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Introduction

Mutations is the major consequence of abnormal behavior 
of the genetic material DNA. Mutations affect normal growth 
and division i.e., mutations cause uncontrollable growth of 
cells, these mutations are caused by two reasons which are the 
signals telling cells to begin dividing are left on continuously 
or growth suppressing signals telling cells not divide are 
turned off [19]. The process starts from an evolutionary 
process which may give rise to abnormal DNA when a cell 
duplicates its genome due to defects in tumor suppressor 
or DNA mismatch repair genes. Tumors releases hormones 
that alter body function, they can grow and interfere with 
the digestive, nervous and circulatory systems, they can also 
invade nearly tissues and successfully spread to other parts 
of the body and grow, these tumors are of malignant type, 
whereas benign tumors are not cancerous and not spread to 
other parts of the body.

The immune system is composed of a wide variety of 
cells with different functions, most important types of them 
are innate, or nonspeciϐic and speciϐic, or adaptive, immune 
response [1], the similarity between innate and adaptive 
responses is that both must contact with target tumor cells 
in order to be able to kill them, whereas the difference 
between them is that the innate cells are always on patrol, and 

kill tumor cells not recognized them as self, so it is an early 
defense against pathogens. While adaptive, immune response 
must be primed to recognize antigen speciϐic to the tumor 
cells. Cell-mediated immunity, also called cellular immunity, 
is mediated by T lymphocytes (also called T cells) are part of 
the adaptive immune response. as well as the Killer T cells are 
referred to as CTL “Cytotoxic T Lymphocyte” cells, or CD8+ T 
cells, which directly attack and eliminate infected cells, while, 
the CD4 helper T cells, assist other cells of the immune system 
during an infection.

The immune system alone usually fails to effectively ϐight 
the tumor for the following reasons:

1. The ϐirst is an insufϐicient immune response due to 
the tumor being poorly antigenic. This is described 
by Curilas [13] “too little of a good thing” Cytotoxic T 
cells are not sufϐiciently activated by the tumor, and 
therefore the response is minimal.

2. The second cause for failure is “too much of a bad thing” 
in which immunosuppressive factors damage otherwise 
capable immune system. Over the last few decades, the 
importance of the second paradigm has become clear; 
immune suppression is likely to be a signiϐicant factor 
when cancer is present in the host.
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In this article different numerical techniques for solving optimal control problems is 
introduced, the aim of this paper is to achieve the best accuracy for the Optimal Control Problem 
(OCP) which has the objective of minimizing the size of tumor cells by the end of the treatment. 
An important aspect is considered, which is the optimal concentrations of drugs that not affect 
the patient’s health signifi cantly. To study the behavior of tumor growth, a mathematical model 
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active cytotoxic T-cells (CTLs), helper T-cells, and a chemotherapeutic drug is used. Two general 
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nonlinear programming solvers and interior point algorithms are compared. Within the direct 
optimal control techniques, we review three different solutions techniques namely (i) multiple 
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method and within the indirect methods we review the Pontryagin’s Maximum principle with 
both collocation method and the backward forward sweep method. Results show that the direct 
methods achieved better control than indirect methods.
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Both mathematical modeling and experimental “clinical” 
results are used to explore the signiϐicance of tumor–immune 
inter- actions. Previous work has included models of T cells 
with interleukin-2 (IL-2) [24], transforming growth factor 
beta (TGF-b) [25], regulatory T cells (Tregs) [28], and natural 
killer cells [14].

Several answers to the question how to choose best 
possible dose to reduce harm to healthy cells while beat cancer 
are introduced. These answers was introduced before based 
on empirical methods, empirical methods depend basically on 
drug holidays, which are rest periods give the health cells the 
opportunity to recover from the toxic attack of the drug these 
periods are speciϐied by try and error methods. Apart from the 
empirical methods the mathematical modeling and optimal 
control can answer this question, for more details see [35].

