
An Exploration of Learning Tool Log Data in CS1:

How to Better Understand Student Behaviour and Learning

by

Anthony Estey

B.Sc., University of Victoria, 2008

M.Sc., University of Victoria, 2010

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

c© Anthony Estey, 2016

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

An Exploration of Learning Tool Log Data in CS1:

How to Better Understand Student Behaviour and Learning

by

Anthony Estey

B.Sc., University of Victoria, 2008

M.Sc., University of Victoria, 2010

Supervisory Committee

Dr. Yvonne Coady, Supervisor

(Department of Computer Science)

Dr. Alona Fyshe, Departmental Member

(Department of Computer Science)

Dr. Marc Klimstra, Outside Member

(Department of Exercise Science, Physical and Health Education)

iii

ABSTRACT

The overall goal of this work is to support student success in computer science.

First, I introduce BitFit, an ungraded practice programming tool built to provide

students with a pressure-free environment to practice and build confidence working

through weekly course material. BitFit was used in an introductory programming

course (CSC 110) at the University of Victoria for 5 semesters in 2015 and 2016.

The contributions of this work are a number of studies done analyzing the log

data collected by BitFit over those years. First, I explore whether patterns can be

identified in log data to differentiate successful from unsuccessful students, with a

specific focus on identifying students at-risk of failure within the first few weeks of

the semester. Next, I separate out only those students who struggle early in the

semester, and examine their changes in programming behaviour over time. The goal

behind the second study is to differentiate between transient and sustained struggling,

in an attempt better understand the reasons successful students are able to overcome

early struggles. Finally, I combine survey data with log data to explore whether

students understand whether their study habits are likely to lead to success.

Overall, this work provides insight into the factors contributing to behavioural

change in an introductory programming course. I hope this information can aid

educators in providing supportive intervention aimed at guiding struggling students

towards more productive learning strategies.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures viii

Acknowledgements xii

Dedication xiii

1 Introduction 1

1.1 What is the problem? . 1

1.2 Background and Related Work . 2

1.2.1 Detection of “at-risk” students 4

1.2.2 Programming behaviour analysis 5

1.2.3 Learning tool features . 6

1.2.4 Focus on Learning . 9

1.2.5 Supporting all students . 11

1.2.6 Tying it all together . 13

1.3 Tool Features . 13

1.3.1 Instructor-focused requirements 14

1.3.2 Student-focused requirements 17

1.3.3 Course format . 20

1.4 Thesis Questions . 22

2 Will Students Use BitFit? 25

v

2.1 Methodology . 26

2.2 Results . 26

2.2.1 Student opt-in . 26

2.2.2 Confidence . 28

2.2.3 Self-efficacy . 29

2.3 Discussion . 31

2.4 Summary . 34

3 How Do Students Use BitFit? 36

3.1 Methodology . 37

3.1.1 Objectives . 37

3.1.2 Threats to Validity . 39

3.2 Results . 39

3.2.1 Semester 1 . 40

3.2.2 Semesters 2 and 3 . 42

3.3 Analysis . 46

3.3.1 Early Identification . 47

3.3.2 Overall Trends . 49

3.4 Discussion . 51

3.5 Summary . 51

4 What Does Learning Look Like? 53

4.1 Methodology . 54

4.1.1 Data collection . 54

4.1.2 Early predictors . 55

4.1.3 Trajectory metrics . 55

4.2 Results . 56

4.2.1 Early predictors (RQ1) . 57

4.2.2 Trajectory over time (RQ2) 58

4.2.3 Trajectory on a topic basis (RQ3) 59

4.3 Analysis and Discussion . 60

4.4 Summary . 63

5 Do Students Know How to Prepare for Exams? 64

5.1 Methodology . 65

5.2 Results . 65

vi

5.2.1 Time on Task (RQ4a) . 67

5.2.2 Question Difficulty (RQ4b) . 68

5.2.3 Self-Efficacy (RQ4c) . 71

5.2.4 Connecting Survey Results with Log Data 73

5.3 Analysis and Discussion . 74

5.3.1 Threats to Validity . 76

5.4 Summary . 76

6 Conclusions and Future Work 78

A Additional Information 84

A.1 Topics . 84

A.1.1 Sample Questions . 85

A.2 Sample Background Info . 85

A.3 Sample Hints . 102

A.4 Sample survey . 102

A.5 Sample log data . 109

Bibliography 120

vii

List of Tables

Table 4.1 Baseline metric showing the number and order of hints and com-

piles for each question (Q#) . 56

Table 4.2 Early at-risk identification . 58

Table 4.3 Identification after trajectory filter 59

Table 4.4 Trajectory metric across topic areas 60

Table 5.1 Aggregate usage trends recorded over all semesters 65

viii

List of Figures

Figure 1.1 This work explores the intersection of research on predictors of

success in computer science, learning and assessment tools, and

educational psychology. 3

Figure 1.2 Screenshots of BitFit code writing (top) and code reading (bot-

tom) exercises. 15

Figure 1.3 Instructor view editing a question in BitFit. 16

Figure 1.4 The first few hints for a question in BitFit. 19

Figure 2.1 Reported reasons students did not to use BitFit. 27

Figure 2.2 BitFit’s perceived impact on student confidence, self-efficacy,

and support in areas they were struggling. 28

Figure 2.3 Student interest in using a similar tool in future courses, even

if usage does not contribute to course credit. 30

Figure 2.4 Student feedback on whether they thought using the tool im-

proved their exam grades . 32

Figure 2.5 Student responses about where they go for help when struggling 32

Figure 2.6 Student responses about how likely they were to ask a question

in a lab or lecture when they need clarification 33

Figure 3.1 Course pass rates grouped by the “at-risk” identification metric

two weeks into the course. 37

Figure 3.2 Standardized usage trends for the 127 students who used BitFit

during Semester 1. Units for each axis are denoted by standard

deviations from the mean (0). 38

Figure 3.3 Usage trends for the 42 students who used BitFit during Semester

2. 41

Figure 3.4 Usage trends for the 269 students who used BitFit during Semester

3. 42

ix

Figure 3.5 Average values for number of compiles and hint usage per ques-

tion during Semester 3. 43

Figure 3.6 First two weeks of Semester 3 BitFit data. 44

Figure 3.7 Semester 3 BitFit data for the 12 students with the biggest score

differences between the first midterm (MT), and final exam (FE). 45

Figure 3.8 BitFit data from the first two weeks for students who pass the

first two assignments. 46

Figure 3.9 At-risk behavior patterns in Semester 3. 48

Figure 3.10 Semester-long BitFit data for students who pass the first two

assignments. 49

Figure 3.11 Proportion of failing students identified. 50

Figure 4.1 (a) Standardized final exam scores, hint usage, and compilation

numbers for 514 students over four semesters. Students who

passed the final exam are represented with green lines, red lines

represent failure. (b) Students with below average hint usage

and above average compile rates are selected, as highlighted by

the rectangles on the axes. Among this group, only 4 students,

represented by red lines, were unsuccessful on the final exam.

(c) Selects students with above average hint usage and below

average compile rates. 57

Figure 4.2 (a) students identified as at-risk by the baseline metric, shown

by the rectantangles selecting above average hint usage and

below average compile rates. (b) students who would be filtered

from (a) by the trajectory metric, dropping the false positive

rate from 43% to 11%, and the true positive from 81% to 70%. 58

Figure 4.3 a) standardized final exam grades along with loop and array

trajectory scores for data collected 6 weeks into the course. b)

selects only students with positive trajectory scores on loop ex-

ercises. c) selects only students with positive trajectory scores

on arrays. 59

x

Figure 4.4 (a) the full data set without any filters applied. (b) selects stu-

dents with positive trajectory scores on both loop and array

exercises. c) selects students with positive loop scores and neg-

ative array scores. Of the 40 students who failed the course in

this data set, 63% students exhibit these changes in behaviour

between topic areas introduced two weeks apart. 60

Figure 5.1 Time spent on task for students working on questions in the

for-loop module, introduced in week 2. The graphs represent

data collected from questions 1, 3, 5, and 7 from within this

module. Final exam grades are standardized to account for

possible changes in exam difficulty across semesters. 66

Figure 5.2 Time spent on task for questions 1, 3, 5, and 7 across all mod-

ules covered throughout each semester. 67

Figure 5.3 Time on task on Questions 1, 3, 5, and 7 across all modules,

showing the range of the 25-75th percentile (box), min (vertical

line, bottom), max (vertical line, top), average (X), median

(horizontal line), and outliers for all cohorts. 68

Figure 5.4 Each box outlines the output students were asked to generate

in the for-loop module for Questions 1 to 8. 69

Figure 5.5 Hints requested per question number within the for-loop module. 69

Figure 5.6 The percentage of times hints were requested before writing

code within the for-loop module. 70

Figure 5.7 The percentage of times hints were requested before writing

code across all modules. 70

Figure 5.8 Results from the survey distributed during the 5th week of the

semester. Questions used a 5-point Likert scale. 72

Figure 5.9 Results from the survey distributed during the 9th week of the

semester. Questions used a 5-point Likert scale. 73

Figure 5.10 Average change in responses for each question between the sur-

veys distributed in week 5 and 9. 75

Figure 5.11 The percentage of times students were able to complete a ques-

tion without hints when revisiting a question they were unable

to complete previously. 75

Figure A.1 Sample questions from the Print Statements topic area. 86

xi

Figure A.2 Sample questions from the Print Statements topic area. 87

Figure A.3 Sample questions from the For-loops - code reading topic area. 88

Figure A.4 Sample questions from the Syntax errors topic area. 89

Figure A.5 Sample questions from the Strings and casting topic area. . . 90

Figure A.6 Sample questions from the For-loops - code writing topic area. 91

Figure A.7 Sample questions from the Methods - code reading topic area. 92

Figure A.8 Sample questions from the if-statements topic area. 93

Figure A.9 Sample questions from the Writing code - methods and for-

loops topic area. 94

Figure A.10 Sample questions from the IO code reading and writing topic

area. 95

Figure A.11 Sample questions from the Arrays topic area. 96

Figure A.12 Sample questions from the Classes and Objects topic area. . . 97

Figure A.13 Sample questions from the Weeks 1 - 4 review topic area. . . . 98

Figure A.14 Sample questions from the Weeks 5 - 9 review topic area. . . . 99

Figure A.15 Sample questions from the Weeks 10 - 13 review topic area. . 100

Figure A.16 A sample background information page (if-statements in this

case). 101

Figure A.17 A sample hint for a code reading question. 107

Figure A.18 A sample hint for a code writing question. 108

xii

ACKNOWLEDGEMENTS

I would like to thank:

Yvonne Coady for leading by example and showing me just how much of an impact

an instructor can have on students inside and outside of the classroom.

Anna Russo Kennedy for kick-starting this work, and helping me find a research

area I am so passionate about.

Celina Berg, Mike Zastre, Bette Bultena and Veronika Irvine for the years

of mentoring, advice, and even peer support.

Marc Klimstra, Alona Fyshe, and Steve Wolfman for your insightful comments

and edits, and for your participation at my defense.

Members of the Learning and Teaching Centre for tirelessly working to im-

prove the learning experience for our students.

The Computer Science Department Faculty and Staff for being my home and

family for well over a decade.

My amazing friends and family for your love, support, and patience.

xiii

DEDICATION

In loving memory of my late grandfather, Ralph Estey.

This is one for the students.

The ah-hah moment is so pure and magical every time.

Chapter 1

Introduction

1.1 What is the problem?

For decades, improving the success rates of students in introductory programming

courses has been one of the focuses of the computer science education community [13,

39, 44, 73, 99, 127]. In recent years, there has been a spike in enrollment in com-

puter science programs [132], but failure rates are still high, estimated at nearly 33%

worldwide [11, 124]. Beyond simply improving pass rates, it is important that under-

graduate programs worldwide produce a diverse set of eager and empowered computer

scientists. Improving on the fail and drop rates in computer science is a complex and

difficult problem to solve, as it consists of a variety of different sociological, psycho-

logical, and even economical issues, and often one solution exacerbates an entirely

different set of problems [110].

This work focuses on student success in introductory computer science program-

ming (CS1) courses. In CS1 courses, lecture content typically builds upon material

covered in previous weeks, making it difficult for students who fall behind early to

catch up on their own [2, 31, 40, 94]. “At-risk” students, or those in danger of drop-

ping or failing a course, must be identified early so that they can be supported in a

way that allows them to succeed.

As class sizes increase, it is extremely difficult for instructors to identify and

support struggling students. Large course sizes can act as barriers to meaningful re-

lationships between students and instructors. In large classes, it is extremely difficult

for instructors to gauge invidividual student progress and comfort; instructors simply

do not have enough information to be able to adequately support students. Many

2

instructors do try and provide extra support for their students, but studies show that

instructors do not necessarily know where exactly students are struggling [16]. On

the other hand, students feel that instructors do not care about them, are hesitant to

ask questions, and are not motivated to learn [126]. A number of studies have shown

that the motivation, confidence, and comfort levels of students have a remarkable

effect on learning [5, 12, 117], and that faculty engagement, especially in first year

courses, is critical to supporting students in these areas [110].

Automated assessment tools have been used successfully as a means of provid-

ing students with plenty of feedback without overburdening instructors. Although

emerging technologies can be utilized to present material in a way that may be more

enticing to students, simply replacing the medium in which material is presented,

without changing the underlying practices of instruction, will have little impact on

learning [116]. Many assessment tools focus only on scoring solutions, rather than

assessing whether students correctly understand the material [10]. Instructors need a

reliable and scalable mechanism for identifying at-risk students as quickly as possible,

before they disengage, drop out, or fail [40]. The current generation of tools provides

instructors with the ability to move from simple, canned quizzing systems to a new

model where automated, data-driven analysis can be used to continually assess and

refine the quality of teaching [19]. Some institutions are already using tools with data

collection features, and have begun analyzing workflow data to help improve student

success [56, 81, 83], but questions about how these tools can be used to improve the

learning process still remain [42, 84].

This work presents a learning tool deployed in an introductory programming

course designed to provide students with a practice environment to build confidence.

An analysis of log data collected over 5 semesters explores how learning tool data can

be analysed to inform instructors about student learning and performance. Based

on the problems described above, the findings of this work may provide valuable in-

sight to computer science educators interested in providing supportive intervention

to students at risk of failure before it is too late.

1.2 Background and Related Work

There are many contributing factors that help define the research questions explored

in this work; Figure 1.1 illustrates the three core areas, which include predictors

of success in computer science, learning and assessment tools, and educational psy-

3

Predictors
of success

Learning and
assessment tools

Educational
Psychology

*

Figure 1.1: This work explores the intersection of research on predictors of success in
computer science, learning and assessment tools, and educational psychology.

4

chology. Research has been done in each of these areas for decades, and this work

only overlaps with a very small subset of each area. That being said, each area was

equally important throughout the course of this research, and this work best fits at

the intersection of these three areas. Within the realm of predicting success in com-

puter science, this work focuses specifically on an introductory programming course,

using data collected from a practice programming tool to investigate what patterns

are associated with learning and success. Previous work in Educational Psychology

provided insight on how to differentiate between learning and success, which helped

in both the creation of tool features and the analysis of data. Many of the features

present in BitFit, the practice programming tool used in this study, were influenced

by the previous research done on assessment and learning tools.

The following subsections overview some of the influential research done in each

of the areas that contributed to this work.

1.2.1 Detection of “at-risk” students

In order to improve the learning environment and experience for students in a course,

the first goal of this work was to develop a system that allowed the identification of

“at-risk” students as early as possible. In this work, at-risk students are defined as

those in danger of dropping or failing a course. The results of a study done in first-

year mathematics courses show that for courses where each week’s material builds on

the concepts learned in previous weeks, if students are unable to complete the first

2 graded assignments, they will very likely fail [31]. Early detection is important in

computer science (CS) courses as well, as a number of studies have established that

performance on early coursework correlates with final exam scores [2, 89]. Similarly,

Falkner and Falkner found that the timing of a student’s first assignment submission

in a CS course, particularly late submissions, was a strong predictor of which students

were likely to under-perform in their classes [40]. Recent studies suggest that students

can be identified as early as the first two weeks of the course [1]. Grades have also

been shown to correlate positively with the amount of help students receive beyond

office hours and email [22], as well as through peer instruction [130].

Other research that provided helpful insights include Bergin and Reilly’s research

on the fifteen factors that might influence success [13], Ventura’s study on predictors

of success [117], and Carbone et al.’s work that explored reasons students may lose

motivation [20]. Alvarado et al. found that the traditional factors of prior experience

5

and confidence still predict success in courses with modern curricula and improved

pedagogy, but only for some students [5].

There have been a number of studies on ways to classify student behaviour in

order to predict drop-out. Qu et al. found that low confidence, high confusion, and

low effort were strong indicators of students giving up [91]. Challenging assignment

material can keep some students engaged, while being frustrating to others [47]. Kin-

nunen et al. note that efficient intervention requires a combination of many different

actions that take into consideration the many factors that contribute to drop-out [63].

Arroya et al. state that a student’s goals and attitudes while interacting with a tutor-

ing system are typically unseen and unknowable [8]. They note that problem-solving

time, mistakes, and help requests are easily recorded, and report on their success

in using a Bayesian Network to infer a student’s hidden attitude toward learning,

amount learned, and perception of the system. A study on student behaviour during

lab periods found that confusion and boredom are two affective states associated with

lower achievement [96].

Cocea and Weibelzahl have completed a number of very insightful studies on dis-

engagement prediction [24]. They explain that engagement is an important aspect of

effective learning, because time spent using an e-Learning system is not quality time

if the learner is not engaged. In some of their earlier work, they showed the possi-

bility to predict engagement from log files using a web-based e-Learning system [26].

Through follow-up analysis with different web-based learning systems, they were able

to demonstrate that their solution is system-independent and that engagement can

be elicited from basic information logged by most e-Learning systems: number of

pages read, time spent reading pages, number of tests/quizzes, and time spent on

test/quizzes [25]. Later, they were able to classify different types of disengaged users

from different sets of data, and further highlight the importance of monitoring not

only problem solving activities, but also time spent reading pages [27]. In more recent

years, there have been a number of studies analyzing log data to better understand

student programming behaviour.

1.2.2 Programming behaviour analysis

Both code generation and debugging activities within an IDE have been shown to

correlate with final grades [34, 80]. Large-scale studies of compilation errors from

hundreds of thousands of students hold promise to identify at-risk patterns in types

6

and frequencies of errors [4, 57]. Jadud used BlueJ, a beginner’s programming envi-

ronment, to report at compile-time the complete source code along with other relevant

meta-data, and observed that a minority of different syntax errors account for the

majority of errors [56]. The fact that certain kinds of errors occurred frequently

directed future work efforts towards helping students break out of repetitive error

cycles [109]. As an extension to BlueJ, Norris et al. used the ClockIt BlueJ Data

Logger/Visualizer to monitor student software development practices [83]. Students

and instructors alike were then able to view the collected data, the goal being to

discover “patterns” of student practices shared by successful students that are not

present in struggling or unsuccessful students. Similarly, Retina collects information

about students’ programming activities, and then provides useful and informative

reports to both students and instructors based on the aggregation of that data [81].

Edwards et al. compared effective and ineffective programming behaviours of

student programmers, using assignment submissions gathered from an automated

grading system [36]. Submissions were classified by grade received, and the significant

finding of the study is that when students started and finished their assignments

earlier, they received higher grades than when they started an assignment the day

before it was due, or later. Spacco et al. also reported that students who started

their work earlier tended to earn better course grades in their study on programming

habits in a CS2 course [107].

Watson et al. claim that there are still major improvements that need to be made

with respect to the identification of at-risk students [125]. They state that one of

the problems may be that prior research methods are based upon using static tests,

which fail to reflect changes in a student’s learning progress over time. They claim

that if data is dynamically analyzed to identify changes in progress over time, students

can be provided with appropriate interventions when required. Unfortunately, this

requires a learning tool with a number of data collection and analysis features.

1.2.3 Learning tool features

An important requirement during the design of the tool in this study was that it

allowed users to work with the material from anywhere. It was also important that

it allowed an analysis of usage data, which is why an online tool made sense. Online

tools are not a new idea, as back in 1999, Boroni et al. discussed the huge potential

of self-contained, animated, interactive, web-based resources for computer science in

7

their creation, “hypertextbook”, which paved the way for many future endeavors [15].

Learning management systems (LMSs), such as Moodle and Blackboard, have become

popular in recent years, and include features that allow communication and collab-

oration between learners and teachers through things such as wikis and discussion

forums [18]. Rößling et al. state that LMSs do not adequately support the needs

of computer science students, and are particularly lacking in providing students with

effective learning activities and tools [97]. They recommend integrating assessment

features, algorithm visualizations, and practice problem generation into these sys-

tems. They also warn that students may become discouraged due to lack of feedback

in practice problem activities if they are struggling with any of the material. They

recommend building systems with the ability to provide layered feedback to students

as a way of raising student motivation.

In a recent survey, Ihantola et al. identify a wide range of recent features in auto-

mated program assessment systems, including test case construction assistance, sub-

mission management, automated scoring, and security features [52]. Unfortunately,

features about problem understanding, rather than scoring solutions, are noticeably

absent. Gikhandi el. al provide a review of the online and blended learning formative

assessment research [43]. The review provides evidence on the potential to engage

both teachers and learners in meaningful educational experiences. They suggest that

educators need to recognize and emphasize the value of embedding assessment within

the learning process, by assessing the process of learning instead of just finished

products. One set of tools that focus on supporting students throughout the learning

process are Intelligent Tutoring Systems (ITSs).

VanLehn’s report provides encouraging results with respect to the effectiveness of

tutoring systems [114]. Different granularities of electronic tutoring were compared

with one-on-one human tutoring, and both were compared to instruction scenarios

where no tutoring is given at all. A significant finding is that modern ITSs are just as

effective as one-on-one human tutoring for increasing learning gains in STEM topics,

and it is argued that these systems replace homework, seatwork, and other classroom

activities. It is important to note that none of these systems attempt to replace

classroom teachers, nor does the report recommend these systems do so.

Although there have been positive results with respect to ITSs, creating an effec-

tive ITS is a challenging process, and one that needs to satisfy multiple stakeholders

in an educational setting. Because tutoring systems require 200-300 hours of devel-

opment for one hour of instruction, authoring tools have been created to speed up

8

content development [3]. Rau et al. present a methodology for designing interactive

learning environments, and provide a methodology to resolve conflicts introduced by

conflicting stakeholder recommendations [92].

