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Abstract Psychiatric disorders such as unipolar depression have complex
pathologies, which include disruptions in circadian and sleep-wake cycles. At the
neurochemical level, psychiatric diseases can also be accompanied by changes in
neuromodulator systems such as orexin/hypocretin and the monoamines. Indeed,
for decades the monoamine hypothesis of depression has been instrumental in
driving discoveries and developments of antidepressant drugs. Recent preclinical
and clinical advancement strongly suggests that neuropeptides such as orexin can
play an important part in the pathophysiology of depression. Due to the complexity
and extensive connectedness of neurobiological systems, understanding the bio-
logical causes and mechanisms of psychiatric disorders present major research
challenges. In this chapter, we review experimental and computational studies
investigating the complex relationship between orexinergic, monoaminergic, cir-
cadian oscillators, and sleep-wake neural circuitry. Our main aim is to understand
how these physiological systems interact and how alteration in any of these factors
can contribute to the behaviours commonly observed in depressive patients.
Further, we examine how modelling across different levels of neurobiological
organization enables insight into these interactions. We propose that a multiscale
systems approach is necessary to understand the complex neurobiological systems
whose dysfunctions are the underlying causes of psychiatric disorders. Such an
approach could illuminate future treatments.
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1 Introduction

Psychiatric disorders such as depression, schizophrenia, and bipolar disorder are
multifaceted illnesses that present our society with significant challenges and bur-
dens. In 2010, the Global Burden of Disease Study has rated mental and substance
use disorders as the principal causes of global health burden (Whiteford et al. 2013).
The trend is likely to continue and by 2030, it is estimated that among brain
diseases, unipolar depressive disorder will be the largest cause of disability
(Mathers and Loncar 2006). Such forecasts demonstrate the perniciousness of these
disorders and also raise questions concerning current treatment strategies.

Many factors including neuromodulators and circadian rhythms as well as the
patterns and quality of sleep contribute to the pathophysiology of psychiatric dis-
orders (Germain and Kupfer 2008; Pandi-Perumal et al. 2009; Hasler 2010; Murray
and Harvey 2010; Wulff et al. 2012). Individually, these factors have been dis-
cussed and reviewed extensively (Delgado 2000; Tsuno et al. 2005; Germain and
Kupfer 2008; Murray and Harvey 2010; Wulff et al. 2012), while their potential
interactions have received relatively little attention (Fig. 1). A comprehensive
consideration of these factors and their interactions for psychiatric disorders is
beyond the scope of this review. Therefore, the focus of this chapter will be on
understanding how monoamines, orexin (also called hypocretin), sleep, and circa-
dian oscillator(s) mutually interact, and how the disruption in one or more of these
factors might contribute to the certain behavioural phenotypes that are altered in
unipolar depressive disorder. In some cases, the relationships with other psychiatric
disorders (schizophrenia or bipolar disorder) are also briefly discussed. While
considering these interactions, emphasis is placed on the circadian system, espe-
cially the way it regulates the activity of specific neuromodulators and behavioural
states, and how its disruption influences these interactions to potentially contribute
to specific symptoms such as mood and sleep problems commonly observed in
psychiatric disorders.

The organization of the chapter is as follows. The role of monoamines and
orexin in psychiatric disorders are first discussed, and then the role of orexin along
with other neuromodulators in the regulation of the sleep-wake cycle will be dis-
cussed. This is followed by a discussion of the regulatory functions of the main
circadian pacemaker in the suprachiasmatic nuclei (SCN) which coordinates and
drives daily activity in other semi-autonomous oscillators in the brain (such as
lateral habenula, LHb) and controls circadian timing in some neuromodulatory
systems (orexin, monoamines) and sleep. Then a computational modelling per-
spective will be presented. Finally, there will be a discussion on key unanswered
questions and identification of future research directions.
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2 Neuromodulators and Psychiatric Disorders

Results from many studies have indicated that altered circadian rhythms, disrupted
sleep and abnormal basal levels of neuromodulators are associated with the clinical
status of patients experiencing depression (Wehr et al. 1983; Ruhe et al. 2007;
Wirz-Justice 2008; Germain and Kupfer 2008). Many of these characteristics are
captured by the monoamine imbalance hypothesis which posits that perturbation in
the basal levels of monoamines such as serotonin (5-HT),
norepinephrine/noradrenaline (NE/NA), and dopamine (DA) can trigger depression
(Nemeroff 1998). These monoamines are mainly synthesized at different brain
regions. For example, 5-HT is synthesized in the raphe nuclei, NE in the locus
coeruleus (LC), and DA in the substantia nigra and ventral tegmental area
(VTA) (Grzanna and Molliver 1980; Park et al. 1999; Anzalone et al. 2012). These
monoamine producing neurons project to many parts of the brain and are involved
in the regulation of a wide range of behaviours (Leibowitz and Shor-Posner 1986;
Cools et al. 2008; Aston-Jones et al. 2000; Bromberg-Martin et al. 2010). To
understand how alteration in monoaminergic levels influences depression, many
studies have focused on the expression and functionality of the monoaminergic
receptors and transporters at the source and projection sites (Klimek et al. 1997;
Rajkowska 2000; Arango et al. 2001; Boldrini et al. 2005). For example, depressed
subjects have decreased 5-HT transporter, altered 5-HT1A/2A binding sites, and
lower level of plasma tryptophan and metabolites (Quintana 1992; Owens and
Nemeroff 1994; Malison et al. 1998; Drevets et al. 1999; Mintun et al. 2004). In the
case of NE, altered adrenoreceptor (α2) densities and lower NE levels have been
observed in brain sites innervated by NE neurons, including the cortex (Ordway
et al. 2003; Valdizán et al. 2010; Lanni et al. 2009; Moret and Briley 2011). Such
changes may arise from reduced NE innervation, reduction in NE transporter