In this article a base line model [37] is used based on tumor-
immune model. A comparative study between the results of 
the Computation method used in our baseline article [37] 
which uses indirect method resulted in two point boundary 
value problem (TPBVP) and solved by collocation method 
is compared with another method also under the category 
of indirect method which also resulted in TPBVP but solved 
by other method named forward backward sweep method 
(FBWM), results of the base line article [37] also compared 
with other three different computational methods under the 
category of direct methods.

Previous comparative studies between direct and 
indirect control given in [38], where this paper two different 
approaches (direct and indirect) for the numerical solution 
of fractional optimal control problems (FOCPs) based on a 
spectral method using Chebyshev polynomial are presented. 
Moreover, in [18] a comparative study between singular arc 
method (without con- sidering inequality constraints) as 
indirect method and three different direct methods namely 
Hermite-Simpson’s collocation method, 5th degree Gauss-
Lobatto collocation method, Radau Psuedospectral collocation 
method using GPOP [34]. In [9] a comparative study between 
dynamic programming, indirect methods and direct methods 
is presented.

This article is organized as follows: in section 2 we consider 
a tumor growth model exhibiting the effect of tumor–immune 
interaction with chemotherapeutic. The model construction 
and assumptions is introduced in “Mathematical Model” 
section. In section 3, the optimization stratigetis is presented. 
In section 4, the solution of OC problem is discussed. In section 
5 a comparative study for solving OC problem is presented. 
The conclusion is given is section 6. 

Mathematical modeling and optimal control problem 
for a tumor-immune system

In this section, a mathematical model problem is 
introduced, for more details see [37] as a description of the 

phenomena of tumor-immune interaction and the prediction 
of the outcome of the application of chemotherapy regimen 
is examined by using optimal control [5,33]. We can consider 
optimal control problem as a type of optimization problem 
where the objective is to determine the inputs (equivalently, 
the trajectory, state or path), the control inputs (equivalently, 
the trajectory, state or path), the control input u(t) Rm, the 
initial time 0t R  and the terminal time, ft R  (where 0 , ft t t     
the independent variable) of the dynamical system [34] 
optimize (i.e., minimize or maximize) a specified objective 
function (performance index) while satisfying any constraints 
on the motion of the system. 

the Objective function (performance index) is represented 
by:

     * min :J u J u t u U 
,
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where B1,B2 are positive constants representing the 
weights of the terms. The first term represents the tumor 
cell populations and the second term represents the harmful 
effects of drug on body. The square of the control variable 

  2u t  reflects the severity of the side effects of the drug 
imposed, for more details see [22,42] and the references cited 
therein. When chemotherapeutic drugs are administered in 
high dose, they are toxic to the human body, which justifies 
the quadratic terms in the functional. So the functional given 
in Eq. (2.1) should be minimized.

The dynamical system is defined by a set of ordinary 
differential equations (ODE’s):
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Where 

• T (t) is the numbers of tumor cell.

• IH (t) is the active CTL cells (hunting CTL cells).

• IR(t) is the helper T-cells (resting T-cells).

D(t) is the density of chemotherapeutic drug at time t. 

The tumor-immune model of the base line paper is 
originally developed by de Pillis and Radunskaya [31], an 
optimal control for this model is introduced in [15]. This 
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model considers interactions between tumor cell population 
and two types of immune cell populations which are helper 
(resting) T-cells and active (hunting) CTL cells. The damage 
done to each cell due to chemotherapy is subtracted from each 
cell population. According to [37] which is based on [14,15] 
the model assumptions are as follows: 

• Hunting CTL cells are capable of killing tumor cells, the 
effect of CTL on tumor cells in represented by both the terms: 

1. αTIH which represents the loss of tumor cells it is 
proportional to the product of the of densities of 
tumor cells and active CTL cell (hunting) which is 
subtracted in the equation represents rate of change 

of tumor population dT
dt

2. α2TIH is the loss in the active CTL cells due to 
encounters of tumor cells which is assumed to be 
proportional to the product of the densities of 
tumor cells and active CTL cells. Which is subtracted 

in the equation represents rate of change active CTL 

population HdI
dt

• In the absence of active (hunting) CTL cells and 
chemotherapeutic drug both the tumor cell population 
and helper T-cell population are assumed to grow 
logistically. 

