137
features are extracted, which serve as input for the classification step. Decision tree
(DT) and AdaBoost.M1 (with DT as base-level classifier) are used and compared as
classifiers in the general model. Decision trees were used in several previous works
on personalization [120, 201], and are especially suitable for mobile applications, as
pointed out in Section 5.2.2. Moreover, boosted decision tree classifiers were suc-
cessfully applied on complex activity recognition tasks, shown e.g. in the benchmark
results of Section 4.4.

The general model consists thus of several DT or boosted DT classifiers, all trained
on single subjects from the dataset. These classifiers are all weighted the same in the
original general model. The baseline performance of the experiments in this chapter
is provided by MV, where no retraining of the weights is applied. The proposed
new concept of personalization (using new labeled data to retrain only the weights of
the individual classifiers) is evaluated with the existing methods WMA, RWMA and
WMV. Moreover, these methods are compared to the newly introduced DE algorithm.

The leave-one-subject-out (LOSO) cross-validation method is used for evaluation
to simulate the performance on new, unknown subjects. This means that data of one
subject is left out from the training of the general model, then a certain amount of
labeled data is used from the left-out subject to retrain the weights of the classifiers.
The remaining data from the left-out subject is used for testing, repeating the entire
procedure so that always another subject is left out.

Traditional performance measures are used to quantify the classification perfor-
mance of the different methods: precision, recall, F-measure and accuracy. More-
over, since the range of individual accuracy of the subjects is of great importance, the
highest and lowest individual subject accuracy is also used as measure. The focus
is especially on the lowest individual accuracy: the goal of the proposed methods is
to at least maintain the overall performance while significantly increasing the worst
subject’s performance.
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F-measure with different methods on the 'basic’ task Accuracy with different methods on the 'basic’ task

92

90
89 1 a1l E
88 B
90 B
87 4 e TR LAt S St
—e._ R e 89 e~ 4
o ¢ ~Gem—O— = ® ~o- -0 _ N PR ©
> g6l q %) ’
%] @ N
© = 7 N
0] . 3 881 , N 4
E sl — R Tl _-"] -
T8k —* S - 2 , o *
W - N ke, - N -
PREEEN 87 e A o |
84 - L 7 L - 7
- ’ 4 - - A ~ ’
S — e T \ N ’ 86 £ Sl > - N -
83 / N ; S ’ 4 / S N
4 N / MV , MV
7 DE M L DE
82/ Ny —4—- WMA | & // —H— WMA
N — = RWMA| — = RWMA|
—0— WMV —O— wmv
a1 . . . . . . . : a . . . . . . . :
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Nr. of extra training samples Nr. of extra training samples
Accuracy of best subject on the 'basic’ task Accuracy of worst subject on the 'basic’ task
100.2 T T T T T T 78 T T T T T T T T
100 B _ B e B 4 76 B
BCN *
' 74 * o KN .
L Ny, -~ -0 - _ 7
99.8| . o 1 o ‘ NE \\ , *
et e \ - ”
e * XL e “ /4‘&{,«/%\\\ P X
. - , . l’ T2E i Lo B Jo, N R -9
> 9vsF T / \ ;o 3 s on / *omo e
s / vy s | \ ;
5 h vy, S 70F \ B q
9 R \ S \
8 / ; o /
< 9941 AN 7 \ _ \ q < \ ;
/ N \ P 68l vy ]
/ N, \ ’ vy
’ \ ’ \
9921 , \ / 1 .
’ \ / 66 1 4
| /
\
\ ’ Mv Mv
99 ’ DE s DE
—%— - WMA —%—- WMA
— = RWMA| — = RWMA|
—0—- WMV —O— wmv
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Nr. of extra training samples Nr. of extra training samples

Figure 7.1: Performance measures on the ‘basic’ task depending on the number
of extra training samples per each activity class. Top row: the overall perfor-
mance measures F-measure and accuracy. Bottom row: the highest and lowest
individual subject accuracy.

7.3.2 Results and Discussion

The experiments first specify a trade-off for the number of extra training samples re-
quired to retrain the weights in the general model. Moreover, a comparison of the
different algorithms is given, both on the ‘basic’ and ‘extended’ classification task. Fi-
nally, the practical scenario is investigated when new labeled data from only a subset
of activities is available.

Number of extra training samples

An important parameter of personalization approaches is the amount of data re-
quired to adapt the general model to a new subject. Figure 7.1 and Figure 7.2 show
the performance measures of the different majority voting methods with DT classi-
fier, while using 10-100 training samples per each activity class for the ‘basic” and
‘extended’ task, respectively. In both figures, the lines belonging to MV show the case
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F-measure with different methods on the 'extended’ task Accuracy with different methods on the 'extended’ task
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Figure 7.2: Performance measures on the ‘extended’ task depending on the num-
ber of extra training samples per each activity class. Top row: the overall perfor-
mance measures F-measure and accuracy. Bottom row: the highest and lowest
individual subject accuracy.

without retraining the general model. The results with the different weighted major-
ity voting based algorithms suggest that the major increase in overall performance
(cf. the plots of overall F-measure and accuracy) is achieved with just 10 extra train-
ing samples per activity. However, the lowest individual accuracy (cf. bottom right
plot in both figures) significantly increases with more new training data, thus it is
worth to select a higher number of extra training samples. On the other hand, the
more new training samples are required the longer it takes to record labeled data and
to retrain the weights for the new subject. Therefore, 60 extra training samples per
activity are selected as trade-off, and used in the rest of this chapter. This means that
the new subject has to record 1 minute of labeled data from each activity, since the
applied data processing chain uses a sliding window of 1 second. The length of this
additional data recording from the new user is comparable or even less than required
in various previous works, as presented in Section 7.1.1.
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AdaBoost.M1 classifier on the 'basic’ task with MV AdaBoost.M1 classifier on the 'basic’ task with DE
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Figure 7.3: Performance measures, depending on the number of boosting iter-
ations, achieved with the AdaBoost.M1 classifier using the MV (left) and DE
(right) algorithms. Top row: results achieved on the ‘basic’ task. Bottom row:
results achieved on the ‘extended’ task.

Comparison of the Algorithms

Table 7.1 and Table 7.2 present the results on the ‘basic’ task with decision tree and
AdaBoost.M1 classifier, respectively. All results were achieved with 60 extra train-
ing samples per activity class, the selected trade-off for this parameter. Each of the
experiments was performed 10 times, mean and standard deviation is given in the
tables. Table 7.3 and Table 7.4 show the results on the ‘extended’ classification task
with decision tree and AdaBoost.M1 classifier, respectively.

On the ‘basic’ task, an ensemble learner with DT classifier already performs well,
no significant improvement can be achieved with the more advanced AdaBoost.M1
classifier (cf. the comparison of the respective results in Table 7.1 and Table 7.2). This
statement is confirmed by the results shown in Figure 7.3 (top row, left and right plots
presenting results with the MV and DE algorithm, respectively). On the other hand,
the DT classifier only achieves rather low performance results on the ‘extended’ task.
Therefore, it is worth to use a more complex classifier here, as shown in Figure 7.3



Table 7.1: Performance measures on the ‘basic’ task with decision tree classifier and 60 extra training samples per activity
class. The results are averaged over 10 test runs, mean and standard deviation is given for each experimental setup.

Precision Recall F-measure Accuracy Best subject | Worst subject
MV 86.46 £ 1.61 78.47 +1.58 82.27 £1.56 84.47 +1.44 99.97 £ 0.05 62.95+6.01
WMV 90.25 £ 1.56 83.44 +1.53 86.71 £1.35 89.32 +£1.19 99.97 £ 0.06 74.52 £ 3.11
WMA 86.86 + 3.59 82.96 £ 3.60 84.85 + 3.40 86.98 £2.70 99.77 £ 0.65 71.24 +5.63
RWMA 86.81 + 3.49 81.08 +2.32 83.83 £2.55 87.31 £1.49 99.31 £0.75 74.02 +6.43
DE 91.63 +1.34 86.78 £1.43 89.13 £1.37 91.15+£0.97 99.70 £ 0.44 76.92 +4.87

syjuowtradxg ¢/

Table 7.2: Performance measures on the ‘basic’ task with AdaBoost.M1 classifier (100 boosting iterations) and 60 extra
training samples per activity class. The results are averaged over 10 test runs, mean and standard deviation is given for each
experimental setup.

Precision Recall F-measure Accuracy Best subject | Worst subject
MV 87.67 £1.45 80.77 + 2.15 84.07 £1.73 86.20 £ 1.66 99.35+1.51 66.25 +6.36
WMV 89.77 £5.05 86.71 + 3.68 88.20 +£4.27 89.91 + 4.07 99.59 + 0.44 71.65 £ 25.44
WMA 89.42 +3.52 85.32 +2.96 87.31 £3.01 89.33 £2.52 99.61 £ 0.35 77.56 £ 8.34
RWMA 87.11 £ 4.07 82.82+4.76 84.87 £4.10 87.85 +£2.98 99.01 £1.21 75.00 + 8.08
DE 92.06 £1.46 87.00 £ 2.53 89.46 +1.98 91.07 £1.69 99.96 + 0.07 76.91 £5.28

11
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Table 7.3: Performance measures on the ‘extended’ task with decision tree classifier and 60 extra training samples per
activity class. The results are averaged over 10 test runs, mean and standard deviation is given for each experimental setup.