Fig. 1 Complex interactions of the master circadian oscillator in the suprachiasmatic nuclei (SCN),
neuromodulators (e.g. orexin/hypocretinOx/Hcrt; monoaminesMA), sleep and psychiatric disorders.
Circle:master circadian oscillator;Oval: neuromodulators; Snip single corner rectangle: psychiatric
disorders;Rectangle: sleep; Solid arrows: known interactions;Dashed arrows: tentative interactions
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activity in NE-containing terminals, or by a combination of both (Klimek et al.
1997). For DA, lower transporter binding potential (a correlate of receptor density)
in striatum is reported in depressed patients (Meyer et al. 2001). Similar findings
were also observed in depressed patients with anhedonia symptoms (Sarchiapone
et al. 2006). However, there are inconsistencies between different studies
(Laasonen-Balk et al. 1999). Similarly, investigations have also measured DA
metabolites in the CSF, but these results are not necessarily conclusive (Dunlop and
Nemeroff 2007).

Despite the inconsistencies, such findings have led to the development of
pharmaceutical treatments of unipolar depression. Many antidepressant compounds
are designed to increase monoamine levels in the central nervous system (CNS).
The strategy for drug treatments for other disorders can vary since the symp-
tomatology can be diverse and dynamic (Bowden 2005; Walderhaug et al. 2011).
Current research focuses on other novel treatment options include the exploration of
peptidergic ligands. Clinical and preclinical studies are suggestive of the roles of
neuropeptide mechanisms (e.g. orexin, vasopressin, galanin, corticotropin-releasing
hormone, neuropeptide Y, relaxin-3 and substance P) in the pathophysiology of
psychiatric disorders, including depression (Den Boer 2006; Madaan and Wilson
2009; Nollet and Leman 2013). Indeed, emerging drug targets for the treatment of
psychiatric disorders are compounds that signal via neuropeptide receptors (Fang
et al. 2014; Smith et al. 2014).

Among the neuropeptides potentially involved in the symptomatology of psy-
chiatric disorders are the orexins (Ox; also called the hypocretins or hcrt). These
neuropeptides occur in two forms, Ox-A and Ox-B, and are produced by neurons in
the lateral, perifornical and dorsomedial areas of the hypothalamus (Sakurai et al.
1998; de Lecea et al. 1998). These Ox-containing neurons send projections to many
brain regions (Peyron et al. 1998), including key regions that regulate arousal and
motivational states such as the dorsal raphe nucleus (DRN), LC, arcuate nucleus,
VTA, tuberomammillary nucleus (TMN), basal forebrain (BF) and laterodorsal and
pedunculopontine tegmental nucleus (LDT/PPT) (Tsujino and Sakurai 2009).
Through these and other neural connections, Ox play key roles in the regulation of
important behaviours and physiological functions such as sleep-wake cycle, energy
homeostasis, addiction, endocrine function, reward seeking, and emotional beha-
viour (de Lecea et al. 2006; Sakurai 2006, 2007, 2010, 2014; Tsujino and Sakurai
2009; Aston-Jones et al. 2009; López et al. 2010). Interestingly, many of these are
disrupted in depression (Drevets 2001), suggesting that insights into Ox signaling
may lead to a better understanding of the biological basis of depression. Indeed, in
the last few years, there have been many studies in humans and animals investi-
gating the role of Ox in depression as well as in other psychiatric disorders.

For example, it has been known that Ox levels can exhibit circadian variation
and depressed patients manifest lower amplitude circadian variation in Ox levels in
the cerebrospinal fluid (CSF) than do control individuals. Treatment with sertraline
(a selective serotonin reuptake inhibitor (SSRI) anti-depressant) decreased mean Ox
levels, suggesting that elevated Ox signaling contributes to the depressive
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symptoms (Salomon et al. 2003). Such a putative interaction appears complex since
other studies have reported that following attempted suicide the CSF Ox levels are
decreased (Brundin et al. 2007a, b). In a later follow-up study (6–12 months after
the attempt), CSF Ox levels among suicide survivors were relatively high compared
to those measured immediately following suicide attempt (Brundin et al. 2009). In
another investigation, Ox levels were reportedly unaltered in manic, control and
depressed patients (Schmidt et al. 2010). Thus the effects of Ox in depression in
humans remain inconclusive.

