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Abstract: We present uncertainty relations based on Wigner-Yanase-Dyson skew information with1

quantum memory. Uncertainty inequalities both in product and summation forms are derived. It2

is shown that the lower bounds contain two terms: one characterizes the degree of compatibility of3

two measurements, one is the quantum correlation between the measured system and the quantum4

memory. Detailed examples are given for product, separable and entangled states.5

Keywords: Uncertainty relation; Wigner-Yanase-Dyson skew information; Quantum memory6

1. Introduction7

Uncertainty principle is an essential feature of quantum mechanics, characterizing the
experimental measurement incompatibility of non-commuting quantum mechanical observables in the
preparation of quantum states. Heisenberg first introduced the variance-based uncertainty [1]. Later,
Robertson [2] proposed the well-known formula of uncertainty relation, V(ρ, R)V(ρ, S) ≥ 1

4 |Trρ[R, S]|2,
for arbitrary observables R and S, where [R, S] = RS− SR and V(ρ, R) is the standard deviation of R.
Schrödinger gave a further improved uncertainty relation [3]

V(ρ, R)V(ρ, S) ≥ 1
4
|〈[R, S]〉|2 + |1

2
〈{R, S}〉 − 〈R〉〈S〉|2,

where 〈R〉 = Tr(ρR) and {R, S} = RS + SR is the anti-commutator. Since then many kinds of
uncertainty relations have been presented [4,5,6,7,8,9,10,11]. In addition to the uncertainty of standard
deviation, entropy can be used to quantify uncertainties [12]. The first entropic uncertainty relation
was given by Deutsch [13] and then improved by Maassen and Uffink [14],

H(R) + H(S) ≥ log2
1
c

,

where R = {|uj〉} and S = {|vk〉} are two orthonormal bases on d-dimensional Hilbert space H,
and H(R) = −Σj pjlogpj (H(S) = −Σkqklogqk) is the Shannon entropy of the probability distribution
pj = 〈uj|ρ|uj〉 (qk = 〈vk|ρ|vk〉) for state ρ of H. The number c is the largest overlap among all
cjk = |〈uj|vk〉|2 between the projective measurements R and S. Berta et al [15] bridged the gap between
cryptographic scenarios and the uncertainty principle, and derived this landmark uncertainty relation
for measurements R and S in the presence of quantum memory B:

H(R|B) + H(R|B) ≥ log2
1
c
+ H(A|B),

where H(R|B) = H(ρRB) − H(ρB) is the conditional entropy with ρRB =8

Σj(|uj〉〈uj|
⊗

I)ρAB(|uj〉〈uj|
⊗

I) (similarly for H(S|B)), d is the dimension of the subsystem9
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A. The term H(A|B) = H(ρAB) − H(ρB) appearing on the right-hand side is related to the10

entanglement between the measured particle A and the quantum memory B. The bound of Berta et11

al has been further improved [16,17,18]. Moreover, there are also some uncertainty relations given12

by the generalized entropies, such as the Rényi entropy [19,20,21] and the Tsallis entropy [22,23,24],13

and even more general entropies such that the (h, Φ) entropies [25]. These uncertainty relations not14

only manifest the physical implications of the quantum world, but also play roles in entanglement15

detection [26,27], quantum spin squeezing [28,29] and quantum metrology [30,31].16

In [32], an uncertainty relation based on Wigner-Yanase skew information I(ρ, H) has been
obtained with quantum memory, where I(ρ, H) = 1

2 Tr[(i[
√

ρ, H])2] = Tr(ρH2) − Tr(
√

ρH
√

ρH)

quantifies the degree of non-commutativity between a quantum state ρ and an observable H, which is
reduced to the variance V(ρ, H) when ρ is a pure state. In fact, the Wigner-Yanase skew information
I(ρ, H) is generalized to Wigner-Yanase-Dyson skew information Iα(ρ, H), α ∈ [0, 1], see [33],

Iα(ρ, H) =
1
2

Tr[(i[ρα, H])(i[ρ1−α, H])]

= Tr(ρH2)− Tr(ραHρ1−αH), α ∈ [0, 1]. (1)