Precision Recall F-measure Accuracy Best subject | Worst subject
MV 51.11 £ 1.50 48.46 +1.16 49.74 +1.24 56.36 +1.48 80.97 £5.10 8.19+£3.66
WMV 58.88 £2.20 54.47 +1.38 56.58 +1.48 59.69 + 1.46 86.47 +£3.29 35.30£9.02
WMA 52.93 £ 2.66 51.50 + 2.66 5217 £ 2.27 54.02 +1.41 75.84 £ 5.94 39.69 £ 6.02
RWMA 48.99 + 2.61 47.78 £ 3.60 48.35+2.97 50.83 +£2.43 71.50+3.76 35.21 £11.54
DE 68.21 £1.70 64.80 £ 1.55 66.46 +1.54 67.78 £1.59 90.56 £ 1.65 50.67 £5.20

Table 7.4: Performance measures on the ‘extended’ task with AdaBoost.M1 classifier (100 boosting iterations) and 60 extra
training samples per activity class. The results are averaged over 10 test runs, mean and standard deviation is given for each

experimental setup.

Precision Recall F-measure Accuracy Best subject | Worst subject
MV 62.62 +1.06 59.61 +£1.24 61.08 +1.07 65.32 +1.10 91.70 £ 1.64 18.55+2.70
WMV 47.90 +3.12 55.00 £ 3.30 51.20+3.18 54.58 + 3.37 96.79 + 0.54 15.22 £9.82
WMA 73.11 £1.99 67.19 + 2.35 70.02 £ 2.10 68.13 £ 1.56 89.95 +4.01 53.62 +2.84
RWMA 69.36 +4.23 64.37 £2.35 66.74 + 2.83 65.71 £1.43 91.44 +2.65 54.14 + 8.87
DE 76.83 £1.09 7214 +£1.22 7441 £ 1.14 7479 £1.13 96.03 +1.25 56.14 + 2.80
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(bottom row, left and right plots presenting again the results with the MV and DE
algorithm, respectively): increasing the number of boosting iterations significantly
improves on the different performance measures. It should be noted that the results
of AdaBoost.M1 in Table 7.2 and Table 7.4 are all given with 100 boosting rounds, as
the performance already levels off at this iteration number.

From the presented results it is clear that the concept of retraining the weights
of a general model is a valid approach for the personalization of physical activity
recognition. Compared to the baseline performance of MV, the overall performance
measures of all weighted majority voting algorithms are at least comparable, while
the lowest individual performance increases significantly. This is true with the meth-
ods WMA and RWMA, but overall the WMV algorithm performs best amongst the
existing approaches. Moreover, the novel DE algorithm clearly outperforms all exist-
ing methods, both in overall performance and in increasing the worst subject’s perfor-
mance. Therefore, this new method is a very promising approach for personalization.

Number of retraining activities

In practical scenarios it is not always feasible that a new user of an activity recogni-
tion application records labeled data for each activity class to personalize the general
model. For example, concerning the ‘extended’ task, activities such as rope jump or
vacuum clean might not be of interest for each of the new users, or they could lack the
necessary equipment to perform them. Therefore, this section also investigates the
behaviour of the proposed concept and new algorithm when new labeled data only
from a subset of the activity classes is available.

Figure 7.4 and Figure 7.5 show results with DT classifier on the ‘basic’ and ‘ex-
tended’ task, respectively. The number of activities from which new data is available
to retrain the weights is changed from 0 (no retraining, equivalent to MV) to 6/15
(thus new data from each activity is provided, equivalent to the results given in Ta-
ble 7.1 and Table 7.3, respectively). Each experiment is performed 10 times, selecting
random the activity classes for retraining. The results show that even when fewer
activities are performed by the new subject the performance increases compared to
MV, especially concerning the lowest individual accuracy. Similar to the above pre-
sented results, the existing method WMV and the novel DE algorithm perform best in
these experiments. For example, if the new subject only records data from half of the
recognized activity classes (thus 3 activities in case of the ‘basic’ task and 7 — 8 activ-
ities in case of the ‘extended’ task), while the overall performance does not decrease,
the lower boundary of the subject’s individual performance already significantly in-
creases. This means that the overall similarity of the new subject to each of the train-
ing subjects can be learnt to some extent, even when only limited new training data
is available.

7.4 Computational Complexity

The main goals defined in Section 7.1 were that the novel personalization concept
supports more advanced classifiers while still feasible for mobile applications regard-
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Figure 7.4: Performance measures on the ‘basic’ task depending on the number
of activities (0 — 6) from which new data is available to retrain the general model.

Top row: the overall performance measures F-measure and accuracy. Bottom
row: the highest and lowest individual subject accuracy.

ing its computational complexity. The results presented in Section 7.3 show that the
personalization of complex classifiers (AdaBoost.M1 as an example) is possible with
both the new concept and the novel DE algorithm. Therefore, this section will analyze
the computational complexity of the proposed methods on mobile systems.

An empirical study is designed and carried out to investigate the feasibility of the
new personalization approach for mobile physical activity recognition. This study
is performed using the mobile system described in Section 8.3.1, thus using wear-
able wireless sensors and a Samsung Galaxy S III smartphone (this device contains
a 1.4 GHz quad-core Cortex-A9 CPU and 1 GB of RAM). The procedure of the empir-
ical study can be described as follows. First, data is recorded from one subject dur-
ing 6 sessions, each session including the following 7 activities: lying, sitting, stand-
ing, walking, running, ascending and descending stairs. These recordings were used
to create the general model, consisting of 6 classifiers (each of these classifiers was
trained using data from one of the sessions). Decision tree, AdaBoost.M1 and Conf-
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Figure 7.5: Performance measures on the ‘extended’ task depending on the num-
ber of activities (0 — 15) from which new data is available to retrain the general
model. Top row: the overall performance measures F-measure and accuracy.
Bottom row: the highest and lowest individual subject accuracy.

AdaBoost.M1 (both with decision tree as base-level classifier) were used and com-
pared as classifiers in the general model. Then, labeled data from a second subject is
recorded, while performing each of the 7 activities for approximately one minute (as
defined in Section 7.3.2). This new data is used to retrain the weights of the 6 classi-
fiers of the general model. The retraining of the weights is performed directly on the
smartphone, for each of the 4 analyzed algorithms. For each classifier — personaliza-
tion algorithm pair the retraining was run 5 times, results will present the average of
these test runs. Finally, to compare the performance of the different methods using
the mobile system, the second subject also recorded data for offline evaluation, per-
forming each of the 7 activities for approximately three minutes. However, it should
be noted that the main goal of this empirical study was not to compare classification

accuracy of the methods, but to analyze and compare the computational time of the
proposed algorithms.
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Table 7.5: Computational time [s] required for the retraining of the general
model. Decision tree, AdaBoost.M1 and ConfAdaBoost.M1 are each tested as
classifiers used in the general model. The proposed personalization approach is
evaluated with the weighted majority voting-based methods WMV, WMA and
RWMA, and the novel DE algorithm

Classifier WMV WMA | RWMA | DE

Decision tree 4.01 3.89 4.01 4.05
AdaBoost.M1 10.91 11.03 10.82 10.84
ConfAdaBoost.M1 30.89 30.48 31.01 31.00

Table 7.6: Classification accuracy [%] of each of the majority voting-based algo-
rithms and each type of classifier applied in the general model.

Classifier | MV | WMV | WMA | RWMA | DE
Decision tree 84.64 87.61 92.44 92.44 88.54
AdaBoost.M1 80.14 86.08 84.38 84.38 85.74
ConfAdaBoost.M1 84.97 92.70 92.28 92.28 92.19

Table 7.5 presents the average retraining time of each of the weighted majority
voting algorithms and each type of classifier. The interpretation of these results is
the following: After the second subject recorded the required new training data and
started the retraining of the general model on the smartphone, how long did he have
to wait to receive his personalized model. For each of the retraining algorithms, the
major computational time is spent to predict the label of each new sample by each
of the general model’s classifier (for which the by far most computationally intensive
part is the feature calculation in the DPC). With an effective implementation this has
to be done exactly once for each sample — classifier pair, even when applying the DE
algorithm. Therefore, the retraining time for all 4 algorithms should be similar, as
proved by the results of Table 7.5. Furthermore, the retraining of the general model
when consisting of ConfAdaBoost.M1 classifiers takes the longest, since this classifier
is the most complex, thus includes the calculation of the most features. Nevertheless,
the retraining time of approximately 30 seconds is still acceptable: The new user
receives a complex personalized system after only waiting half a minute, which is far
below the required time presented in related work.