The relationship between Ox and depression has been also explored in animal
models. For example, in the Flinders Sensitive Line (FSL), a rat genetic model of
depression in which the animals are more susceptible to cholinergic agonists, the
number of Ox neurons are higher than in control rats (Overstreet 1986; Overstreet
et al. 2005; Mikrouli et al. 2011). Similarly, a 20 % increase in the number of
detectable Ox neurons in lateral hypothalamus area was recently reported in a
rodent model where high dosage of corticosterone treatment results in depressive
like symptoms (Jalewa et al. 2014b). These findings suggest that during depression,
either the number of Ox neurons increases or Ox synthesis increases, such that
Ox-containing neurons are more readily available in the hypothalamus. In support
for this interpretation, central infusion of Ox stimulates the hypothalamic–pituitary–
adrenal (HPA) axis (Kuru et al. 2000), and hyperactivity of the HPA axis is often
associated with depression (Vreeburg et al. 2009). Interestingly, attenuating Ox
signaling in rodents through treatment with the Ox receptor antagonist almorexant
improves HPA functioning and decreases behavioural measures of depression
(Nollet et al. 2012). In contrast, exogenous treatments with Ox-A can have
anti-depressant properties (Ito et al. 2008), suggesting that reduced Ox levels are
associated with depression.

Ox is also potentially involved in other psychiatric disorders. For example, Ox
signaling influences attentional and cognitive activities and has been linked with
schizophrenia (Deutch et al. 2005; Lambe et al. 2007; Fukunaka et al. 2007; Poirier
et al. 2010). Interestingly, higher plasma Ox levels are associated with improved
symptoms in schizophrenia (Chien et al. 2015). There is also robust evidence indi-
cating that a reduction in Ox neurons can lead to narcolepsy (Lin et al. 1999; Chemelli
et al. 1999; Peyron et al. 2000). Since psychiatric patients frequently develop sleep
disorders, this raises the possibility that changes in Ox signaling contributes to such
arousal and wake-rest disruptions. This is explored in the next section.

3 Neuromodulators and Sleep

In mice, direct injection of Ox-A into the brain promotes wakefulness and sup-
presses non-rapid eye movement (NREM) and rapid eye movement (REM) sleep
(Mieda et al. 2011), while similar treatment with a dual Ox1/Ox2 receptor antagonist
promotes sleep and reduces locomotion (Mang et al. 2012). Thus, the activity of Ox
neurons and Ox release varies across the sleep-wake cycle. Indeed, during the wake
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state, Ox neurons in rodents are very active (Lee et al. 2005b; Marston et al. 2008;
Estabrooke et al. 2001), coinciding with the time when Ox release is maximal
(Deboer et al. 2004). As noted earlier, Ox neurons innervate arousal-promoting
nuclei in the pons, midbrain, posterior hypothalamus and forebrain, and since the
main action of Ox is excitatory, it is interpreted that Ox activates neurons in these
nuclei to drive wakefulness. Such neurons are major sources of acetylcholine,
histamine, serotonin, and norepinephrine, all of which are known to contribute to
arousal states. Indeed, the activity of these neurochemically identified neurons is
higher during wakefulness than in sleep. Thus, during wakefulness, the outputs of
arousal-promoting neurons act to inhibit the activity of NREM and REM promoting
neurons in ventrolateral preoptic nucleus (VLPO) and LDT/PPT, respectively, and
relay excitatory signals to the thalamus and cortical neurons (Saper et al. 2001;
España and Scammell 2011).

During NREM sleep, neurons of the preoptic areas are activated, and these
neurons act to inhibit the wake and REM-promoting neurons elsewhere in the brain.
Thus, during this time, the firing in monoaminergic neurons decreases significantly
and ceases completely in the cholinergic and Ox neurons (Saper et al. 2001; España
and Scammell 2011). In addition to the preoptic neurons, interneurons (mainly
GABAergic) in some of the arousal areas (LHA and BF) are also active during
NREM phase and contribute in conveying inhibitory signals to the cortex to pro-
mote slow wave sleep (Manns et al. 2000; Hassani et al. 2009, 2010).

REM sleep occurs during the transition from NREM to waking states (Saper
et al. 2001). Hallmark features of REM sleep include cortical activation and loss of
muscle tone. Interestingly, during REM sleep, Ox neurons are not completely
silenced but instead contribute to the phasic components of this brain state
(Torterolo and Chase 2014). By contrast, during REM, cholinergic and VLPO
neurons show high firing rate, while monoaminergic neurons cease firing (España
and Scammell 2011). Thus an imbalance between cholinergic and monoaminergic
discharge activity may contribute to the disruption between REM and NREM sleep
which is very common among depression sufferers. Moreover, an imbalance
between Ox and monoaminergic activity is believed to be a key factor in narcolepsy
and depression (Brown et al. 2001; Feng et al. 2008).