Koedinger et al. looked into improving online learning and course offerings through

data-driven learner modeling [69]. They recommend designing online learning en-

vironments that collect fine-grained, complex data about a learner. This enables

researchers to use well established principles on learning and cognition, and avoid

re-inventing the wheel when it comes to evaluating and improving the learning expe-

rience. They stress the importance of learning from the decades of research that have

been carried out in the Intelligent Tutoring Systems (ITS) and Artificial Intelligence

(AI) in Education fields, and recommend including cognitive psychology expertise to

guide the design of online learning activities. They also strongly recommend adopting

a data-driven approach to learner modeling with the goal of improving the learner’s

experience, and shifting course design away from solely an expert-driven paradigm

to one that is self reflective and learns from past interactions of learners with the

system.

The aforementioned works highlight how successful ITSs have been in supporting

students through different learning processes. With the prevalence of tools that log

student progress data, there has been some interesting research within the domain of

learning analytics on how the data can be used to improve the learning experience.

Triantafillour et al. provide a report on how cognitive profiling approaches have

informed and influenced the research and development of ITSs for decades [112].

In his work back in 1985, Soloway stated that when solving a problem, it is often

not the syntax and semantics that pose major stumbling blocks for novice program-

mers. He notes the real problems lie in “putting the pieces together,” which involves

composing and coordinating the different components of a program [105]. Based on

these ideas, tools like MENO II, PROUSE, and later CHIRON were developed, and

used successfully to aid novice programmers in learning Pascal [101]. In Johnson and

Soloways explanation of Prouse, they note the two important components of their

tutoring system: a programming expert which can analyze and understand buggy

programs, and a pedagogical expert that knows how to effectively interact with and

instruct students [60].

Anderson’s production rule theory also influenced a number of tutoring systems [6].

The basic premise is that a cognitive skill is made up of a number of production rules,

and that tasks are achieved by stringing together a series of these production rules.

9

Anderson et al. designed a tutor for LISP that was successful in improving the effec-

tiveness of notive programmers [7]. Based on such models, a specific type of ITS was

developed, called a “Cognitive Tutor”. The idea behind Cognitive Tutors is to put

students into a hands-on problem-solving situation, with the tutoring system provid-

ing instruction based on individual student needs [67]. Jin shows that students who

used intelligent cognitive tutors outperform students who did not in standard class-

rooms by more than 50% in solving targeted programming questions [59]. Because

Cognitive Tutors have been shown to lead to significant learning gains, they are now

incorporated into over 3,000 schools across the United States.

1.2.4 Focus on Learning

Although assessment tools have come a long way, there are still an abundance of ques-

tions about how emerging technologies can be used to improve the quality and effec-

tiveness of teaching. Vandewaetere et al. provide an overview of research done on the

value of learner models in the development of adaptive learning environments [113].

Their results show that, although there are a number of high-quality studies, there

is sparse data related to the empirical effectiveness of including specific cognitive,

affective, or behavioral individual characteristics in learner models with respect to

enhancing the learning process or increasing the learning outcomes. Veletsianos re-

minds instructors that is important to remember that what impacts learning are

changes in instructional design and pedagogical practices supported by the introduc-

tion of new technologies, not the technology itself [116]. He also mentions that fields

closely related with educational technology, such as instructional design and cogni-

tive psychology, can provide us with evidence-based insights in how and under what

conditions people learn.

Instructional design

Within the realm of education, curriculum development is primarily concerned with

what to teach, whereas instruction is primarily concerned with how to teach it [104].

Instructional design is concerned with understanding, improving, and applying meth-

ods of instruction, and the intention is that learning outcomes produced are effective,

efficient, and appealing [93]. Effectiveness is measured by the level of student under-

standing, efficiency is measured by the effectiveness divided by student time and/or

cost of instruction, and the appeal is measured by tendency of students to want

10

to continue to learn. This simple framework has proven resilient and valuable for

theorists and practitioners. Wilson et al. expand the framework by focusing more

on social impact, engagement. and the learner’s experience [128]. They note that

tools, technologies, and all other forms of intervention have both positive and nega-

tive impacts. They suggest adding a fourth descriptor, “good instruction”, where the

aim is to lead learners toward valued ends, while minimizing any negative impacts.

Instead of combating instructional problems and inefficiencies, Veletsianos proposes

that technologies can be used as means to provide personally relevant and meaningful

transformations for students [115].

Educational Psychology

The Attention, Relevance, Confidence, and Satisfaction (ARCS) model comes from

educational psychology, and defines four major conditions that need to be met for

people to become and remain motivated [61]. Within the ARCS model, gaining and

retaining the learner’s attention is necessary for efficient learning, relevance (of the

learning content) is a condition for attention and motivation, confidence determines

the level of effort invested in learning, and satisfaction refers to the reward gained

from the learning experience. The purpose of the ARCS model is to employ strategies

that are used to improve the motivational appeal of instruction. This, in turn, should

translate into improvements in learner motivation. Huett et al. report on the poten-

tial of using ARCS-based e-mail messages designed to improve the motivation and

retention of students enrolled in an online computer applications course [51]. Mihaela

Cocea reported on a number of previous works that used the ARCS model within CS

education, and proposed a new approach based in Social Cognitive Learning Theory,

and especially related to self-efficacy and self-regulation [27]. This led to her later

studies on which factors in the learning behaviour can predict drop-out.

When designing the programming practice tool, thought was put into what types

of data need to be collected in order to provide a more effective, efficient, and ap-

pealing learning environment for students, and the information gained from such a

process could be applied to improve the in-class experience for students, specifically

by supporting students in a way that increased student confidence, self-efficacy, and

satisfaction. Law et al. report on a preliminary study that investigates the key moti-

vating factors among students taking programming courses, and adopted a research

model linking various motivating factors, self-efficacy, and other effects of using their

11

e-learning system [72]. The results suggest that a well facilitated e-learning setting

can enhance learning motivation and self-efficacy. This inspired me to look into the

research on how other instructors had taken an active role in enhancing the learning

environment for their students.

1.2.5 Supporting all students

A study assessing the programming skills of first year CS students illustrated how

difficult learning to program can be [77]. Often students come into introductory

programming courses with a variety of previous experiences. Robins et al. speculate

that the distinction between an effective and ineffective novice is more important than

the one between a novice and expert programmer [95]. Effective novices are those that

learn to program without excessive effort or assistance. Ineffective novices are those

that do not learn, or do so only after inordinate effort and personal attention. They

suggest it may be a worthwhile effort to explicitly focus on trying to create and foster

effective novices. Kirschner et al. note that due to the nature of human cognitive

architecture, a minimally guided approach, similar to the learning environment found

in traditional lecture-based courses, is not optimal for novices learning a cognitively

challenging task, such as programming [64].

These results have motivated some of research into improving course programming

exercises. The Cognitive Apprenticeship (CA) model emphasizes guiding students

through the learning process, instead of evaluating end products [29, 30]. A number

of institutions report on positive results when using CA to teach programming. In

addition to fostering programming skills, improving a course’s programming exercises

can also impact student motivation and comfort, and numerous studies have shown

that both the motivation and the comfort level of students have a remarkable effect

on learning [12]. A key component to improving programming exercises is feedback.

Lumsden notes that talking with students about their solutions and problem solving

strategies, while giving them hints on how to improve them, also has a positive impact

on student motivation [74].

Vihavainen et al. build upon many of these ideas in their Extreme Apprenticeship

(XA) method, which is a variation of cognitive apprenticeship [121]. They used their

XA approach to produce some encouraging results with respect to student drop-out

rates, pass rates and grade distribution. The core values in XA are first, that in

order to master a craft, students need meaningful activities, so that they can practice

12

as long as is necessary. Second, there needs to be continuous feedback between the

learner and advisor, and the learner needs confirmation that he or she is progressing,

and to a desired direction. The XA method has been used in a number of course

offerings, including online learning environments [120].

These works all highlight the importance of, and active role required of instructors

maximize the effectiveness of learning environments. In the CA model, the instruc-

tor’s roll is not limited to introducing and explaining concepts. Instead, instructors

are also mentors and facilitators of student learning and skill development as students

progress through meaningful activities.

Instructor impact

In a review of the state of student retention research, Tinto notes that involvement,

or what is increasingly being referred to as engagement, matters and it matters most

during the critical first year of college [110]. He also notes that it is a widely ac-

cepted notion that the actions of the faculty, especially in the classroom, are key to

institutional efforts to enhance student retention. In more recent work, McCartney et

al. discuss the importance of interpersonal interactions with respect to the learning

experience, especially among first-year students [76]. Student interviews show that

in some learning environments students are not comfortable asking questions, and do

not feel like instructors know what material “trips people up”.

Janet Carter et al. provide a comprehensive review of many different approaches

instructors can use to increase student motivation [21]. The work provides a repository

of tips and techniques for educators, discusses challenges and concerns, and makes

some suggestions to promote further progress in the field.

With the effectiveness of the current generation of learning tools, Dodero et al.

studied the learning experiences of blended styles of learning compared to a purely

virtual e-learning approach [33]. The study showed that technology can act as an

incentive to improve students’ participation during traditional classroom-teaching,

but does not help increase student participation when the learning is completely

virtual and not complemented by regular classes.

Jason Carter et al. found that most students wanted help that went beyond office

hours and email, and that for the vast majority of them, their grades correlated

positively with the amount of help they received for insurmountable difficulties [22].

In order to reduce instructor overload, their study also describes how their approach

13

in using log data to distinguish between surmountable and insurmountable difficulties.

1.2.6 Tying it all together

Previous work highlights the fact that many students drop out of or fail introductory

computer science courses due to low confidence or motivation because they are unable

to keep up with the material. Learning tools have been used to provide assistance

to students, and scale to very large or online classrooms, but these tools can also act

as barriers that prevent meaningful relationships between students and instructors.

Recent studies suggest that a solution to both problems is a blended learning ap-

proach; learning tools can provide some assistance to students, and the data collected

by the tool can inform instructors about student struggles, enabling them to support

students accordingly. I tried to emulate this type of environment at the University of

Victoria for this study.

A similar set of studies is being done concurrently by Spacco et al [106]. Over the

past few years, they have analyzed data collected from two web-based programming

exercise systems. Their work demonstrates the potential of collecting and analyzing

data from short programming exercises, and provides positive, although weak, corre-

lation between student’s effort and success on CloudCoder exercises and the student’s

final exam score. They also discuss that an intriquing use of such systems would be to

detect “flailing” [41] students early enough in the semester that the instructor might

intervene, and define metrics for detecting difference between flailing and learning.

1.3 Tool Features

BitFit was developed by Anna Russo Kennedy as part of her Masters work, and the

technical components of BitFit’s design are covered in her thesis [100]. I added all of

the content to BitFit. For sample questions, hints, and other information about the

content included in BitFit, please refer to Appendix A.

All of the aforementioned works were influential in the design of BitFit, and in-

spired the six original goals set forth for BitFit:

1. Give students a pressure-free place to try and fail with the material.

To build student confidence, provide them with an enviroment where they are

not afraid to make mistakes.

14

2. Find a way to answer all of their questions. In large classrooms it is

difficult for an instructor to answer all student questions. Support features

need to be added to the learning tool to support students when working through

practice material.

3. Aim for early intervention when warning signals arise. Collect and

analyse log data to identify students who need additional support.

4. Regularly take a pulse of how they think they are doing. Use surveys to

collect additional information about student comfort, confidence and progress.

5. Show students we care about their success. React to the information

supplied by BitFit and surveys to show that we are using this technology to

support learning.

6. Show them they do belong in CS1. Provide feedback to show students

how much progress they have made.

There are many educational tools available, and many of them share common

features [52]. CloudCoder is an open-source and online tool used for creating, assign-

ing, and sharing short programming exercises [84]. CloudCoder also collects detailed

data, so many of the core features in BitFit were modeled around it. In addition

to code writing exercises found in a tool like CloudCoder, code-reading exercises are

also included. There are also support features included in BitFit similar to those

present in many other tutoring systems. To accomplish the specific set of goals for

BitFit, a number of more specific teacher- and student-focused design requirements

were created.

1.3.1 Instructor-focused requirements

There were a number of features we wanted to include in the tool based on what we

required as part of the teaching team.

Design Requirement 1: Build an easy to deploy, scalable and extensible open

source tool using current, industry-standard open source technologies. BitFit, shown

in Figure 1.2, was built in JavaScript via Node.js, using the MEAN framework; the

tool is web-based, and Node.js was built to specifically handle the operations of a

15

Figure 1.2: Screenshots of BitFit code writing (top) and code reading (bottom) ex-
ercises.

16

Figure 1.3: Instructor view editing a question in BitFit.

web application. The tool was also designed to be easily extensible, so it is open-

source, and can currently be found on-line1. It is straightforward for an instructor to

add functionality to the tool to allow practice exercises in a different programming

language. For instance, to add support for C++, a function would need to be added

to the Command Line Interface module that calls upon the C++ compiler instead of

the Java compiler. The structure of the persistent data store was also chosen with

flexibility in mind. MongoDB is noSQL datastore, with one major bonus of its design

being that changes can be made to existing schemas on the fly, without having to

restart an application for the changes to take effect. This means that students could

be working through exercises at the same time as a developer is adding improved

functionality. Although not a core requirement, we hope these decisions may attract

future graduate students and/or community members interested in building upon

their skills in these areas to extend the tool further.

Design Requirement 2: Allow support and other instructional materials to be

easily created and deployed. As shown in Figure 1.2, the workspace where students

can answer questions has another tab where instructional content can be added.

Similar to other web-forms, instructors can write in information directly, or link to

1The tool’s source code is available on GitHub at https://github.com/TheModSquad

17

other instructional materials used in the course. As the question database continues

to grow, the initial overhead to integrate BitFit into a course will decrease. Course

administrators can easily add, edit, or remove current questions. The interface to edit

a question is shown in Figure 1.3. Starter code can be easily pasted into the embedded

editor2. The “read-only” button toggles whether or not students can edit code (for

non-programming questions), and hints can be added similar to how question text

can be added, with support for html tags.

Design Requirement 3: Allow for the generation of multiple question types,

and include assessment features for each type of question. In addition to program

writing questions, we wanted to include code reading questions, and the possibility

to ask higher-level concept questions. Although most of the tools that motivated the

development of BitFit focus on improving code writing [84, 85], code reading tools

have also been shown to have positive effects on program understanding [50].

Design Requirement 4: Collect fine-grained student interaction data. Through-

out a student’s use of the tool, interaction data is collected and stored on a secure

server. This data includes numbers of compiles and runs for code writing questions,

numbers of hints requested, time spent on each exercise, and total correct versus

incorrect attempts to answer questions.

1.3.2 Student-focused requirements

There are also a number of features we wanted to include focused on providing support

for students using the tool.

Design Requirement 1: Create a programming practice environment with very

low overhead to use. Students access the tool via a webpage in a browser. All that

is required is an internet connection and login info. The tool is system and platform

independent, and abstracts away all the environment details, allowing students to

dive straight into excerises from any machine or device they choose to do so.

Design Requirement 2: Build a space for students to actively engage with

course material: allow plenty of opportunity to practice both code writing and active

code reading to increase understanding and abilities. The tool encourages students

to train the routine act of programming: carry out a high number of interactive

exercises, that are somewhat repetitive, in order to master the skill needed to tackle

bigger problems elsewhere [121]. The two types of questions currently incorporated

2https://ace.c9.io

18

into BitFit are code writing, where students are asked to write a method or other piece

of code to produce a desired outcome, and code reading exercises, where students are

asked what the output of a Java program is. The system supports other types of

questions, but only these two types of questions have been added to the question

repository so far.

Design Requirement 3: Foster an environment of high interactivity in the tool,

to build a continual feedback loop between student and instructor. Students interact

with and receive feedback from the tool in multiple ways. Students are provided with

hints when requested, and test-case results are displayed when they submit a solution.

Lectures provide an opportunity for instructors to answer student questions, but it

can be difficult to formulate questions on a recently introduced topics (especially

before working through an exercise), and some students may not be comfortable

asking certain questions in large classrooms. In BitFit, instructors can view usage

data on questions from each week’s topic to better analyze student progress. This

allows instructors to provide initial feedback based on student progress, which can be

the first step in establishing meaningful and effective interactions between instructors

and students.

Design Requirement 4: Design a tool where questions are broken down by

topic area. The tool offers as much flexibility as possible to instructors in how they

structure practice exercises. Instructors create a new topic, provide some background

information on the topic area, and create a set of questions to be associated with that

topic. Currently, the question repository includes questions for a number of individual

topic areas, and also a variety of different combined topic sets. For example, there is

a set of question on for-loops, another on parameter passing and return statements,

and then a set including questions that require knowledge of both topics. Within

each of these sections there a multiple questions of increasing difficulty.

One goal was for BitFit to allow for an environment where students can practice

both individual, building block programming skills, as well as work on topic areas that

build upon multiple concepts from previous material combined. Because the order

that course topics are presented in may differ among courses or between semesters,

the question repository continues to grow with different combinations of CS1 topics.

Design Requirement 5: Provide support for all student questions. Each ques-

tion set contains a range of question difficulties. When hints are requested, as shown

in Figure 1.4, students are progressively lead through the exercise, and eventually

provided with a full solution to the problem. We hoped that the hint systems would

19

...

Figure 1.4: The first few hints for a question in BitFit.

20

provide enough support for a large number of instances where students requested

assistance. Additionally, there is an “Ask a Question” button thatstudents can use

to get further assitance. The button allows the user to enter a description of their

problem, and provides instructors with a snapshot of their current solution. We also

hypothesized that by using log data to revisit areas where students struggle may also

allow us to support a number of other unasked questions, for the potentially large

number of students not comfortable asking questions in traditional lectures [126].

Design Requirement 6: Offer a safe place for students to try and fail with the

material. BitFit allows students to work through as few or as many questions as they

wish, with no limit to the number of times they may attempt any of the exercises.

Although within each topic area questions were generally ordered by increasing dif-

ficulty, students are able to work on or skip to any question within the system. An

important aspect of this requirement is the fact that the exercises were not graded.

Graded online exercies have their place in computer science education, but we be-

lieve such quizzes belong at a later stage in the learning process. Graded exercises

are often used to verify that learning on a topic is complete, whereas the focus of

this design requirement is associated with providing an environment for students to

practice, explore, and learn.

Design Requirement 7: Provide a way for students to accurately and rapidly

gauge what they do and do not know, letting them become capable of seeing themselves

succeeding with the material. Instantaneous feedback is provided in multiple ways:

on solution submissions in the form of test-case results; through a Compile Output

dialogue box if student code contains errors; through a Run Output dialogue box if

infinite loops or other runtime errors are detected in their code. This rapid feedback

helps students gauge what areas they have mastered, and where they need to do some

more work.

1.3.3 Course format

The tool was used in a first year programming course, CSC 110: Fundamentals of

Programming I. CSC 110 is a 13-week course taught in Java3 offered each semester

at University of Victoria. CSC 110 consists of three 50 minute lectures a week,

and one hour-and-fifty minute lab. Lectures take place in a lecture hall built to

accommodate 250 students, and lab rooms provide computers for up to 28 students

3https://www.oracle.com/java/

21

at a time. Concepts were often introduced in lectures, and then during the weekly

labs, students were provided with problem-based active learning activities, and TAs

faciliated the learning by aiding students as they worked through a set of problems.

Activity on BitFit was completely voluntary each semester, and did not affect

student grades in any way. BitFit was introduced as a supplemental practice resource

offering exercises similar to those presented during weekly labs. BitFit is an online,

open-source4, practice programming tool where students write code in the browser.

Buttons to compile code, run code, submit a solution (labeled “Check My Answer”),

get a hint, and ask a question are all instrumented to collect student interaction

patterns.

Compilation and execution results are displayed to the user as they work through

the current problem. Submitting a solution runs the current code through a number

of test cases, visible to the user, and displays the results. A solution is considered

correct if all of the test cases pass. There is no restriction on the number of times a

student is allowed to compile, run, or submit a question.

Each semester BitFit was used, there were over 80 questions distributed over

the course’s topic areas. Within each topic there are six to ten questions, ordered by

difficulty. Students are not required to correctly solve “easy” questions before visiting

more difficult questions within a given topic area, and are able to start on any topic

area they choose.

Similar to Khan Academy5, hints progressively lead students to a correct solution

of the problem. BitFit was first designed with hints that provided high level guid-

ance, but when students were consulted about the design of additional features, they

requested sample code solutions.

The data coolected by BitFit includes the number of questions attempted, hints,

compiles, runs, submissions, and correct solutions. Number of revisited questions and

repeated hints were also recorded. The ratio of correct versus overall submissions,

compiles versus executions, and error-free compiles versus overall compiles were also

computed. All of this collected data was measured against final exam grades.

4https://github.com/ModSquad-AVA/BitFit
5https://www.khanacademy.org/

22

1.4 Thesis Questions

The first study in this work explores whether students will use an ungraded practice

tool introduced as a supplemental resource. Additionally, the study looks into per-

ceived impact of BitFit, specifically regarding how it may support student confidence

and comfort. This lead to the following initial research questions (RQs) explored in

Chapter 2:

RQ1a: Will students use a supplemental, ungraded, practice resource?

RQ1b: What are the reasons students choose not to use a practice tool?

RQ1c: What impact does BitFit have on student confidence and metacognition?

RQ1d: How well does BitFit support students in areas they feel they are struggling?

Based on the feedback from students during early BitFit deployment, BitFit was

extended to allow students to optionally reveal a progressive series of hints about

programming problems, eventually providing a full solution. The first study suggested

that the large majority of students in a given semester will choose to use BitFit, as well

as students across all grade ranges. The next step in my work was to investigate how

students use BitFit. The goal of the second study was to uncover subtle indicators of

productive learning behavior through BitFit log data, the key questions being: Can

interaction patterns with BitFit predict a student’s outcome in the course? To answer

this key question, Chapter 3 considers BitFit log data over the first three semesters

BitFit was used, and explores the following specific research questions:

RQ2a: How well do students’ levels of engagement with the learning tool predict

success in the course?

RQ2b: Can a practice tool identify differences in workflow behavior between suc-

cessful and unsuccessful students?

RQ2c: What are the metrics associated with success and failure?

RQ2d: How well do metrics identified by the tool predict success?