• Mass-action kill rate assumes that all immune cells are 
similarly prone to communicate with any tumor cell: it 
assumes spatial homogeneity. 

• IH helper (resting) T-cells are not able to attack and 
destroy tumor cells directly but it convert CTLs into 
active (hunting) CTL helper either by releasing cytokines 
(interleukin-2) or by direct contact with them. 

• IR active (hunting) CTL cells have the role of attacking, 
destroying, or ingesting the tumor cells. 

• Chemotherapeutic drug destroys tumor cells as 
well as helper T-cells and active CTL cells; that is, 
chemotherapeutic drug has a negative effect on both 
tumor cells and immune cells and this negative effect 
is expressed by subtracting this destroy from each cell 
population equation. 

The model parameters are described as follows, for more 
details see [37] (Table 1).

Optimization strategies for OCP

The problem formulation which is given in (2.1),(2.2), 
based on open loop control (also referred to it in literatures as 
dynamic optimization ), i.e., feedback is not utilized (control 
input u(t) is independent of state). There are three main 
approaches to numerically solve continuous time OCP:

1. Dynamic programming methods: The optimal 
criterion in continuous time is based on the Hamilton-
Jacobi-Bellman partial differential equation, for more 
details see [4], which is not in the scope of this paper.

2. Indirect methods: It take an approach optimize ϐirst 
then discretize, also relies on Pontryagin’s Maximum 
Principle (PMP), for more details see [32]. Typically, 
the optimal control problem is turned into TPBVP 
containing the same mathematical information as 
the original one by means of necessary conditions of 
optimality, for more details see [3], [38] and [39].

3. Direct methods: It take an approach discretize ϐirst 
then optimize, it can be applied without deriving the 
necessary condition of optimality. Direct methods are 
based on a ϐinite dimensional parameterization of the 
inϐinite dimensional problem. The ϐinite dimensional 
problem is typically solved using an optimization 
method, such as nonlinear programming (NLP) 
techniques. NLP problems can be solved to local 
optimality relying on the so called Karush-Kuhn-
Tucker conditions (KKT), for more details see [3], if we 
are using KKT we can claim the ϐirst-order conditions 
of optimality. These conditions were ϐirst derived by 
Karush in 1939 [23], and later, in 1951, independently 
by Kuhn and Tucker [26].

Indirect methods

In indirect methods the necessary optimality conditions 
is derived by using Pontryagin’s maximum principle [32], by 
considering a simple optimal control problem.

Table 1: The model parameters.
Para

meter Description Estimated value

r1 per capita growth rates of tumor cells 0.44/day
r2 per capita growth rates of helper (resting) T-cells, 0.0246/day

α1

Rate of loss of tumor cells due to encounter with 
the active (hunting) CTL cells.

1.101 × 10−7/cells/
day

α2

Rate of loss of active (hunting) CTL cells due to 
encounter with the tumor cells.

3.422 × 10−10/cells/
day

β rate of conversion of helper (resting) T-cells to 
active (hunting) CTL cells.

3.422 × 10−10/cells/
day

γ per capita decay rate of the chemotherapeutic 
drug; 0.01/day

p1 Reciprocal carrying capacities for tumor cells. 5 × 10−9/cells

p2

Reciprocal carrying capacities for helper (resting) 
T-cells. 1 × 10−10/cells/day

q1

Response coeffi  cients to the chemotherapy drug 
for tumor cells. 0.08/day

q2

Response coeffi  cients to the chemotherapy drug 
for active (hunting) CTL cells. 2 × 10−11/cells/day

q3

Response coeffi  cients to the chemotherapy drug 
for helper (resting) T-cells. 1 × 10−5/day

d Per capita decay rate of active (hunting) CTL cells. 0.0412/day
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where J is the objective function in Bolza form, where 
Bolza form is the sum of the Mayer term Φ(tf , x(t f )), and the 
Lagrange term,

 
( , ( ), ( )) ,

F

I

t

t

L t x t u t dt
 

the basic principle of Pontryagin’s maximum principle 
is deϐining the Hamiltonian, where Hamiltonian is a scalar 
function  : , ,x u xn n n
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by deϐining the auxiliary function ϕ[tI, tF ] × Rnx → R, by:

ϕ(t, x) = Φ(t, x(t)) + μTΨ (x(t)),

by setting ϐirst variation of the Lagrangian to zero 0, 
where :[ , ] qx u xnn n n
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i.e., Integrating by parts the last term on the right side in 
Eq.(3.2), it yields:

We can conclude that the necessary optimality conditions 
for the unconstrained optimal is derived which stated as:
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They are referred to as the Euler-Lagrange equations.