Here the Wigner-Yanase-Dyson skew information Iα(ρ, H) reduces to the Wigner-Yanase skew17

information I(ρ, H) when α = 1
2 . And the Wigner-Yanase-Dyson skew information Iα(ρ, H) reduces to18

the standard deviation V(ρ, H) when ρ is a pure state.19

The convexity of Iα(ρ, H) with respect to ρ has been proven by Lieb in [34]. In [35] Kenjiro
introduced another quantity,

Jα(ρ, H) =
1
2

Tr[({ρα, H0})({ρ1−α, H0})]

= Tr(ρH2
0) + Tr(ραH0ρ1−αH0), α ∈ [0, 1], (2)

where H0 = H − Tr(ρH)I with I the identity operator.20

For a quantum state ρ and observables R, S and 0 ≤ α ≤ 1, the following inequality holds [35],

Uα(ρ, R)Uα(ρ, S) ≥ α(1− α)|Trρ[R, S]|2, (3)

where Uα(ρ, R) =
√

Iα(ρ, R)Jα(ρ, R) can be regarded as a kind of measure for quantum uncertainty,21

in the sense given by [35]. For a pure state, a standard deviation based relation is recovered from (3).22

When α = 1
2 , it is reduced to the result of [36].23

Inspired by the works [32] and [35], in this paper we study the uncertainty relations based on24

Wigner-Yanase-Dyson skew information in the presence of quantum memory, which generalize the25

results in [32] to the case of Wigner-Yanase-Dyson skew information, and the results in [35] to the26

case with the presence of quantum memory. We present uncertainty inequalities both in product and27

summation forms, and show that the lower bounds contain two terms: one concerns the compatibility28

of two measurement observables, one concerns the quantum correlations between the measured29

system and the quantum memory. We compare the lower bounds for product states, separable and30

entangled states by detailed examples.31

2. Results32

Let φk = |φk〉〈φk| and ψk = |ψk〉〈ψk| be the rank one spectral projectors of two non-degenerate33

observables R and S with the eigenvectors |φk〉 and |ψk〉, respectively. Similar to [32], we define34

UNα(ρ, φ) = ∑
k

Uα(ρ, φk) = ∑
k

√
Iα(ρ, φk)Jα(ρ, φk) as the uncertainty of ρ associated to the projective35

measurement {φk}, and Uα(ρ, ψ) to {ψk}.36
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Let ρAB be a bipartite state on HA ⊗ HB, where HA and HB denote the Hilbert space of subsystem37

A and B respectively. Let V be any orthogonal basis space on HA and |φk〉 be an orthogonal basis of38

HA. We define a quantum correlation of ρAB as:39

D̃α(ρAB) = min
V

∑
k
[Iα(ρAB, φk ⊗ IB)− Iα(ρA, φk)] (4)

where the minimum is taken over all the orthogonal basis on HA, ρA = TrBρAB.40

For any bipartite state ρAB and any observable XA on HA, we have Iα(ρAB, XA⊗ IB) ≥ Iα(ρA, XA),41

which follows form the Corollary 1.3 in [34] and the Lemma 2 in [37]. Therefore, D̃α(ρAB) ≥ 0.42

Furthermore, D̃α(ρAB) = 0 when ρAB is a classical-quantum correlated state, which follows from the43

proof in Theorem 1 of [38]. D̃α(ρAB) has a measurement on subsystem A, which gives an explicit44

physical meaning: it is the minimal difference of incompatibility of the projective measurement on45

the bipartite state ρAB and on the local reduced state ρA. D̃α(ρAB) quantifies the quantum correlations46

between the subsystems A and B. We have47

Theorem 1. Let ρAB be a bipartite quantum state on HA ⊗ HB, {φk} and {ψk} be two sets of rank one
projective measurements on HA. Then

UNα(ρAB, φ⊗ I)UNα(ρAB, ψ⊗ I) ≥∑
k

L2
α,ρA

(φk, ψk) + D̃2
α(ρAB), (5)

where Lα,ρA(φk, ψk) = α(1− α) |TrρA [φk ,ψk ]|2√
Jα(ρA ,φk)·Jα(ρA ,ψk)

.48

Proof of Theorem 1. By definition, we have

UNα(ρAB, φ⊗ I)UNα(ρAB, ψ⊗ I)