RQ2e: How early in the semester can at-risk students be identified?

23

After identifying a number of metrics to identify students at-risk of failure early

in the semester, I next further investigated whether the inaccuracies found in these

predictors of student performance can be reduced through an analysis of log data

that measures changes in programming behaviour over time. A close look at the log

data in the previous study lead me to believe there was subtle difference between

learning and success in CS1. If patterns associated with effective learning can be

automatically classified in log data early in the semester, it may be possible to better

guide students at-risk of failure towards more productive learning behaviour before

it is too late. This motivated the key research question behind the third study: Can

analysis of patterns in interaction data help us understand how to detect and measure

learning in CS1? To answer the key question, Chapter 4 considered the following

specific questions:

RQ3a: How accurately do early predictors of performance identify students who are

unsuccessful in the course?

RQ3b: How well can early predictors be improved by a trajectory metric that clas-

sifies behavioural change over time?

RQ3c: How well can the trajectory metric be extended to evaluate differences in

proficiency across topics?

The analysis of log data considering changes in behaviour over time was able to

differentiate between transient and sustained struggling, allowing for more accurate

identification of students who really need additional support. I next wanted to better

understand why unsuccessful students so commonly exhibited ineffective study be-

haviour, which lead to the next key question: Do students understand whether or not

their study habits are likely to lead to success on the final exam? My assumption is

that students who are actively working through ungraded practice exercises are highly

invested in learning. I wanted to know whether these students understood that their

study strategies are ineffective. To consider this key question, I combined qualitative

survey data with BitFit log data, and explore the following specific research questions

in Chapter 5:

RQ4a: How well does time-on-task differentiate between successful and unsuccessful

students?

RQ4b: How well does intended question difficulty differentiate between successful

and unsuccessful students?

24

RQ4c: Is there a difference in a student’s reflection of self-efficacy between successful

and unsuccessful students?

Chapter 6 then summarizes the findings of the four individual studies, and dis-

cusses the overall implications and contributions of this work. In the Appendix, more

information about BitFit, the exercises and hints contained in BitFit, sample surveys,

and log data can be found.

25

Chapter 2

Will Students Use BitFit?

Many of the studies mentioned in the previous chapter collected student usage data

during weekly labs or in a similar environment where students were graded on the

code produced during the session. During the time BitFit was used at the University

of Victoria, it was introduced to students as a supplemental practice resource instead

of an assessment tool. The hope was that by providing students with a pressure-

free environment to practice weekly material on their own, students would build

confidence and be encouraged to further explore, and therefore better understand,

weekly material. Because work in BitFit is completely ungraded, the idea was that

students would not feel any pressure to come up with the “right” answer in only a

certain number of attempts or within a specific time period.

Since BitFit usage was not a requirement of the course in any way, it was unclear

who, if anyone, would use it. This study looks into overall BitFit usage statistics, as

well as student feedback over the first two semesters it was used. The results of the

surveys focus specifically on student perception of BitFit. Overall, this study explores

the following four questions:

• RQ1a: Will students use a supplemental, ungraded, practice resource?

• RQ1b: What are the reasons students choose not to use a practice tool?

• RQ1c: Does using BitFit increase student confidence and metacognition?

• RQ1d: Can Bitfit improve a student’s sense of self-efficacy?

26

2.1 Methodology

The data for this study was collected over three 13-week semesters. BitFit was in-

troduced to students during the second week of the semester, and usage data was

collected from then until the end of the semester.

The total population for this study is based on the total number of students

registered in the course, meaning that students who may have dropped the course

during the first lecture, and therefore would never have been introduced to BitFit,

would be included in the statistics measuring what percentage of students chose to

use BitFit. This choice was made due to the fact that it was difficult to determine

when students who dropped the course stopped participating in class activities, so

these students could not be filtered out of the overall population. Another option

would have been to filter out all of the students who did not complete the course. As

one of the overall aims of this research is to better support student success in CS1, it

was important to include students who used BitFit and later dropped the course, as

these students are precisely one of the groups this research aims to better support.

Qualitative data was collected through surveys given out every 4 weeks throughout

the first two semesters. Participation in the study was completely opt-in; BitFit usage

and survey participation was voluntary and did not count for any course credit.

2.2 Results

First, overall BitFit usage numbers are shown, followed by overall survey results. A

number survey responses are included and discussed, to provide more perspective on

the survey results.

2.2.1 Student opt-in

Overall, 528 out of the 652 enrolled students completed at least one question in BitFit,

roughly 81%. Of the 124 students who did not use BitFit, 46 dropped from the course

very early in the semester, before submitting any graded work. There were also 36

students who did not use BitFit who participated in monthly surveys. The results on

why these students chose not to use BitFit are shown in Figure 2.1. The three most

common reasons students did not use BitFit were that they did not know about it

(39%), did not have time (31%), and did not feel like they needed extra help in the

27

39%

31%

22%

5%
3%

Why did you choose not use BitFit?

Did not know about it (39%)

Did not have time (31%)

Did not need help (22%)

BitFit was too easy (5%)

BitFit was too hard (2%)

Figure 2.1: Reported reasons students did not to use BitFit.

28

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Confidence Self-efficacy Support where
Struggling

Perceived positive impact of BitFit

Yes

No

Unsure

Figure 2.2: BitFit’s perceived impact on student confidence, self-efficacy, and support
in areas they were struggling.

course (22%).

The surveys also queried students who used BitFit about their experiences with it.

Figure 2.2 shows that 94% of students reported that BitFit improved their confidence

with course material, and 92% of students reported that BitFit helped them get a

better idea of how they stood with respect to the course content. 89% of students

reported that BitFit was effective in helping them understand areas they struggled

in. Figure 2.3 shows student responses to a question about their interest levels of

using BitFit in future courses.

2.2.2 Confidence

For the question “Did [BitFit] have any affect on how you felt before writing either

midterm? Why or why not?”, many students reported that successes in BitFit made

them feel better about their ability with course-related matter:

“It made me feel better about my syntax. I often get error messages but with the

tool it really helped me with it.”

“It definitely lowered my anxiety about the exams, and was a huge confidence booster

to see myself answering correctly.”

29

“I think I become more confident than before. It made me feel more able.”

“Improved my confidence in my programming ability.”

“I think [BitFit] gave me more confidence, because it felt good when I could do a

problem correctly.”

Students also often commented that the variety of exercises in BitFit helped to

build confidence:

“I felt more confident because I had been able to use all of the material in a variety

of code tracing and problem solving exercises”

“I found that the programming practice tool decreased my anxiety heading into both

midterms, as I felt that it was a source of higher-level questions than those found in

the textbook.”

“It boosted my confidence, as I felt I had adequate practice and understanding.”

Some of the reasons reported that BitFit did not help them feel more confident

were the following:

“No, because I did not use it very much”

“It contained some difficult questions that made me worried, however, it helped me

to learn a lot.”

“I mostly went into the midterms worried about making logic mistakes in my programs

when under stress and reading the code wrong/losing track when tracing.”

2.2.3 Self-efficacy

For the question “Did [BitFit] help you get an idea of where you stand with respect to

the course content? Why or why not?”, many students commented on the benefits of

being able to use BitFit to complement the learning from lectures and assignments:

“Yes because it progressed with the course so it was easy to check your own progress

and understanding.”

“Yes. It makes some of the material clear and gives me more experience to work it

out and think it through.”

“Yes, it helped with understanding what I needed to practice more of and what I was

comfortable with.”

30

74%

17%

8% 1%

Would you use a similar tool in the future?

Definitely (74%)

Likely (17%)

Maybe (8%)

Unlikely (1%)

Not interested (0%)

Figure 2.3: Student interest in using a similar tool in future courses, even if usage
does not contribute to course credit.

“Yes. It was good to tie it all together in questions that weren’t as big as the assign-

ment.”

“It did because of the sectioned layout; I think having a section for each chapter, and

then combining them all together with tracing and writing code is very effective to

help sort out where I was uncomfortable.”

“It was helpful in catching some small problem areas and made me think a little more.

It was also good practice in solving novel small problems rapidly rather than the large

scale types of problems presented in assignments.”

“The questions asked were a different style than those in lecture which made it a bit

more of a challenge and made sure you understood the content.”

Students also commonly reported that BitFit allowed them to better identify what

areas they needed extra practice in:

“Not all questions were same in difficulty so it showed me where I’m strong and weak

at.”

“Yes, it helped me realize that I still had more to learn in some cases, and helped me

practice that.”

“It did, because at the beginning I knew nothing and it really showed and now I know

a little bit. I don’t get the same error messages I use to!”

31

“Yes, provided immediate feedback on what concepts I had trouble with.”

“It made me realize how little I knew, which then made me study more. It was a

helpful way for me to evaluate how well I knew the topic.”

On the other hand, some students reported that BitFit was not helpful in the

more difficult problem-solving concepts found near the end of the semester, especially

during the first semester BitFit was used, when there was not a full solution available

to students:

“I think a “solutions manual” is needed in order to compare why our codes were

falling short.”

“In the first half of the course this statement holds true, but as the tone of the

course shifted from displaying that you knew how to implement certain features into

your code, and transitioned into problem solving with the material, this tool was less

capable of giving me a clear idea of how good my grasp on the material was.”

For the question “Did [BitFit] help with your understanding of the topics you struggled

with?”, many students reported that BitFit did support them:

“I often have trouble tracing code and felt that [BitFit] really helped me learn how

do to it. I also learned a lot of tricks for dealing with arrays.”

“I used to struggled with I/O coding, because there are many java grammars I need

to understand and remember. After I practiced it [in BitFit] I can understand why I

need to use it and how can I use it.”

“Yes, helped me figure out how to make sense of nested for loops and some complex

array problems.”

“Yes, the practice allowed me to identify areas that I need more practice in and

demonstrated where I was going wrong in a useful manner.”

“It did, and I think I would’ve done far worse if not for the tool.”

2.3 Discussion

Over the past three semesters, over 80% of enrolled students used BitFit. This shows

that students will use a supplemental tool, even if they are not required to as a course

requirement. Focusing only on students who chose not to use the tool, those that

reported they did not need the help stated that if the course had been more difficult

32

0

10

20

30

40

50

60

Yes No Unsure/other

Positive impact on exam grades

Midterm 1

Midterm 2

Figure 2.4: Student feedback on whether they thought using the tool improved their
exam grades

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

Where do you go for help?

Previous

Current

Figure 2.5: Student responses about where they go for help when struggling

33

Advanced
course

No change

Haven't tried any

Improved meta-
cognition

Improved confidence

0

5

10

15

20

25

30

35

40

Always Very likely Sometimes Not very likely Never

Likeliness to ask a question

Labs

Lectures

Figure 2.6: Student responses about how likely they were to ask a question in a lab
or lecture when they need clarification

34

they likely would have used the tool for some of the more challenging material. It

is unfortunate that 39% of the students who did not use BitFit reported they did

not know about it at the time of the survey. BitFit was mentioned multiple times

in lectures, labs, and through the course announcement system (which displays the

announcement on the course website and also e-mails it to all enrolled students). The

combination of students who did not know about the tool and those that did not feel

like they had time to use it make up 70% of the group who did not use the tool.

This is an issue what warrants future investigations, as is it unclear if this problem is

associated with how well students receive information and instructions, or if certain

students do not believe working through exercises is a valuable way to spend study

time.

The survey results highlight how well BitFit was received by students who did

use it, both as a practice resource to build confidence, and as a way students could

measure their own progress with respect to course content. In addition to supporting

student confidence in programming, many students commented about how BitFit

helped them with code tracing. Code tracing exercises are introduced in lectures,

and require keeping track of memory and generated output. This feedback highlights

the importance of including both code reading and writing exercises.

Without adding any additional material to BitFit, students also report that they

felt that it was an adequate resource for exam preparation. The semester following

the one students used BitFit in, students were given a survey to compare BitFit to

other exam preparation resources. BitFit was the most preferred resource for most

students (61%), the second most preferred being access to old exams (31%). Most

of the negative feedback on BitFit came when the hint system provided only high-

level guidance for each question, during the first semester BitFit was used. Based on

student feedback, code solutions were added into the hint system, providing students

with a full solution to each problem.

2.4 Summary

This results of this study suggest that BitFit, a voluntary online learning tool, will

be used by the majority of students, even if no course credit is awarded for using

BitFit. Survey results also illustrate that students feel using BitFit increased their

confidence and self-efficacy. Students were also interested in using a similar tool for

courses in the future.

35

There is now a question repository that has over 100 questions throughout mul-

tiple topic areas. Very little overhead is required for other instructors interested in

integrating BitFit into their own course; I hope that the tool and question repository

can continue to evolve if educators from other institutions are interested in using

either the tool or questions in their own courses.

This study only reports on student perceptions of the impact BitFit had on their

levels of confidence and progress in course material. In the following study, interaction

patterns collected by BitFit are analyzed to try and identify patterns associated with

success in the course. The impact that using BitFit may have on student success rates

is also an important question, but difficult to measure. Dividing students into two

groups and splitting access to BitFit may be the easiest way to achieve a controlled

study, but that was not an option in this course, so I wan unable to do such a study.

It is my hope that as a community we can develop a different methodology that

allows us to explore the impact and effectiveness of tools and other resources built to

support learning and success in computer science education.

36

Chapter 3

How Do Students Use BitFit?

The findings of the previous chapter reveal that over 80% of the students who initially

enrolled in the course over three semesters used BitFit. It was important that data

from a large proportion of the student population was accessible, as I wanted to

compare the workflow data of students from a number of different grade outcomes.

The previous study reported on overall usage and student perception of BitFit, but

did not look into BitFit usage data or connect it with student grades in any way. This

study begins to explore the collected log data, and aims to identify trends associated

with overall course performance. The hope is that if potentially unsuccessful students

can be identified early in the semester through log data analysis, instructors may be

able to support these students before it is too late. This motivated the key research

question behind this chapter: Can interaction patterns with BitFit predict a student’s

outcome in the course? To answer the key question, in this chapter I consider the

following four intermediate research questions:

• RQ2a: How well do students’ levels of engagement with the learning tool pre-

dict success in the course?

• RQ2b: Can a practice tool identify differences in workflow behavior between

successful and unsuccessful students?

• RQ2c: What are the metrics associated with success and failure?

• RQ2d: How well do metrics identified by the tool predict success?

• RQ2e: How early in the semester can at-risk students be identified?

37

53
131 7

462

0

100

200

300

400

500

600

At-risk Succeeding early

Pass Course

Fail course

Figure 3.1: Course pass rates grouped by the “at-risk” identification metric two weeks
into the course.

3.1 Methodology

For the purposes of this study, a grade of 50% or higher is a pass, and less than

50% or unsubmitted is a fail. Three semesters are considered, involving four different

instructors, as Semester 3 was broken into two sections, each taught by a different

instructor. An effort was made to cover the same concepts, and the assignments,

exams, and grade boundaries were designed to be consistent between offerings. BitFit

was introduced during the second week of all three semesters of this study.

A mixed-method approach is used, involving both quantitative and qualitative

results. Similar to the previous study, BitFit was introduced during the second week

of the semester, and data is collected from then until the end of the semester for log

analysis. Surveys distributed every four weeks throughout each semester collected

feedback on BitFit features and student progress. This feedback was used to refine

features in BitFit, and compare student perception of success with usage data and

course performance.

3.1.1 Objectives

The staged objectives of this study were to (1) determine how opting out of the tool

was correlated to at-risk behavior; and (2) investigate whether interaction patterns

38

-1

-0.5

0

0.5

1
Questions

Compiles

Submissions Repeated Hints

Hints
Fails (36)

Mid (55)

Top (36)

Figure 3.2: Standardized usage trends for the 127 students who used BitFit during
Semester 1. Units for each axis are denoted by standard deviations from the mean
(0).

39

with different features of the tool can be used to differentiate between successful and

unsuccessful efforts to learn the material.

Previous studies show that performance on early coursework correlates with final

exam scores [2, 31, 89]. I first investigated whether similar predictors could be used

in this study to account for students who chose not to use BitFit.

The remaining objective was to investigate whether unsuccessful students can be

identified through BitFit interaction behavior. To reach this objective, I combined

quantitative BitFit data with qualitative feedback collected from monthly surveys.

Features in BitFit were refined each semester. The refinements were largely driven

according to students perceptions of success.

3.1.2 Threats to Validity

In terms of external validity, the limited number of semesters may not be represen-

tative of the general population. Those conducting the qualitative surveys identified

themselves to the students throughout the semester, which may have introduced bias

into survey responses and BitFit usage. Internal threats include behavior patterns

such as students initially exploring features of the tool to familiarize themselves with

it, skewing early usage patterns. Students sometimes studied in groups, affecting

each individual’s usage data for the questions solved together. Some questions were

refined between semesters, and the hint system was restructured between Semesters

1 and 2. Students’ previous computer and programming experience were not taken

into account for this study. Students who had previously failed the course were able

to retake the course, and would have some familiarity with the questions on BitFit.

3.2 Results

First, I wanted a metric to classify students as at-risk as early as possible in the

semester that accounted for students who did not use BitFit. I investigated the 106

students who failed one of the first two assignments, and found that 84 of them

eventually failed the course (79%). From this group, there were 60 students who also

did not use BitFit, with an 88% fail rate. I define this group “At-risk”, satisfying the

first objective to accurately identify students who are unsuccessful early, potentially

due to a late start.

Next, I wanted to better classify the 593 students in the group labeled “Succeeding

40

Early” in Figure 3.1 based on their BitFit behavior. Although only 131 out of these

students failed the course (22%), these 131 students make up 71% of the overall

number of course fails. The experiment is designed to investigate whether it is possible

to differentiate successful students from unsuccessful students in this group based on

interaction patterns found in BitFit usage data.

Radar plots are used to show the differences in BitFit usage between student

groups. The axes represent the standardized average number of unique questions

attempted, compile attempts, solution submissions, hints, and the number of times

previously viewed hints were requested when revisiting a question. Each axes ranges

from -1 to +1 standard deviations from the mean (0).

Unsuccessful students are compared with the same number of students performing

at the top of the class, the third group is composed of the remaining students. Using

this breakdown, Figures 3.2 through 3.6 compare three groups:

• Fails: the n students who failed the final exam

• Top: the top n students based on final exam scores

• Mid: the remaining students (total BitFit users - 2n)

3.2.1 Semester 1

The first semester BitFit was used, 156 out of 199 students attempted at least one

question on BitFit, and 126 students participated in the study. A multiple regression

analysis revealed that the number of questions attempted (p < 0.01) and questions

answered correctly (p < 0.05) positively and significantly correlated with final exam

grades. As shown in Figure 3.2, top students attempted more questions, compiled

more code, and submitted more solutions. Hints were not used very often by any

student group.

Qualitative Feedback

During Semester 1, hints provided high-level guidance on how to solve problems, but

did not include code. I learned the following from surveys distributed throughout the

semester:

• The most common Suggestion for improvement was to provide a full solution

to each problem (47%).

41

-1

-0.5

0

0.5

1
Questions

Compiles

Submissions Repeated Hints

Hints
Fails (5)

Mid (32)

Top (5)

Figure 3.3: Usage trends for the 42 students who used BitFit during Semester 2.

42

-1

-0.5

0

0.5

1
Questions

Compiles

Submissions Repeated Hints

Hints
Fails (37)

Mid (195)

Top (37)

Figure 3.4: Usage trends for the 269 students who used BitFit during Semester 3.

• Students also commonly requested more questions (18%), and a larger variety

of difficulty (11%).

• When asked where students went for help when stuck, the most common re-

sponses were: the Internet (66%), friends (58%), the Assistance Centre (12%),

and instructor office hours (10%).

BitFit’s hint features were restructured between semesters to allow access to a

full solution to each problem. This change was made to accommodate the factors

students perceived to be necessary for success. The question repository was also

updated, to provide a more comprehensive coverage of all course topics and a wider

range of exercise difficulties.

3.2.2 Semesters 2 and 3

In Semester 2, 53 out of 64 students attempted at least one question on BitFit, and 42

students participated in the study. Figure 3.3 shows BitFit usage trends for the full

semester. Although many students did utilize the hint features during Semester 2,

25% of the total hint requests were made by the five students who failed. This group

of students also frequently requested the same hints previously seen when revisiting

a question, as denoted by the Repeated Hints axis. Programming trends were very

similar to those found in Semester 1, with top students attempting more questions,

43

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Compiles Hints Revisited Hints

Top (37)

Mid (195)

Fails (37)

Figure 3.5: Average values for number of compiles and hint usage per question during
Semester 3.

44

-1

-0.5

0

0.5

1
Questions

Compiles

Submissions Repeated Hints

Hints
Fails (36)

Mid (165)

Top (36)

Figure 3.6: First two weeks of Semester 3 BitFit data.

and compiling and submitting more code. No changes were made to the hint features

between semesters 2 and 3.

In Semester 3, 319 out of 389 students attempted at least one question on BitFit,

and 269 students participated in the study. Questions attempted (p < 0.01), solutions

submitted (p < 0.01), and correct solutions (p < 0.05) were positively and significantly

correlated with final exam grades, while the number of repeated hints requested (p

< 0.05) was negatively and significantly correlated with final exam grades.

Figure 3.4 shows student usage trends for Semester 3. Similar to Semester 2,

some well-established trends can be seen with respect to compilation numbers and

hint usage. Looking at BitFit usage on a per-question basis, these trends are even

more pronounced, as shown in Figure 3.5. Failing students compiled 3 times less per

question, but requested 4 times as many previously viewed hints as top students.

Looking specifically at the BitFit usage patterns of students with the biggest rise

or drop in performance on the midterm versus final, interaction patterns with tool

features align with the established successful/unsuccessful trends. Figure 3.7 shows

that the 12 students with the biggest drop in exam scores exhibit behavior associated

with unsuccessful students, whereas students whose grades increased the most exhibit

patterns similar to top performing students.

45

Repeated Hints

-1

-0.5

0

0.5

1
Questions

Compiles

Submissions Repeated Hints

Hints

MT > FE (12)

MT < FE (12)

Figure 3.7: Semester 3 BitFit data for the 12 students with the biggest score differ-
ences between the first midterm (MT), and final exam (FE).

46

-1

-0.5

0

0.5

1
Questions

Compiles

Submissions Repeated Hints

Hints

Fail Course

Pass Course

Figure 3.8: BitFit data from the first two weeks for students who pass the first two
assignments.