For more details see [11], which will be solved numerically. 
Many numerical methods which are based on the Euler- 
Lagrange differential equation (EL-DEQ) are available to 
solve the TPBVP. One may classify these numerical methods 
according to the particular approach used in [2].

In this article we introduce two approaches namely:

• Indirect Collocation Method.

• Forward-Backward Sweep Method (FBSM).

The purpose of examining two methods is to choose the 
method with the higher accuracy and set this method as 
the base method to compare against it. In the following we 
explained one of the most important methods for solving 
resultant system of the differential equations. 

Indirect collocation method [36]: The Indirect 
Collocation Method is the merit of the techniques for solving 
TPBVP, ϐinite difference method with continuous extension 
as well as collocation method are the mathematical tools for 
this method. As a difference methods it is based on Implicit 
Runge–Kutta (IRK) method which is equivalent to collocation 
method according to the following theorem.

Referring to the theorem of Guillou & Soule´1969, Wright 
1970 which states that:

The collocation method deϐined as:

given s positive integer and c1, ..., cs distinct real numbers 
(typically between 0 and 1), the corresponding collocation 
polynomial u(x) of degree s is deϐined by
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for theorem proof see [21].

Forward-backward sweep method [27]: In FBSM the 
initial value problem of the state equation is initialized by 
using an estimate for the control and costate variables and 
solved forward in time. Then the costate ϐinal value problem 
is solved backwards in time. An early reference to a technique 
that has the forward-backward ϐlavor is [30]. FBSM method 
can be summarized by the following algorithm.

Information about convergence and stability of Runge-
Kutta 4 ODE’s solver can be found in [20].
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Direct methods

Sequential and simultaneous, are the two main classes of 
direct methods: for more details see [41]. Sequential methods 
only parameterize the control while simultaneous methods 
parameterize both the state and control. 

The differences on how we discretize the problem and how 
the continuity between discritizated intervals are defined 
result in different transcription method. In the next sections 
different methods depend on different discretization schemes 
and different continuity conditions are presented namely 
multiple shooting method, trapezoidal direct collocation and 
Hermite Simpson’s direct collocation.

Multiple shooting method: We start with the single 
shooting method, since single shooting is a special case of 
multiple shooting [12]. 

Step1: Transcription:

In single shooting system the time interval [t0,tf] is 
divided into equal sub intervals (segments) 1[ , ]i it t 

 such 
that 0 10 ... ,N ft t t t      where N is the total number of sub 
intervals.

Then the control vector is transformed into a parameterized 
ϐinite dimensional control vector u(t,q) that depends on the 
ϐinite dimensional parameter vector NqR  there are several 
parametrization schemes for more details see [3,8], we 
assume piece wise constant control:

1( ) : [ , ), 0,..., 1.k k ku t u for t t t k N   

3. The initial value problem (IVP)

        0 0 0, , , , , , ,fx t f x t u t q t x t x t t t     

which is solved to yield the state vector  ,  x t q  in the time 
interval 0[ , ]ft t .

4. The integral of the objective function is calculated 
together with the initial value problem solution (by using a 
quadrature formula). The Lagrangian part of the cost function 
is evaluated on each interval independently.

 Optimization

1. Due to the numerical simulation the model equations 
are eliminated. The path constraints are also discretized. Thus 
the optimal control problem Eq.(3.1) is rewritten as:

  
0

0 0

0 0
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  q q q q
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Which is an NLP problem that is solved using the Interior 
Point Method (IP) in this paper.

Continuity constraints: Since the simulation is done over 
the whole time horizon this method does not have continuity 
constraints.