These interpretations can be better understood by considering the two-process
model of the dynamic regulation of sleep-wake cycle (Borbély 1982; Daan et al.
1984). It is widely believed that this regulation is achieved via two separate bio-
logical processes where process S is responsible for sleep homeostasis, and process
C controls the circadian timing (via the circadian clock) (Fig. 2). Accordingly, the
increase in sleep pressure that occurs during wakefulness subsequently declines
during sleep. Studies have linked this pressure with extracellular adenosine levels
(Sims et al. 2013; Huang et al. 2014). Adenosine forms from the degradation of
adenine nucleotides, and during wakefulness its levels are believed to be increased
in the BF and cortical regions (Huang et al. 2014). Thus, depending upon the
adenosine concentration, process S sends timing signals to process C and regulates
the sleep-wake cycle. So, the circadian clock not just controls the timing of process
S but also interacts with various sleep stages, which may well decide the recovery

304 A. Joshi et al.



pattern in instances of sleep deprivation. Interestingly, a study shows that activity of
neurons in the brain’s master circadian clock in the suprachiasmatic nuclei (SCN) is
higher during the REM and wake states, and relatively lower during the NREM
state (Deboer et al. 2003). There is further evidence that suggests that mutation,
polymorphism or deletion of some of the clock genes disrupt sleep homeostasis and
response to the sleep deprivation (Naylor et al. 2000; Toh et al. 2001; Laposky et al.
2005; Dijk and Lockley 2002). However, how changes in sleep-wake patterns affect
the molecular mechanism of the clock still remains unknown (Deboer et al. 2003).

In the next section, we shall discuss how the circadian pacemaker in the SCN
drives daily timing in different brain areas and regulates neuromodulator levels and
sleep. We will also discuss how disruption of circadian clock timing is linked to
specific symptoms commonly observed in psychiatric disorders.

4 Circadian Rhythms

Circadian rhythms are intrinsic near 24 h oscillations and pervade all aspects of
physiology and behaviour. Neurons of the SCN contain the intracellular circadian
clock of which the Period (Per1-2), Cryptochrome (Cry1-2), Circadian Locomotor
Output Cycles Kaput (CLOCK) and Brain and Muscle ARNT-like protein 1 (Bmal1)
genes and their protein products play important roles (Mohawk and Takahashi
2011). The synchronized activity of these autonomous cellular clocks enables the
SCN as a whole to function as the master clock. In turn, the SCN receives infor-
mation about environmental lighting directly from the retina, with daily variation in
light entraining the SCN to the external world (Fig. 2). The SCN output then
communicates these integrated timekeeping signals to the rest of the brain and body
to control daily rhythms in sleeping and waking, metabolism, cognition, and mood
(Piggins and Guilding 2011).

Fig. 2 A two-process model of sleep. The circadian clock in the SCN receives light inputs and
sends the timing signals (C) to regions of the brain involved in sleep-wake (S-W) cycle and to a
conceptual sleep homeostasis process which further regulates the balance between sleep and wake
state. The S-W cycle is controlled by the complex interactions between sleep (ventrolateral
preoptic nucleus VLPO) and wake promoting neurons (MA, Ox). Circle: circadian oscillator, sleep
and wake promoting areas; Snip single corner rectangle: sleep homeostasis; Solid and dashed
arrows as in Fig. 1 (Borbély 1982; Daan et al. 1984; Dijk and Lockley 2002)
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Intriguingly, as noted earlier, in many psychiatric conditions, alterations in
sleeping and waking as well as mood are frequently present as part of the patients’
symptoms, suggesting that SCN or SCN-regulated processes are disrupted in such
disorders (Wulff et al. 2010; Menet and Rosbash 2011; McCarthy and Welsh 2012;
Schnell et al. 2014; Gonzalez 2014). Indeed, in mice, genetic alterations that affect
components of the intracellular molecular clock are implicated as murine models of
human psychiatric conditions (Landgraf et al. 2014). For example, the Δ19 muta-
tion of the clock gene, results in a dysfunctional CLOCK protein and the mouse
manifests >24 h rhythms or lacks circadian rhythms as well as hyperactivity and
other hallmarks of mania (Vitaterna et al. 1994; McClung et al. 2005; Roybal et al.
2007; Sidor et al. 2015). Such a mutation directly affects the SCN clock, but since
circadian clock genes are also expressed in other brain areas as well as peripheral
tissues, local physiology can be affected in such regions and organs. In the case of
the Δ19 clock mutant mouse, mania-like behaviours are attributable to dysfunction
of dopamine neurons in the VTA. This appears to be due to changes in gene
regulation normally under the control of CLOCK (Mukherjee et al. 2010). Another
mutation that influences the stability of CRY proteins also lengthens the period of
circadian rhythms, which is accompanied by changes in anxiety (Keers et al. 2012).

In humans, some mutations in clock genes are associated with the sleep-wake
cycle. Of note, treatment of bipolar disorder can include lithiumwhich exerts some of
its actions via GSK-3beta, a key regulator of the intracellular molecular clock (Iitaka
et al. 2005). Indeed, in animal studies, lithium lengthens the period of the molecular
clock rhythms and locomotor behavior (Welsh and Moore-Ede 1990; Li et al. 2012).