Qualitative Feedback

Student survey feedback about hint features was positive in Semesters 2 and 3. All

students selected either “Helpful” or “Extremely Helpful” on a 5-point Likert scale.

Students in the failing group most commonly reported that they used hints to ini-

tially learn the material as well as when they were stuck. Students in the top group

most commonly reported that they used hints to compare their solution with “an

instructor’s solution”. At five weeks into the semester, 36 of the participants had not

yet attempted a question on BitFit. Of these 36, 14 students reported they did not

know the tool existed, 11 that they did not have time to use it, 8 did not feel like

they needed any help, 2 found the material on BitFit too easy, and 1 student found

it too difficult.

3.3 Analysis

Semester 3 had the highest number of participants, so I took a closer look at some of

the aforementioned results to further analyze BitFit usage trends. First, I highlight

how the findings of this study support the notion that at-risk students can be identified

as early as two weeks into the semester, and how to potentially decrease false positives

by sharpening a metric for engagement. Then semester-long trends are discussed, with

particular focus on the effectiveness of using interaction patterns collected in BitFit

47

to identify unsuccessful students who were not identified early. Given that these

students demonstrate engagement, the disparity between their perception of successful

behavior and actual learning can be identified in their patterns of interaction with

BitFit.

3.3.1 Early Identification

Figure 3.6 shows standardized BitFit usage over the first two weeks of Semester 3.

Compared to the semester-long data (Figure 3.4), differences between failing and

passing students are not as pronounced, but trends are already beginning to develop

with respect to the number of question attempts, compilation rates, and hint usage.

Only 22 of the 77 students (29%) that failed one of the first assignments used BitFit

during the first two weeks of the semester, compared to 211 of the 313 students

(67%) that passed both assignments. Figure 3.9 shows the usage trends between

these two groups two weeks into the semester. The at-risk group attempted 13%

fewer questions, compiled 33% less often, and requested 71% more previously viewed

hints than passing students. Even early in the semester, the at-risk group engaged

in activity that the qualitative results suggest align with what students incorrectly

perceive as successful behavior.

Focusing only on students who passed the first two assignments, Figure 3.8 shows

BitFit usage trends over the first two weeks of the course. Although students who

ended up failing the course did request more hints and compiled slightly less than

students who passed, usage trends are similar enough that it would be very difficult

to identify students individually. At this point in the semester, these students had

passed all graded work, so it is possible that they did not yet exhibit study habits

associated with students at-risk of failure.

Figure 3.10 shows semester-long data for the same sets of students. Throughout

the semester, the differences between students who pass and those who fail become

increasingly pronounced. This suggests that although it may be difficult to iden-

tify potentially unsuccessful students after two weeks, certain trends develop as the

semester progresses. Students who succeed with early material but end up failing

increasingly exhibit trends associated with at-risk behavior.

48

-1

-0.5

0

0.5

1
Questions

Compiles

Submissions Repeated Hints

Hints

At-risk (22)

Passing (211)

Figure 3.9: At-risk behavior patterns in Semester 3.

49

-1

-0.5

0

0.5

1
Questions

Compiles

Submissions Repeated Hints

Hints

Fail Course

Pass Course

Figure 3.10: Semester-long BitFit data for students who pass the first two assign-
ments.

3.3.2 Overall Trends

Based on the analysis of data collected over three semesters of the course, the overall

trends are as follows:

• Many at-risk students can be identified with high certainty as early as two weeks

into the semester.

• Low compile rates combined with high, repeated hint usage are behaviors asso-

ciated with at-risk students.

• At-risk students exhibit this behavior early, and continue to exhibit such be-

havior throughout the semester.

• Successful students attempt more questions, and their behavior is characterized

by a high number of code compilations and submissions.

• Workflow patterns of students who succeed with early material but struggle

later become increasingly similar to at-risk behavior.

Over the three semesters BitFit was used, 184 out of 652 (28%) students failed the

course. Figure 3.11 shows the distribution of at-risk students identified throughout

this study. Overall, the metrics used in this study identify 149 out of the 184 (81%)

students who failed over the three semesters.

50

29%

52%

19%

At-risk early

BitFit behavior

Undetected

Figure 3.11: Proportion of failing students identified.

51

3.4 Discussion

This study shows that interaction patterns students may have perceived to be asso-

ciated with success (accessing a solution) did not always result in effective strategies

for learning. A number of students frequently requested all of the hints on a question,

but never compiled any code. This behavior was exhibited most commonly by stu-

dents who ended up failing the final exam. With the way data is collected in BitFit,

it is not possible to see if there was any code written, only that the student did not

choose to compile any code before leaving the question.

In response to student surveys, full solutions were added to BitFit. Although

many at-risk students repeatedly failed graded coursework throughout Semesters 2

and 3, 100% of survey participants reported that the hints were helpful. Based

on qualitative results from survey data, students believe that solutions assist their

success. This might be true for students who use solutions to check their answers,

but does not appear to be true for students who keep revisiting solutions without

compiling any code.

This mismatch between perception of success and course performance warrants

further investigation. Perhaps some students believe that they can learn more effi-

ciently by memorizing a solution to a problem instead of working through a question

to understand the problem-solving process. Students who were successful early but

who went on to fail the course increasingly exhibited these ineffective study habits.

For upcoming semesters, one possibility is to to refine the hint system to restrict

users from accessing a full solution without first writing and compiling code. Another

option would be to allow students to see an instructor solution only after they pass a

certain number of test cases.

From a pedagogical perspective, it is not helpful to provide a full solution that

accounts for edge cases to students who do not yet understand how to begin to solve

a problem. BitFit must allow struggling students to be supported, but also must

convince all students that writing and exploring their own code enhances learning

more than viewing a solution to a problem does.

3.5 Summary

This analysis of 652 students over three semesters of the CS1 course at the University

of Victoria provides evidence that almost 30% of at-risk students can be identified

52

within the first two weeks of the semester. Perhaps more importantly, the results

reveal that students who succeed on early topics but end up failing the course exhibit

identifiable patterns of interaction with BitFit based on their compilation to hints-

viewed ratios. Overall, the metrics introduced in this study identify 81% of the

students who end up failing.

Looking into the BitFit data, at first glance it may seem that failing students

simply work less than successful students. To a certain extent this may be true, but

many failing students use BitFit heavily—an ungraded practice resource. The fact

that these students are using BitFit suggests they want to succeed with the material.

One possibility is that some students think that their study habits and methods of

learning are correct, and are unaware that memorizing a solution is not an effective

way to learn CS1 material.

In future research, I plan to do an analysis of questions split by topic and difficulty,

as all questions were treated equally for this study. In addition, I plan to collect

feedback from students about their own progress, and link this with BitFit data

collected throughout the semester.

It is critical to understand precisely why students engage in ineffective learning

behavior to be able to determine how to best guide at-risk students towards habits

that better enable success. I have shown that tools like BitFit are able to identify at-

risk students early in the semester, but many questions still remain about how to best

provide intervention to support all students. Beyond this, it is difficult to evaluate the

effectiveness interventions aimed at improving study habits have on overall student

success rates.

I plan to continue research focused on better understanding where, when, and

why students exhibit different workflow patterns. As we as educators continue to

learn more about why certain students do not engage with learning opportunities

effectively, we can continue to improve support initiatives to reach an increasingly

broad population of students. I hope that such efforts will result in a more diverse set

of strong, empowered programmers, and better success rates in our computer science

programs.

53

Chapter 4

What Does Learning Look Like?

The results in the previous chapter suggest that it is possible to identify low-performing

students, who tend not to recover, within the first few weeks of the semester. The

analysis of BitFit log data was also used identify different patterns commonly as-

sociated with high and low-performing students. If low-performing students can be

identified, and patterns associated with top perfroming students are known, it may

seem like it should be easy to guide struggling students towards success. Unfortu-

nately, guiding a struggling student towards programming behaviour associated with

a top performing student may not be an effective support strategy. First of all, be-

cause many students enter CS1 courses with a wide variety of previous experience,

a top performing student may not be the student who learned the most through-

out the semester. It is unrealistic to expect an inexperienced and struggling student

to be able to smoothly shift and begin to exhibit programming behaviour similar

to a student with previous programming experience. Instead, I wanted to identify

which students were learning effectively throughout the semester, and model support

strategies around these students. This required that I identify what learning looks

like in BitFit log data.

Learning can be defined as an enduring change in behaviour, which results from

practice or other forms of experience [102]. This study builds on the previous results

by investigating whether the metrics used in the early predictors of student perfor-

mance can be improved through an analysis of log data that measures changes in

programming behaviour over time. If patterns associated with effective learning can

be automatically classified in log data early in the semester, it may be possible to

better guide students at-risk of failure towards more productive learning behaviour

before it is too late. This motivates the key research question behind this study: Can

54

analysis of patterns in interaction data help us understand how to detect and measure

learning in CS1? To answer the key question, this analysis considers the following

intermediate research questions:

RQ3a: How accurately do early predictors of performance identify students who are

unsuccessful in the course?

RQ3b: How well can early predictors be improved by a trajectory metric that clas-

sifies behavioural change over time?

RQ3c: How well can the trajectory metric be extended to evaluate differences in

proficiency across topics?

4.1 Methodology

In a recent ITiCSE Working Group, Ihantola et al. [53] identify the critical need

for validation and replication studies, to better understand contributing factors and

reasons for results. In the taxonomy for replicating studies they propose, I begin

with an ‘extended analysis (A)’ type of verification study, as it extends the study

done in the previous chapter by looking at a previously analyzed data set, but adds

new analysis methods. To enable other researchers to do other types of reproduction

studies, I provide a repository1 containing the open-source learning tool used for this

study, the interaction data collected over the past 2 years, and a number of interactive

visualizations based on the analysis.

4.1.1 Data collection

The data for this study was collected over four semesters from the same 13-week

CS1 course taught in Java. Topics covered include variables, control flow, methods,

conditionals, loops, I/O, arrays, searching and sorting algorithms, and objects.

Interaction data is collected from BitFit, a programming practice tool. BitFit use

was completely voluntary, and does not affect student grades in any way. Students

use an embedded editor to work through exercises in a web-browser. The tool is

introduced as a supplemental practice resource offering exercises similar to those

presented during weekly labs. The tool provides automatic feedback to students on

submission correctness. Buttons to compile code, run code, submit a solution, get a

1www.github.com/aestey/BitFit/

55

hint, and ask a question are all instrumented to collect student interaction patterns.

As an optional feature, students can use a series of hints that progressively lead them

through each question, and the final hint provides a full sample solution.

Data was collected from the 514 students who opted to take part in this study,

out of the 718 enrolled in the course over the past four semesters. Log data was

linked to final exam scores, which were standardized to account for potential changes

in difficulty between semesters.

4.1.2 Early predictors

In the previous chapter, I found that, on average, high-performing students had higher

compile rates and lower hint usage than students who failed. In this study, I first

examine how effective these metrics are as early predictors for identifying individual

students who are at-risk of failing. This first analysis considers data collected three

weeks into the semester.

4.1.3 Trajectory metrics

I then extend the early analysis to further explore whether early predictors can be

refined by comparing changes between subsequent programming sessions. To detect

students who struggle early in the semester, and continue to struggle over time, I

introduce two metrics:

Baseline: the metric calculated to provide an initial measure of proficiency on each

question attempted.

Trajectory: the metric calculated to quantify changes in programming behavior over

subsequent attempts.

As students work through practice exercises, they are given a score between 0.0

and 1.0 based on their compile and hint usage. A score of 0.0 on a question denotes

that only hints were used, and no code was compiled. A 0.25 means hints were used

before any code compilations. A 0.5 value represents a comparable split between

unassisted progress and hint usage. If progress was made with minimal support

a 0.75 is awarded, and a score of 1.0 signifies that a student worked through the

question correctly without using any hints. The value of the baseline metric ranges

between 0.0 and 1.0, and is calculated by averaging the individual question scores for

each student’s first attempt on each question. Table 4.1 shows sample data for two

56

students, and their associated baseline metric values.

Q# Behaviour Score Baseline

Student A

1 CCC 1.0

0.88
2 CCCCC 1.0
3 CCCCCCCCC 1.0
4 CCCHHHCC 0.5

Student B
1 HHHHH 0.0

0.252 CCHC 0.5
3 HHHHCHH 0.25

Table 4.1: Baseline metric showing the number and order of hints and compiles for
each question (Q#)

The trajectory score measures changes in programming behaviour across program-

ming sessions. Sessions are determined by time stamps, and are delineated by periods

of time when a student does not interact with the learning tool for more than two

hours. Whereas the baseline metric represents the average question score during each

student’s first attempt, the trajectory score represents the changes in scores between

attempts. The trajectory score considers only data from exercises revisited when a

correct solution was not submitted in previous attempts. When comparing individ-

ual scores between subsequent attempts, a value above 0.5 represents a change in

behaviour towards unassisted progress, whereas below 0.5 signifies that hints were

requested earlier or more often.

Unsuccessful students may not show signs of struggle until later in the semester, or

may only struggle to progress through certain course material. The trajectory metric

is also applied to interaction data separated by topic, to identify at-risk behaviour

related to a specific topic.

The metric calculations are not yet a feature included in the tool, and were com-

pleted as a post-process using interaction data collected by the tool.

4.2 Results

First, I explore how well early predictors can be used to identify students in need of

assistance. I then explore whether the accuracy of early predictors can be improved

by measuring changes in learning behaviour over time with the trajectory metrics.

57

(a) (b) (c)

(a) (b) (c)

Figure 4.1: (a) Standardized final exam scores, hint usage, and compilation numbers
for 514 students over four semesters. Students who passed the final exam are repre-
sented with green lines, red lines represent failure. (b) Students with below average
hint usage and above average compile rates are selected, as highlighted by the rect-
angles on the axes. Among this group, only 4 students, represented by red lines, were
unsuccessful on the final exam. (c) Selects students with above average hint usage
and below average compile rates.

4.2.1 Early predictors (RQ1)

Figures 4.1 and 4.2 show standardized compilation attempts, hint usage, and final

exam scores for student population in this study. The graphs are colored based on

exam performance, green representing passing grades and red failure. Figure 4.1a

illustrates the variation across student data sets collected for the study. The goal was

to examine how well compile rates and hint usage can be used to identify students

struggling early in the semester. Figure 4.1b selects only students with below average

hint usage and above average compilation rates, as highlighted by the shaded rectan-

gles on the axes. Only 4 of the 94 students who were unsuccessful on the final exam

exhibited this behaviour. These 4 students represent the relatively small number of

false negatives. Conversely, Figure 4.1c shows students with below average compi-

lation rates and high hint usage, where 76 of the 94 (81%) students who received a

failing final exam grade are shown.

Figures 4.1b and 4.1c suggest that, in general, high compile rates and low hint

usage correlate with success. Hint and compile rate scores for each student positively

and significantly correlate with midterm exam grades (p < 0.01), and also final exam

grades (p < 0.01). This does not mean, however, that these early predictors can

be used to accurately identify only students who are genuinely at-risk of failure. At

this point in the semester, it is very difficult to distinguish between the 257 students

identified as at-risk; Figure 4.1c illustrates the wide range of final exam grades for

these students. Table 4.2 shows that 181 of the 257 students appeared to be struggling

early, but managed to succeed on the final exam without intervention. These 181

students make up 43% of all students who succeed in the course, a relatively high

false positive rate.

58

Classification: At-risk Not at-risk Total

Fail exam 76 18 94

Pass exam 181 239 420

Table 4.2: Early at-risk identification

(a) (b)

(a) (b)

Figure 4.2: (a) students identified as at-risk by the baseline metric, shown by the
rectantangles selecting above average hint usage and below average compile rates.
(b) students who would be filtered from (a) by the trajectory metric, dropping the
false positive rate from 43% to 11%, and the true positive from 81% to 70%.

4.2.2 Trajectory over time (RQ2)

The trajectory metric considers data from exercises revisited when a correct solu-

tion was not submitted in previous attempts. Negative trajectory scores represent

instances where students are actively struggling to complete an exercise over multiple

subsequent sessions.

Figure 4.2a differs from Figure 4.1c in that an additional axis is added repre-

senting trajectory scores. Figure 4.2a shows the wide range of final exam outcomes

achieved by the 257 students considered in the trajectory metric analysis. Apply-

ing the trajectory metric filters out 134 false-positives, reducing the number from 181

(43%) to 47 (11%), while true positives dropped from 76 (81%) to 63 (70%). The stu-

dents who would be filtered out through trajectory analysis are shown in Figure 4.2b.

Overall, using the trajectory identifies 70% of the students who failed, while 11% are

mis-classified as at-risk. Table 4.3 summarizes overall trajectory results.

Applying the trajectory metrics demonstrated precisely how the accuracy of the

early results can be improved by considering changes in behaviour across programming

sessions. The trajectory metric analysed the population of students identified by early

analysis as potentially at-risk, and was used to more accurately identify students

who were genuinely at-risk. Among this group, the trajectory score positively and

significantly correlates with midterm exam grades (p = 0.02), and final exam grades

(p < 0.01).

The trajectory metric results reveal that many students exhibit quantifiable changes

in behaviour over time. However, it is entirely possible that students I claim to be

59

(a) (b) (c)

(a) (b) (c)

Figure 4.3: a) standardized final exam grades along with loop and array trajectory
scores for data collected 6 weeks into the course. b) selects only students with positive
trajectory scores on loop exercises. c) selects only students with positive trajectory
scores on arrays.

mis-classified were identified accurately based on their behaviour at the time of the

analysis. As there were a limited number of topics available in the programming

tool at this point in the semester, the next step in the study explores if unsuccess-

ful students who were still mis-classified could be properly identified based on their

interaction data collected from later topics.

Classification: At-risk Not at-risk Total

Fail exam 63 31 94

Pass exam 47 373 420

Table 4.3: Identification after trajectory filter

4.2.3 Trajectory on a topic basis (RQ3)

To measure changes in programming behaviour across topics, an analysis was per-

formed on data collected at the end of the sixth week of the course. At this point,

loops and arrays were two of the available topics in the tool. For the 223 students

who completed and revisited exercises on both topics, Figures 4.3 and 4.4 show final

exam grades along with scores generated by the trajectory metric applied within each

topic.

Figure 4.3a shows the entire population of participants in this part of the study,

whereas Figure 4.3b selects only students with positive trajectory scores on loop

exercises. Of the students who ended up passing the course, 172 (95%) of them have

positive trajectory scores on loops exercises compared to 31 (78%) of students who

failed the course. Figure 4.3c selects students with positive trajectory scores on array

exercises. At this point in the course, 125 (69%) students who passed the course

exhibit this behaviour, compared to only 9 (23%) students who failed the course.

Table 4.4 summarizes these results.

Figure 4.4b and Figure 4.4c illustrate how productivity levels may be different

60

between topics. Figure 4.4b selects students with positive trajectory scores on both

loops and arrays. Among students who pass, 122 (67%) exhibit this behaviour, com-

pared to only 8 (20%) failing students. Figure 4.4c selects students with positive

trajectory scores on loop exercises, and negative scores on arrays. Figure 4.4c illus-

trates how 25 (63%) of the students who ended up failing the course transition from

a positive trajectory score on loop exercises to a negative productivity score on array

exercises.

The results illustrate distinguishable changes in behaviour across topics, especially

among the studentswho eventually fail the course. Among this group, the percent-

age of students identified as at-risk grows by 57% when comparing interaction data

collected on loop exercises to data collected on array exercises. This illustrates that,

in addition to applying trajectory metrics to measure changes in behaviour over time

within a single topic, measuring behavioural changes across multiple topics may also

reveal students struggling in very specific areas of the course.

Loops Arrays
Classification: At-risk Not at-risk At-risk Not at-risk

Fail exam (40) 9 31 31 9

Pass exam (182) 10 172 57 125

Table 4.4: Trajectory metric across topic areas

4.3 Analysis and Discussion

In this work, I explored whether behaviour patterns can be found in interaction data

that allow for dynamic classification of learning in CS1. The results support the

findings of previous studies that suggest that a large number of at-risk students can

be identified early in the semester. On the other hand, the new approach using the

(a) (b) (c)

(a) (b) (c)

Figure 4.4: (a) the full data set without any filters applied. (b) selects students
with positive trajectory scores on both loop and array exercises. c) selects students
with positive loop scores and negative array scores. Of the 40 students who failed
the course in this data set, 63% students exhibit these changes in behaviour between
topic areas introduced two weeks apart.

61

trajectory metric highlights the fact that many students struggle at different times,

and in different topics, throughout the semester.

It is important that we continue to improve the efficacy of early predictors in

CS1; struggling students need to be identified and supported as early as possible in

the semester. It is also important to acknowledge that there may not be a single

metric that can accurately predict the outcome of every student at one particular

time, simply because learning takes place over time. Although the early predictor

used in this study correlates with final exam performance, the correlation strength

was increased by a relatively large group of students who were able to consistently

work through practice exercises without assistance and also achieve very high exam

grades. Previous work suggests that many of these students may have entered the

course with previous programming experience, which may have contributed to the

fact that I did not measure significant behavioural changes for them. This motivates

the key research question of this study: can analysis of patterns in interaction data

help us understand how to detect and measure learning in CS1?

There was significantly more noise, variation, and change over time found in the

data collected from the remaining students included in the study. The variation

made it very difficult to distinguish between the large number of students initially

identified as at-risk. This illustrates why a static predictor that correlates with course

performance does not necessarily mean it can accurately detect at-risk students. The

trajectory metric was incorporated into the analysis because the students I want to

identify and support are not necessarily the students who enter the course without

strong programming ability, but those who remain unable to demonstrate progress

without assistance.

The results of this study illustrate how the trajectory metric was used to increase

the accuracy of early predictors in identifying at-risk students, but I made no mention

about how the metrics could be used to identify learning. In this study, early predic-

tors classified 257 students as at-risk based on their programming behaviour over the

first three weeks of the semester. Among this group, the trajectory metric identified

134 students who showed productive changes in programming behaviour over time. If

learning can be defined as an enduring change in behaviour, it can be argued that this

analysis reveals that these 134 students demonstrated learning. These 134 students

make up 52% of the 257 students identified by the early predictor analysis as at-risk.

If we can better understand the reasons why these students transition from at-risk

behaviour to behaviour associated with success, it may serve as a model from which

62

to base intervention efforts aimed at supporting struggling students.