Table 7.6 shows the classification accuracy for each of the majority voting algo-
rithms and each type of classifier. These results were achieved with the different per-
sonalized models, on the data recorded by the second subject for offline evaluation
purposes (approximately three minutes for each of the 7 activities). Since the amount
of data used for this evaluation is rather small, no statistically significant conclusion
can be drawn. Nevertheless, these results serve as proof of concept, showing that the
novel personalization concept is realized and successfully trained on the proposed
mobile system. The accuracy of the general model’s single classifiers in case of using
decision tree classifier ranges between 45.08% and 92.44%, in case of AdaBoost.M1
it ranges between 45.08% and 90.49%, and in case of ConfAdaBoost.M1 it ranges
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between 45.08% and 92.28%. Therefore, no significant difference can be observed
between the three types of classifiers. A larger number of subjects and a wider range
of activities would be required for evaluation, as shown in Chapter 6. The results
of Table 7.6 show that the retraining of the weights improves on the classification
results for each of the algorithms, compared to MV. However, a more complex classi-
fication task would be required to observe the DE algorithm outperforming the other
methods, as presented in Section 7.3.

7.5 Conclusion

This chapter presented a novel general concept for the personalization of physical ac-
tivity recognition applications. This concept uses a set of classifiers as general model,
and retrains the weight of the classifiers using new labeled data from a previously
unknown subject. Results with different methods based on this concept (using WMA,
RWMA and WMV algorithms) show that it is a valid approach. Moreover, a novel
algorithm is presented and compared to the existing methods, further increasing the
performance of the personalized system. These statements are confirmed with a thor-
ough evaluation on two activity recognition classification tasks, comparing also deci-
sion tree and boosted decision tree classifiers as experts used in the general model.

The main benefit of the introduced concept is that, instead of retraining classi-
fier(s) of a general model, only their weights are retrained. This is much less compu-
tationally intensive, since basically only the prediction of the new training samples is
required. Therefore, the proposed approach can also be used for mobile systems, even
for complex classification tasks requiring more complex classifiers (cf. the ‘extended’
task with AdaBoost.M1 classifier). An analysis of the computational complexity of
the new personalization concept shows its feasibility for online mobile applications.
A new user receives the personalized model within a short time. Moreover, the pro-
posed concept allows that the new user only records data from a subset of the recog-
nized activities, making the approach more practicable.

Physical activity monitoring systems are usually trained on a user group of young,
healthy adults. Without applying personalization to such applications, they only per-
form poorly when used by significantly differing users, e.g. overweight or elderly
subjects. In future work it is planned to investigate how well personalized systems
perform in these situations, how much improvement the proposed personalization
concept and novel DE algorithm achieves compared to when only applying a general
model.






Physical Activity Monitoring Systems

8.1 Introduction

The previous chapters presented novel algorithms in order to improve the classifi-
cation performance of physical activity monitoring systems. This chapter describes
how an actual activity monitoring system can be created, various issues concerning
such systems are discussed.

The main goal of this chapter is to create a mobile, unobtrusive activity moni-
toring system. For collecting inertial and physiological data small, lightweight and
wireless sensor units should be used, as described in Section 8.3.1. Moreover, as few
sensor positions as possible should be utilized on the user’s body. A thorough analysis
concerning this issue for both intensity estimation and activity recognition is given in
Section 8.2. For processing the collected data current smartphones are chosen for the
final prototype, as discussed in Section 8.3.1. Two feasibility studies are carried out
in Section 8.3.2 to show that the computational power of such mobile devices is suffi-
cient for applying complex classification algorithms. Moreover, the mobile device is
also used for providing the user with feedback , visualizing the results as described
in Section 8.3.3.

A further goal of this chapter is the integration of the described mobile system
into a full healthcare application for aerobic activity monitoring and support in daily
life. The major components of such an overall system and how they interact with each
other are presented in Section 8.4. Finally, the chapter is summarized in Section 8.5.

8.2 Modular Activity Monitoring System

This section analyzes how many and which sensors are required for a reliable physical
activity monitoring system. The importance of different sensor placements is inves-
tigated for intensity estimation and activity recognition. A similar study was carried

out for only activity recognition by Dalton and OLaighin [38]. They reached an accu-
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Table 8.1: Modular activity monitoring system: results on the intensity estima-
tion task with different combinations of the sensors.

chest IMU | arm IMU | foot IMU | heartrate || Performance [%]
X 90.47
X 86.47
X 88.08
X 82.06
X X 94.37
X X 93.07
X X 91.36
X X X 94.07
X X X X 95.65

racy of 95% with LOSO protocol using 5 sensor positions, while with only 2 sensors
(wrist and ankle location) the accuracy still reached 88%.

In this thesis both intensity estimation and activity recognition are considered.
Results achieved on these tasks with different combinations of sensors are presented
in Section 8.2.1 and Section 8.2.2, respectively. Moreover, the results motivate to in-
troduce the concept of a modular activity monitoring system. As a concrete example
a system consisting of three modules is described here. By using different combina-
tions of these modules, different functionality becomes available: 1) a coarse intensity
estimation of physical activities 2) different features based on heart rate data and 3)
the recognition of basic activities and postures.

All below presented results are based on the PAMAP dataset, which provides data
from three IMUs (located at a subject’s arm, chest and foot) and a heart rate monitor,
cf. Section 3.2. The data processing chain as defined in Section 4.2 is used. Boosted
decision tree classifier is applied in this chapter since it performed best in the prelim-
inary studies of Section 4.2.4. Furthermore, LOSO 8-fold cross-validation protocol is
applied. All experiments are performed using the Weka toolkit [65].

8.2.1 Intensity Estimation

The intensity estimation task introduced in the preliminary studies of Section 4.2.4
is used in this subsection. This task defines 3 classes: The goal is to distinguish
activities of light, moderate and vigorous effort. Each of the 14 activities included in
the PAMAP dataset is assigned to one of these intensity classes. This coarse intensity
estimation is sufficient in many applications, e.g. to monitor how individuals meet
health recommendations [66].

Table 8.1 shows results on the intensity estimation task with various sets — combi-
nations which are considered to be of interest for this task — of sensors. One row in
the table represents one setup, crosses in the four columns indicate which sensors are
included in a specific setup. The results show that from the three IMU positions inves-
tigated the chest placement performs best. Moreover, by adding the HR-monitor very
good (94.37%) results are achieved for this task. By adding two more accelerometers
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Table 8.2: Modular activity monitoring system: results on the activity recogni-
tion task with different combinations of the sensors.

chest IMU | arm IMU | foot IMU | heart rate || Performance [%]
X 83.36
X 73.55
X 74.67
X 45.64
X X 83.85
X X 77.55
X X 76.45
X X X 88.11
X X X 81.70
X X X 89.95
X X X 88.90
X X X X 90.65

(on arm and foot placement) further improvement on intensity estimation is obtained.
However, it is questionable whether it is worth using two extra sensors for only a mi-
nor improvement in performance. On the other hand, if the two extra accelerometers
are required for other tasks in an activity monitoring system (e.g. for activity recogni-
tion), features derived from them are used for intensity estimation as well. Moreover,
features combining different sensor locations (e.g. the weighted sum of the absolute
integral of all three accelerometers, cf. Section 4.2.3) are applied as well. Therefore, if
synchronized data from different sensor placements is available, it is worth extracting
and investigating features computed from multiple sensor locations for the intensity
estimation task.

The results in Table 8.1 also indicate that — in contrast to the conclusion of [173] -
heart rate information combined with accelerometers improves the intensity estima-
tion of physical activities, compared to systems only relying on inertial data. This is
especially true for walking-like activities of light/vigorous effort. Without using the
HR-monitor, the performance of the intensity estimation is poor on the activities very
slow walk and ascend stairs. The reason is that the characteristics of these activities
overlap with normal walk if only considering features extracted from accelerometer
data. This justifies the need of features extracted from physiological measurements,
e.g. from heart rate data. However, the results of Table 8.1 also show that heart rate
information alone is not sufficient for a reliable intensity estimation.

8.2.2 Activity Recognition

Table 8.2 shows results on the activity recognition task with various sets of sensors.
Compared to Table 8.1 it is clear that the activity recognition task defines a more diffi-
cult classification problem, than the intensity estimation task does. When using only
the chest IMU and the HR-monitor — the most efficient setup for the intensity estima-
tion task — only a relatively low performance (83.85%) can be achieved. Therefore,
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the usage of the two extra accelerometers is justified: The overall performance can be
increased to 90.65%.

An interesting conclusion from the results of Table 8.2 (from the performance
results on the setups containing two IMUs and the HR-monitor) is that the chest and
foot IMU placements behave similarly for activity recognition, while the arm IMU
placement is complementary. Comparing the activity type of misclassified samples
with and without using the arm IMU reveals that distinguishing normal walk and
Nordic walk is effectively not possible without using the arm IMU.