Accuracy: Determine the accuracy of the ϐinite-dimensional 
approximation and if necessary repeat the transcription and 
optimization steps (i.e. go to step 1).

single shooting method has the following drawbacks:

• Convergence of the NLP solution is slow, because of 
the high nonlinear dependence of the objective and 
constraint functions on the variable u,

• NLP solver cannot initialize with an initial guess for x1, 
..., xN even it is available

• Parallel evaluation of the states and objective functions 
is impossible because of the recursive elimination for 
both states and objective functions

Direct multiple shooting method [10]: This method 
combines the advantages of simultaneous methods like 
collocation method with the main advantages of the single 
shooting method, so that it is sometimes called a hybrid 
method [17].

We follow the same steps in single shooting method except 
that we solve ODE’s in each interval [ti, ti+1] independently, 
starting with an artiϐicial initial value Sj:

1( ) ( ( ), ), [ , ],
( ) .

i i i i i

i i i

x t f x t q t t t

x t s
 





Solving these initial value problems numerically, we can 
obtain trajectory pieces  ; ; ,i i ix t s q  where the extra arguments 
after the semicolon are introduced to denote the dependence 
on the interval’s initial values and controls. Simultaneously 
with the decoupled ODE’s solution, we also numerically 
compute the integrals is numerically computed by:

1

( , ) : ( ( ; , ), ) .
i

i

i i i

t

i i i i i
t

l s q L x t s q q dt


 

Algorithm 1: FBSM algorithm.

Notations: let 0( ,..., )Nx x x


 and 1( ,... )N  


 are the vector approximations for the state 
and adjoint.
Make an initial guess for u

  over the interval.
1: while not converged do

2: Using the initial condition x0 = x (t0) and the values for u
 , solve x

  forward in time 
according to its differential equation in the optimality system using Runge-Kutta 4 
ODE’s solver

3: Using the transversality condition ( ) 0N ft    and the values for u
  and x

 , solve 

  backward in time according to its differential equation in the optimality system 

using Runge-Kutta 4 ODE’s solver.

4: Update u
  by entering the new values x

   and   into the calcuatons of the optimal 
control.
5: Check convergent
6: end while
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Continuity constrains: To enforce continuity between 
discretized intervals, the following NLP constraints is added 
at the interface of each sub-interval, this constraint is formed 
such that the propagated (as an illustration for propagation 
means consider a cannon be aimed such that the cannonball 
hit its target i.e., shoot) or integrated value of the state from 
the previous phase match the value of the state at the current 
state. The continuity depends on propagation which is 
approximate because propagation is using algebraic formulas 
based on numerical integration schemes (or discretization 
schemes).

So Continuity Constrains is deϐined as:

1 1( ; , )i i i i is x t s q 

We have the following NLP, but contains the extra variables 
si, and has a block sparse structure.

1

0 0
0

0 0

1 1

min

subje

( ( ), , , , ( ), , ) ( ( , , ), ( , , )),
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(

ct to
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(

N

f f
i

i i i

i i

J x t t x t t x t u t
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s
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continux t
C x t u t
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i

E t

ty


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

 











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0 0 i i i i

i i

i i i i

q s q q s q s

s q
q s q s

0 0), , , , ( ), , , ) (terminal constraint )( .0, sf ft x t t 0 0 N Nq s q s

Direct collocation: Problem size, non-linearity and 
sparsity of the NLP resulting from direct transcription 
methods are the prices of moving from one method to 
another. In single shooting the NLP is highly nonlinear while 
its size is small. Multiple shooting is less nonlinear but larger 
and sparser. The direct collocation goes further in the same 
direction as it is less nonlinear, sparser but even larger, direct 
collocation method is introduced by Dickmanns [16] as a 
direct transcription for solving optimal control problems. It 
has the fundamental steps of direct transcription method, but 
differs slightly.

It similarly discretizes the state trajectory 0 , ft t    into equal 

sub intervals (segments)  1,i it t  , such that 0 10 ... N ft t t t      
where N is the total number of sub intervals.