This study differs from previous works that analysed early predictors in CS1 be-

cause I incorporate metrics that measure behavioural change over time. In this study,

these metrics were used to improve the accuracy of early predictors, but measuring

learning is not limited to these specific metrics. Although in this study I created met-

rics to detect high-level changes in programming behaviour, the same general metrics

can be applied to similar studies focusing on other factors that contribute to success

in CS1, assuming the data collected allows for the following:

– Data points to generate a quantifiable measure.

– Capability to identify each student individually.

– Time stamps to evaluate change over time.

– Data recorded on the same or very similar exercises to compare between students

and analyze progress.

These provide a guideline for what I found was necessary to measure changes in

programming behaviour in CS1, but the metrics can be extended and improved in

future work. It is important to recognize the limitations and threats to validity of this

study. Students enter the course with a wide range of previous experience, and the

factors that may contribute to student success outside of programming behaviour are

not considered in this study. Also, the analysis includes only the data from students

who both chose to use the practice tool and also consented to take part in the study.

The analysis metrics penalize hint usage, but students may not view hints only

when struggling to solve an exercise. A student may exhibit different behaviour when

learning a new concept or preparing for an exam, but I did not incorporate any

session-specific behaviours into the metrics. The analysis metrics also do not take

question difficulty into account. For the baseline metric, if a student was to skip

through easy questions in a topic, and was then unable to progress through a difficult

exercise without hints, this behaviour would result in a lower score than successfully

completing trivial exercises without assistance. Similarly, for the trajectory metric,

it may be important to know if a student is revisiting and struggling to complete an

introductory question or a question designed to be challenging.

Despite these limitations, the results of this preliminary study using trajectory

metrics are encouraging, and it is my hope that these findings measuring changes

in behaviour might inspire other researchers to incorporate metrics that consider

behavioural change into their own analysis.

63

4.4 Summary

This study presents an analysis of interaction data collected from 514 students work-

ing on exercises in BitFit, to help understand how to detect and measure learning in

CS1. I first explored early predictors of at-risk behaviour, after which I proposed two

metrics, baseline and trajectory, that I used to quantify changes in student behaviour

over time and in different course topics. I then showed that these metrics are better

at differentiating between sustained versus transient struggling.

I identify and describe several issues that arise when trying to identify struggling

students. In future work, I plan to investigate whether interaction data can help

me apply a difficulty rating to each exercise. Then, I can evaluate whether the

analysis metrics can be improved by factoring question difficulty into the analysis.

I also suggest collecting information on the objectives of the students during each

session, as this information may provide additional context allowing educators to

better understand the factors contributing to measured outcomes in their analysis.

I am also interested in further analysing the interaction data of students who did

not show productive changes in behaviour. My assumption is that students who are

actively working through ungraded practice exercises are highly invested in learning.

Unfortunately, 63 students in this study exhibited patterns associated with sustained

struggle. Further analysis may reveal patterns among these students that can be

generalized as impediments to success in CS1.

In my following work, I plan to further explore the interaction data of the students

initially identified as at risk in this study. Further analysis using different metrics

that compares the interaction data of students who show changes in behaviour with

those who do not may reveal interesting patterns related to the learning process.

As a community, once we better understand the factors contributing to behavioural

change, we can begin providing supportive intervention aimed at guiding struggling

students towards productive behaviour.

64

Chapter 5

Do Students Know How to

Prepare for Exams?

In the previous chapter, the analysis focused primarily on the group of students iden-

tified by early predictors as at-risk. By identifying changes in programming behaviour

over time, I was able to differentiate between transient and sustained struggling. In

this chapter I try to begin to understand why students exhibit certain programming

behaviours. Surveys asked students to report on their perceived progress through dif-

ferent course topics, and responses are connected with BitFit log data. I hoped that

the survey responses of struggling students might provide insight on how to better

support them.

The key question for this study is: Do students understand whether or not their

study habits are likely to lead to success on the final exam? The following specific

questions were explored to answer this question:

RQ4a: How well does time-on-task differentiate between successful and unsuccessful

students?

RQ4b: How well does intended question difficulty differentiate between successful

and unsuccessful students?

RQ4c: Is there a difference in a student’s reflection of self-efficacy between successful

and unsuccessful students?

65

5.1 Methodology

In this chapter I also consider BitFit data collected during a fourth semester in which

BitFit was used in the same course. For the quantitative BitFit data, final exam

scores were standardized each semester, and students were split into three groups

based on their standardized final exam score: students who were unable to pass the

final exam (<-0.8 standard deviations below the mean), identified as the Low cohort;

students with an A letter grade on the final exam (>0.8 standard deviations above

the mean), called the High cohort; and the remaining students were labeled as the

Mid cohort. Overall for this study, 101 students were placed in the Low cohort, 274

in the Mid cohort, and 90 in the High cohort.

Of the 183 students in the course, 155 opted to use BitFit. Only the fourth

semester is considered for the qualitative survey data discussed in this chapter, be-

cause surveys were created based on the results of earlier studies, so were not present

during earlier semesters. Students who used BitFit were asked a number of questions

about their progress with course material, and the impact of the learning tool. The

survey responses were set up using a 5-point Likert scale, with a score of 1 represent-

ing a strong negative response, whereas 5 represents a strong positive response. In

total, 55 students filled out both surveys, 9 students from the Low cohort, 26 from

the Mid cohort, and 20 from the High cohort. Similar to the learning tool, survey

participation was completely voluntary, and participation and responses did not af-

fect student grades. Survey questions were created to gather feedback based on the

patterns in the learning tool log data found in the first two semesters of the study.

5.2 Results

First, I explore common trends found across student groups throughout the three

most recent semesters the learning tool was used. I then explore whether survey

responses about study habits align with collected log data during the most recent

semester the tool was used.

Table 5.1: Aggregate usage trends recorded over all semesters

Questions Compiles Hints
Cohort S1 S2 S3 S1 S2 S3 S1 S2 S3

Low 35.2 36.8 46.5 54 54 58 303 122 246

Mid 47.2 54.6 58.9 113 104 122 142 139 166

High 61.2 65.4 67.5 168 122 145 72 89 96

66

Figure 5.1: Time spent on task for students working on questions in the for-loop
module, introduced in week 2. The graphs represent data collected from questions 1,
3, 5, and 7 from within this module. Final exam grades are standardized to account
for possible changes in exam difficulty across semesters.

Table 5.1 shows the average number of unique questions attempted, compilations,

and hints requested for the three semesters, labeled S1, S2, and S3. The data is

split by cohort for each semester. Throughout all three semesters, higher perform-

ing students attempted more unique questions, compiled more often, but requested

less hints. Table 5.1 shows aggregate data collected throughout the whole semester,

but does not show question-specific data. For instance, Table 5.1 shows the num-

ber of unique questions attempted, but does not show how many times a student

revisited a question, or which question the hints were requested on. The following

sub-sections expand on this analysis by delving deeper into the data, by looking at

different modules and questions independently.

67

Figure 5.2: Time spent on task for questions 1, 3, 5, and 7 across all modules covered
throughout each semester.

5.2.1 Time on Task (RQ4a)

To answer the first research question, I first explored whether patterns existed between

student groups based on time spent on task working through exercises in the for-loop

module (Figure 5.4), introduced during the second week of each semester. Figure 5.1

shows that on question 1 in the module, students across all semesters and grade ranges

generally spent between 0 and 5 minutes working through the question. Although

Figure 5.1 shows that time on task increased for all students when working through

questions later in the module, time on task alone would not allow us to differentiate

between successful and unsuccessful students in our study.

Figure 5.2 shows time on task for exercises covered in all modules throughout the

semester. In comparison to Figure 5.1, the semester-long data trends show an increase

68

Figure 5.3: Time on task on Questions 1, 3, 5, and 7 across all modules, showing the
range of the 25-75th percentile (box), min (vertical line, bottom), max (vertical line,
top), average (X), median (horizontal line), and outliers for all cohorts.

the average time spent per question number, but it remains difficult to differentiate

between unsuccessful and successful students using this metric. Figure 5.3 further

illustrates that students cannot be identified by time on task across in this study.

It may be difficult to differentiate students based on time on task due to how

the learning tool was used throughout our study. The learning tool was introduced

as a supplemental ungraded practice tool, and students were under no pressure to

complete an exercise within a certain amount of time. Students were also able to

request hints, which provided step-by-step instructions and code snippets leading up

to a complete solution of the problem. Figures 5.1 and 5.2 show how long students

spent on each question, but fail to show how students spent their time working

through each question. The following sub-section explores the study behaviour of

students across the three cohorts, with a specific focus on hint usage in an attempt

to better understand perceived question difficulty.

5.2.2 Question Difficulty (RQ4b)

The impact of question difficulty is considered from two perspectives. First, intended

difficulty, designed to challenge the students as the questions within a module progres-

69

Figure 5.4: Each box outlines the output students were asked to generate in the
for-loop module for Questions 1 to 8.

Figure 5.5: Hints requested per question number within the for-loop module.

sively build on newly acquired knowledge. Second, perceived difficulty, as established

by student interaction with each problem within a topic module.

Within a given module, questions are designed to progressively become more chal-

lenging. Figure 5.4 shows questions 1 (Q1) through 8 (Q8) in the for-loop module.

Figures 5.5 and 5.6 show hint data collected across the for-loop module on ques-

tions Q1 to Q8, which are ordered within the module by intended difficulty. These

results show consistency with the trends established in Table 5.1 on the number of

hints viewed among cohorts across all questions, independent of intended difficulty.

Figure 5.5 shows that across all of the questions in the module, lower-performing

students requested more hints on average when compared to higher performing stu-

dents. In addition to this, Figure 5.6 shows that students in the Low cohort more

often requested hints before attempting to write and compile any code on their own

than the other cohorts.

70

Figure 5.6: The percentage of times hints were requested before writing code within
the for-loop module.

Figure 5.7: The percentage of times hints were requested before writing code across
all modules.

Different questions in the module had a different number of total hints that could

be requested, so Figure 5.5 alone may not effectively illustrate perceived difficulty.

Figure 5.6 illustrates which questions students requested hints on before compiling

71

any code on their own. Taken together, Figures 5.5 and 5.6 indicate that perceived

difficultly does not necessarily increase linearly from question to question.

Expanding this analysis to all of the modules, similar trends were found. Figure 5.7

shows the frequency hints were requested before attempting to write and compile

code across all modules. Throughout each semester, students in the Low cohort

consistently requested hints before attempting to solve problems on their own more

often than the Mid and High cohorts.

5.2.3 Self-Efficacy (RQ4c)

To further explore hint usage behaviour, in the most recent semester (S3), students

were asked a number of questions about their hint usage. Surveys distributed during

the fifth and ninth week of the course. In total, 55 students filled out both surveys, 9

students from the Low cohort, 26 from the Mid cohort, and 20 from the High cohort.

The surveys asked students the following 5-point Likert scale questions:

• How difficult did you find the material over the [first/second] month of the

semester?

• How often did you use the hints when working through the practice tool?

• In questions you did use hints, do you think in the future you could complete a

similar question without hints?

Figure 5.8 shows the results of the survey distributed during the 5th week of the

semester. The Low cohort found the course material the most difficult, and reported

using hints most often. The survey also shows that students in the Low cohort were

also slightly less confident in their ability to complete questions they needed hints

on without assistance in the future. The results from this survey align with the

quantitative analysis results on tool log data.

Figure 5.9 shows results from the survey distributed during the 9th week of the

semester. Figure 5.10 shows the average changes in survey responses between the two

surveys. Students from all 3 cohorts reported an increased change in difficulty, but

it was students in the Mid cohort who had the highest jump in perceived difficulty

between surveys. In terms of how often students felt like they used hints, the Mid co-

hort also had the biggest increase between surveys, while the High cohort’s responses

barely changed at all. The Mid cohort had the biggest decrease in confidence in being

72

Figure 5.8: Results from the survey distributed during the 5th week of the semester.
Questions used a 5-point Likert scale.

73

Figure 5.9: Results from the survey distributed during the 9th week of the semester.
Questions used a 5-point Likert scale.

able to solve questions they used hints on without assistance in the future, whereas

the Low cohort had the largest increase in confidence.

5.2.4 Connecting Survey Results with Log Data

When comparing Figures 5.6 and 5.7, it is apparent that as each semester progressed,

students from all 3 cohorts increasingly resorted to viewing hints before attempting to

solve the problem on their own. This trend aligns with the survey daya, as students

from all three cohorts perceived that the course material increased in difficulty as the

semester progressed. Similarly, students from all 3 cohorts felt like they needed to

use hints more often as the semester progressed.

The changes in survey responses are different among cohorts for the third question

shown in Figure 5.10, “In questions you did use hints, do you think in the future you

could complete a similar question without hints?” Students in the Low cohort reported

an increased confidence in being able to solve questions in the future, whereas students

in the Mid cohort decreased in confidence. Figure 5.11 shows how often students were

able to answer questions without hints when revisiting questions they previously

needed assistance on. Students in the Low cohort only answered questions without

hints in follow-up attempts 21.8% of the time, compared to 34.9% for the Mid cohort,

74

and 50.6% for the High cohort. Taken together, Figures 5.10 and 5.11 illustrate that

survey responses from students in the Low cohort seem to most strongly contradict

the study behaviour exhibited when working through exercises in the learning tool.

5.3 Analysis and Discussion

In this chapter, I explored whether the combination of interaction data and survey

results can be used to differentiate successful from unsuccessful students. The analysis

of interaction data collected from the for-loop module, introduced during the second

week of each semester, supports the findings of the previous chapters, suggesting

that potentially unsuccessful students can be identified within the first few weeks of

the semester. This chapter highlights the fact that although these students find the

material difficult, students in the Low cohort, who went on to be unsuccessful on

the final exam, actually reported an increase in confidence with respect to answering

questions without hints as the semester progressed. This disconnect between student

perception and performance requires further analysis, especially when comparing the

change in survey responses between students in the Low cohort and those in the Mid

cohort, who were able to pass the final exam. Figure 5.10 suggests that by week 9

students in the Mid cohort may have been able to identify that viewing hints was not

an effective study practice, whereas students in the Low cohort were not.

It appears that students in the Low cohort might not understand that their study

behaviour is not effective in learning the content in a CS1 course. In some disciplines,

flash cards are used when students employ rote learning techniques to study for exams.

Students who have had positive experiences in other courses practicing this form of

studying may feel like viewing solutions to programming exercises will also enable

them to succeed in a computer science exam. It is unfortunate that many students

in the Low cohort continued to study using the practice tool, and the survey results

suggest believed they were learning effectively, but their efforts did not pay off. In

future semesters, I plan to explore these results further; it may be interesting to

compare these results with the results found by Robins et al. who reported that the

difference between effective and ineffective novices relate to learning strategies rather

than knowledge [95]. It would be quite a problem if study strategies turn out to

be a significant factor in whether or not novices succeed in a CS1 course, if a large

population of novices who enter the course are unaware which strategies are not likely

to lead to success.

75

Figure 5.10: Average change in responses for each question between the surveys
distributed in week 5 and 9.

Figure 5.11: The percentage of times students were able to complete a question
without hints when revisiting a question they were unable to complete previously.

76

The results reported in this chapter also highlighted the difference between the

intended difficulty and perceived difficulty of exercises. Within a given module, ques-

tions were designed to increase in difficulty, but the log data suggests that questions

were not necessarily ordered in increasing difficulty. The for-loop module exercises

are shown in Figure 5.4. Within this module, Figure 5.6 shows spikes on questions 3

and 7 with respect to how often students requested hints before attempting to solve

the problem on their own. Question 3 was the first exercises a nested for-loop was

required to solve the problem, whereas question 7 was the first exercises a series of

for-loops were required nested inside an outer for-loop. Questions 4, 5, and 6 were

intended to increase in difficulty, but each question required the same general design

as question 3, but with different variable values. The disconnect between intended

and perceived difficulty also requires further analysis, as it may affect the generation

of lab work, assignments and exams.

5.3.1 Threats to Validity

It is important to recognize the limitations and threats to validity of the study in

this chapter. Students were grouped into cohorts after the semester had ended based

on final exam grades, and exam grades may not accurately represent overall student

success in the course. Interaction data would be affected for students who studied

in groups. Also, the analysis includes only the data from students who both chose

to use the practice tool and also consented to take part in the study. Our analysis

metrics penalize hint usage, but students may not view hints only when struggling to

solve an exercise.

Time on task was evaluated as the difference between when a student loaded a

question to when they last interacted with the question, but as the tool is browser-

based, the calculated time might not accurately represent the actual time a user spent

working on the exercise. Students may exhibit different behaviour when learning a

new concept or when using the tool to study the night before an exam, but these

types of things were not considered for this study.

5.4 Summary

This study presents a quantitative analysis of practice tool log data and a qualitative

analysis of survey responses collected from 465 students over 3 semesters. Students

77

were split into 3 cohorts, Low, Mid, and High, based on final exam grades.

First, I found that unsuccessful students could not be differentiated from success-

ful students based on time on task data. There was some differences found across

cohorts when looking into hint usage; students in the Low cohort requested more hints

on average, and were much more likely to request hints before attempting to solve

exercises on their own. Students in the Low cohort also reported the biggest positive

change between surveys distributed in weeks 5 and 9 regarding their confidence in

solving similar questions in the future without hints.

I identified and described several issues that arise when trying to use practice tool

log data for analysis. Despite these limitations, the results of this study combining

practice tool log data with survey results revealed some interesting findings across

the student cohorts, especially with the Low cohort. I plan to further investigate the

disconnect between confidence and effectiveness of study behaviour for this cohort

who were unsuccessful on the final exam.

78

Chapter 6

Conclusions and Future Work

This work was motivated by need to support student success in CS1. Previous work

suggested that increasing student confidence and motivation could have a profound

effect on learning. Other prior work reported that the apathetic environment found in

many STEM courses was a reason students leave. As class sizes continue to grow, it

may only become more difficult for instructors to form meaningful relationships with

students. Automated learning tools have recently been used to provide instructors

with a scalable way to gauge student progress, and also provide timely and person-

alized feedback. The recent studies done on learning tools in CS1 were influential in

the design of the learning tool presented in the this work, BitFit.

BitFit is an online, open-source, practice programming tool. It was introduced

as a supplemental learning resource for students, and work on BitFit was completely

voluntary and ungraded. For students, BitFit was created to provide an environment

to practice weekly material to build confidence. For instructors, it included data

logging features; I have attempted to better understand student learning and success

through an analysis of this data. The end goal is to be able to also provide students

with personalized and effective support as early as possible in the semester.

In addition to workflow data being collected, each study also considers qualitative

data collected from monthly surveys. It is important to remember that using BitFit

was completely voluntary, and survey participation was opt-in, so the population for

this work is completely self-selected.

The first study looked into whether students would even choose to use a sup-

plemental practice resource. Survey responses provided information about student

perception of BitFit, and the chapter explored the following specific research ques-

tions:

79

RQ1a: Will students use a supplemental, ungraded, practice resource?

RQ1b: What are the reasons students choose not to use a practice tool?

RQ1c: What impact does BitFit have on student confidence and metacognition?

RQ1d: How well does BitFit support students in areas they feel they are struggling?

Throughout the study, over 80% of all registered students used BitFit. Students

who dropped the course within the first week of the course were included in the group

of students who did not use BitFit, showing that in general, students will choose to

use a practice programming tool, even if it is not required or graded. The main

reasons students did not use BitFit were that they did not know about it (39%),

and did not have time (31%). Future work could investigate whether those who did

not have time simply do not believe working through exercises is a valuable way to

spend study time compared to other study methods. Overall, survey results were

very positive with respect to the impact BitFit had on supporting their confidence,

meta-cognition, and aiding them in areas they were struggling.

The main suggestion for improvement during early prototypes of BitFit was to

improve the hint features to include full code solutions, instead of just high-level

guidance. This change ended up being a significant factor in future semesters, as hint

usage ended up being a major factor in the results of BitFit log data analysis.

The second study began to analyze BitFit log data, with the key question: Can

interaction patterns with BitFit predict a student’s outcome in the course?. More

specifically, the analysis explored the following research questions:

RQ2a: How well do students’ levels of engagement with the learning tool predict

success in the course?

RQ2b: Can a practice tool identify differences in workflow behavior between suc-

cessful and unsuccessful students?

RQ2c: What are the metrics associated with success and failure?

RQ2d: How well do metrics identified by the tool predict success?

RQ2e: How early in the semester can at-risk students be identified?

80

Overall, the number of questions attemped and submitted correctly did correlate

with success in the course. In terms of behaviour and metrics for success, low compi-

lation numbers combined with high, repeated hint usage differentiated top students

from those who struggled. These metrics can be used to begin identifying students

within just the first few weeks of the semester. The results also suggest that as a

semester progresses, these metrics can be used to much more accurately differenti-

ate between students, as the differences between high and low-performing students

become increasingly pronounced.

When separating out only those students identified as at-risk early in the semester,

there was a lot of the noise in the data, which made it difficult to differentiate between

those truly at risk and those who went on to succeed in the course. The third study

focused on understanding what learning looks like, by improving the early at-risk

metric to include a metric that accounts for changes in behaviour over time. The

goal was to more accurately identify and differentiate between students who are truly

struggling and those who are learning. The key question in the third study was: Can

analysis of patterns in interaction data help us understand how to detect and measure

learning in CS1?. In order to answer this question, the following specific research

questions were investigated:

RQ3a: How accurately do early predictors of performance identify students who are

unsuccessful in the course?

RQ3b: How well can early predictors be improved by a trajectory metric that clas-

sifies behavioural change over time?

RQ3c: How well can the trajectory metric be extended to evaluate differences in

proficiency across topics?

The early predictor metric found in the second study was the combination of low

compilation numbers and high, repeated hint usage. This metric was able to identify

a high percentage of students who went on to fail the course, and did correlate with

overall success in the course, but this metric also produced a high number of false-

positives. The trajectory metric introduced in the third study was able to filter out

most of the false-positives from this group by looking at how interaction patterns

with BitFit change over time. The trajectory metric also revealed that students who

exhibit productive programming behaviour in one topic are not necessarily productive

in later topics. The results from this study highlight the importance of combining

81

metrics that analyze changes in behaviour or productivity over time with baseline

early predictors.

To better understand why students exhibit certain study behaviours, and stu-

dents perception of their own study habits, I next explored whether there were any

interesting connections between BitFit log data and student feedback received in the

monthly surveys. The key question for the next study was: Do students understand

whether or not their study habits are likely to lead to success on the final exam? The

following specific questions were explored to answer this question:

RQ4a: How well does time-on-task differentiate between successful and unsuccessful

students?