8.2.3 Conclusion

With recent progress in wearable sensing the number of commercially available ac-
tivity monitoring products is increasing. Most of these products include one sensor,
located on the user’s body (e.g. as a bracelet, on the belt or directly integrated in a
mobile device), and focus on a few goals usually related to the assessment of energy
expenditure. Studies underline the good accuracy of some of these systems, e.g. the
Actiheart [36] or the SenseWear [82] system. However, there exist different needs to-
wards an activity monitoring system. Additional functionality is introduced in some
of the above mentioned products, e.g. the assessment of sleep duration and efficiency
in the SenseWear system. However, there is no possibility to extend these systems if
e.g. a higher accuracy or more information is required for adding further functional-
ity related to physical activity monitoring.

The results presented in Section 8.2.1 and Section 8.2.2 indicate that a different
set of sensors is required for different physical activity monitoring tasks. This mo-
tivates the idea of introducing a modular activity monitoring system: By adding or
removing sensors different functionality can be added or removed. The rest of this
section describes an extensible physical activity monitoring system based on this idea:
Given a simple system for the intensity estimation of physical activities, a more de-
tailed description of daily activities can be acquired with one or two additional set of
Sensors.

The basic system consists of only one accelerometer worn on the chest. This deliv-
ers areliable coarse intensity estimation of physical activities, cf. Table 8.1. By adding
a heart rate monitor, the following benefits can be achieved compared to the basic
system: 1) a significantly improved intensity estimation and 2) new functionality is
available based on the obtained heart rate information. The first benefit is justified by
the results of Table 8.1, since the performance increased by approximately 4% with
the additional heart rate monitor (from 90.47% to 94.37%). As for the second benefit:
Monitored heart rate can extend the functionality of an activity monitoring system
in many ways. For cardiac patients for example, a specific HR could be defined indi-
vidually in the system, and an alarm would be initiated when exceeding this value.
For sports applications, a desired range of HR can be defined, and the system can
determine how much time was spent in this heart rate zone to optimize the benefits
from a workout.

Finally, by adding two extra accelerometers (arm and foot placement) to the basic
or the HR-monitor extended system — besides a further improvement on the intensity
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estimation — the recognition of basic activities and postures is enabled. This module
is justified by the results shown in Table 8.2: an accuracy of 88.90% or 90.65% was
achieved on an activity recognition task with the 3 IMUs or the 3 IMUs and the heart
rate monitor, respectively.

As a result, the idea of a modular system for physical activity monitoring was pre-
sented within this section: a base module is responsible for the basic system function-
ality (intensity estimation in the concrete example of this section), while two more
modules can be added - separately or together — to extend the functionality of the
system. Following the idea of modularity, additional modules could be defined. A
possible extension to the presented system is e.g. a module providing full upper-body
tracking. Therefore, besides the already provided monitoring of aerobic activities, the
monitoring of muscle-strengthening activities would become available.

8.3 Mobile Activity Monitoring Systems

The first mobile prototype developed within the PAMAP project [116] was presented
in Section 3.2.1. This early prototype was used to record the PAMAP physical activ-
ity monitoring dataset. It included 3 wired Colibri inertial measurement units from
Trivisio, the Garmin Forerunner 305 GPS-enabled sports watch with integrated heart
rate monitor, and a Sony Vaio UMPC as collection unit. This system had several ma-
jor drawbacks, e.g. the very limited battery time of the collection unit and the wiring
to connect the sensors. Therefore, a practical usage of this prototype in everyday life
was not feasible.

The PAMAP2 dataset was recorded with an improved prototype of the system,
as described in Section 3.3.1. It included 3 Colibri wireless IMUs from Trivisio, a
Bluetooth-based heart rate monitor from BM innovations GmbH, and the Viliv S5
UMPC as collection unit. All subjects participating in the data capturing reported
that the sensor fixations were comfortable and did not restrict normal movements. A
drawback of this system was the custom bag required for the collection unit and the
additional USB-dongles for wireless data transfer.

The PAMAP?2 prototype was also tested in a clinical trial within the PAMAP
project, cf. [116]. 30 elderly subjects participated in this study, including both healthy
elderly, and cardiovascular and functional disease patients. Each of the subjects was
instructed first about the system, then they kept it over one week to monitor their
daily activities. A positive observation during these trials was that attaching the sen-
sors and other hardware components was straightforward, it could be done alone by
the elderly subjects. The entire setup took not longer than 5 minutes. Moreover, the
system’s battery time of approximately 6 hours was sufficient to cover the active part
of a subject’s normal day. A few subjects complained about the somewhat bulky sen-
sors, especially on the arm and chest placements. The main concern of most of the
elderly was related to the collection unit and the custom bag, which felt sometimes
uncomfortable during intensive movements. Furthermore, some of the subjects ex-
pressed their dislike of the custom bag from the esthetic point of view, thus they
would not wear it during their daily routine.
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Overall, although the PAMAP2 prototype was in general feasible for data collec-
tion, some drawbacks still limit the system’s usability in everyday life. Therefore,
further improvement is required, concerning especially the collection unit and the
size of the sensor units. The next subsection presents a state-of-the-art prototype for
mobile physical activity monitoring. It is based on commercially available, widely
used sensors and an Android smartphone, making it more acceptable for everyday
usage.

8.3.1 Final Prototype

The final prototype consists of Shimmer wearable wireless sensors, a wireless heart
rate monitor and an Android smartphone. Shimmer is a small, low power wireless
platform [160], widely used in wearable sensing research and by clinical, rehabilita-
tion and care delivery professionals. The platform consists of a baseboard, which can
be extended by different sensor modules (e.g. 9 DoF IMU sensor, GPS, GSR, ECG or
EMG module). This modular setup makes the Shimmer platform flexible and con-
figurable. The baseboard includes an MSP430 microcontroller, a Roving Networks
RN-42 Bluetooth module [114] and an integrated 3-axis accelerometer. It further
includes a 802.15.4 radio module and supports on-device data storage with an inte-
grated microSD card slot. Shimmer’s firmware is developed in the nesC program-
ming language, thus it works with the TinyOS operating system. TinyOS is designed
for low-power wireless devices, such as those used in sensor networks, ubiquitous
computing and personal area networks [176]. Furthermore, Shimmer provides an
Android instrument driver, allowing to stream data directly to Android devices. This
driver is especially useful for research purposes, since it significantly reduces the ap-
plication development time.

As pointed out in Section 4.1, accelerometers are by far the most useful inertial
sensors for physical activity monitoring. The analysis in Section 8.2 showed that
3 sensor placements are required for a reliable activity recognition. Therefore, the
proposed final prototype includes 3 Shimmer baseboard units (since this already
provides an accelerometer, no extension modules are needed for kinematic sensing).
These units are lightweight (22 g with battery and enclosure, compared to 48 g of the
Colibri wireless units from Trivisio) and small (53 x 32 x 15mm). The integrated
Freescale MMA7361 accelerometer has a configurable range of either +1.5g or +6 g,
with a sensitivity of 800 mV/g at +1.5g. The sampling rate of the sensor is also con-
figurable, enabling maximum 400 Hz for the x and vy axes, and maximum 300 Hz for
the z-axis. The Shimmer sensor units are placed on chest, lower arm and ankle posi-
tions, since this sensor setup proved to be beneficial in the PAMAP2 data collection,
cf. Section 3.3.1. The sensors can be fixated with the available wearable straps from
Shimmer, ensuring easy setup and comfortable wearing of the sensors.

Shimmer has announced the release of a heart rate monitor extension, but this
module is not available yet (this chapter is written in August 2013). As an alternative,
the Zephyr Bioharness 3 wireless heart rate monitor is included in the proposed final
prototype [199]. This sensor uses also Bluetooth to stream heart rate data, providing
arange of 25 — 240 BPM (beats per minute).
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As for mobile control unit, a general Android smartphone is proposed for the final
prototype. The main tasks of the control unit are data processing and visualization of
the results. The choice of a smartphone for these tasks is preferable, since this way no
additional device is required as control unit, most users would anyhow carry a smart-
phone with themselves during their daily routine. Moreover, these devices support
wireless data transfer by Bluetooth, thus the selected sensors (Shimmer units and the
Zephyr heart rate monitor) can directly stream the collected data to the control unit
for online processing, no additional hardware component (e.g. dongle) is required.
The Android operating system was selected for its comfortable way of developing ap-
plications, good support for external devices (cf. e.g. the Android instrument driver
from Shimmer) and its large community of developers. Two Android smartphones
were tested within the final prototype, namely the Google Nexus S (available since
December 2010, including a 1GHz single-core ARM Cortex-A8 CPU and 512MB of
RAM) and the Samsung Galaxy S III (available since May 2012, including a 1.4GHz
quad-core Cortex-A9 CPU and 1GB of RAM).