In rodents the activity of Ox neurons is under SCN circadian control (Zhang
et al. 2004), with higher activity occurring during the behaviourally-active circadian
night (Estabrooke et al. 2001; Marston et al. 2008). At this phase, Ox release in the
brain is also at maximal (Deboer et al. 2004). Experimental destruction of the SCN
or exposure to constant light, which attenuates SCN output, abolishes circadian
variation in CSF levels of Ox, indicating that the day-night activity profile of this
key arousal-promoting neurochemical is under SCN output control. Interestingly,
the phase of the SCN circadian clockwork is also sensitive to feedback actions of
arousal-promoting stimuli, particularly during the behaviourally-inactive circadian
day (Hughes and Piggins 2012). During the day, arousal-promoting stimuli activate
Ox neurons (Estabrooke et al. 2001; Marston et al. 2008; Webb et al. 2008) and
suppress the SCN’s electrical activity (van Oosterhout et al. 2012). Indeed, in SCN
brain slice preparations Ox not only suppresses the electrical activity of SCN
neurons, but also potentiates the phase-shifting capacity of another neurochemical
correlate of arousal, neuropeptide Y (Belle et al. 2014).

Hence, alterations in the SCN circadian clock as well as circadian regulation of
the brain and behavioural states can result in symptoms seen in psychiatric con-
ditions. Since Ox-containing neurons project widely across the brain (Peyron et al.
1998; Nambu et al. 1999), including structures of the neural circadian system
(McGranaghan and Piggins 2001; Backberg et al. 2002), Ox released during states
of arousal can influence circadian timing in SCN and extra-SCN brain sites (Fig. 3).
This may be particularly important in psychiatric conditions when the pattern of
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sleeping and waking is severely disturbed. Incorporating such knowledge when
considering the treatments and the timing of treatments, therefore, has considerable
therapeutic potential.

Thus, mutual interactions between circadian clock, neuromodulators and sleep
are likely to be important in understanding the biological mechanisms of some
aspects of psychiatric disorders. However, the behaviours due to these interactions
are not intuitive. For example, 5-HT neurons in the DRN receive inputs from other
monoaminergic neurons including the NE-containing neurons of the LC,
histamine-containing neurons from TMN, as do DA neurons of the VTA (Kalen
et al. 1988; Lee et al. 2005a; Dorocic et al. 2014; Ogawa et al. 2014). Additionally,
the activities of these neuromodulators are also regulated by their auto-receptors.
Thus, it is very difficult to assess the causal relationship (between activities or firing
rate) among the different brain areas to establish precisely how these changes can
cause or affect the severity of a symptom.

A promising approach towards assessing and understanding such complex
interacting systems is to develop, simulate and analyze computational models. Some

Fig. 3 Circadian clock, neuromodulators and their possible role in the etiology of sleep and mood
disorders. Suprachiasmatic nuclei (SCN) with lateral habenula (LHb) receive the light inputs and
regulate the activity of other brain areas that are important in S-W and mood regulation. SCN, LHb:
master and semi-autonomous clocks. Lateral hypothalamus area (LHA), dorsal raphe nucleus (DRN),
ventral tegmental area (VTA), locus coeruleus (LC), and tuberomamillary nucleus (TMN): major
source of orexin/hypocretin, serotonin, dopamine, norepinephrine and histamine, respectively. ‘?’:
Either clock gene(s) are present in these areas (existence of intrinsic activity not yet confirmed) or their
daily activity is indirectly regulated by the circadian clocks present in other brain regions (e.g. SCN
and/or LHb). Circle: circadian oscillators (SCN, LHb), LHA and monoaminergic areas; Note:
non-photic inputs are not shown (Jones and Moore 1977; Herkenham and Nauta 1979; Segal 1979;
Deutch et al. 1986; Kalen et al. 1988; Ericson et al.1989; Herkenham and Nauta 1993; Peyron et al.
1998; Nambu et al. 1999; Abrahamson et al. 2001; Yoshida et al. 2001; Kim et al. 2004; Mileykovskiy
et al. 2005; Lee et al. 2005a; McClung et al. 2005; Hattar et al. 2006; Guilding and Piggins 2007;
Vertes and Linley 2008; Omelchenko et al. 2009; Tsujino and Sakurai, 2009; Schwartz et al. 2011;
Goncalves et al. 2012; Watabe-Uchida et al. 2012; Stamatakis et al. 2013; Belle et al. 2014; Dorocic
et al. 2014; Proulx et al. 2014; Root et al. 2014; Sakhi et al. 2014; Yu et al. 2014; Ogawa et al. 2014)
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initial cognitive computational models have focused on improving the diagnosis of
psychiatric disorders (Siegle 1999; Siegle and Hasselmo 2002). More recent cogni-
tive computational models have focused on decision-making, reward and rein-
forcement learning aspects, e.g. learned helplessness and anhedonia, which are the
core symptoms in depression (Dayan and Huys 2008; Gradin et al. 2011; Huys et al.
2013). However, these models are based on high-level abstractions and hence do not
readily illuminate the underlying biological mechanisms underpinning the disorders.
Moreover, there is a lack of modelling on the interactions between Ox and other
neuromodulators, and their effects on sleep and depression. This is not surprising as
substantial modelling and analysis workwasmore focused on associatingOxwith the
sleep-wake cycle, and in particular, its role in narcolepsy [e.g. (Behn et al. 2010)]. In
the next section, we will briefly review some biologically based computational
modelling studies on Ox, monoamines, circadian rhythms, and sleep-wake dynamics.

