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Abstract: We present uncertainty relations based on Wigner-Yanase-Dyson skew information with
quantum memory. Uncertainty inequalities both in product and summation forms are derived. It
is shown that the lower bounds contain two terms: one characterizes the degree of compatibility of
two measurements, one is the quantum correlation between the measured system and the quantum
memory. Detailed examples are given for product, separable and entangled states.
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1. Introduction

Uncertainty principle is an essential feature of quantum mechanics, characterizing the
experimental measurement incompatibility of non-commuting quantum mechanical observables in the
preparation of quantum states. Heisenberg first introduced the variance-based uncertainty [1]. Later,
Robertson [2] proposed the well-known formula of uncertainty relation, V (o, R)V(p,S) > 1|Trp[R, S]|?,
for arbitrary observables R and S, where [R, S] = RS — SR and V(p, R) is the standard deviation of R.
Schrodinger gave a further improved uncertainty relation [3]

V(o R)V(p,S) > (IR S)P + I 3({R S} — (R)(S) P,

where (R) = Tr(pR) and {R,S} = RS + SR is the anti-commutator. Since then many kinds of
uncertainty relations have been presented [4,5,6,7,8,9,10,11]. In addition to the uncertainty of standard
deviation, entropy can be used to quantify uncertainties [12]. The first entropic uncertainty relation
was given by Deutsch [13] and then improved by Maassen and Uffink [14],

H(R) + H(S) > log, 7,

where R = {[uj)} and S = {[vy)} are two orthonormal bases on d-dimensional Hilbert space H,
and H(R) = —X;pilogp; (H(S) = —Xiqilogqy) is the Shannon entropy of the probability distribution
pj = (ujlpluj) (@x = (vklplvx)) for state p of H. The number c is the largest overlap among all
cix = | (uj|ox) |? between the projective measurements R and S. Berta et al [15] bridged the gap between
cryptographic scenarios and the uncertainty principle, and derived this landmark uncertainty relation
for measurements R and S in the presence of quantum memory B:

1
H(R|B) + H(R|B) > log, - + H(AB),

where H(R|B) =  H(prg) — H(pp) 1is the conditional entropy with pgp =
Zi(Juj) (ui] @ Dpap(Juj) (uj| Q) I) (similarly for H(S|B)), d is the dimension of the subsystem
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A. The term H(A|B) = H(pap) — H(pp) appearing on the right-hand side is related to the
entanglement between the measured particle A and the quantum memory B. The bound of Berta et
al has been further improved [16,17,18]. Moreover, there are also some uncertainty relations given
by the generalized entropies, such as the Rényi entropy [19,20,21] and the Tsallis entropy [22,23,24],
and even more general entropies such that the (1, ®) entropies [25]. These uncertainty relations not
only manifest the physical implications of the quantum world, but also play roles in entanglement
detection [26,27], quantum spin squeezing [28,29] and quantum metrology [30,31].

In [32], an uncertainty relation based on Wigner-Yanase skew information I(p, H) has been
obtained with quantum memory, where I(p,H) = 1Tr[(i[\/p, H])?] = Tr(pH?) — Tr(\/pH/pH)
quantifies the degree of non-commutativity between a quantum state p and an observable H, which is
reduced to the variance V(p, H) when p is a pure state. In fact, the Wigner-Yanase skew information
I(p, H) is generalized to Wigner-Yanase-Dyson skew information I, (p, H), « € [0, 1], see [33],

Ielp, H) = 3 T(lo", H))(ilp!~, H))]
= Tr(oH?) — Tr(p*Hp'™*H),  a €[0,1]. (1)

Here the Wigner-Yanase-Dyson skew information I,(p, H) reduces to the Wigner-Yanase skew
information I(p, H) when « = }. And the Wigner-Yanase-Dyson skew information I, (p, H) reduces to
the standard deviation V(p, H) when p is a pure state.

The convexity of I,(p, H) with respect to p has been proven by Lieb in [34]. In [35] Kenjiro
introduced another quantity,

Julp, H) = %Tr[({f’“,Ho})({Pl’“/Ho})]
= Tr(oH3) + Tr(p"Hop' “Hy),  a €[0,1], )

where Hy = H — Tr(pH)I with I the identity operator.
For a quantum state p and observables R, S and 0 < a < 1, the following inequality holds [35],

Ux(p, R)Ux(p, S) > a(1—a)|Trp[R, S|, ®)

where U, (p, R) = \/Ix(p,R)]Ju(p, R) can be regarded as a kind of measure for quantum uncertainty,
in the sense given by [35]. For a pure state, a standard deviation based relation is recovered from (3).
When a = %, it is reduced to the result of [36].