The entire data processing chain (cf. Section 4.2) is implemented in Java for the
Android smartphones, resulting in an online application for long-term physical activ-
ity monitoring. The feature extraction step is optimised in a way that each feature
should be computed at most once on each window segment. As for the classification
step, the ConfAdaBoost.M1 algorithm with C4.5 decision tree as weak learner is cho-
sen for the implementation, since this is the best performing classifier throughout
this thesis (cf. Chapter 6). Feasibility studies of applying such complex classifiers on
mobile devices are carried out in Section 8.3.2.

Both intensity estimation and activity recognition are included in the mobile ap-
plication. For both tasks the definition as presented in Section 4.4.1 is used (the
background task for activity recognition), thus 3 intensity and 7 activity classes are
to be distinguished. For dealing with the other activities in the activity recognition
task the ‘bgClass’ model is used, as this has the best generalization characteristics (cf.
Chapter 5). The boosted decision tree classifiers for both the intensity estimation and
activity recognition tasks were trained using the PAMAP?2 dataset.

Apart from the implemented data processing chain, the mobile application of the
final prototype also provides a graphical user interface (GUI) for the user. This in-
cludes on the one hand a labeling tool similar to the one presented in Section 3.3.1.
Therefore, further data collection can be performed with the proposed final proto-
type, offering a robust and unobtrusive system for this purpose. On the other hand,
the GUI also provides feedback to the user, visualizing the results on the smartphone’s
display. The type of feedback is described in detail in Section 8.3.3, providing also
visualization examples of the mobile application.

8.3.2 Using Complex Classifiers: Feasibility Studies

The best performing classifiers throughout this thesis were the different boosted de-
cision tree classifiers. They have several further benefits, e.g. they possess a simple
structure (it can be basically described as a large if-then-else structure), and are thus
easy to implement. However, boosting is complex in the way that the size of the clas-
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Table 8.3: Feasibility study I: comparing size and average computational cost
of classification of the three different decision tree (DT) classifiers on a mobile
device (Viliv S5 UMPC).

Classifier ‘ Size ‘ No. of leaves ‘ Computation time (ms) ‘ No. of features
Custom DT 15 8 4.9 3.57
C4.5DT 119 60 23.6 8.82
Boosted DT 1464 737 184.3 79.78

sifier is about T-times larger (T being the number of boosting iterations) than the
applied base-level classifier. This means that boosted classifiers have larger computa-
tional requirements. Therefore, the question arises whether such complex classifiers
are feasible for online activity monitoring applications: Due to the mobile systems
these applications are running a restriction on available computational power exist.
This subsection describes two empirical studies performed to examine this question.

Study I: AdaBoost.M1

The first feasibility study compares AdaBoost.M1 (with C4.5 decision tree as weak
classifier) to two other decision tree classifiers: a custom decision tree classifier (cf.
Figure 4.4) and a C4.5 decision tree classifier. The two latter classifiers were selected
since each represents a different complexity level and all three classifiers have a bi-
nary tree structure, thus a comparison of them is straightforward. All three classifiers
were introduced in Section 4.2.4.

All three classifiers to be compared were implemented in C++ on a Viliv S5 UMPC
(the control unit used for the PAMAP2 data collection, cf. Section 3.3.1), containing
an Intel Atom Z520 CPU (1.33GHz) and 1GB of RAM. The structure of the imple-
mentation includes a data collection thread (including preprocessing and segmenta-
tion of raw sensory data) for each of the sensors, and a data processing thread for
feature extraction and classification. The training of each of the three classifiers was
done offline using the PAMAP dataset. Then, the trained binary tree structures were
converted into C++ code for online classification on the UMPC. With each of the classi-
fiers an approximately 15 minutes protocol was followed wearing the mobile system.
This protocol included a wide range of activities (lying, sitting, standing, walking,
running, ascending stairs and descending stairs) to be able to observe the classifiers
in different states of their function.

Table 8.3 shows the comparison of size and average computational cost of the
three different decision tree classifiers. The size of the classifiers in the table refers to
the number of decision and leaf nodes together. The computation time includes the
classification and the computation of the required features for the respective classifi-
cation step, and was computed in the above mentioned data processing thread of the
online application. The number of features in the table refers to the average number
of computed features per window segment. It should be noted that the above men-
tioned optimization of the feature extraction step (computing each feature at most
once on each window segment) is applied here.
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Table 8.4: Feasibility study II: comparing computational cost and performance
of the three different C4.5 decision tree (DT) based classifiers on a smartphone
(Samsung Galaxy S I1I).

Computation time (ms) Accuracy [%]
Classifier average ‘ maximum | intensity est. ‘ activity rec.
C4.5DT 3.32 42 94.36 93.84
AdaBoost.M1 24.54 131 96.18 98.98
ConfAdaBoost.M1 51.54 150 99.79 100

Although the results in Table 8.3 show that the computational cost of the boosted
decision tree classifier is an entire order of magnitude higher than the computational
cost of the C4.5 decision tree classifier, it is still far below the restriction given by the
application. This restriction is defined by the fact that the segmentation step of the
DPC uses a sliding window shifted by 1 second, thus the data processing thread has
maximum 1 second for each processing step. Therefore, this empirical study showed
that the more complex boosted decision tree classifier is a considerable choice even
for mobile activity monitoring applications, there are no limitations considering the
computational costs.

Study II: ConfAdaBoost.M1

The second empirical study is carried out with the final prototype of the mobile sys-
tem, described in Section 8.3.1. The main goal of this study is to show the feasibility of
the ConfAdaBoost.M1 algorithm on mobile devices. ConfAdaBoost.M1 is compared
to a C4.5 decision tree classifier and to AdaBoost.M1. Both boosting classifiers have
the C4.5 decision tree as weak learner.

All three classifiers to be compared are implemented in Java on a Samsung
Galaxy S III smartphone, which contains a 1.4GHz quad-core Cortex-A9 CPU and
1GB of RAM. The structure of the implementation is similar to the one of the above
described first empirical study. First, data is recorded from two subjects performing
various activities while wearing the mobile system. This data is used for training all
classifiers, for both the intensity estimation and activity recognition tasks. Then, with
each of the trained classifier an approximately 20 minutes protocol is carried out by
one of the subjects. The same protocol is followed with each classifier, including the
following wide range of activities: lying, sitting, standing, walking, running, cycling,
ascending and descending stairs.

Table 8.4 shows the comparison of the three different decision tree-based classi-
fiers. It is clear that — similar to the previous study — even the maximum computation
time of each classifier is far below the restriction of 1 second. The difference be-
tween AdaBoost.M1 and ConfAdaBoost.M1 in computation time can be explained by
the fact that the training of the AdaBoost.M1 algorithm stops at an earlier boosting
round (as discussed in Chapter 6), thus this classifier is of smaller size. With the Conf-
AdaBoost.M1 algorithm on the other hand, the predefined iteration number of 100 is
reached during the training for both intensity estimation and activity recognition.
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Apart from proving the feasibility of using ConfAdaBoost.M1 for online activity
monitoring on smartphones, this second study serves also as proof of concept: The
proposed final prototype of the mobile system was fully realized and tested. Both
the provided labeling tool and the implemented data processing chain were working
well, thus overall a fully functional, robust and unobtrusive mobile physical activity
monitoring system was realized in this section. Moreover, the comparison of the
three classifier’s performance in Table 8.4 confirms previous results of this thesis: The
ConfAdaBoost.M1 algorithm outperforms the other classifiers on both the intensity
estimation and the activity recognition tasks. Although these results were achieved
with data from only two subjects and the results are subject dependent, they show a
clear tendency and thus justify applying ConfAdaBoost.M1 in the implemented data
processing chain.

8.3.3 Feedback, Visualization

The previous chapters of this thesis presented various methods for physical activity
monitoring, while the previous sections of this chapter described the creation of a
modular, mobile activity monitoring system. However, all these efforts would be au-
totelic without giving feedback to the user, without visualizing the results of data
processing and classification. Online visualization in activity monitoring applica-
tions is important to help the user to reflect on the results and gain insights about
his behaviour, which then could encourage to continue or do even more physical ac-
tivity. Therefore, this subsection investigates the question how to provide the user
with understandable, helpful and motivating feedback. Example snapshots from the
realized mobile systems are shown, visualizing results of activity recognition, inten-
sity estimation and various heart rate-related features.

The most common visualization tools used to represent results of activity moni-
toring are charts (e.g. bars or lines) to show the time spent performing different recog-
nized classes [18, 134]. Another way of representation is based on living metaphors,
e.g. using a fish to look happy or sad depending on how far the user met the activity
goals [97]. Moreover, Fan et al. [46] introduced the visualization tool Spark: They
display activity data by using circles of different colour and size animated in various
ways. In a field study they found that such abstract visual rewards encourage some
of the test subjects to be more active as usually. A further common motivational tool
is to give trophies when the user accomplishes a certain goal, e.g. 10.000 steps made
a day (cf. the commercially available product Fitbit [50]).