5 Neural Computational Models

The mathematical modelling and analysis of sleep-wake dynamics and circadian
rhythms have a relatively long history, primarily due to the availability of beha-
vioural and physiological (e.g. temperature and neuroendocrine) data (Czeisler
1978; Czeisler et al. 1980; Daan et al. 1984; Kawato et al. 1982; Kronauer et al.
1982, 1983; Strogatz and Carpenter 1986; Strogatz 1987; Winfree 1983). All these
models address the sleep-wake dynamics and various autonomic circadian rhythms.
There is a considerable similarity among these models (Kronauer et al. 1982;
Kronauer et al. 1983), which typically consist of homogeneous neuronal popula-
tions, or coarse-grained population-averaged (firing-rate) type models (Wilson and
Cowan 1972). The simplicity of the models allows tractability in the mathematical
analyses and provides conceptual insights.

As various types of biological data become available, models of circadian
rhythms become more physiologically detailed. At the molecular, genetic and
protein levels, biochemical reactions and feedback loops are modelled to under-
stand their regulations on the intrinsic circadian rhythms and their perturbations
(Goldbeter 1995; Leloup and Goldbeter 2003; Forger and Peskin 2003).
Physiologically, more realistic neuronal models of sleep-wake regulation have also
begun, building on previously more abstract mathematical models (Behn et al.
2007; Phillips and Robinson 2007; Booth and Behn 2014). These models are
typically considered at a single level of biological details.

At the neuronal level, a biophysical conductance-based model of the SCN
neurons has successfully incorporated the available neuronal and synaptic proper-
ties in the SCN and can mimic the neuronal firing patterns, which are consistent
with experiments (Sim and Forger 2007). Similar biophysical models for Ox
neurons has also been developed with the minimal set of currents (Postnova et al.
2009; Carter et al. 2012) and model parameters were based on other neuronal types
(Williams and Behn 2011). Despite the assumptions, such models could account for
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some aspects of sleep-wake transitions (Postnova et al. 2009), and the dynamical
effects of Ox and dynorphin, a colocalized neuropeptide, on the Ox neurons
(Williams and Behn 2011). In Carter et al. (2012), a more biophysical
two-compartmental model of Ox neuron was also developed.

Neurocomputational models at the microcircuit level may offer a way to
investigate heterogeneity effects and emergent properties, which are not feasible at
the single neuronal modelling level. For example, Postnova et al. (2009) incorpo-
rated local glutamatergic neurons to provide local feedback to the Ox neurons to
understand homeostasis in sleep-wake transitions. Then, Patriarca et al. (2012)
extended this model into a multi-neuron model and demonstrated that sufficient
diversity in the synapses is needed to provide efficient functioning of the home-
ostasis regulation of the sleep-wake cycle. In Gonze et al. (2005) the model
incorporated coupling among 10,000 circadian oscillators and found that sponta-
neous synchronization is achieved through the “mean-field” coupling and the
population can be entrained with light pulses. In Wong-Lin et al. (2012), a
microcircuit model of the DRN with non-5-HT GABAergic neurons was proposed
to link from single neuronal spiking behaviours of 5-HT and local non-5-HT
neurons in the DRN to phasic neuronal activity observed in behaving animals. The
microcircuit DRN model suggested inputs via inhibitory neurons, and predicted low
frequency oscillations in the network, which is clearly emergent network behaviour.

To understand the overall behaviour of a system as complex as that shown in
Fig. 3, one would need to extend beyond microcircuit modelling levels, and
towards larger circuit models that include the interactions of multiple brain regions
(Sorooshyari et al. 2015). For example, Behn et al. (2007) modelled the interactions
among the sleep active (VLPO), wake active (LC, DR, TMN) and REM active
(LDT/PPT) neural populations. The model could capture some of the features of
mouse the sleep-wake behaviour (such as short-term awakening), and also predicts
the mechanism for state transitions. Subsequent modelling studies showed that Ox
could play an important part in the sustenance and stabilization of prolonged epi-
sodes of wake and sleep (Behn et al. 2008; Fulcher et al. 2014). Similarly, the role
of Ox is also analyzed for other large-scale modelling work that reasonably
reproduce sleep-wake timings (under normal and sleep deprived conditions), cir-
cadian influence on total sleep time, and rapid transition between sleep and wake
states with the loss of Ox (Rempe et al. 2010).