= ∑
k

√
Iα(ρAB, φk ⊗ I) · Jα(ρAB, φk ⊗ I) ·∑

k

√
Iα(ρAB, ψk ⊗ I) · Jα(ρAB, ψk ⊗ I)

≥∑
k

Iα(ρAB, φk ⊗ I) ·∑
k

Iα(ρAB, ψk ⊗ I)

= [∑
k
(Iα(ρAB, φk ⊗ I)− Iα(ρA, φk)) + ∑

k
Iα(ρA, φk)]

· [∑
k
(Iα(ρAB, ψk ⊗ I)− Iα(ρA, ψk)) + ∑

k
Iα(ρA, ψk)]

≥ [D̃α(ρAB) + ∑
k

Iα(ρA, φk)] · [D̃α(ρAB) + ∑
k

Iα(ρA, ψk)]

≥ D̃2
α(ρAB) + ∑

k
Iα(ρA, φk)Iα(ρA, ψk)

≥ D̃2
α(ρAB) + ∑

k

α2(1− α)2|TrρA[φk, ψk]|4
Jα(ρA, φk)Jα(ρA, ψk)

, D̃2
α(ρAB) + ∑

k
L2

α,ρA
(φk, ψk), (6)

where the first inequality is due to Jα(ρ, H) ≥ Iα(ρ, H) [35], the last inequality follows form (3).49

Theorem 1 gives a product form of uncertainty relation. Comparing the results (3) without50

quantum memory with (5) with quantum memory, one finds that if the observables A and B satisfy51

[A, B] = 0, the bound is trivial in (3), while in (5), even if the projective measurements φk and ψk satisfy52

[φk, ψk] = 0, i.e. Lα,ρA(φk, ψk) = 0, but D̃α(ρAB) may still be not trivial due to correlations between the53

system and the quantum memory.54
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Corresponding to the product form of uncertainty relation, we can also derive the sum form of55

uncertainty relation:56

Theorem 2. Let ρAB be a quantum state on HA ⊗ HB, {φk} and {ψk} be two sets of rank one projective
measurements on HA. Then

UNα(ρAB, φ⊗ I) + UNα(ρAB, ψ⊗ I) ≥ 2 ∑
k

Lα,ρA(φk, ψk) + 2D̃α(ρAB), (7)

Proof of Theorem 2. By definition and taking into account the fact that Jα(ρ, H) ≥ Iα(ρ, H) [35], we
have

UNα(ρAB, φ⊗ I) + UNα(ρAB, ψ⊗ I)

= ∑
k

√
Iα(ρAB, φk ⊗ I) · Jα(ρAB, φk ⊗ I) + ∑

k

√
Iα(ρAB, ψk ⊗ I) · Jα(ρAB, ψk ⊗ I)

≥∑
k

Iα(ρAB, φk ⊗ I) + ∑
k

Iα(ρAB, ψk ⊗ I).

While

∑
k

Iα(ρAB, φk ⊗ I) + ∑
k

Iα(ρAB, ψk ⊗ I)

= ∑
k

Iα(ρA, φk) + ∑
k

Iα(ρA, ψk) + ∑
k
[Iα(ρAB, φk ⊗ I)− Iα(ρA, φk)]

+ ∑
k
[Iα(ρAB, ψk ⊗ I)− Iα(ρA, ψk)]

≥∑
k

Iα(ρA, φk) + ∑
k

Iα(ρA, ψk) + 2D̃α(ρAB),

where the inequality follow from (4). By using the inequality a + b ≥ 2
√

ab for positive a = Iα(ρA, φk)

and b = Iα(ρA, ψk), we further obtain

UNα(ρAB, φ⊗ I) + UNα(ρAB, ψ⊗ I)

≥ 2 ∑
k

√
Iα(ρA, φk) · Iα(ρA, ψk) + 2D̃α(ρAB)

≥ 2 ∑
k

α(1− α)
|TrρA[φk, ψk]|2√

Jα(ρA, φk) · Jα(ρA, ψk)
+ 2D̃α(ρAB)

, 2 ∑
k

Lα,ρA(φk, ψk) + 2D̃α(ρAB), (8)

where the second inequality follows from (3).57

We note that (7) reduces to an inequality which agrees with the result of [32] when α = 1
2 . Theorem58