Since the main goals of this thesis are not related to the visualization of the results,
rather simple methods were implemented in the different prototypes of the mobile ac-
tivity monitoring system to give feedback to the user. This feedback visualizes results
of data processing and classification: what activity the user performed, for how long
and with what intensity. Figure 8.1 shows the activity summary as given in the mo-
bile application implemented on the Viliv S5 UMPC, the control unit used to record
the PAMAP?2 dataset. From this display the user can see a summary of his performed
activities of the current day. Figure 8.1 visualizes the results of a nearly three hour ses-
sion, the activity recognition and intensity estimation tasks both include the classes
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Figure 8.1: Visualization of the data processing and classification results: Exam-
ple of the activity summary on the Viliv S5 UMPC.

as defined before (the icon with the question mark refers to the background activ-
ity class). With this online feedback the user can access his progress anywhere and at
anytime, thus getting informed about e.g. how much more physical activity he should
perform to reach the general recommendations of Haskell et al. [66]. The GUI of the
final prototype of the mobile system includes a similar visualization tool. Figure 8.2
shows an example snapshot from this system, taken from the Samsung Galaxy S III
smartphone.

As discussed in Section 8.2, due to the available heart rate data, additional in-
formation can be displayed for the user. On the one hand, for cardiac patients for
example, a specific heart rate can be defined individually in the system, and an alarm
is initiated when exceeding this value. On the other hand, a summary of how much
time the user spent in different heart rate zones — these zones are based on the propo-
sition of Fox et al. [52] and are widely used in sport applications — can be provided as
well. Figure 8.3 shows this feedback given to the user in visualized form on the Viliv
control unit. This heart rate summary was taken from the same session as Figure 8.1,
summarizing how much time the user spent in different heart rate zones.

8.4 Integrated Activity Monitoring System

The unobtrusive monitoring of out-of-hospital physical activity, while the patient fol-
lows his regular daily routine, is an important but also difficult task. For a long
time, questionnaires represented the main choice of clinical personnel, resulting in
a highly imprecise control of how much physical activity the patients performed at
home. However, with recent progress in wearable sensing, it becomes reasonable for
individuals to wear different sensors all day, thus a more precise long-term activity
monitoring is establishing.

The previous section presented a mobile and unobtrusive system that enables the
accurate monitoring of physical activities in daily life. This mobile system focuses on
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information: Example of the heart rate summary on the Viliv S5 UMPC.



8.4 Integrated Activity Monitoring System 141

the monitoring of aerobic activities, with the following two goals: 1) estimating the
intensity of performed activities to be able to answer how far a patient meets the gen-
eral recommendations of [66], or the goals defined in a care plan by the clinician and
2) recognizing aerobic activities traditionally recommended to give a more detailed
description of a patient’s daily routine. In this section the above described mobile
system is integrated into a healthcare system supporting out-of-hospital services.

Various online applications for physical activity monitoring were already pre-
sented in related work (cf. e.g. [42]), also providing feedback to the user to preserve
motivation (e.g. in [18]). However, the described overall system in this section is the
first attempt of completely integrating such mobile systems into a professional health-
care system. The integration of the mobile platform with an Electronic Health Record
(EHR) has many benefits. For example, it provides access for both the clinician (e.g.
to enter a patient’s medical record or to set up a care plan in the EHR) and the patient
(e.g. to watch assigned educational material). It also provides valuable information
to the clinical personnel to supervise program adherence and follow the patient’s re-
habilitation progress on daily basis. Moreover, feedback is also given to the patient
about his daily progress, preserving or even increasing his motivation to follow the
defined care plan.

8.4.1 System Overview

The integration of the mobile activity monitoring system with an EHR is realized
during the PAMAP project [116], within the aerobic activity monitoring use case. Fig-
ure 8.4 shows the major components and their interaction in the proposed overall
system for aerobic activity monitoring and support in daily life. The EHR serves for
collection and management of information (related to the medical profile and history
of the monitored subject, and to the collected activity information), and is further de-
scribed in the next subsection. The main purpose of the mobile platform is the mon-
itoring of the user’s daily activities by collecting and processing sensory data, but it
also gives an instant feedback to the user. This mobile system was described in detail
in Section 8.3. The Clinician’s WEB Interface provides a web based user interface for
the physicians to the EHR. It enables the clinician to view and edit the medical record
of the monitored subject (cf. Section 8.4.2), to define a personal program of aerobic
activities for the subjects on daily basis, to define and upload educational material for
each of his patients individually, and to view a summary of the patient’s performed
activities over a specific day (cf. Section 8.4.3). The Individual’s Interactive TV (i-TV)
interface provides the monitored subjects with the means to use the system’s services
that are offered to them. Specifically, the patient can view his own subset of the EHR,
can view educational material (e.g. watch short videos) his clinician assigned to him,
and can see the defined program of aerobic activities for the current day. The i-TV
provides hereby a convenient interface even for subjects — especially for elderly — who
are not very familiar with computers, since it can be controlled with a standard TV
remote control.

A typical scenario of using the system by the clinician and a new patient — inter-
acting with the different components of the system — is described in the following
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Figure 8.4: The integration of the mobile physical activity monitoring system
into a complete healthcare system. The figure shows the major components and
their interaction for aerobic activity monitoring and support in daily life.

steps (steps 1-3 are only carried out at the setup for a new patient, while steps 4-8
are performed every day, the numbers in the major components of Figure 8.4 refer to
these steps):

1. The clinician adds (registers) the new patient in the EHR, and enters informa-
tion about the new patient, related to his medical profile and history.

2. The clinician draws up the care plan to be followed by the patient, and enters
it into the EHR. This care plan includes a set of measurements to be performed
periodically, a set of questionnaires to be filled out, a set of educational material
to inform the patient, etc. The care plan also defines a personal program of
aerobic activities to be followed by the new patient.

3. The clinician downloads basic personal information (age, resting heart rate, etc.)
of the new patient into the mobile platform (before first used by the patient),
using the mobile application (done automatically after corresponding button
pressed). This personal data is used for the computation of personalized fea-
tures (cf. Section 4.2.3), and defines parameters for the heart rate summary
screen (HR-zones and maximum HR, cf. Section 8.3.3 and Figure 8.3).

4. At home, the patient informs himself in the morning about the current day’s
assigned activity program, using the i-TV interface.
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5. The patient wears the mobile platform (cf. Section 8.3) over the active part of
the day. The mobile application records and processes the sensory data.

6. The patient can look at any time at the mobile application to see his progress.
The mobile application’s GUI gives feedback for the monitored subject, as de-
scribed in Section 8.3.3.

7. Atthe end of the day, the patient uploads the result of the activity monitoring to
the EHR, using the mobile application (done automatically after corresponding
button pressed).

8. The clinician can look at the patient’s daily progress using the visualization
provided in the web interface of the EHR (cf. Section 8.4.3), thus supervising
how far the patient followed the defined program. If not sufficiently, or the
program has to be readjusted, the clinician can contact his patient.

8.4.2 Electronic Health Record

The Electronic Health Record stores a comprehensive summary of the medical record
of the monitored patient, and stores collected activity information. The stored medi-
cal record includes a general health profile of the patient (family health record, habits
and social history — e.g. smoking, alcohol consumption — allergies, vaccinations, body
mass index, etc.), a history of the patient’s visits, results of laboratory and other med-
ical tests, diagnoses, medications, surgeries, and the care plan definition. The Clini-
cian’s WEB Interface enables healthcare professionals to view and edit the patient’s
medical record in the EHR. Figure 8.5 for example presents the screen where the clin-
ician can view and edit the health related habits of living. Furthermore, the patient
can view his own subset of medical record at home using the i-TV interface. This also
enables the patient to watch assigned educational material, and to fill out different
questionnaires in defined intervals (daily, weekly, etc).

The collected activity information of monitored subjects (including results of esti-
mated intensity and recognized activity) is also stored in the EHR. A binary message
format was defined for effective data communication and storage. Each message in-
cludes a timestamp and information about estimated intensity, recognized activity
and measured heart rate (thus aside from heart rate, not raw sensory data but only
the result after data processing is stored). The size of one message is only 27 bytes.
The activity and intensity information is smoothed in the mobile application, gener-
ating only one message every 30 seconds. These messages are collected during one
day and bundled into one binary file by the mobile application, and then sent to the
EHR at the end of the day. Since the subject wears the mobile platform up to six
hours per day (this limit is set by the battery time of the hardware components of
the mobile platform, but is usually sufficient to cover the active part of the day), the
size of the binary file (containing all generated binary messages from the particular
day) is only approximately 19kB. The communication between the EHR and the mo-
bile application is based on the web services provided by the EHR’s API. Given the
EHR'’s transaction-URL and the respective patient’s identifier in the EHR, the binary
file can be sent at the end of the day for storage from the mobile application to the
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Figure 8.5: Example screen of the Electronic Health Record: health related habits
of living.