But it differs at

It further divide the interval  1,i it t   into K sub intervals 

1, ,j j      where

1, 1,..., , ,j i i j i i it h j K h t t                        (3.3)

 It employs an interpolating function to approximate the 
state of the system. Usually the interpolating function is poly 
nomial.

Polynomials consider the following Kth-degree piece wise 
polynomial:

1
0

( ) ( ) , [ , ],
K

k
i i i i

k

X t a t t t t t 


  
               

(3.4)

suppose further that the coefϐicients (a0,..., aK) of the piece 
wise polynomial are chosen to match the value of the function 
at the beginning of the step, i.e.,

   .i iX t x t

ϐinally, suppose we choose to match the derivative of the 
state at the points deϐined by Eq.(3.3), i.e.,

( ) ( ( ), ), 1,..., .j j jX f x j K                     (3.5) 

Eq.(3.5) is called collocation condition because the 
approximation to the derivative is set equal to the right-
hand side of the differential equation evaluated at each of the 
intermediate points  1,..., K  .

– By setting K = 2 in Eq.(3.4) we get the quadratic 
interpolation polynomial which results in trapezoidal 
method.

– By setting K = 3 in Eq.(3.4) results in Hermite–Simpson’s 
method.

Trapezoidal method and Hermite–Simpson’s method are 
the two direct collocation methods we consider in this article.

Defects constraints: The difference between the ϐirst 
derivative of the interpolating polynomial at the midpoint of a 
segment and the ϐirst derivative calculated from the equations 
of motion at the segment midpoint is used as the defect. To 
have a good approximation of the actual states the defects 
must approach zero and thus interpolating polynomial is 
a good approximation, the defect is written in the following 
form:

( ) ( ( ), )j j j jX f x    
,                (3.6)

the defect constraint for the trapezoidal method (by setting 

     1
2

j

j j j

h
P x x f f


  

  and  1 1i jx x     at Eq.(3.10))

is deϐined as:

1 1( ) ( ) ( ) ( ) 0
2

j
j j j j j j

h
x x f f        

the defect constraint for the Hermite–Simpson’s method (by 

setting 1( ) ( ) ( 4 )
6
k

j j j j

h
P x x f f f      and  1 1    ) i ix x  

at Eq.(3.6) is deϐined as:

Figure 3.1: Collocation Defect Constraints.
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let       1 1/ 2, ( ) / 2,j j j j jand u u u         

j 1 1

j j j
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

•   The quadrature rule used for integration is consistent with 
the numerical method used for solving the differential 
equa- tion. If one is using a Runge-Kutta method for 
solving the differential equation, the cost would also 
be approximated using Runge-Kutta integration. In 
the case of an Hermite–Simpson’s collocation method, 
the integration rule is Her- mite–Simpson collocated 
quadrature rule [33].

• Thus the optimal control problem Eq.(3.1) is rewritten as: 
let si be values of state vector at at grid point, sˆi which 
represent the states at the collocation points in each 
subinterval.

1
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Solution of the NLP problem

Numerical methods for solving NLPs fall into categories: 
gradient based (local) methods and heuristic (global) 
methods, gradient based (local) approach is now described 
in the following algorithm (the heuristic method is out of the 
interest of this article, for more details see [40]).

The convergence may depend on a given tolerance or 
depends on no further change in the objective function 
after several iterations. There are many ways to modify 

direction selection and step size, and this leads to many 
different algorithms. Some of common ones included Steepest 
Descent Methods, Conjugate Direction Method, Simplex 
Method, Interior Point Method (IP) and Sequential Quadratic 
Programming, more details on the IP methods will be given 
here.

IP Method: it is typically eliminate constraints of the form 

( )h h x h   by introducing slack variables additional equality 

constraints. After locating an interior point, i.e., a point where 
x x x   holds with strict inequality, which may require 

reformulating some decision variables as parameters, they 
formulate a barrier problem of the form:

1
min ( ) log( ) log( ))

xn

i i i i
i

f x x x x x


   

Subject to

( ) 0g x 

Sequences of barrier problems for increasing values of 
the barrier parameter μ are then solved with Newton-type 
methods, for more details see [7,40].