2 is a generalization of the Theorem in [32].59

From Theorem 1 and 2, we obtain uncertainty relations in the form of product and sum of skew60

information, which is different from the uncertainty of [39], which only deals with single partite61

state. However, we treat the bipartite case with a quantum memory B. It is shown that the lower62

bound contains two terms: one is the quantum correlation D̃α(ρAB), the other is ∑
k

Lα,ρA(φk, ψk) which63

characterizes the degree of compatibility of two measurements, just like the meaning of log2
1
c in the64

entropy uncertainty relation [15].65
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Example 1. We consider the 2-qubit Werner state ρ = 2−p
6 I + 2p−1

6 V, where p ∈ [−1, 1] and V = ∑
kl
|kl〉〈lk|.66

Let the Pauli matrices σx and σz be the two observables, and {|ψk〉} and {|ϕk〉} be the eigenvectors of σx67

and σz respectively, which satisfy |〈ψi|ϕj〉|2 = 1
2 , i, j = 1, 2. For all k, we have TrρA[ψk, ϕk] = 0, i.e.68

Lα,ρA(ψk, ϕk) = 0. The values of the left hand side and the right hand side of (5) are given by69

4(
2− p

12
− (3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

24
)

× (
4 + p

12
+

(3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

24
)

and

(
2− p

6
− (3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

12
)2

respectively, see Figure. 1(a) for the uncertainty relations with different values of α.70

(a) (b)

Figure 1. The axis y is the uncertainty and its lower bounds. (a) Blue (red) solid line for the value of
the left (right) hand side of (5) with α = 0.2; black dotted (red dotdashed) line represents the value of
the left (right) hand side of (5) with α = 0.5. (b) Red solid (black dotted) line represents the value of the
left (right) hand side of (7) with α = 0.2; blue solid (green dotted) line represents the value of the left
(right) hand side of (7) with α = 0.5, which corresponds to Fig. 1 in [32].

Similarly, we can get the values of the left and the right hand sides of (7),

4

√
(

2− p
12
− (3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

24
)

×
√
(

4 + p
12

+
(3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

24
)

and
2− p

3
− (3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

6
,

respectively, see Figure. 1(b).71

Here we see explicitly that, just like the Shannon entropy, Rényi entropy, Tsallis entropy,72

(h, Φ) entropies and Wigner-Yanase skew information, the Wigner-Yanase-Dyson skew information73

characterizes a special kind of information of a system or measurement outcomes, which needs to74

satisfy certain restrictions for given measurements and correlations between the system and the75

memory. Different parameter α gives rise to different kind of information. From Figure 1 we see that76

for given state and measurements, the differences between the left and the right hand sides of the77
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inequalities (5) or (7) varies with the parameter α. Moreover, the degree of compatibility of the two78

measurements, Lα,ρA(φk, ψk), vanishes for α = 0 or 1, which is a fact in accordance with (3), the case79

without quantum memory. For p = 1/2, the state ρ is maximally mixed. In this case, both sides of the80

inequalities (5) and (7) vanishes for any α.81

Example 2. Consider a separable bipartite state, ρAB = 1
2 [|+〉〈+| ⊗ |0〉〈0| + |−〉〈−| ⊗ |1〉〈1|], where82

|+〉 = 1√
2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉).83

We still choose σx and σz to be the two observables. By calculation we get: For product states |+〉〈+| ⊗84

|0〉〈0| and |−〉〈−| ⊗ |1〉〈1|, both left and right hand sides of (5) are 0, and the right hand side of (7) is 0. And85

for the separable bipartite state ρAB, the left hand and the right hand sides of (5) are 1
2 and 0, respectively. Both86

left and right hand sides of (7) are 0.87

Example 3. For the Werner state ρAB
w = (1− p) I

4 + p|ϕ〉〈ϕ|, where |ϕ〉 = 1√
2
(|00〉+ |11〉) is the Bell state,88

p ∈ [0, 1], and the state is separable when p ≤ 1
3 .89

We have the values of the left and right hand sides of (5), respectively,

4(
1 + p

8
− (1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16
)

× (
3− p

8
+

(1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16
)

and

4(
1 + p

8
− (1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16
)2,

see Figure. 2(a) for a comparison with different values of α.90

(a) (b)

Figure 2. The axis y is the uncertainty and the lower bounds. (a) blue (red) solid line is the value of
the left (right) hand side of (5) for α = 0.2; black (blue-green) solid line represents the value of the left
(right) hand side of (5) for α = 0.5. (b) the blue (red) solid line represents value of the left (right) hand
side of (7) for α = 0.2; black (blue-green) solid line represents the value of the left (right) hand side of
(7) for α = 0.5.