EHR (step 7 in the above described scenario), or personal information can be queried
by the mobile application from the EHR (step 3 in the scenario). Both of these actions
are predefined tasks in the mobile application and can therefore be easily executed
by pressing the corresponding button.

8.4.3 Evaluation of the Integrated Overall System

The clinical trial already mentioned in Section 8.3 was also used to test and evaluate
the entire integrated system (all the steps 1-8 as described in Section 8.4.1). The goal
was to confirm that each of the components works well, and their interaction is error-
free. For all of the 30 elderly subjects participating in this study the 8-step scenario
was followed, starting with steps 1-3 at the beginning and performing steps 4-8 every
day over one week per participant.

The result of the clinical trial, from the participant’s point of view was that they
could use the different components of the overall system accessible for them without
major issues. It should be noticed that — since the clinical trial was carried out in
France [116] — the user interface of the mobile application is multilingual. At the
time of the trials it supported three languages: English, French and German. From
the clinician’ point of view, accessing EHR, setting up the system for the patients,
etc. was also without major issues. Moreover, not only the participants could see
their progress given on the mobile device, but the clinician could also access this
progress on a daily basis. Figure 8.6 shows an example: The meaningful part of
an elderly subject’s daily recording session (including housework activities, a long
walking, cooking and eating), as shown for the clinician in the web interface of the
EHR.
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Figure 8.6: The clinician’s feedback about the patient’s daily progress, as pro-
vided in the integrated system: Example activity summary as shown in the EHR’s
web interface.

8.5 Conclusion

This chapter presented a modular, mobile activity monitoring system integrated in
a clinical application, supporting the recognition and estimation of aerobic activi-
ties and out-of-hospital services. The major components of the overall system are
an EHR, accessible by the patient via the i-TV interface and by the clinician via a
web interface, and a mobile platform. The proposed mobile system consists of small,
low power wireless sensors (3 accelerometers and a heart rate monitor) and an An-
droid smartphone. The different methods and algorithms introduced and described
in the previous chapters for recognizing physical activities and estimating their inten-
sity level were implemented here, thus realizing an accurate, robust and unobtrusive
physical activity monitoring system for daily life.

Experiments in Section 8.2 with various sets of sensors justified the idea of a mod-
ular activity monitoring system, since different sets are required for different tasks.
Moreover, empirical studies in Section 8.3 showed that more complex, meta-level
classifiers (boosted decision trees as a concrete example) are feasible and thus a con-
siderable choice for mobile applications, there are no limitations regarding the com-
putational costs. However, it should be noted that more complex classifiers lead to
more energy consumption, thus could shorten the batter time of the mobile system’s
hardware components.

A further important topic of this chapter was the feedback given based on the
data processing and classification results: The proposed integrated system makes it
possible to visualize and review the daily activities of the patients. For the patient,
this preserves or even increases the motivation to follow a defined care plan. For the
clinical personnel, it provides valuable information on program adherence, and light-
ens the estimation of rehabilitation progress. Examples shown in e.g. Figure 8.1 or
Figure 8.6 justified the implementation of the previously proposed methods. How-
ever, these results also exposed some challenges and thus the further need for im-
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provement. For example, the clinical trials with 30 elderly subjects revealed some
weaknesses when dealing with different houseworking activities. Therefore, a more
advanced post-processing step or the introduction of high-level activity recognition
should be investigated in future work.



Conclusion

The main goal defined for this thesis was the development of a mobile, personalized
physical activity monitoring system applicable for everyday life scenarios. The goal
was motivated by the fact that regular physical activity is essential to maintain or
even improve an individual’s health. It is important to monitor how much physical
activity individuals do during their daily routine, to be able to tell how far they meet
professional recommendations. Such recommendations or general guidelines exist
for all the different age groups to perform aerobic, muscle-strengthening, flexibility
or balance exercises. From these recommendations, this thesis concentrated on moni-
toring aerobic physical activity. Two main objectives were defined in this context. On
the one hand, the goal was to estimate the intensity of performed activities: To dis-
tinguish activities of light, moderate or vigorous effort. On the other hand, the goal
was also to recognize basic aerobic activities (such as walk, run or cycle) and basic
postures (lie, sit and stand). This way, the developed system can give a more detailed
description of an individual’s daily routine.

9.1 Results

The hardware already exist to create the desired physical activity monitoring system
in an unobtrusive way, e.g. by using current smart phone technology and wearable
sensors. Therefore, the focus of this thesis was on the development of methods for
physical activity recognition and intensity estimation, which are applicable for the
envisioned mobile system. Emphasis was placed thereby on identifying key chal-
lenges in this research field and on addressing them with the introduction of novel
methods and algorithms. Moreover, it should be noted that a high value was put
on the evaluation of the proposed methods: Thorough experiments are presented in
the respective chapters of this thesis to justify the introduced data processing and
classification methods.

147
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The major contributions presented in this thesis are the following:

* Creation of two new datasets for physical activity monitoring, including a wide
range of physical activities. Moreover, both datasets have been made publicly
available and can already show a certain impact in the research community.

* Benchmark of various activity recognition and intensity estimation problems
with commonly used classification algorithms.

* Investigation of the means to create robust activity monitoring systems for ev-
eryday life, which includes the concept and modeling of other activities and
highlighting the importance of subject independent validation techniques.

* Introduction of a new evaluation technique (called leave-one-activity-out) to
simulate when performing previously unknown activities in a physical activity
monitoring system.

¢ Introduction and validation of a confidence-based extension of the well known
AdaBoost.M1 algorithm, called ConfAdaBoost.M1.

* Introduction and validation of a novel general concept for the personalization
of physical activity recognition applications.

* Introduction and validation of a novel algorithm (called Dependent Experts),
based on the concept of weighted majority voting.

* Presentation of the idea of a modular activity monitoring system, where differ-
ent sets of sensors are required for different activity recognition and intensity
estimation tasks.

* Integration of the developed mobile system into a full healthcare application
for aerobic activity monitoring and support in daily life.

The listed contributions are both of theoretical (cf. e.g. the novel algorithms and
developed models) and of practical value (cf. e.g. the proposed evaluation techniques).
Some of the contributions are directly benefiting the research community (e.g. the
created and benchmarked datasets). Moreover, this thesis also deals with the imple-
mentation of the presented methods, in order to realize the envisioned mobile system
for physical activity monitoring.

9.2 Future Work

The contributions of this thesis can be understood as different important steps to-
wards creating a mobile, unobtrusive physical activity monitoring system for every-
day life. However, some questions still remain to be answered in order to completely
realize the overall goal. In the following paragraphs a few important next steps are
outlined, which give possible future directions to continue and extend the work pre-
sented in this thesis.
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Extensive Data Collection. Although this thesis introduced two large datasets, these
datasets still show some shortcomings. Two of the important limitations are the simi-
lar set of users (considering e.g. age or physical fitness) and the only semi-naturalistic
data collection protocol. However, with the mobile system presented in Section 8.3.1
a robust and unobtrusive tool is provided to perform further data recordings. A new
dataset of physical activities should include subjects from all the different age groups:
children, adolescents, young and middle-aged adults and elderly. Moreover, further
user groups should be included as well, e.g. people with overweight or with disabili-
ties. Such a dataset would provide an excellent basis to further evaluate and improve
the personalization approaches proposed in Chapter 7. Another important aspect
of a new dataset should be to at least partially record it under realistic conditions,
thus during the subjects’ regular daily routine. This would also enable to test e.g. the
user acceptance of the mobile system, and would provide data for high-level activity
recognition.

High-Level Activity Recognition. This thesis presented numerous methods related
to low-level activity recognition (the recognition of activities such as sit, stand, walk or
drive a car), overall very accurate results were achieved on this topic. However, some
difficulties were exposed e.g. during the PAMAP clinical trials (cf. Chapter 8) while
different houseworking activities were performed, or generally when dealing with
the composite activity play soccer. A promising way to overcome these difficulties is
to investigate methods for high-level or composite activity recognition (the recogni-
tion of activities such as going shopping, preparing food or eating dinner), as done e.g.
in [19, 78, 79]. For this purpose temporal information should also be taken into ac-
count, since patterns in the order of performed activities exist in real-life situations.
Therefore, methods such as hidden Markov models should be considered to model
this behaviour.

Semi-supervised Learning. The methods presented in this thesis all rely on only
annotated data. However, as discussed in Chapter 3, obtaining ground truth for
recorded sensory data is not straightforward. With the available technology it is
easy to generate large datasets nowadays, but labeling still requires expensive human
effort. Therefore, semi-supervised learning receives increasing attention in the ma-
chine learning community [204]. These methods can combine a small amount of la-
beled data with large amounts of unlabeled data. Semi-supervised learning methods
have been applied in the physical activity monitoring research field recently, deliver-
ing promising results [5, 37, 76]. A special case of semi-supervised learning is active
learning, where the learning algorithm chooses the most informative data samples to
be annotated [159]. An application of this approach for human activity recognition
was shown by Alemdar et al. [3]. Therefore, and considering the above described
plan for a new extensive data collection, semi-supervised learning methods deserve
further attention.