Inspired by the works [32] and [35], in this paper we study the uncertainty relations based on
Wigner-Yanase-Dyson skew information in the presence of quantum memory, which generalize the
results in [32] to the case of Wigner-Yanase-Dyson skew information, and the results in [35] to the
case with the presence of quantum memory. We present uncertainty inequalities both in product and
summation forms, and show that the lower bounds contain two terms: one concerns the compatibility
of two measurement observables, one concerns the quantum correlations between the measured
system and the quantum memory. We compare the lower bounds for product states, separable and
entangled states by detailed examples.

2. Results

Let ¢ = |¢r) (¢r| and ¢ = | k) (Y| be the rank one spectral projectors of two non-degenerate
observables R and S with the eigenvectors |¢x) and |¢y), respectively. Similar to [32], we define

UNx(p,¢) =Y Ualp, ) =) \/ Lo(p, ¢ ) Ju (0, i) as the uncertainty of p associated to the projective
k k
measurement {¢y }, and Uy (p, ) to {¢x}.
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Let p 4p be a bipartite state on H4 ® Hp, where H4 and Hp denote the Hilbert space of subsystem
A and B respectively. Let V be any orthogonal basis space on H4 and |¢) be an orthogonal basis of
H 4. We define a quantum correlation of p 4p as:

Du(pap) = min Y [Lu(pap, ¢k © Ig) — Iu(pa, )] 4)
P

where the minimum is taken over all the orthogonal basis on H4, p4 = Trppap-

For any bipartite state p 45 and any observable X4 on H4, we have I, (pap, X4 ® Ig) > In(pa, Xa),
which follows form the Corollary 1.3 in [34] and the Lemma 2 in [37]. Therefore, Dy(045) > O.
Furthermore, D, (p4p) = 0 when p 43 is a classical-quantum correlated state, which follows from the
proof in Theorem 1 of [38]. D,(p4p) has a measurement on subsystem A, which gives an explicit
physical meaning: it is the minimal difference of incompatibility of the projective measurement on
the bipartite state p 43 and on the local reduced state p 4. Dy (0 4p) quantifies the quantum correlations
between the subsystems A and B. We have

Theorem 1. Let pap be a bipartite quantum state on Hy @ Hp, {¢y} and {yy} be two sets of rank one
projective measurements on H,. Then

UNy(pap, ¢ @ I)UNx(pap, p @ 1) > ZL,X o1 (P W) + D3 (0 aB), ()

T , 2
ahere L (0 1) = 201 =)

Proof of Theorem 1. By definition, we have

UNa(pAB/(P@) I)LH\](X(pz‘lBrlrb(® I)
= Z\/Lx(PAB/(Pk @ 1) Jaloap, px @ 1) 'Z\/sz(PAB,l/Jk ®1) - Ja(pap Px®1)
K K

> ) laoap, pe @ 1)) La(pap, x ® 1)
T

X
= [;(Lx (0B, ok @ 1) — Lu(pa, Px)) + ;Ia (04, ¢x)]
: [;(Ia(PABf#’k ®1) — In(oa, ¢x)) + ;Ia(PA/#’k)]

> [Da(paB) thx o4, ¢x)] - [DalpaB) ZLX 04 Pi)]

v

Dz (paB) +2Lx o4, 0k) I (pA, P)
P

-2 o (1 — a)?|Trp a [, il
> Dy (paB) + ; (o2, &) Ja (0 A, ¥r)

= Di(PAB) +2L3¢,pA(¢k/lpk)/ ©)
k

where the first inequality is due to [, (o, H) > I.(p, H) [35], the last inequality follows form (3). [

Theorem 1 gives a product form of uncertainty relation. Comparing the results (3) without
quantum memory with (5) with quantum memory, one finds that if the observables A and B satisfy
[A, B] = 0, the bound is trivial in (3), while in (5), even if the projective measurements ¢y and y satisfy
[P, k] = 0, i.e. Lap, (¢x, Px) = 0, but Dy (pap) may still be not trivial due to correlations between the
system and the quantum memory.
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Corresponding to the product form of uncertainty relation, we can also derive the sum form of
uncertainty relation:

Theorem 2. Let pap be a quantum state on Hy @ Hp, {¢r} and {yy} be two sets of rank one projective
measurements on Hp. Then

UNg (PAB/‘P ® I) + UNIX(pABIl/J ® I) > 2ZL06,pA ((Pk/ ¢k) + ZDN (PAB)/ (7)
k

Proof of Theorem 2. By definition and taking into account the fact that J,(p, H) > I,(p, H) [35], we
have

UNu(paB, ¢ ® 1) + UNu(paB, p ® 1)
= Z\/Lx(PAB,Q”k @1) - Ja(oas, P @ 1)+ \/Lx(PAB/lPk ® 1) Ja(pap Yr @ 1)
k k

2 ZLX(PAB/(Pk ®1I)+ ZLX(PABIIPk ®I).
k k
While

Y Loas o ® 1) + Y L(oas vx @ 1)
k k

=Y L(oa ¢x) + ;IW(PA/ ) + ;sz (0aB, Ok 1) — Lu(pa, Pi)]

k

+ 2 lleoan, 5 @ 1)~ Julpa, )

> ) Lulpa ¢x) + ) Iu(pa ) +2Da(pan),
r P

where the inequality follow from (4). By using the inequality a + b > 2v/ab for positive a = I, (04, ¢x)
and b = I,(pa, P ), we further obtain

UNy(0ap, ¢ ® 1) + UNu(pap, ¢ @ 1)
> 2 \/la(oar ) - (o4, ) + 2Du(pn)
k

| Tro Ak, i) |2 ~
2 1-— 2D,
22 =) ) o | 2Deean)

=2 Z L“rPA (4’kz lpk) + ZDIX (PAB), (8)
k

where the second inequality follows from (3). O

We note that (7) reduces to an inequality which agrees with the result of [32] when & = % Theorem
2 is a generalization of the Theorem in [32].

From Theorem 1 and 2, we obtain uncertainty relations in the form of product and sum of skew
information, which is different from the uncertainty of [39], which only deals with single partite
state. However, we treat the bipartite case with a quantum memory B. It is shown that the lower
bound contains two terms: one is the quantum correlation Dy (0 4p), the otheris Y " Ly, (¢x, ) which

k

characterizes the degree of compatibility of two measurements, just like the meaning of log, % in the
entropy uncertainty relation [15].
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Example 1. We consider the 2-qubit Werner state p = 2_Tpl + %V, where p € [—1,1]and V =) _ |kI)(Ik].
kl

Let the Pauli matrices oy and o be the two observables, and {|yy)} and {|px)} be the eigenvectors of o
and o respectively, which satisfy |(;|;)|* = 3,i,j = 1,2. For all k, we have Trpa[fy, ] = 0, i.e.
Lap, (Y1, @x) = 0. The values of the left hand side and the right hand side of (5) are given by

g 2P B8p) A p) T+ (14 p)* (3 -3p)
12 24

(AP B3 A p) T+ (L4 p)* (3 -3
12 24

and
(2 -p (B-3p)*(+p“+1+p*B-3p'" 2
6 12

respectively, see Figure. 1(a) for the uncertainty relations with different values of «.

B
B Sy 09
R
I %o 0.8
1 =
| .
b 0.7
\ M 9
\\ N N, 8
\ - O
3 . 0.5
\ e
X Q.4
~ i
%
i 0.3 y
~
g 02 =
& Y
~ g A
e, ~ Qo
_ P R

(a) (b)

Figure 1. The axis y is the uncertainty and its lower bounds. (a) Blue (red) solid line for the value of
the left (right) hand side of (5) with @ = 0.2; black dotted (red dotdashed) line represents the value of
the left (right) hand side of (5) with « = 0.5. (b) Red solid (black dotted) line represents the value of the
left (right) hand side of (7) with @ = 0.2; blue solid (green dotted) line represents the value of the left
(right) hand side of (7) with « = 0.5, which corresponds to Fig. 1 in [32].