Accuracy 

Since the solution obtained from the NLP problem is a 
discrete set of numbers we don’t know what happen between 
the discrete points, a continuous approximation to the discrete 
solution resulted from the NLP is needed, i.e., representing the 
solution (interpolation) [6].

Spline representation: To get the solution as continuous 
approximation [y˜(t), u˜(t)] from the NLP solution we use 
spline representation (where spline is a sequence i.e., whole 
collection of polynomial) deϐined as follows:

1

1

( ) ( )
( ),

( ) ( )

n

i i
i

y t y t
t

u t u t
 



   
    

   





                 (3.7)

where n1 = 2M, M is the number of mesh points, y(t), u(t) 
are the true state and control respectively, y˜(t), u˜(t) are the 
approximate state and control respectively, the functions 
βi(t) form a basis for C0 or C1 cubic B-splines with n1 = 2M, 
where M is the number of mesh points. The coefϐicients αi in 
the state or control variable representation which is deϐined 
by different Interpolation of discrete solution depending on 
the discritization method, the spline approximation Eq. (3.7) 
must match the state at the grid points i.e.,

   ,  1,..., ,ky t y for k M 

the derivative of the spline approximation must match the 
right-hand side of the differential equations,

   , 1,..., ,k

d
y t f for k M

dt
 

Algorithm 2: Gradient Based Algorithm.
Notations: Let z is the unknown decision vector, k is the iteration counter, p is the 
search direction along which to change the current value zk, αk is the magnitude of 
the change in zk. 
1: while not converged do.
2: Steps are taken in a certain direction i.e., the kth iteration, a search direction is pk 
and a step length, αk are determined.
The update from zk, to zk+1 has the form: zk+1 = zk + αpk, 

3: The objective function is evaluated, in case of minimization, the search direction is 
chosen to suffi  ciently decrease the objective function in the form.

1( ) (  ,) ( )k k k k kf z f z K fT z p   

4: If the objective function improves take another step at the same direction else 
change the direction, step size or both.
5: end while.
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we require the spline approximation in Eq.(3.7) to match 
the control at the grid points, i.e.,

    ,, 1,..., ,k ku t u for k M 

the state variable is C1 cubic function whereas the control 
variable is C0 linear or quadratic functions depending on the 
discritization method. Since both  y( ),u( )t t  are approximate 
to the true solution the degree to which this approximation 
approximate the true solution need to be determined which is 
known as discretization error and relative local error.

Discretization error: by assuming that the computed 
control is correct and assume the spline solutions      ,y t u t  

produced from the NLP, and the single interval ,k k kt t t h    
from the state equation we can deϐine

       d , , d ,k k k k

k k

t h t h
k k k t k ty t h y t y t y t f y u t t       

where y and u are the true state and control values, we can 
consider the approximation:

ˆ( ) ( ) [ ( ), ( ), ] ,k k

k

t h

k k k t
y t h y t f y t u t t dt


                    (3.8)

from Eq.(3.8) we can deϐine the discretization error on the 
kth mesh iteration as:

   ma ,{ }xk i i k k i k ki
a t h yy t h     ,

For i = 1,2,...,n, where the weights ai are chosen to 
appropriately normalize the error. 

Relative local error: is the maximum relative error over 
all components i in the state equations y˙_ f evaluated in the 
interval k, and is deϐined as

 
,max ,

1
i k

k i
iw







where the scale weight , ,1
max , ,

M

i i k i kk
yw y


      deϐines the 

maximum value for the ith state variable or its derivative over 
the M grid points in the phase. An equivalent form can be 
deϐined as follows the absolute local error on a particular step 
by

1

, ( ) ,k

k

t

i k it
s ds 

 
                 

(3.9)

Where        , ,t y t f y t u t t     
    deϐines the error in 

the differential equation as a function of t. An accurate estimate 
for the integral in Eq.(3.9) is evaluated by using a standard 
quadrature method, (i.e., Romberg quadrature algorithm).

Comparative Study and Results

In this part we compare the results from the our base line 
article [37], with another indirect method solved by sweep 
method [27] and another three direct method namely direct 

multiple shooting, trapezoidal direct collocation and Hermite–
Simpsons’s direct collocation.