We can also get the values of the left and right hand sides of (7),

4

√
1 + p

8
− (1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16

×
√

3− p
8

+
(1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16
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and
1 + p

2
− (1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

4
respectively, see Figure. 2(b).91

Moreover, when ρAB
w is separable, namely, p ≤ 1

3 , the differences between the left and the right sides of the92

inequalities is smaller than that of the entangled states. Figure. 3 shows the differences for different values of p.93

(a) (b)

Figure 3. The axis y is the uncertainty and its lower bound. (a) p = 0.2 (ρAB
w is a separable state), blue

solid line represents the value of the left hand side of (5), the line (very near the x-axis) marked by
triangles represents the corresponding lower bound; p = 0.5 (ρAB

w is an entangled state), the black (red)
solid line represents the value of the left (right) hand side of (5). (b) blue (red) solid line represents the
value of the left (right) hand side of (7) for p = 0.2; black solid (red dashed) line represents the value of
the left (right) hand side of (7) for p = 0.5.

3. Conclusion94

We have investigated the uncertainty relations both in product and summation forms in terms95

of the Wigner-Yanase-Dyson skew information with a quantum memory. It has been shown that the96

lower bounds contain two terms: one is the quantum correlation D̃α(ρAB), the other is ∑
k

Lα,ρA(φk, ψk)97

which characterizes the degree of compatibility of two measurements. By detailed examples we have98

compared the lower bounds for product states, separable and entangled states.99

Acknowledgments: This work is supported by the NSF of China under Grant No. 11675113.100

Conflicts of Interest: The authors declare no conflict of interest.101

References102

[1] W. Heisenberg, Z. Phys. 43, 172-198 (1927).103

[2] H. P. Robertson, Science, 73, 65-98 (1929).104

[3] E. Schrödinger, Berl. Ber. 19, 296-303 (1930).105

[4] P. Busch, P. Lahti, and R. F. Werner, Phys. Rev. Lett. 111, 160405 (2013).106

[5] P. Busch, P. Lahti, and R. F. Werner, Phys. Rev. A 89, 012129 (2014).107

[6] G. Sulyok, S. Sponar, B. Demirel, F. Buscemi, M. J. W. Hall, M. Ozawa, and Y. Hasegawa, Phys. Rev. Lett.108

115, 030401 (2015).109

[7] W. Ma, Z. Ma, H. Wang, Y. Liu, Z. Chen, F. Kong, Z. Li, M. Shi, F. Shi, S.-M. Fei, and J. Du, Phys. Rev. Lett.110

116, 160405 (2016).111

[8] Z. Puchała, Ł. Rudnicki, and K. Zyczkowski, J. Phys. A: Math. Theor. 46, 272002 (2013).112

[9] S. Friedland, V. Gheorghiu, and G. Gour, Phys. Rev. Lett. 111, 230401 (2013).113

[10] L. Maccone and A. K. Pati, Phys. Rev. Lett. 113, 260401 (2014).114



Version February 11, 2018 submitted to MDPI 8 of 8

[11] W.C. Ma, B. Chen, Y. Liu, M.Q. Wang, X.Y. Ye, F. Kong, F.Z. Shi, S.M. Fei, and J.F. Du, Phys. Rev. Lett. 118,115

180402 (2017).116

[12] P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, Rev. Mod. Phys. 89, 015002 (2017).117

[13] D. Deutsch, Phys. Rev. Lett. 50, 631 (1983).118

[14] H. Maassen and J. B. M. Uffink, Phys. Rev. Lett. 60, 1103 (1988).119

[15] M. Berta, M. Christandl, R. Colbeck, J. Renes, and R. Renner, Nat. Phys. 6, 695 (2010).120

[16] P. J. Coles and M. Piani, Phys. Rev. A 89, 022112 (2014).121
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