RQ4b: How well does intended question difficulty differentiate between successful

and unsuccessful students?

RQ4c: Is there a difference in a student’s reflection of self-efficacy between successful

and unsuccessful students?

In terms of time on task, I found that unsuccessful students could not be differ-

entiated from successful students. For question difficulty, there were some hint usage

differences found across cohorts, specifically with respect to how often students re-

quested hints before attempting to solve the problem on their own. Survey responses

provided some insight into this issue, as their were some interesting student responses

to the question about how confident students were in being able to solve a similar

question on their own in the future after requesting hints. Students in the Low cohort

reported the biggest positive change between surveys distributed in weeks 5 and 9 on

this question. These students progressively relied on hints as the semester progressed,

and became more confident that the hints were helping them learn effectively. Un-

fortunately, their efforts did not pay off on the final exam. This disconnect between

student perception of progress and exam performance is something that requires fur-

ther investigation in the future.

There are also a number of other important open questions related to the core

research question introduced in this work. In addition to identifying interaction pat-

terns associated with success and failure in CS1, further work should aim to determine

why certain students exhibit unsuccessful patterns. Based on student feedback from

surveys, it appears that some students may not realize their methods of study are in-

82

effective. This raises the first future research question: What are the reasons students

resort to ineffective study behaviour?

Beyond this question, an important question would be how to best guide struggling

students toward habits that better enable success. If we can better understand why

our students are struggling, and how to support them, tools like BitFit can be used

to identify students at-risk very early in the semester. This would allow instructors

to effectively provide supportive intervention to students exhibiting subtle patterns

in workflow behavior that have previously been established as having a very low

probability of success. Thus, the second future research question is: What is the best

method to guide struggling students towards more effective study behaviour?

The group of students the trajectory metric filtered out, those who early in the

semester exhibited behaviour associated with students who typically struggle and fail

with the material, are an interesting group to further investigate. These students

were able to transition to more productive behaviour without any external support

provided by the teaching team. If learning can be defined as an enduring change in

behaviour, then it can be argued that these students were able to learn effectively, and

the collected BitFit log data “recorded” the process. A deeper investigation of data

from this specific student group may provide valuable insight into the patterns asso-

ciated with learning, and this information could be very important when designing

supportive intervention targeted at those who are unable to progress without assis-

tance. The third future research question is: Can a student support model be formed

based on the data collected on learning throughout these studies?

Further data analysis and modeling is necessary to answer each of the future

research questions. Now that data has been collected over a large number of semesters,

it may be possible to begin investigating whether a number of prediction models can

be formed. Using predictive modeling, a number of patterns may be found allowing

for dynamic classification of students in the future. This would allow a number

of intervention techniques to be deployed that are customized to different types of

learners. Thus, the major key research question for the future is: How well can

predictive models be used to better understand and classify students?

Overall, what I have learned from the studies presented in this work is that learning

tools can provide students with an environment to build confidence, and also provide

instructors with vital information on student progress. Based on the results of these

studies, I found that early identification metrics are able to identify many at-risk

students, but that continually measuring changes in behaviour over time is equally

83

important in order to differentiate between transient and sustained struggling. Fi-

nally, a mixed-method approach combining qualitative and quantitative data might

provide the insight necessary to answer questions that cannot be answered by log data

alone. The combination of early and trajectory metrics based on log data with student

surveys provides the information necessary to begin understanding where, when, and

how are students are struggling. I hope as the computer science education community

continues to strive to better understand the student learning process, our efforts to

develop effective intervention strategies to support students will drastically improve.

I hope that such efforts will result in a more diverse group of confident, empowered

programmers, and better success rates in computer science programs overall.

84

Appendix A

Additional Information

A.1 Topics

BitFit included questions in the following topic areas:

1. Print statements

2. For-loops - code reading

3. Syntax errors

4. Strings and casting

5. For-loops - code writing

6. Methods - code reading

7. if-statements

8. Writing code - methods and for-loops

9. IO code reading and writing

10. Arrays

11. Classes and Objects

12. Combined: Weeks 1 - 4

13. Combined: Weeks 5 - 9

85

14. Combined: Weeks 10 - 13

15. Final Review

Questions in “Combined: Weeks 1 - 4” included questions on print statements,

syntax errors, casting, for-loops, and methods. Questions in “Combined: Weeks 5 -

9” included questions on arrays (including multi-dimensional arrays), and IO (reading

from and writing to files). Questions in “Combined: Weeks 10 - 13” included questions

on classes and objects, search algorithms, and recursion. The Final Review section

provided students with additional questions found on previous final exams.

A.1.1 Sample Questions

This section provides a number of sample questions from each of the included topics.

Each question in the print statement topic asked the user what the output was of a pre-

written Java program. Figure A.1 shows a sample question with BitFit’s embedded

editor and a few of the buttons.

The remaining Figures show a number of sample questions from each of the topic

areas found in BitFit. For code reading questions, only the starter code is shown, as

the question text just asks the user to enter the code output into the output box,

shown to the right of the embedded editor in Figure A.1.

For sample code writing questions, only the question text is shown, as in most

cases, there is very little to no code in the embedded editor, as the user must write

code in the editor to solve the problem.

A few sample questions from each topic area are shown, usually in the order they

are presented in. Questions were designed to increase in difficulty.

A.2 Sample Background Info

Each topic area has a list of associated questions, as shown in the previous subsection.

There is also a tab students can click to access background information about the

topic area. A sample Background page, the one in the “If-statements” section, is

shown in Figure A.16.

86

Figure A.1: Sample questions from the Print Statements topic area.

87

Figure A.2: Sample questions from the Print Statements topic area.

88

Figure A.3: Sample questions from the For-loops - code reading topic area.

89

Figure A.4: Sample questions from the Syntax errors topic area.

90

Figure A.5: Sample questions from the Strings and casting topic area.

91

Figure A.6: Sample questions from the For-loops - code writing topic area.

92

Figure A.7: Sample questions from the Methods - code reading topic area.

93

Figure A.8: Sample questions from the if-statements topic area.

94

Figure A.9: Sample questions from the Writing code - methods and for-loops topic
area.

95

Figure A.10: Sample questions from the IO code reading and writing topic area.

96

Figure A.11: Sample questions from the Arrays topic area.

97

Figure A.12: Sample questions from the Classes and Objects topic area.

98

Figure A.13: Sample questions from the Weeks 1 - 4 review topic area.

99

Figure A.14: Sample questions from the Weeks 5 - 9 review topic area.

100

Figure A.15: Sample questions from the Weeks 10 - 13 review topic area.

101

Figure A.16: A sample background information page (if-statements in this case).

102

A.3 Sample Hints

When the hint button is clicked, a new hint is shown above the embedded editor.

Hints provided contain both high-level guidance and code snippets. The final hint

provides a full code solution to the problem for code writing questions, and the full

output for code reading questions. Figure A.17 shows sample hints for a code reading

question, and Figure A.18 shows the first few hints for a code writing question.

A.4 Sample survey

11/25/2016 CSC110 midsemester checkin

https://docs.google.com/forms/d/1vB9bgFFJQQw1byKHN4KRNOVKdQWUSCYpUr5ibDNEUDo/edit 1/4

CSC110 midsemester checkin
A survey to collect information from 110 students to be used in research by Anthony Estey to improve
the learning experience for the current and future semesters of CSC110 at UVic.

This will not affect your course grades in ANY way. If you have any questions please email Anthony at
aestey@uvic.ca

*Required

1. How difficult did you find the material over the first month of the semester (forloops,
methods, etc)?
Mark only one oval.

 Very difficult

 Difficult

 Medium

 Easy

 Very Easy

2. Do you think your midterm mark accurately represents how well you know the material?
Mark only one oval.

 My midterm grade was much lower than how much I know

 My midterm grade was a little lower than how much I know

 My midterm grade was accurate

 My midterm grade was a little higher than how much I know

 My midterm grade was much higher than how much I know

3. Did you use the practice tool (shown below) before the first midterm? *
Mark only one oval.

 No Skip to question 10.

 Yes Skip to question 4.

103

11/25/2016 CSC110 midsemester checkin

https://docs.google.com/forms/d/1vB9bgFFJQQw1byKHN4KRNOVKdQWUSCYpUr5ibDNEUDo/edit 2/4

Learning tool questions

4. Did the practice tool help you identify how well you understand the material for each topic?
Mark only one oval.

 Not at all

 Not really

 Neutral

 A bit

 A lot

5. Did the practice tool affect your confidence in the material?
Mark only one oval.

 Way less confident

 Less confident

 No change

 More confident

 Way more confident

104

11/25/2016 CSC110 midsemester checkin

https://docs.google.com/forms/d/1vB9bgFFJQQw1byKHN4KRNOVKdQWUSCYpUr5ibDNEUDo/edit 3/4

6. Do you think using the practice tool affected your midterm grade at all?
Mark only one oval.

 Not at all

 Not really

 Neutral

 A bit

 A lot

7. How often did you use the hints in BitFit?
Mark only one oval.

 Did not know they existed

 Never

 Rarely

 Sometimes

 Often

 Always

8. In questions you did use hints, do you think after viewing the hints, you could complete a
similar question without hints?
Mark only one oval.

 N/A

 No chance

 Unlikely

 Maybe

 Likely

 Definitely

9. How could the learning tool be improved to better help you succeed in this course?

Skip to question 12.

105

11/25/2016 CSC110 midsemester checkin

https://docs.google.com/forms/d/1vB9bgFFJQQw1byKHN4KRNOVKdQWUSCYpUr5ibDNEUDo/edit 4/4

Powered by

10. Why did you choose not to use the learning tool?
Tick all that apply.

 I did not know about it

 I did not have time

 I did not need any extra help in this course

 The material on the learning tool was too easy

 The material on the learning tool was too hard

 Other:

11. Would you be open to using a learning tool to study for future exams?
Mark only one oval.

 No

 Yes

12. Please list any other suggestions you have about how the teaching team could improve your
learning experience in this course?

13. What is your connex id?

14. May we contact you by email or over connex for further questions (if we need more
information about your suggestions or another answer from this survey)
Mark only one oval.

 No

 Yes

106

107

Figure A.17: A sample hint for a code reading question.

108

Figure A.18: A sample hint for a code writing question.

109

A.5 Sample log data

[{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","question":"54dbb3f02

7541070e9415a3f","startTime":"2015-09-

07T18:54:47.213Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55eddd79bc7ced0863fe5539","__v":0,"endTime":"2015-09-

07T18:54:50.258Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dcdfc704e78631e67f72e7","startTime":"2015-09-

07T18:54:50.260Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55eddd7fbc7ced0863fe553a","__v":0,"endTime":"2015-09-

07T18:54:56.975Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dce00404e78631e67f72e8","startTime":"2015-09-

07T18:54:56.975Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55eddd82bc7ced0863fe553b","__v":0,"endTime":"2015-09-

07T18:54:59.807Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd0fde4427a32e0b5e699f","startTime":"2015-09-

07T18:54:59.807Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55eddd84bc7ced0863fe553c","__v":0,"endTime":"2015-09-

07T18:55:01.479Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd108c4427a32e0b5e69a0","startTime":"2015-09-

07T18:55:01.480Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55eddd86bc7ced0863fe553d","__v":0,"endTime":"2015-09-

07T18:55:03.071Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd11784427a32e0b5e69a1","startTime":"2015-09-

07T18:55:03.072Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55eddd87bc7ced0863fe553e","__v":0,"endTime":"2015-09-

07T18:55:04.527Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"54fa30dd9f61e74368f3e2f2","questi

on":"54fa320a9f61e74368f3e2f3","startTime":"2015-09-

20T22:03:37.017Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff2d46ed37fe98ed05438c","__v":0,"endTime":"2015-09-

20T22:03:50.447Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"5527f9d98bc4e827149df4a7","ques

tion":"5527faf28bc4e827149df4a8","startTime":"2015-09-

20T22:03:51.092Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff2d4bed37fe98ed05438d","__v":0,"endTime":"2015-09-

20T22:03:54.895Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"5527f9d98bc4e827149df4a7","ques

tion":"5528047c8bc4e827149df4ba","startTime":"2015-09-

20T22:03:54.896Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff2d4ced37fe98ed05438e","__v":0,"endTime":"2015-09-

20T22:03:56.482Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"5527f9d98bc4e827149df4a7","ques

tion":"552809c48bc4e827149df4c2","startTime":"2015-09-

20T22:03:56.482Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff2d4eed37fe98ed05438f","__v":0,"endTime":"2015-09-

20T22:03:58.146Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"552816458bc4e827149df4c8","ques

tion":"5528184a8bc4e827149df4d0","startTime":"2015-09-

110

20T22:03:58.547Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff2d51ed37fe98ed054390","__v":0,"endTime":"2015-09-

20T22:04:00.667Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"552816458bc4e827149df4c8","ques

tion":"552869488bc4e827149df4f4","startTime":"2015-09-

20T22:04:00.667Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff2d55ed37fe98ed054391","__v":0,"endTime":"2015-09-

20T22:04:05.387Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"552881158bc4e827149df506","ques

tion":"552884958bc4e827149df507","startTime":"2015-09-

20T22:04:06.304Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":19,"totalAtt

empts":0,"correctAttempts":0,"_id":"55ff2fafed37fe98ed054392","__v":0,"endTime":"2015-09-

20T22:14:07.249Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"552881158bc4e827149df506","ques

tion":"552888308bc4e827149df509","startTime":"2015-09-

20T22:14:07.250Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff3068ed37fe98ed054393","__v":0,"endTime":"2015-09-

20T22:17:11.690Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"552881158bc4e827149df506","ques

tion":"55288a8c8bc4e827149df50b","startTime":"2015-09-

20T22:17:11.691Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff306fed37fe98ed054394","__v":0,"endTime":"2015-09-

20T22:17:19.487Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"552881158bc4e827149df506","ques

tion":"5528946f8bc4e827149df50d","startTime":"2015-09-

20T22:17:19.488Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff3076ed37fe98ed054395","__v":0,"endTime":"2015-09-

20T22:17:26.052Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"55ce34bfc11935d3c4f46b6b","quest

ion":"55ce3977c11935d3c4f46b6c","startTime":"2015-09-

20T22:17:26.744Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff307bed37fe98ed054396","__v":0,"endTime":"2015-09-

20T22:17:30.924Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"55ce34bfc11935d3c4f46b6b","quest

ion":"55ce39edc11935d3c4f46b6d","startTime":"2015-09-

20T22:17:30.924Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff307ded37fe98ed054397","__v":0,"endTime":"2015-09-

20T22:17:33.137Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"55ce34bfc11935d3c4f46b6b","quest

ion":"55ce3a7fc11935d3c4f46b6e","startTime":"2015-09-

20T22:17:33.137Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff307fed37fe98ed054398","__v":0,"endTime":"2015-09-

20T22:17:35.429Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"55ce34bfc11935d3c4f46b6b","quest

ion":"55ce3a8dc11935d3c4f46b6f","startTime":"2015-09-

20T22:17:35.429Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff3081ed37fe98ed054399","__v":0,"endTime":"2015-09-

20T22:17:37.321Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"55ce34bfc11935d3c4f46b6b","quest

ion":"55ce3c82c11935d3c4f46b70","startTime":"2015-09-

20T22:17:37.321Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff3372ed37fe98ed05439a","__v":0,"endTime":"2015-09-

111

20T22:30:10.035Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"55ce34bfc11935d3c4f46b6b","quest

ion":"55ce3dfac11935d3c4f46b71","startTime":"2015-09-

20T22:30:10.036Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff337aed37fe98ed05439b","__v":0,"endTime":"2015-09-

20T22:30:18.483Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"55ce34bfc11935d3c4f46b6b","quest

ion":"55ce8001c11935d3c4f46c03","startTime":"2015-09-

20T22:30:18.484Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff337fed37fe98ed05439c","__v":0,"endTime":"2015-09-

20T22:30:22.845Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"55ce34bfc11935d3c4f46b6b","quest

ion":"55ce3977c11935d3c4f46b6c","startTime":"2015-09-

20T22:30:22.846Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff3381ed37fe98ed05439d","__v":0,"endTime":"2015-09-

20T22:30:25.019Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"552881158bc4e827149df506","ques

tion":"552884958bc4e827149df507","startTime":"2015-09-

20T22:30:25.239Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff3b1fed37fe98ed05439e","__v":0,"endTime":"2015-09-

20T23:02:55.555Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"54fa30dd9f61e74368f3e2f2","questi

on":"54fa320a9f61e74368f3e2f3","startTime":"2015-09-

20T23:02:55.766Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff4739ed37fe98ed05439f","__v":0,"endTime":"2015-09-

20T23:54:33.048Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"54fa30dd9f61e74368f3e2f2","questi

on":"54fa36a39f61e74368f3e2f4","startTime":"2015-09-

20T23:54:33.049Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff473fed37fe98ed0543a0","__v":0,"endTime":"2015-09-

20T23:54:39.122Z"},{"user":"556cfde5502cc43ec04c69b6","topic":"54fa30dd9f61e74368f3e2f2","questi

on":"54fa3c8b9f61e74368f3e2f6","startTime":"2015-09-

20T23:54:39.123Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff4741ed37fe98ed0543a1","__v":0,"endTime":"2015-09-

20T23:54:41.227Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dbb3f027541070e9415a3f","startTime":"2015-09-

21T04:51:49.099Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"55ff8ce3ed37fe98ed0543a2","__v":0,"endTime":"2015-09-

21T04:51:52.156Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dbb3f027541070e9415a3f","startTime":"2015-09-

26T18:31:53.862Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e498ed37fe98ed0543a3","__v":0,"endTime":"2015-09-

26T18:31:55.355Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd12dc4427a32e0b5e69a2","startTime":"2015-09-

26T18:31:55.357Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e49aed37fe98ed0543a4","__v":0,"endTime":"2015-09-

26T18:31:57.112Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd11784427a32e0b5e69a1","startTime":"2015-09-

112

26T18:31:57.112Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e49eed37fe98ed0543a5","__v":0,"endTime":"2015-09-

26T18:32:02.024Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd108c4427a32e0b5e69a0","startTime":"2015-09-

26T18:32:02.025Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4a0ed37fe98ed0543a6","__v":0,"endTime":"2015-09-

26T18:32:03.520Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd11784427a32e0b5e69a1","startTime":"2015-09-

26T18:32:03.520Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4a1ed37fe98ed0543a7","__v":0,"endTime":"2015-09-

26T18:32:04.551Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd108c4427a32e0b5e69a0","startTime":"2015-09-

26T18:32:04.551Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4a2ed37fe98ed0543a8","__v":0,"endTime":"2015-09-

26T18:32:05.871Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dce00404e78631e67f72e8","startTime":"2015-09-

26T18:32:05.871Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4a3ed37fe98ed0543a9","__v":0,"endTime":"2015-09-

26T18:32:06.415Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd0fde4427a32e0b5e699f","startTime":"2015-09-

26T18:32:06.415Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4a3ed37fe98ed0543aa","__v":0,"endTime":"2015-09-

26T18:32:07.063Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dce00404e78631e67f72e8","startTime":"2015-09-

26T18:32:07.064Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4a4ed37fe98ed0543ab","__v":0,"endTime":"2015-09-

26T18:32:07.794Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dcdfc704e78631e67f72e7","startTime":"2015-09-

26T18:32:07.794Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4a5ed37fe98ed0543ac","__v":0,"endTime":"2015-09-

26T18:32:08.352Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd11784427a32e0b5e69a1","startTime":"2015-09-

26T18:32:08.352Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4a5ed37fe98ed0543ad","__v":0,"endTime":"2015-09-

26T18:32:08.768Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd12dc4427a32e0b5e69a2","startTime":"2015-09-

26T18:32:08.768Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4a8ed37fe98ed0543ae","__v":0,"endTime":"2015-09-

26T18:32:11.192Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dbb3f027541070e9415a3f","startTime":"2015-09-

26T18:32:11.192Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4a9ed37fe98ed0543af","__v":0,"endTime":"2015-09-

113

26T18:32:12.896Z"},{"user":"54db0c3527541070e9415967","topic":"556ca495502cc43ec04c68b4","que

stion":"556caf4c502cc43ec04c68dc","startTime":"2015-09-

26T18:32:13.106Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"tota lAtte

mpts":0,"correctAttempts":0,"_id":"5606e4aced37fe98ed0543b0","__v":0,"endTime":"2015-09-

26T18:32:15.129Z"},{"user":"54db0c3527541070e9415967","topic":"556ca495502cc43ec04c68b4","que

stion":"556cb0be502cc43ec04c68dd","startTime":"2015-09-

26T18:32:15.130Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4b1ed37fe98ed0543b1","__v":0,"endTime":"2015-09-

26T18:32:20.279Z"},{"user":"54db0c3527541070e9415967","topic":"556ca495502cc43ec04c68b4","que

stion":"556cb1d0502cc43ec04c68de","startTime":"2015-09-

26T18:32:20.280Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4b3ed37fe98ed0543b2","__v":0,"endTime":"2015-09-

26T18:32:22.615Z"},{"user":"54db0c3527541070e9415967","topic":"556ca495502cc43ec04c68b4","que

stion":"556cb283502cc43ec04c68df","startTime":"2015-09-

26T18:32:22.615Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4b6ed37fe98ed0543b3","__v":0,"endTime":"2015-09-

26T18:32:25.831Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dc1e914b5edd6a055b93a2","startTime":"2015-09-

26T18:32:25.977Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4baed37fe98ed0543b4","__v":0,"endTime":"2015-09-

26T18:32:29.584Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dce5704427a32e0b5e6943","startTime":"2015-09-

26T18:32:29.584Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4bbed37fe98ed0543b5","__v":0,"endTime":"2015-09-

26T18:32:30.584Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dce7cb4427a32e0b5e6946","startTime":"2015-09-

26T18:32:30.584Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4bded37fe98ed0543b6","__v":0,"endTime":"2015-09-

26T18:32:32.375Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dce83c4427a32e0b5e6948","startTime":"2015-09-

26T18:32:32.376Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4bded37fe98ed0543b7","__v":0,"endTime":"2015-09-

26T18:32:33.008Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dceaca4427a32e0b5e6951","startTime":"2015-09-

26T18:32:33.008Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4bfed37fe98ed0543b8","__v":0,"endTime":"2015-09-

26T18:32:34.360Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dceaef4427a32e0b5e6952","startTime":"2015-09-

26T18:32:34.360Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4bfed37fe98ed0543b9","__v":0,"endTime":"2015-09-