In all the previous ϐigures the direct methods achieve 
better results than indirect methods. The values of controls 
and number of tumor cells made the big differences in the 
objective function of the theses methods. The number of tumor 

Figure 4.1: Tumor Cell population using 3D plot (left fi gure) and 2D plot (right fi gure).

 

Figure 4.2: Helper T cells using 3D plot (left fi gure) and 2D plot (right fi gure).

Figure 4.3: Active CTL using 3D plot (left fi gure) and 2D plot (right fi gure).

 

Figure 4.4: Density of Chemo Therapy Drug (3D plot) left side, (2D plot) right side.
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Figure 4.5: Control Plot using different methods.

 

Figure 4.6: Objective Function Using different methods.
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Figure 4.7: State Error for Multiple Shooting Method.

Table 2: Objective function values for different methods.
Method Objective Function J at tf value

Direct Multiple Shooting 1.067535615031329
Hermit Simpson DT 1.065628747428853

Trapezoidal DT 1.532368800622538
Pontryagin Maximum Principle and 3rd  Lobotto 

collocation 2.324027433971033

Pontryagin Maximum principle and BFSM 8.118443453241154

Table 3: Different Comparsion merits for the direct method.

Method Name Absolute local error NLP iteration 
number NLP time

Direct Multiple 
Shooting 0.004675646596448 60 9.305698207820010

Hermit Simpson 
DT

7.125004407381137e-
04 35 2.210647539360693

Trapezoidal DT 0.039534796829716 80 1.645410588354529

Figure 4.8: State Error for Hermite Simpson Method.
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Figure 4.9: State Error for Direct Multiple Shooting Method.
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Figure 4.10: dx/dt - f(t,x,u) for Multiple Shooting.
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Figure 4.11: dx/dt - f(t,x,u) for Hermite Simpson.
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cells is lower in direct method than indirect methods also 
direct methods achieve better control than indirect method 
the following table shows the value of objective function for 
ϐive different methods.

Since the direct methods achieve better results than 
indirect method this motivate us to give more insight into 
direct methods through new merits such as discretization 
error, absolute local error, number of NLP iterations, NLP time 
the following table gives the values of the previous merits for 
the methods of direct methods only.

Within the direct method apart from indirect methods 
the results are butter in both Hermite Simpson DT and direct 
multiple shooting is butter than the trapozidal since both two 
methods represented by polynomials, the Hermite Simpson’s 
DT is better than the Trapezoidal DT since Hermite Simpson’s 
DT uses a higher order polynomial than trapezoidal DT which 
is an agreement with the concept of (p-method), for more 
details see [29], the hermite Simpson is the most accurate 
method on the price of time. 

The following plots shows the different discretization 
errors and state errors for the three method.

Conclusion

In this article ϐive numerical techniques to study the tumor 
immune dynamic optimization model are discussed, these 
methods are indirect method in which the resulting TPBVP is 
studied by collocation method, and by the backward forward 
sweep method and direct methods which are multiple 
shooting method, trapezoid direct collocation method, 
Hermite-Simpson’s direct collocation. Many studies claim that 
indirect methods have drawbacks. The two major drawbacks 
are that the differential equations obtained are often difϐicult 
to solve due to strong nonliterary and instability and also 
deϐine a guess initial solution for the Lagrangian multiplier. 
As a matter of fact, these variables do not have a physical 
meaning, this leads to problems in the deϐinition of an initial 
guess solution to start the algorithm. Another problem that it is 
necessary to take into account in the resolution of a BVP is that 
the existence and uniqueness of solution is not guaranteed as 
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Figure 4.12: dx/dt - f(t,x,u) for trapezoid.

in an initial value problem. Each problem may have a unique 
solution, several solutions or no solution at all. By comparing 
different methods both in direct and indirect methods we can 
claim that direct method can be used to get better results than 
indirect method and it is easy to implement. A question that 
is needed to be answered is how to choose the discretization 
method among different methods related to direct method to 
get the best results this question can be a future work.
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