Similarly, we can get the values of the left and the right hand sides of (7),

4\/(2 —p (=3 (tp) (4P B-3p)

12 24
y \/(4+P L B3 P+ (14 p) B3
12 24
and
2—p (B3=3p)*(l+p "+ QQ+p*B-3p'"
3 6 ’

respectively, see Figure. 1(b).

Here we see explicitly that, just like the Shannon entropy, Rényi entropy, Tsallis entropy,
(h, @) entropies and Wigner-Yanase skew information, the Wigner-Yanase-Dyson skew information
characterizes a special kind of information of a system or measurement outcomes, which needs to
satisfy certain restrictions for given measurements and correlations between the system and the
memory. Different parameter a gives rise to different kind of information. From Figure 1 we see that
for given state and measurements, the differences between the left and the right hand sides of the



78

79

80

81

82

83

84

85

86

87

88

89

920

Version February 11, 2018 submitted to MDPI 60f8

inequalities (5) or (7) varies with the parameter a. Moreover, the degree of compatibility of the two
measurements, Ly, (¢, Pk ), vanishes for « = 0 or 1, which is a fact in accordance with (3), the case
without quantum memory. For p = 1/2, the state p is maximally mixed. In this case, both sides of the
inequalities (5) and (7) vanishes for any «.

Example 2. Consider a separable bipartite state, p8 = L[|+)(+| ® |0)(0] + |—)(—| @ |1)(1]], where
[+) = 55(10) +11)), [=) = 55 (|0) — [1)).

We still choose oy and o to be the two observables. By calculation we get: For product states |+) (+| ®
|0) (0| and |—)(—| ® |1)(1|, both left and right hand sides of (5) are 0, and the right hand side of (7) is 0. And
for the separable bipartite state pB, the left hand and the right hand sides of (5) are % and 0, respectively. Both
left and right hand sides of (7) are 0.

Example 3. For the Werner state pii = (1 — p) L + p|o) (|, where |¢) = %(|OO> + |11)) is the Bell state,

p € [0,1], and the state is separable when p < %
We have the values of the left and right hand sides of (5), respectively,

1+p (A-p"(1+3p)'*+1-p'*(1+3p)"

45— - e )
o _ ® 11—« _ 1—w 13
X(38P+(1 p)*(1+3p) 1+6(1 p) “(1+3p) )

and
I+p (1—p*(+3p)*+0-p 0+ 3p)“)z
8 16 ’

see Figure. 2(a) for a comparison with different values of .

4(

> 025

Figure 2. The axis y is the uncertainty and the lower bounds. (a) blue (red) solid line is the value of
the left (right) hand side of (5) for & = 0.2; black (blue-green) solid line represents the value of the left
(right) hand side of (5) for « = 0.5. (b) the blue (red) solid line represents value of the left (right) hand
side of (7) for « = 0.2; black (blue-green) solid line represents the value of the left (right) hand side of
(7) for a = 0.5.

We can also get the values of the left and right hand sides of (7),

4\/1 +p  (1—p)*(1+3p) ¢+ (1—p)l*(1+3p)"
8 16

3—p ,  (1-p)*Q+3p)t2+(1-p)'*1+3p)"
% \/ g 16
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and
1+p (1-p)*(1+3p)'*+(1-p) ' *(1+3p)"
2 4
respectively, see Figure. 2(b).
Moreover, when pZP is separable, namely, p < %, the differences between the left and the right sides of the
inequalities is smaller than that of the entangled states. Figure. 3 shows the differences for different values of p.
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(a) (b)

Figure 3. The axis y is the uncertainty and its lower bound. (a) p = 0.2 (04B is a separable state), blue
solid line represents the value of the left hand side of (5), the line (very near the x-axis) marked by
triangles represents the corresponding lower bound; p = 0.5 (04 is an entangled state), the black (red)
solid line represents the value of the left (right) hand side of (5). (b) blue (red) solid line represents the
value of the left (right) hand side of (7) for p = 0.2; black solid (red dashed) line represents the value of
the left (right) hand side of (7) for p = 0.5.

3. Conclusion

We have investigated the uncertainty relations both in product and summation forms in terms
of the Wigner-Yanase-Dyson skew information with a quantum memory. It has been shown that the
lower bounds contain two terms: one is the quantum correlation Dy (0 4p), the other is Z Lo, (P P)

k

which characterizes the degree of compatibility of two measurements. By detailed examples we have
compared the lower bounds for product states, separable and entangled states.
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