26T18:32:34.904Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dced744427a32e0b5e695a","startTime":"2015-09-

114

26T18:32:34.904Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4c1ed37fe98ed0543ba","__v":0,"endTime":"2015-09-

26T18:32:36.344Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dcef264427a32e0b5e695b","startTime":"2015-09-

26T18:32:36.344Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4c4ed37fe98ed0543bb","__v":0,"endTime":"2015-09-

26T18:32:39.374Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3e","qu

estion":"54dbb5d627541070e9415a40","startTime":"2015-09-

26T18:32:39.529Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4c7ed37fe98ed0543bc","__v":0,"endTime":"2015-09-

26T18:32:42.315Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3e","qu

estion":"54dd08f94427a32e0b5e697a","startTime":"2015-09-

26T18:32:42.315Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4c7ed37fe98ed0543bd","__v":0,"endTime":"2015-09-

26T18:32:43.072Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3e","qu

estion":"54dd093f4427a32e0b5e697b","startTime":"2015-09-

26T18:32:43.073Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4c8ed37fe98ed0543be","__v":0,"endTime":"2015-09-

26T18:32:43.768Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3e","qu

estion":"54dd09eb4427a32e0b5e697e","startTime":"2015-09-

26T18:32:43.768Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4caed37fe98ed0543bf","__v":0,"endTime":"2015-09-

26T18:32:45.571Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3e","qu

estion":"54dd09f04427a32e0b5e697f","startTime":"2015-09-

26T18:32:45.572Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5606e4caed37fe98ed0543c0","__v":0,"endTime":"2015-09-

26T18:32:45.979Z"},{"user":"556941e2502cc43ec04c6848","topic":"556ca538502cc43ec04c68b7","ques

tion":"5606e9efed37fe98ed0543c1","startTime":"2015-09-

28T21:06:42.646Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5609abeab3d6aa670a1e1282","__v":0,"endTime":"2015-09-

28T21:06:50.652Z"},{"user":"556941e2502cc43ec04c6848","topic":"556ca495502cc43ec04c68b4","ques

tion":"556caf4c502cc43ec04c68dc","startTime":"2015-09-

28T21:06:50.896Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5609abebb3d6aa670a1e1283","__v":0,"endTime":"2015-09-

28T21:06:52.043Z"},{"user":"556941e2502cc43ec04c6848","topic":"54db0c6a27541070e9415a3d","que

stion":"54dbb3f027541070e9415a3f","startTime":"2015-09-

28T21:06:52.193Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5609abedb3d6aa670a1e1284","__v":0,"endTime":"2015-09-

28T21:06:53.727Z"},{"user":"556941e2502cc43ec04c6848","topic":"54db0c6a27541070e9415a3e","que

stion":"54dbb5d627541070e9415a40","startTime":"2015-09-

28T21:06:53.880Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"5609ac38b3d6aa670a1e1285","__v":0,"endTime":"2015-09-

115

28T21:08:09.562Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dbb3f027541070e9415a3f","startTime":"2015-09-

29T19:42:13.392Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560ae998b3d6aa670a1e1286","__v":0,"endTime":"2015-09-

29T19:42:15.709Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd0fde4427a32e0b5e699f","startTime":"2015-09-

29T19:42:15.710Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560ae999b3d6aa670a1e1287","__v":0,"endTime":"2015-09-

29T19:42:16.876Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd108c4427a32e0b5e69a0","startTime":"2015-09-

29T19:42:16.876Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560aea81b3d6aa670a1e1288","__v":0,"endTime":"2015-09-

29T19:46:08.581Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd11784427a32e0b5e69a1","startTime":"2015-09-

29T19:46:08.581Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560aea82b3d6aa670a1e1289","__v":0,"endTime":"2015-09-

29T19:46:09.956Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd12dc4427a32e0b5e69a2","startTime":"2015-09-

29T19:46:09.956Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560aeb12b3d6aa670a1e128a","__v":0,"endTime":"2015-09-

29T19:48:33.851Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3e","qu

estion":"54dbb5d627541070e9415a40","startTime":"2015-09-

29T22:52:02.589Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b1615b3d6aa670a1e128c","__v":0,"endTime":"2015-09-

29T22:52:03.807Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3e","qu

estion":"54dd08f94427a32e0b5e697a","startTime":"2015-09-

29T22:52:03.807Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b1615b3d6aa670a1e128d","__v":0,"endTime":"2015-09-

29T22:52:04.231Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3e","qu

estion":"54dd093f4427a32e0b5e697b","startTime":"2015-09-

29T22:52:04.231Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b1615b3d6aa670a1e128e","__v":0,"endTime":"2015-09-

29T22:52:04.575Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3e","qu

estion":"54dd09eb4427a32e0b5e697e","startTime":"2015-09-

29T22:52:04.575Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b1663b3d6aa670a1e128f","__v":0,"endTime":"2015-09-

29T22:53:22.120Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3e","qu

estion":"54dd09f04427a32e0b5e697f","startTime":"2015-09-

29T22:53:22.120Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b1665b3d6aa670a1e1290","__v":0,"endTime":"2015-09-

29T22:53:24.806Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3e","qu

estion":"54dd09f44427a32e0b5e6980","startTime":"2015-09-

116

29T22:53:24.806Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b20d9b3d6aa670a1e1291","__v":0,"endTime":"2015-09-

29T23:38:00.184Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dc1e914b5edd6a055b93a2","startTime":"2015-09-

29T23:38:00.465Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b20dcb3d6aa670a1e1292","__v":0,"endTime":"2015-09-

29T23:38:03.168Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dce5704427a32e0b5e6943","startTime":"2015-09-

29T23:38:03.168Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b20dfb3d6aa670a1e1293","__v":0,"endTime":"2015-09-

29T23:38:05.952Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dce7cb4427a32e0b5e6946","startTime":"2015-09-

29T23:38:05.952Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b20e1b3d6aa670a1e1294","__v":0,"endTime":"2015-09-

29T23:38:08.793Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dce83c4427a32e0b5e6948","startTime":"2015-09-

29T23:38:08.793Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b20e3b3d6aa670a1e1295","__v":0,"endTime":"2015-09-

29T23:38:10.712Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dceaef4427a32e0b5e6952","startTime":"2015-09-

29T23:38:10.712Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b20e4b3d6aa670a1e1296","__v":0,"endTime":"2015-09-

29T23:38:11.304Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dceaca4427a32e0b5e6951","startTime":"2015-09-

29T23:38:11.304Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b20e6b3d6aa670a1e1297","__v":0,"endTime":"2015-09-

29T23:38:12.937Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dceaef4427a32e0b5e6952","startTime":"2015-09-

29T23:38:12.937Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b20e7b3d6aa670a1e1298","__v":0,"endTime":"2015-09-

29T23:38:14.696Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dced744427a32e0b5e695a","startTime":"2015-09-

29T23:38:14.696Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b20e9b3d6aa670a1e1299","__v":0,"endTime":"2015-09-

29T23:38:16.449Z"},{"user":"54db0c3527541070e9415967","topic":"54dbb8cc27541070e9415a41","qu

estion":"54dcef264427a32e0b5e695b","startTime":"2015-09-

29T23:38:16.449Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560b20ebb3d6aa670a1e129a","__v":0,"endTime":"2015-09-

29T23:38:18.216Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dbb3f027541070e9415a3f","startTime":"2015-09-

30T13:20:06.750Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be189b3d6aa670a1e129d","__v":0,"endTime":"2015-09-

117

30T13:20:07.579Z"},{"user":"54db0c3527541070e9415967","topic":"556ca495502cc43ec04c68b4","que

stion":"556caf4c502cc43ec04c68dc","startTime":"2015-09-

30T13:20:07.818Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be18eb3d6aa670a1e129e","__v":0,"endTime":"2015-09-

30T13:20:13.156Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dbb3f027541070e9415a3f","startTime":"2015-09-

30T13:20:13.305Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be1eeb3d6aa670a1e129f","__v":0,"endTime":"2015-09-

30T13:21:48.932Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dcdfc704e78631e67f72e7","startTime":"2015-09-

30T13:21:48.934Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be1f0b3d6aa670a1e12a0","__v":0,"endTime":"2015-09-

30T13:21:50.743Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dce00404e78631e67f72e8","startTime":"2015-09-

30T13:21:50.743Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be1f1b3d6aa670a1e12a1","__v":0,"endTime":"2015-09-

30T13:21:51.925Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd0fde4427a32e0b5e699f","startTime":"2015-09-

30T13:21:51.925Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be1f2b3d6aa670a1e12a2","__v":0,"endTime":"2015-09-

30T13:21:53.089Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd108c4427a32e0b5e69a0","startTime":"2015-09-

30T13:21:53.089Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be1f3b3d6aa670a1e12a3","__v":0,"endTime":"2015-09-

30T13:21:54.207Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd11784427a32e0b5e69a1","startTime":"2015-09-

30T13:21:54.207Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be1f5b3d6aa670a1e12a4","__v":0,"endTime":"2015-09-

30T13:21:56.050Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd108c4427a32e0b5e69a0","startTime":"2015-09-

30T13:21:56.050Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be1f8b3d6aa670a1e12a5","__v":0,"endTime":"2015-09-

30T13:21:58.483Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd11784427a32e0b5e69a1","startTime":"2015-09-

30T13:21:58.484Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be1fab3d6aa670a1e12a6","__v":0,"endTime":"2015-09-

30T13:22:00.646Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd12dc4427a32e0b5e69a2","startTime":"2015-09-

30T13:22:00.646Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be1fcb3d6aa670a1e12a7","__v":0,"endTime":"2015-09-

30T13:22:02.953Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd11784427a32e0b5e69a1","startTime":"2015-09-

118

30T13:22:02.954Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be1fdb3d6aa670a1e12a8","__v":0,"endTime":"2015-09-

30T13:22:04.094Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd0fde4427a32e0b5e699f","startTime":"2015-09-

30T13:22:04.094Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be1feb3d6aa670a1e12a9","__v":0,"endTime":"2015-09-

30T13:22:05.282Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd108c4427a32e0b5e69a0","startTime":"2015-09-

30T13:22:05.283Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be1ffb3d6aa670a1e12aa","__v":0,"endTime":"2015-09-

30T13:22:06.178Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd11784427a32e0b5e69a1","startTime":"2015-09-

30T13:22:06.179Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be204b3d6aa670a1e12ab","__v":0,"endTime":"2015-09-

30T13:22:10.356Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd108c4427a32e0b5e69a0","startTime":"2015-09-

30T13:22:10.356Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be205b3d6aa670a1e12ac","__v":0,"endTime":"2015-09-

30T13:22:11.681Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd11784427a32e0b5e69a1","startTime":"2015-09-

30T13:22:11.682Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be206b3d6aa670a1e12ad","__v":0,"endTime":"2015-09-

30T13:22:13.214Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd108c4427a32e0b5e69a0","startTime":"2015-09-

30T13:22:13.214Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be208b3d6aa670a1e12ae","__v":0,"endTime":"2015-09-

30T13:22:14.646Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd11784427a32e0b5e69a1","startTime":"2015-09-

30T13:22:14.647Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be209b3d6aa670a1e12af","__v":0,"endTime":"2015-09-

30T13:22:16.072Z"},{"user":"54db0c3527541070e9415967","topic":"54db0c6a27541070e9415a3d","qu

estion":"54dd108c4427a32e0b5e69a0","startTime":"2015-09-

30T13:22:16.072Z","numCompiles":0,"numErrorFreeCompiles":0,"numRuns":0,"numHints":0,"totalAtte

mpts":0,"correctAttempts":0,"_id":"560be20bb3d6aa670a1e12b0","__v":0,"endTime":"2015-09-

30T13:22:17.518Z"}]

119

120

Bibliography

[1] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. Ex-

ploring machine learning methods to automatically identify students in need of

assistance. In Proceedings of the Eleventh Annual International Conference on

International Computing Education Research, ICER ’15, pages 121–130, New

York, NY, USA, 2015. ACM.

[2] Alireza Ahadi, Raymond Lister, and Donna Teague. Falling behind early and

staying behind when learning to program. In 25th Anniversary Psychology of

Programming Annual Conference (PPIG), Brighton, England, 25th-27th June,

2014.

[3] Vincent Aleven, Bruce M McLaren, Jonathan Sewall, and Kenneth R

Koedinger. The cognitive tutor authoring tools (ctat): preliminary evalua-

tion of efficiency gains. In Intelligent Tutoring Systems, pages 61–70. Springer,

2006.

[4] Amjad Altadmri and Neil C.C. Brown. 37 million compilations: Investigating

novice programming mistakes in large-scale student data. In Proceedings of the

46th ACM Technical Symposium on Computer Science Education, SIGCSE ’15,

pages 522–527, New York, NY, USA, 2015. ACM.

[5] Christine Alvarado, Cynthia Bailey Lee, and Gary Gillespie. New cs1 pedagogies

and curriculum, the same success factors? In Proceedings of the 45th ACM

Technical Symposium on Computer Science Education, SIGCSE ’14, pages 379–

384, New York, NY, USA, 2014. ACM.

[6] John R Anderson. Rules of the mind. Lawrence Erlbaum Associates, Hillsdale,

New Jersey, 1993.

121

[7] John R Anderson and Brian J Reiser. The lisp tutor. Byte, 10(4):159–175,

1985.

[8] Ivon Arroyo and Beverly Park Woolf. Inferring learning and attitudes from a

bayesian network of log file data. In Proceedings of the 2005 Conference on

Artificial Intelligence in Education: Supporting Learning Through Intelligent

and Socially Informed Technology, pages 33–40, Amsterdam, The Netherlands,

The Netherlands, 2005. IOS Press.

[9] Ryan Shaun Baker, Albert T. Corbett, Kenneth R. Koedinger, and Angela Z.

Wagner. Off-task behavior in the cognitive tutor classroom: When students

”game the system”. In Proceedings of the SIGCHI Conference on Human Fac-

tors in Computing Systems, CHI ’04, pages 383–390, New York, NY, USA, 2004.

ACM.

[10] Soumya Basu, Albert Wu, Brian Hou, and John DeNero. Problems before so-

lutions: Automated problem clarification at scale. In Proceedings of the Second

(2015) ACM Conference on Learning @ Scale, L@S ’15, pages 205–213, New

York, NY, USA, 2015. ACM.

[11] Jens Bennedsen and Michael E. Caspersen. Failure rates in introductory pro-

gramming. SIGCSE Bull., 39(2):32–36, June 2007.

[12] Susan Bergin and Ronan Reilly. The influence of motivation and comfort-level

on learning to program. In Proceedings of the PPIG, volume 17, pages 293–304,

2005.

[13] Susan Bergin and Ronan Reilly. Programming: Factors that influence success.

In Proceedings of the 36th SIGCSE Technical Symposium on Computer Science

Education, SIGCSE ’05, pages 411–415, New York, NY, USA, 2005. ACM.

[14] CJ Bonk and V Dennen. We’ll leave the light on for you: Keeping learners moti-

vated in online courses. Web-based Learning. Englewood Cliffs, NJ: Educational

Technology Publications, 2007.

[15] Christopher M. Boroni, Frances W. Goosey, Michael T. Grinder, Jessica L.

Lambert, and Rockford J. Ross. Tying it all together: Creating self-contained,

animated, interactive, web-based resources for computer science education. In

122

The Proceedings of the Thirtieth SIGCSE Technical Symposium on Computer

Science Education, SIGCSE ’99, pages 7–11, New York, NY, USA, 1999. ACM.

[16] Neil C.C. Brown and Amjad Altadmri. Investigating novice programming mis-

takes: Educator beliefs vs. student data. In Proceedings of the Tenth Annual

Conference on International Computing Education Research, ICER ’14, pages

43–50, New York, NY, USA, 2014. ACM.

[17] Russel E. Bruhn and Philip J. Burton. An approach to teaching java using

computers. SIGCSE Bull., 35(4):94–99, December 2003.

[18] Peter Brusilovsky, Stephen Edwards, Amruth Kumar, Lauri Malmi, Luciana

Benotti, Duane Buck, Petri Ihantola, Rikki Prince, Teemu Sirkiä, Sergey Sos-

novsky, Jaime Urquiza, Arto Vihavainen, and Michael Wollowski. Increasing

adoption of smart learning content for computer science education. In Proceed-

ings of the Working Group Reports of the 2014 on Innovation & Tech-

nology in Computer Science Education Conference, ITiCSE-WGR ’14, pages

31–57, New York, NY, USA, 2014. ACM.

[19] Kevin Buffardi and Stephen H. Edwards. Adaptive and social mechanisms

for automated improvement of elearning materials. In Proceedings of the First

ACM Conference on Learning @ Scale Conference, L@S ’14, pages 165–166,

New York, NY, USA, 2014. ACM.

[20] Angela Carbone, John Hurst, Ian Mitchell, and Dick Gunstone. An exploration

of internal factors influencing student learning of programming. In Proceedings

of the Eleventh Australasian Conference on Computing Education - Volume

95, ACE ’09, pages 25–34, Darlinghurst, Australia, Australia, 2009. Australian

Computer Society, Inc.

[21] Janet Carter, Dennis Bouvier, Rachel Cardell-Oliver, Margaret Hamilton,

Stanislav Kurkovsky, Stefanie Markham, O. William McClung, Roger McDer-

mott, Charles Riedesel, Jian Shi, and Su White. Motivating all our students? In

Proceedings of the 16th Annual Conference Reports on Innovation and Technol-

ogy in Computer Science Education - Working Group Reports, ITiCSE-WGR

’11, pages 1–18, New York, NY, USA, 2011. ACM.

123

[22] Jason Carter, Prasun Dewan, and Mauro Pichiliani. Towards incremental sep-

aration of surmountable and insurmountable programming difficulties. In Pro-

ceedings of the 46th ACM Technical Symposium on Computer Science Educa-

tion, SIGCSE ’15, pages 241–246, New York, NY, USA, 2015. ACM.

[23] Yuliya Cherenkova, Daniel Zingaro, and Andrew Petersen. Identifying challeng-

ing cs1 concepts in a large problem dataset. In Proceedings of the 45th ACM

Technical Symposium on Computer Science Education, SIGCSE ’14, pages 695–

700, New York, NY, USA, 2014. ACM.

[24] Mihaela Cocea. Assessment of motivation in online learning environments.

In Adaptive Hypermedia and Adaptive Web-Based Systems, pages 414–418.

Springer, 2006.

[25] Mihaela Cocea and Stephan Weibelzahl. Cross-system validation of engagement

prediction from log files. In Proceedings of the Second European Conference on

Technology Enhanced Learning: Creating New Learning Experiences on a Global

Scale, EC-TEL’07, pages 14–25, Berlin, Heidelberg, 2007. Springer-Verlag.

[26] Mihaela Cocea and Stephan Weibelzahl. Eliciting motivation knowledge from

log files towards motivation diagnosis for adaptive systems. In User Modeling

2007, pages 197–206. Springer, 2007.

[27] Mihaela Cocea and Stephan Weibelzahl. Log file analysis for disengagement

detection in e-learning environments. User Modeling and User-Adapted Inter-

action, 19(4):341–385, October 2009.

[28] J. McGrath Cohoon. Toward improving female retention in the computer sci-

ence major. Commun. ACM, 44(5):108–114, May 2001.

[29] Allan Collins, John Seely Brown, and Ann Holum. Cognitive apprenticeship:

Making thinking visible. American educator, 15(3):6–11, 1991.

[30] Allan Collins, John Seely Brown, and Susan E Newman. Cognitive appren-

ticeship: Teaching the crafts of reading, writing, and mathematics. Knowing,

learning, and instruction: Essays in honor of Robert Glaser, 18:32–42, 1989.

[31] Lorraine Frances Dame. Student readiness, engagement and success in entry

level undergraduate mathematics courses. PhD thesis, University of Victoria,

2012.

124

[32] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. All syntax errors are

not equal. In Proceedings of the 17th ACM Annual Conference on Innovation

and Technology in Computer Science Education, ITiCSE ’12, pages 75–80, New

York, NY, USA, 2012. ACM.

[33] Juan Manuel Dodero, Camino Fernández, and Daniel Sanz. An experience on

students’ participation in blended vs. online styles of learning. SIGCSE Bull.,

35(4):39–42, December 2003.

[34] Gregory Dyke. Which aspects of novice programmers’ usage of an ide predict

learning outcomes. In Proceedings of the 42Nd ACM Technical Symposium on

Computer Science Education, SIGCSE ’11, pages 505–510, New York, NY, USA,

2011. ACM.

[35] Lorna M Earl. Assessment as learning: Using classroom assessment to maxi-

mize student learning. Corwin Press, 2012.

[36] Stephen H. Edwards, Jason Snyder, Manuel A. Pérez-Quiñones, Anthony All-

evato, Dongkwan Kim, and Betsy Tretola. Comparing effective and ineffective

behaviors of student programmers. In Proceedings of the Fifth International

Workshop on Computing Education Research Workshop, ICER ’09, pages 3–14,

New York, NY, USA, 2009. ACM.

[37] A. F. Elgamal, H. A. Abas, and E. S. Baladoh. An interactive e-learning system

for improving web programming skills. Education and Information Technologies,

18(1):29–46, March 2013.

[38] Anthony Estey, Amy Gooch, and Bruce Gooch. Addressing industry issues in a

multi-disciplinary course on game design. In Proceedings of the 4th International

Conference on Foundations of Digital Games, FDG ’09, pages 71–78, New York,

NY, USA, 2009. ACM.

[39] Gerald E. Evans and Mark G. Simkin. What best predicts computer proficiency?

Commun. ACM, 32(11):1322–1327, November 1989.

[40] Nickolas J.G. Falkner and Katrina E. Falkner. A fast measure for identifying

at-risk students in computer science. In Proceedings of the Ninth Annual In-

ternational Conference on International Computing Education Research, ICER

’12, pages 55–62, New York, NY, USA, 2012. ACM.

125

[41] Sue Fitzgerald, Gary Lewandowski, Renee McCauley, Laurie Murphy, Beth Si-

mon, Lynda Thomas, and Carol Zander. Debugging: finding, fixing and flailing,

a multi-institutional study of novice debuggers. Computer Science Education,

18(2):93–116, 2008.

[42] EricJ. Fox. Constructing a pragmatic science of learning and instruction with

functional contextualism. Educational Technology Research and Development,

54(1):5–36, 2006.

[43] J. W. Gikandi, D. Morrow, and N. E. Davis. Online formative assessment in

higher education: A review of the literature. Comput. Educ., 57(4):2333–2351,

December 2011.

[44] Annagret Goold and Russell Rimmer. Factors affecting performance in first-year

computing. SIGCSE Bull., 32(2):39–43, June 2000.