Recently, there has been considerable interest in more focused modelling of Ox
system’s interactions with that of the monoamines (Joshi et al. 2011; Carter et al.
2012; Jalewa et al. 2014a). A common aim of these studies is to understand the
possible roles of such interactions in sleep and depression (Joshi et al. 2011; Carter
et al. 2012; Jalewa et al. 2014a; Mosqueiro et al. 2014). In one of these studies, the
excitability of LC neurons is shown to be important for Ox-mediated transition in
sleep-to-wake transition (Carter et al. 2012). In a different study, a mathematical
neural circuit model with direct interactions between the DRN and LHA is developed
(Joshi et al. 2011). The model’s novel input-output functions for the DRN and LHA
areas are derived from the relationship between the neural firing rate in that area and
neuromodulator concentration level, which can be obtained directly from
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experiments. In addition, the dynamics of the release and uptake of the neuromod-
ulators can, in principle, also be measured from experiments, e.g. voltammetry.

Even more complex models have been studied, where the models include not
just across-region interactions, but also interactions with other local interneurons.
For example, in Mosqueiro et al. (2014), inhibitory GABAergic interneurons are
used to investigate the regulation of NE-producing LC neurons by Ox, in which the
GABAergic neurons provide an indirect inhibitory connection from Ox to LC. This
modelling work shows that the relatively fast GABAA-mediated synapses are not
sufficient to regulate LC activity. Similarly, the model in Jalewa et al. (2014a) has
included more explicit interneurons, and for the first time, autoreceptors were
included for the LHA-DRN interaction. More importantly, indirect connections are
also considered in this model. The model demonstrates that LHA-DRN interactions
are more stable if the indirect connections from 5-HT to GABAergic neurons in the
LHA are strongly excitatory. Furthermore, it is found that faster 5-HT (e.g. via the
3A) receptor mediated timescales can quickly reset the Ox neuronal activities to
baseline firing rate right after phasic 5-HT activation. Further, Kumar et al. (2012)
have developed a mathematical model of REM-NREM dynamics that includes local
GABAergic neurons, revealing the sensitive control of Ox on REM dynamics.

Taken together, these modeling studies have furthered our understanding of the
relationship between Ox and the monoamines, and their roles in sleep-wake
dynamics, providing mechanistic links to mood, cognition and psychiatric disorder.
Despite the progress, integrated computational models that can link from cellular to
behavioural levels have yet to be developed. Having such models would be of
tremendous help in guiding future experiments across various levels.

6 Discussion

Many people worldwide suffer from psychiatric disorders. Depression is one psy-
chiatric disorder with complex etiology and heterogeneous symptoms (Krishnan
and Nestler 2008). Sleep anomalies and altered circadian rhythms are prevalent in
depression (Germain and Kupfer 2008; Pandi-Perumal et al. 2009). Monoamine
oxidase inhibitors (MAOI) are used for the clinical treatment of this atypical dis-
order (Thase et al. 1995) and are now augmented by drugs that target neuropeptide
receptors, thought to be important in the etiology of depression (Saar et al. 2013;
Nollet and Leman 2013; Yeoh et al. 2014).

In this chapter, we have discussed how Ox can interact with monoamines,
circadian oscillators (e.g. SCN), and sleep wake-cycle. We raised some key issues,
identified some of the unknown connections and attempted to understand how
anomaly in one of the system can influence their complex interactions, which may
contribute to certain behaviours that are common in psychiatric disorders.

Ox is a key neuropeptide which plays important roles in the regulation of a wide
range of behaviours. Interestingly, Ox levels were inconsistent in different pre-
clinical and clinical studies. There can be many reasons for such inconsistencies.
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For example, Ox levels are regulated by the circadian clock and if not sampled at
the same time in each study, considerable interstudy differences could emerge.
Indeed, one investigation showed that depressed patients have dampened CSF Ox
rhythms (Salomon et al. 2003). Similarly, circadian variation in serum serotonin
and metabolites is also reported in depression (Pietraszek et al. 1991). Not sur-
prisingly, there are other factors that may also contribute to inconsistency in
measured brain neuromodulator levels. Some of them include heterogeneity among
the animals (e.g. mice, rats), experimental protocols, small sample size and methods
for measuring the neuromodulator levels (e.g. voltammetry, high-performance
liquid chromatography or radioimmunoassay).