Extension of the Modular Activity Monitoring System. Two sensors have been in-
vestigated in this thesis: accelerometer and heart rate monitor. Building on these two
sensors, a modular mobile activity monitoring system was presented in Chapter 8.
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By using different subsets of the available sensors, different functionality is provided
by the modular system. However, the presented system could be extended with ad-
ditional sensors, in order to increase the accuracy of the already provided functions
and to extend the system with new functionality. One possible extension is to add
further physiological sensors, such as GSR (galvanic skin response) or ECG (electro-
cardiogram), both available in the Shimmer platform [160]. On the one hand, with
these additional sensors the accuracy of especially the assessment of the performed
activities’ intensity level can be further improved. On the other hand, new func-
tionality related to physiological variables (stress, tiredness, etc.) could be added to
the modular system [119]. Examples of using physiological sensors for mental stress
detection [170, 192] or assessing cognitive load [64] have been presented recently. An-
other possible way to extend the modular system is to add location information, e.g.
a GPS sensor. This would on the one hand increase the accuracy of activity recog-
nition, especially related to high-level activities. On the other hand, numerous new
functions would be available on the mobile system related to e.g. navigation. This in
turn would further increase the applicability of the system, and thus would further
motivate individuals to use such applications in their everyday life.



Abbreviations and Acronyms

Abbreviation =~ Meaning

ADL Activities of daily living

ANN Artificial neural network

ARC Activity recognition chain

BMI Body mass index

BPM Beats per minute

CRF Conditional random field

cv Cross-validation

DE Dependent experts

DFAR Device-free radio-based activity recognition
DFT Discrete Fourier transform

DOF Degrees of freedom

DPC Data processing chain

DT Decision tree

ECG Electrocardiogram

ECOC Error-correcting output codes

EHR Electronic health record

EMG Electromyogram

FFT Fast Fourier transform

GA Genetic algorithm

GAMBLE Gentle adaptive multiclass boosting learning
GPS Global positioning system

GSR Galvanic skin response

GUI Graphical user interface

HMM Hidden Markov model

HR Heart rate

IADL Instrumental activities of daily living
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A Abbreviations and Acronyms

Abbreviation = Meaning

ICDM International Conference on Data Mining

IMU Inertial measurement unit

ISWC International Symposium on Wearable Computers

KNN k-Nearest Neighbor

LOAO Leave-one-activity-out

LOOAO Leave-one-other-activity-out

LOSO Leave-one-subject-out

MEMS Micro-electro-mechanical system

MET Metabolic equivalent

MFCC Mel-frequency cepstral coefficient

MHR Maximum heart rate

MV Majority Voting

PAMAP Physical activity monitoring for aging people

PCA Principal component analysis

PSD Power spectral density

RFID Radio-frequency identification

RSSI Received signal strength indicator

RWMA Randomized weighted majority algorithm

SAMME Stagewise additive modeling using a multi-class exponen-
tial loss function

SVM Support Vector Machine

UMPC Ultra-mobile personal computer

WEKA Waikato Environment for Knowledge Analysis

WHO World Health Organization

WMA Weighted majority algorithm

WMV Weighted majority voting




Datasets: Supplementary Material

This appendix presents supplementary material related to the PAMAP and PAMAP?2
datasets, both described in Chapter 3.

Table B.1: Data format of the published PAMAP dataset. The data files contain
45 columns, described on the left side. The right side of the table specifies the
content of an IMU sensor (hand, chest or foot) data.

Column Data content Column Data content

1 timestamp (s) 1 temperature (°C)

2 activity ID 2-4 3D-accelerometer (ms~?)
3 heart rate (bpm) | 5-7 3D-gyroscope (°/s)

4-17 IMU hand 8-10 3D-magnetometer (uT)
18-31 IMU chest 11-14 orientation (turned off)
32-45 IMU foot

Table B.2: Data format of the published PAMAP?2 dataset. The data files contain
54 columns, described on the left side. The right side of the table specifies the
content of an IMU sensor (hand, chest or ankle) data.

Column Data content

Column Data content

1

2

3
4-20
21-37
38-54

timestamp (s)
activity ID
heart rate (bpm)
IMU hand

IMU chest

IMU ankle

1

2-4
5-7
8-10
11-13
14-17

153

temperature (°C)

3D-accelerometer (ms~2), scale: +16g
3D-accelerometer (ms~2), scale: +6g
3D-gyroscope (°/s)
3D-magnetometer (uT)

orientation (turned off)
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Table B.3: PAMAP dataset: detailed information on the participating subjects.

Subject ID Sex Age (years) | Height (cm) | Weight (kg) | Resting HR (bpm) | Dominant hand
subjectl female 29 175 51 47 right
subject2 male 27 182 92 67 right
subject3 male 30 168 62 56 right
subject4 male 31 193 85 54 right
subject5 male 25 180 70 69 right
subject6 male 26 181 75 59 left
subject” male 29 174 91 56 right
subject8 male 26 182 85 63 right

Table B.4: PAMAP?2 dataset: detailed information on the participating subjects.

Subject ID Sex Age (years) | Height (cm) | Weight (kg) | Resting HR (bpm) | Dominant hand
101 male 27 182 83 75 right
102 female 25 169 78 74 right
103 male 31 187 92 68 right
104 male 24 194 95 58 right
105 male 26 180 73 70 right
106 male 26 183 69 60 right
107 male 23 173 86 60 right
108 male 32 179 87 66 left
109 male 31 168 65 54 right
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Table B.5: Brief description of the 14 different performed activities, included in

the PAMAP dataset.

Activity Description

lying lying quietly while doing nothing, small movements (e.g.
changing the lying posture) are allowed

sitting sitting in a chair, mainly consisting of working with a computer

standing consists of standing still or standing still and talking, possibly
gesticulating

ironing consists of ironing and folding one or two shirts

vacuum cleaning
ascending stairs
descending stairs

very slow walking

normal walking

Nordic walking

running

cycling

playing soccer

rope jumping

vacuum cleaning one or two office rooms, including moving
objects (e.g. chairs) placed on the floor

performed in a building between the ground and the top floors,
a distance of five floors had to be covered going upstairs

performed in a building between the top and the ground floors,
a distance of five floors had to be covered going downstairs

walking outside with a speed of less than 3 kmh™!

walking outside with moderate to brisk pace with a speed of
4 — 6 kmh™!, according to what was suitable for the subject

performed outside on asphaltic terrain, using asphalt pads on
the walking poles (it has to be noted that none of the subjects
was very familiar with this sport activity)

jogging outside with a suitable speed for each subject

performed outside with slow to moderate pace, as if the subject
would bike to work or bike for pleasure (but not as a sport
activity)

subject played soccer with the supervisor, which mainly
consisted of running with the ball, dribbling, passing the ball
to the supervisor or shooting the ball

the subjects used the technique most suitable for them, which
mainly consisted of the basic jump (where both feet jump at the
same time over the rope) or the alternate foot jump (where
alternate feet are used to jump off the ground)
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Table B.6: Brief description of the 18 different performed activities, included in

the PAMAP?2 datasets.

Activity Description

lying lying quietly while doing nothing, small movements (e.g.
changing the lying posture) are allowed

sitting sitting in a chair in whatever posture the subject feels
comfortable, changing the sitting postures is allowed

standing consists of standing still or standing still and talking, possibly
gesticulating

ironing ironing 1 — 2 shirts or T-shirts

vacuum cleaning
ascending stairs
descending stairs
normal walking

Nordic walking

cycling

running

rope jumping

watching TV

computer work
car driving
folding laundry

house cleaning

playing soccer

vacuum cleaning one or two office rooms, including moving
objects (e.g. chairs) placed on the floor

performed in a building between the ground and the top floors,
a distance of five floors had to be covered going upstairs

performed in a building between the top and the ground floors,
a distance of five floors had to be covered going downstairs

walking outside with moderate to brisk pace with a speed of
4 — 6 kmh™!, according to what was suitable for the subject

performed outside on asphaltic terrain, using asphalt pads on
the walking poles (it has to be noted that none of the subjects
was very familiar with this sport activity)

performed outside with slow to moderate pace, as if the subject
would bike to work or bike for pleasure (but not as a sport
activity)

jogging outside with a suitable speed for each subject

the subjects used the technique most suitable for them, which
mainly consisted of the basic jump (where both feet jump at the
same time over the rope) or the alternate foot jump (where
alternate feet are used to jump off the ground)

watching TV at home in whatever posture (lying, sitting) the
subject feels comfortable

working in front of a PC at the office
driving in the city between the office and the subject’s home
folding shirts, T-shirts and/or bed linens

dusting some shelves, including removing books and other
things and putting them back onto the shelves

playing 1 vs. 1 or 2 vs. 1, including running with the ball,
dribbling, passing the ball and shooting the ball on goal
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