[45] Irene Govender. The learning context: Influence on learning to program. Com-

put. Educ., 53(4):1218–1230, December 2009.

[46] Mark Guzdial. A media computation course for non-majors. In Proceedings of

the 8th Annual Conference on Innovation and Technology in Computer Science

Education, ITiCSE ’03, pages 104–108, New York, NY, USA, 2003. ACM.

[47] Stuart Hansen and Erica Eddy. Engagement and frustration in programming

projects. In Proceedings of the 38th SIGCSE Technical Symposium on Computer

Science Education, SIGCSE ’07, pages 271–275, New York, NY, USA, 2007.

ACM.

[48] Alireza Hassanzadeh, Fatemeh Kanaani, and Shában Elahi. A model for

measuring e-learning systems success in universities. Expert Syst. Appl.,

39(12):10959–10966, September 2012.

[49] Kenny Heinonen, Kasper Hirvikoski, Matti Luukkainen, and Arto Vihavainen.

Using codebrowser to seek differences between novice programmers. In Proceed-

ings of the 45th ACM Technical Symposium on Computer Science Education,

SIGCSE ’14, pages 229–234, New York, NY, USA, 2014. ACM.

[50] Daniel Malcolm Hoffman, Ming Lu, and Tim Pelton. A web-based generation

and delivery system for active code reading. In Proceedings of the 42Nd ACM

126

Technical Symposium on Computer Science Education, SIGCSE ’11, pages 483–

488, New York, NY, USA, 2011. ACM.

[51] Jason Bond Huett, Kevin E Kalinowski, Leslie Moller, and Kimberly Cleaves

Huett. Improving the motivation and retention of online students through the

use of arcs-based e-mails. The Amer. Jrnl. of Distance Education, 22(3):159–

176, 2008.

[52] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. Review

of recent systems for automatic assessment of programming assignments. In

Proceedings of the 10th Koli Calling International Conference on Computing

Education Research, Koli Calling ’10, pages 86–93, New York, NY, USA, 2010.

ACM.

[53] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen

Börstler, Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen,

Kelly Rivers, Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco,

Claudia Szabo, and Daniel Toll. Educational data mining and learning analyt-

ics in programming: Literature review and case studies. In Proceedings of the

2015 ITiCSE on Working Group Reports, pages 41–63, 2015.

[54] Essi Isohanni and Hannu-Matti Järvinen. Are visualization tools used in pro-

gramming education?: By whom, how, why, and why not? In Proceedings of the

14th Koli Calling International Conference on Computing Education Research,

Koli Calling ’14, pages 35–40, New York, NY, USA, 2014. ACM.

[55] Ville Isomöttönen and Ville Tirronen. Teaching programming by emphasiz-

ing self-direction: How did students react to the active role required of them?

Trans. Comput. Educ., 13(2):6:1–6:21, July 2013.

[56] Matthew C. Jadud. Methods and tools for exploring novice compilation be-

haviour. In Proceedings of the Second International Workshop on Computing

Education Research, ICER ’06, pages 73–84, New York, NY, USA, 2006. ACM.

[57] Matthew C. Jadud and Brian Dorn. Aggregate compilation behavior: Findings

and implications from 27,698 users. In Proceedings of the Eleventh Annual In-

ternational Conference on International Computing Education Research, ICER

’15, pages 131–139, New York, NY, USA, 2015. ACM.

127

[58] Tony Jenkins. The motivation of students of programming. In Proceedings of

the 6th Annual Conference on Innovation and Technology in Computer Science

Education, ITiCSE ’01, pages 53–56, New York, NY, USA, 2001. ACM.

[59] Wei Jin. Pre-programming analysis tutors help students learn basic program-

ming concepts. In Proceedings of the 39th SIGCSE Technical Symposium on

Computer Science Education, SIGCSE ’08, pages 276–280, New York, NY, USA,

2008. ACM.

[60] W Lewis Johnson and Elliot Soloway. Proust: Knowledge-based program un-

derstanding. Software Engineering, IEEE Transactions on, 3(3):267–275, 1985.

[61] John M Keller. Development and use of the arcs model of instructional design.

Journal of instructional development, 10(3):2–10, 1987.

[62] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. Towards a systematic

review of automated feedback generation for programming exercises. In Pro-

ceedings of the ACM Conference on Innovation and Technology in Computer

Science Education (ITiCSE), pages 41–46, 2016.

[63] Päivi Kinnunen and Lauri Malmi. Why students drop out cs1 course? In

Proceedings of the Second International Workshop on Computing Education

Research, ICER ’06, pages 97–108, New York, NY, USA, 2006. ACM.

[64] Paul A Kirschner, John Sweller, and Richard E Clark. Why minimal guidance

during instruction does not work: An analysis of the failure of constructivist,

discovery, problem-based, experiential, and inquiry-based teaching. Educational

psychologist, 41(2):75–86, 2006.

[65] René F. Kizilcec and Sherif Halawa. Attrition and achievement gaps in online

learning. In Proceedings of the Second (2015) ACM Conference on Learning @

Scale, L@S ’15, pages 57–66, New York, NY, USA, 2015. ACM.

[66] Daniel Knox and Sally Fincher. Where students go for knowledge and what they

find there. In Proceedings of the Ninth Annual International ACM Conference

on International Computing Education Research, ICER ’13, pages 35–40, New

York, NY, USA, 2013. ACM.

128

[67] Kenneth R. Koedinger and Albert Corbett. Cognitive Tutors: Technology

Bringing Learning Sciences to the Classroom. In Keith Sawyer, editor, The

Cambridge Handbook of the Learning Sciences, pages 60–77. Cambridge Uni-

versity Press, Cambridge, 2006.

[68] Kenneth R. Koedinger, Jihee Kim, Julianna Zhuxin Jia, Elizabeth A. McLaugh-

lin, and Norman L. Bier. Learning is not a spectator sport: Doing is better

than watching for learning from a mooc. In Proceedings of the Second (2015)

ACM Conference on Learning @ Scale, L@S ’15, pages 111–120, New York, NY,

USA, 2015. ACM.

[69] Kenneth R. Koedinger, Elizabeth A. McLaughlin, and John C. Stamper. Data-

driven learner modeling to understand and improve online learning: Moocs and

technology to advance learning and learning research (ubiquity symposium).

Ubiquity, 2014(May):3:1–3:13, May 2014.

[70] Vitomir Kovanović, Dragan Gašević, Shane Dawson, Srećko Joksimović,

Ryan S. Baker, and Marek Hatala. Penetrating the black box of time-on-task

estimation. In Proceedings of the Fifth International Conference on Learning

Analytics And Knowledge, LAK ’15, pages 184–193, New York, NY, USA, 2015.

ACM.

[71] Maria S. Lam, Eric Y. Chan, Victor C. Lee, and Y. T. Yu. Designing an auto-

matic debugging assistant for improving the learning of computer programming.

In Proceedings of the 1st International Conference on Hybrid Learning and Ed-

ucation, ICHL ’08, pages 359–370, Berlin, Heidelberg, 2008. Springer-Verlag.

[72] Kris M. Y. Law, Victor C. S. Lee, and Y. T. Yu. Learning motivation in e-

learning facilitated computer programming courses. Comput. Educ., 55(1):218–

228, August 2010.

[73] R. R. Leeper and J. L. Silver. Predicting success in a first programming course.

In Proceedings of the Thirteenth SIGCSE Technical Symposium on Computer

Science Education, SIGCSE ’82, pages 147–150, New York, NY, USA, 1982.

ACM.

[74] Linda Lumsden. Student Motivation: Cultivating a Love of Learning. ERIC,

1999.

129

[75] Daniel S. McCain, Christos Sakalis, and Arnold Pears. Exploring assessment

practices at university. In Proceedings of the 14th Koli Calling International

Conference on Computing Education Research, Koli Calling ’14, pages 171–172,

New York, NY, USA, 2014. ACM.

[76] Robert McCartney and Kate Sanders. First-year students’ social networks:

Learning computing with others. In Proceedings of the 14th Koli Calling Inter-

national Conference on Computing Education Research, Koli Calling ’14, pages

159–163, New York, NY, USA, 2014. ACM.

[77] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Ha-

gan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and

Tadeusz Wilusz. A multi-national, multi-institutional study of assessment

of programming skills of first-year cs students. In Working Group Reports

from ITiCSE on Innovation and Technology in Computer Science Education,

ITiCSE-WGR ’01, pages 125–180, New York, NY, USA, 2001. ACM.

[78] Monica M. McGill. Learning to program with personal robots: Influences on

student motivation. Trans. Comput. Educ., 12(1):4:1–4:32, March 2012.

[79] Leslie Moller and James D Russell. An application of the arcs model design pro-

cess and confidence-building strategies. Performance Improvement Quarterly,

7(4):54–69, 1994.

[80] Jonathan P. Munson and Elizabeth A. Schilling. Analyzing novice program-

mers’ response to compiler error messages. J. Comput. Sci. Coll., 31(3):53–61,

January 2016.

[81] Christian Murphy, Gail Kaiser, Kristin Loveland, and Sahar Hasan. Retina:

Helping students and instructors based on observed programming activities.

In Proceedings of the 40th ACM Technical Symposium on Computer Science

Education, SIGCSE ’09, pages 178–182, New York, NY, USA, 2009. ACM.

[82] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. Compiler

error messages: What can help novices? In Proceedings of the 39th SIGCSE

Technical Symposium on Computer Science Education, SIGCSE ’08, pages 168–

172, New York, NY, USA, 2008. ACM.

130

[83] Cindy Norris, Frank Barry, James B. Fenwick Jr., Kathryn Reid, and Josh

Rountree. Clockit: Collecting quantitative data on how beginning software

developers really work. In Proceedings of the 13th Annual Conference on In-

novation and Technology in Computer Science Education, ITiCSE ’08, pages

37–41, New York, NY, USA, 2008. ACM.

[84] Andrei Papancea, Jaime Spacco, and David Hovemeyer. An open platform for

managing short programming exercises. In Proceedings of the Ninth Annual In-

ternational ACM Conference on International Computing Education Research,

ICER ’13, pages 47–52, New York, NY, USA, 2013. ACM.

[85] Nick Parlante. Nifty reflections. SIGCSE Bull., 39(2):25–26, June 2007.

[86] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth

Adams, Jens Bennedsen, Marie Devlin, and James Paterson. A survey of

literature on the teaching of introductory programming. In Working Group

Reports on ITiCSE on Innovation and Technology in Computer Science Edu-

cation, ITiCSE-WGR ’07, pages 204–223, New York, NY, USA, 2007. ACM.

[87] David N Perkins, Chris Hancock, Renee Hobbs, Fay Martin, and Rebecca Sim-

mons. Conditions of learning in novice programmers. Journal of Educational

Computing Research, 2(1):37–55, 1986.

[88] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sa-

hami, Leonidas Guibas, and Jascha Sohl-Dickstein. Deep knowledge tracing.

In Proceedings of the Conference on Neural Information Processing Systems

(NIPS), pages 505–513, 2015.

[89] Leo Porter and Daniel Zingaro. Importance of early performance in cs1: Two

conflicting assessment stories. In Proceedings of the 45th ACM Technical Sympo-

sium on Computer Science Education, SIGCSE ’14, pages 295–300, New York,

NY, USA, 2014. ACM.

[90] Leo Porter, Daniel Zingaro, and Raymond Lister. Predicting student success

using fine grain clicker data. In Proceedings of the Tenth Annual Conference

on International Computing Education Research, ICER ’14, pages 51–58, New

York, NY, USA, 2014. ACM.

131

[91] Lei Qu, Ning Wang, and W. Lewis Johnson. Using learner focus of attention

to detect learner motivation factors. In Proceedings of the 10th International

Conference on User Modeling, UM’05, pages 70–73, Berlin, Heidelberg, 2005.

Springer-Verlag.

[92] Martina A. Rau, Vincent Aleven, Nikol Rummel, and Stacie Rohrbach. Why

interactive learning environments can have it all: Resolving design conflicts

between competing goals. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’13, pages 109–118, New York, NY, USA,

2013. ACM.

[93] C. M. Reigeluth. Instructional design: What is it and why is it? Instructional-

design theories and models, pages 3–36, 1983.

[94] Anthony Robins. Learning edge momentum: a new account of outcomes in cs1.

Computer Science Education, 20(1):37–71, 2010.

[95] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teach-

ing programming: A review and discussion. Computer Science Education,

13(2):137–172, 2003.

[96] Ma. Mercedes T. Rodrigo, Ryan S. Baker, Matthew C. Jadud, Anna Chris-

tine M. Amarra, Thomas Dy, Maria Beatriz V. Espejo-Lahoz, Sheryl Ann L.

Lim, Sheila A.M.S. Pascua, Jessica O. Sugay, and Emily S. Tabanao. Affective

and behavioral predictors of novice programmer achievement. In Proceedings

of the 14th Annual ACM SIGCSE Conference on Innovation and Technology

in Computer Science Education, ITiCSE ’09, pages 156–160, New York, NY,

USA, 2009. ACM.

[97] Guido Rößling, Mike Joy, Andrés Moreno, Atanas Radenski, Lauri Malmi, An-

dreas Kerren, Thomas Naps, Rockford J. Ross, Michael Clancy, Ari Korhonen,

Rainer Oechsle, and J. Ángel Velázquez Iturbide. Enhancing learning manage-

ment systems to better support computer science education. SIGCSE Bull.,

40(4):142–166, November 2008.

[98] Hamzeh Roumani. Design guidelines for the lab component of objects-first cs1.

In Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science

Education, SIGCSE ’02, pages 222–226, New York, NY, USA, 2002. ACM.

132

[99] Nathan Rountree, Janet Rountree, and Anthony Robins. Predictors of success

and failure in a cs1 course. SIGCSE Bull., 34(4):121–124, December 2002.

[100] Anna Russo Kennedy. Towards a data-driven analysis of programming tutorials’

telemetry to improve the educational experience in introductory programming

courses. Master’s thesis, University of Victoria, 2015.

[101] W Sack and E Soloway. From meno to proust to chiron: Ai design as iterative

engineering: Intermediate results are important. In Proceedings of the Invited

Workshop on Computer-Based Learning Environments, 1998.

[102] Dale H Schunk. Learning theories. Prentice Hall Inc., New Jersey, 1996.

[103] Elaine Seymour, Nancy M Hewitt, and Cynthia M Friend. Talking about leaving:

Why undergraduates leave the sciences, volume 12. Westview Press Boulder,

CO, 1997.

[104] G. E. Snelbecker. Raising the bar for instructional outcomes: Toward transfor-

mative learning experiences. McGraw Hill, New York, 1974.

[105] Elliot Soloway. Learning to program= learning to construct mechanisms and

explanations. Communications of the ACM, 29(9):850–858, 1986.

[106] Jaime Spacco, Paul Denny, Brad Richards, David Babcock, David Hovemeyer,

James Moscola, and Robert Duvall. Analyzing student work patterns using

programming exercise data. In Proceedings of the 46th ACM Technical Sym-

posium on Computer Science Education, SIGCSE ’15, pages 18–23, New York,

NY, USA, 2015. ACM.

[107] Jaime Spacco, Davide Fossati, John Stamper, and Kelly Rivers. Towards im-

proving programming habits to create better computer science course outcomes.

In Proceedings of the 18th ACM Conference on Innovation and Technology in

Computer Science Education, ITiCSE ’13, pages 243–248, New York, NY, USA,

2013. ACM.

[108] Calkin Suero Montero and Jarkko Suhonen. Emotion analysis meets learning

analytics: Online learner profiling beyond numerical data. In Proceedings of the

14th Koli Calling International Conference on Computing Education Research,

Koli Calling ’14, pages 165–169, New York, NY, USA, 2014. ACM.

133

[109] Emily S. Tabanao, Ma. Mercedes T. Rodrigo, and Matthew C. Jadud. Predict-

ing at-risk novice java programmers through the analysis of online protocols.

In Proceedings of the Seventh International Workshop on Computing Education

Research, ICER ’11, pages 85–92, New York, NY, USA, 2011. ACM.

[110] Vincent Tinto. Research and practice of student retention: what next? Journal

of College Student Retention: Research, Theory and Practice, 8(1):1–19, 2006.

[111] Ville Tirronen and Ville Isomöttönen. Making teaching of programming

learning-oriented and learner-directed. In Proceedings of the 11th Koli Call-

ing International Conference on Computing Education Research, Koli Calling

’11, pages 60–65, New York, NY, USA, 2011. ACM.

[112] Evangelos Triantafillou, Andreas Pomportsis, and Stavros Demetriadis. The

design and the formative evaluation of an adaptive educational system based

on cognitive styles. Comput. Educ., 41(1):87–103, June 2003.

[113] Mieke Vandewaetere, Piet Desmet, and Geraldine Clarebout. Review: The

contribution of learner characteristics in the development of computer-based

adaptive learning environments. Comput. Hum. Behav., 27(1):118–130, January

2011.

[114] Kurt VanLehn. The relative effectiveness of human tutoring, intelligent tutoring

systems, and other tutoring systems. Educational Psychologist, 46(4):197–221,

2011.

[115] George Veletsianos. Designing opportunities for transformation with emerging

technologies. Educational Technology, 51(2):41, 2011.

[116] George Veletsianos. The significance of educational technology history and

research. eLearn, 2014(11), November 2014.

[117] Philip R Ventura Jr. Identifying predictors of success for an objects-first cs1.

Computer Science Education, 25(3):223–243, 2005.

[118] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. A systematic

review of approaches for teaching introductory programming and their influence

on success. In Proceedings of the Tenth Annual Conference on International

Computing Education Research, ICER ’14, pages 19–26, New York, NY, USA,

2014. ACM.

134

[119] Arto Vihavainen, Matti Luukkainen, and Petri Ihantola. Analysis of source code

snapshot granularity levels. In Proceedings of the 15th Annual Conference on

Information Technology Education, SIGITE ’14, pages 21–26, New York, NY,

USA, 2014. ACM.

[120] Arto Vihavainen, Matti Luukkainen, and Jaakko Kurhila. Multi-faceted support

for mooc in programming. In Proceedings of the 13th Annual Conference on

Information Technology Education, SIGITE ’12, pages 171–176, New York, NY,

USA, 2012. ACM.

[121] Arto Vihavainen, Matti Paksula, and Matti Luukkainen. Extreme apprentice-

ship method in teaching programming for beginners. In Proceedings of the

42Nd ACM Technical Symposium on Computer Science Education, SIGCSE

’11, pages 93–98, New York, NY, USA, 2011. ACM.

[122] Rebecca Vivian, Katrina Falkner, and Claudia Szabo. Can everybody learn

to code?: Computer science community perceptions about learning the funda-

mentals of programming. In Proceedings of the 14th Koli Calling International

Conference on Computing Education Research, Koli Calling ’14, pages 41–50,

New York, NY, USA, 2014. ACM.

[123] Christopher Watson, Frederick W. B. Li, and Jamie L. Godwin. Predicting

performance in an introductory programming course by logging and analyz-

ing student programming behavior. In Proceedings of the IEEE International

Conference on Advanced Learning Technologies (ICALT), pages 319–323, 2013.

[124] Christopher Watson and Frederick W.B. Li. Failure rates in introductory pro-

gramming revisited. In Proceedings of the 2014 Conference on Innovation

& Technology in Computer Science Education, ITiCSE ’14, pages 39–44,

New York, NY, USA, 2014. ACM.

[125] Christopher Watson, Frederick W.B. Li, and Jamie L. Godwin. No tests re-

quired: Comparing traditional and dynamic predictors of programming success.

In Proceedings of the 45th ACM Technical Symposium on Computer Science Ed-

ucation, SIGCSE ’14, pages 469–474, New York, NY, USA, 2014. ACM.

[126] Naomi Rosh White. Tertiary education in the noughties: the student perspec-

tive. Higher Education Research & Development, 25(3):231–246, 2006.

135

[127] Brenda Cantwell Wilson and Sharon Shrock. Contributing to success in an

introductory computer science course: A study of twelve factors. In Proceed-

ings of the Thirty-second SIGCSE Technical Symposium on Computer Science

Education, SIGCSE ’01, pages 184–188, New York, NY, USA, 2001. ACM.

[128] Brent G Wilson, Patrick Parrish, and George Veletsianos. Raising the bar for in-

structional outcomes: Toward transformative learning experiences. Educational

Technology, 48(3):39, 2008.

[129] Hanna Yakymova, Yoann Monteiro, and Daniel Zingaro. Study strategies and

exam grades in cs1. In Proceedings of the Western Canadian Conference on

Computing Education (WCCCE), pages 24:1–24:3, 2016.

[130] Daniel Zingaro and Leo Porter. Peer instruction in computing: The value of

instructor intervention. Comput. Educ., 71:87–96, February 2014.

[131] Stuart Zweben and Betsy Bizot. 2013 taulbee survey. COMPUTING, 26(5),

2014.

[132] Stuart Zweben and Betsy Bizot. 2015 Taulbee Survey. Computing Research

News, 28(5), 2016.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	What is the problem?
	Background and Related Work
	Detection of ``at-risk'' students
	Programming behaviour analysis
	Learning tool features
	Focus on Learning
	Supporting all students
	Tying it all together

	Tool Features
	Instructor-focused requirements
	Student-focused requirements
	Course format

	Thesis Questions

	Will Students Use BitFit?
	Methodology
	Results
	Student opt-in
	Confidence
	Self-efficacy

	Discussion
	Summary

	How Do Students Use BitFit?
	Methodology
	Objectives
	Threats to Validity

	Results
	Semester 1
	Semesters 2 and 3

	Analysis
	Early Identification
	Overall Trends

	Discussion
	Summary

	What Does Learning Look Like?
	Methodology
	Data collection
	Early predictors
	Trajectory metrics

	Results
	Early predictors (RQ1)
	Trajectory over time (RQ2)
	Trajectory on a topic basis (RQ3)

	Analysis and Discussion
	Summary

	Do Students Know How to Prepare for Exams?
	Methodology
	Results
	Time on Task (RQ4a)
	Question Difficulty (RQ4b)
	Self-Efficacy (RQ4c)
	Connecting Survey Results with Log Data

	Analysis and Discussion
	Threats to Validity

	Summary

	Conclusions and Future Work
	Additional Information
	Topics
	Sample Questions

	Sample Background Info
	Sample Hints
	Sample survey
	Sample log data

	Bibliography