Another important issue is to conside whether Ox and other neuromodulator levels
are regulated reciprocally. The last few years have witnessed a surge of interest in
understanding Ox interactions with monoamines as these interactions can play
important roles in the regulation of cognitive functions altered in many psychiatric
disorders. Ox interaction with DA neurons may contribute to the better understanding
of sleep related problems reported in schizophrenia, as anti-dopaminergic drugs
actively lower the Ox CSF levels and promotes the NREM sleep in schizophrenics
(Dalal et al. 2003). Also co-release of Ox with dynorphin in the VTA is important in
motivational and reward-related behaviours (Muschamp et al. 2014) which are
known to be disrupted in depression and schizophrenia. Similarly, knowledge of the
interaction among Ox and serotonergic neurons is necessary for the better under-
standing of depression, as higher Ox levels in the hypothalamus are reported in a
clomipramine (SSRI) induced rat model of depression (Feng et al. 2008). In some
respects, there is much in common in these Ox-monoamine interactions. All these
neuromodulators are active during arousal, and are also involved in some of the
cognitive functions. The other similarity between Ox and other neuromodulators is
the way Ox connects with them; interestingly Ox shares an excitatory-inhibitory
feedback loop circuitry with these neuromodulators (e.g. serotonin, norepinephrine
and dopamine). For example, Ox depolarizes these monoamine- containing neurons
and conversely these neuromodulators can hyperpolarize Ox neurons in the LHA.
Recently, experimental and modeling studies have contributed towards the better
understanding of such interactions (Carter et al. 2012; Schone et al. 2014; Jalewa et al.
2014a). However, mutual interaction of all these arousal areas is neglected in the
literature. This is because mutual interactions among themonoaminergic neurons add
another layer of complexity, and practical implementation of these connections
remains a considerable challenge.

Other than these complex interactions, Ox neurons also receive daily timing
information from the SCN, and play a key role in the regulation of REM sleep
(Kantor et al. 2009). However, the exact pathway via which SCN regulates Ox
neurons and REM sleep is not known. One obvious possibility is that SCN and
sleep homeostasis processes interact with sleep-wake states in accordance with the
two-process model (Fig. 2). The other possibility is that the SCN directly regulates
the sleep-wake cycle, and Ox plays a dual role where it stabilizes the sleep-wake
switch and also regulates the sleep homeostasis process (Postnova et al. 2009). The
excitatory drive of Ox neurons during wakefulness is due in part to excitatory
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feedback connections between Ox and glutamatergic neurons within the LHA. It is
possible that synaptic efficacy of Ox neurons decreases due to their prolonged
activity during wakefulness which is recovered during sleep.

Apart from Ox, the SCN clock can also influence the process of sleep home-
ostasis as this is disrupted in clock mutant mice (Naylor et al. 2000). However the
exact relationship between Ox and the sleep homeostasis process remains elusive.
Further, recent evidence indicating that clock genes influence the activity of DA
neurons adds another level of complexity (McClung et al. 2005). This brings us to a
question, whether a disrupted clock can influence the level of Ox or monoamines,
and if so then what is the neural pathway of this dysregulation. One possibility is
that the master clock in SCN first desynchronizes other local clocks (LHb, par-
aventricular nucleus) or the areas with clock genes. These areas then indirectly
communicates with the other brain areas, affecting the electrical activities of their
neurons (Fig. 3). On the other side, a change in the level of Ox or monoamines can
alter circadian rhythms in other physiological activity, such as the profile in stress
hormones and the HPA axis (Mazzocchi et al. 2001; Spinazzi et al. 2006;
Ziolkowska et al. 2005).

Thus the role of Ox is not just limited to the regulation of the sleep-wake states but
it is involved in the regulation of a wide range of behaviours and cognitive functions
(Mahler et al. 2014). Most of these behaviours are determined by the complex
interaction between subcortical and cortical areas (Jankowski and Sesack 2004; Onge
et al. 2012; Pujara and Koenigs 2014). However, linking the neuronal activity with
the observed behaviour is one of the greatest challenges in neuroscience.

To accomplish this difficult task, one important approach is to collate the
experimental data and build computational models across multiple levels, from
intracellular processes in individual neurons to network properties and behavioural
states. For example, a concerted effort to systematically collect neurobiological
data, such as electrophysiological properties of neurons, release-and-reuptake
dynamics of the neuromodulators, and receptor-mediated currents at the target sites,
would be vital towards developing biologically faithful computational models of
neuromodulation. With such data available, an integrated model endowed with
multiscales can be developed. The multiscale modelling approach would extract the
essence at each scale or level and integrate this with processes happening at other
scales or levels (Yamada and Forger 2010; Vasalou and Henson 2010; Qu et al.
2011; Dada and Mendes 2011). Such effort in developing a multiscale framework
for neuromodulator systems, from intracellular biochemical reactions to behaviour,
is currently undertaken by the authors—(Eckhoff et al. 2009, 2011; Wong-Lin et al.
2012; Wang and Wong-Lin 2013; Laviale et al. 2013; Nakamura and Wong-Lin
2014; Flower and Wong-Lin 2014; Cullen and Wong-Lin 2014). With the avail-
ability of such multiscale models, one can rapidly test hypothesis, and can make
model predictions that can be verified by future experiments. Thus, computational
models with pharmacological, imaging and optogenetic approaches can improve
our understanding of the underlying neural mechanism(s) responsible for specific
symptoms that are common in psychiatric disorders.
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In summary, this chapter reviews studies related to Ox, monoamines, and cir-
cadian processes, and highlights some of their roles in psychiatric disorders.
Further, we suggest the need to develop an integrated multiscale computational
modelling framework that is based on systematic collection of experimental data.
This will improve our understanding of how disruption in heterogeneous and highly
connected neurochemically distinct neuronal populations and the circadian system
contribute to symptoms in psychiatric conditions.
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