Frequency-based anomaly detection for the
automotive CAN bus

Adrian Taylor
Defence R&D Canada
adrian.taylor@drdc-rddc.gc.ca

Abstract—The modern automobile is controlled by networked
computers. The security of these networks was historically of
little concern, but researchers have in recent years demonstrated
their many vulnerabilities to attack. As part of a defence against
these attacks, we evaluate an anomaly detector for the automotive
controller area network (CAN) bus. The majority of attacks are
based on inserting extra packets onto the network. But most
normal packets arrive at a strict frequency. This motivates an
anomaly detector that compares current and historical packet
timing. We present an algorithm that measures inter-packet
timing over a sliding window. The average times are compared to
historical averages to yield an anomaly signal. We evaluate this
approach over a range of insertion frequencies and demonstrate
the limits of its effectiveness. We also show how a similar measure
of the data contents of packets is not effective for identifying
anomalies. Finally we show how a one-class support vector
machine can use the same information to detect anomalies with
high confidence.

Index Terms—Anomaly detection, controller area network,
automotive, monitoring

I. INTRODUCTION

Automobiles have evolved from purely mechanical devices
to connected computing platforms. Modern cars are controlled
by multiple embedded processors that communicate over a
controller area network (CAN) bus. The computers in cars
were long assumed to be safely isolated from the outside
world, and the security of those systems was not considered
important. But it has become clear in recent years that this is
no longer the case. Devices on the CAN bus are now connected
to the outside world over both wired and wireless channels.
These channels have been exploited to hack cars and cause a
variety of effects [1]-[3]. We propose anomaly detection as a
means to identify such attacks. Over time manufacturers will
respond to this threat with improved security, but detection
will always be an important component of defence.

Anomaly detection is well-suited to this problem because
automotive CAN traffic is predictable. Most CAN packets
are published to the bus at a fixed frequency. Furthermore
many attacks require high rate packet injections, motivating
recommendations to detect such insertions as a first line of
defence [1]. Packet frequency monitoring has been proposed
by others for attack detection, but not evaluated [4]. Clearly
a high rate of packet injects are detectable, but what are the
limits of this approach? An anomaly detection system in a

Nathalie Japkowicz
School of Electrical Engineering and
Computer Science
University of Ottawa
nat@site.uottawa.ca

Sylvain Leblanc
Electrical and Computer Engineering
Department
Royal Military College of Canada
Email: sylvain.leblanc@rmc.ca

car must maintain a very low false alarm rate. For example,
consider a system that evaluates traffic every half second. A
false alarm rate of 10~* will produce an alert every hour. A
driver will quickly learn to ignore the detector, rendering it
useless. We need an understanding of the practical limitations
of this approach given these stringent requirements.

Our work evaluates the effectiveness of frequency-based
anomaly detection for packet injection attacks. We apply a
flow-based method adapted from industrial control system
traffic [5] to the CAN bus. Flows measure both frequency
and average data content changes for each type of packet,
and compare them to historical values to produce an anomaly
signal. Our evaluation compares this method’s effectiveness
over a range of packet insertion types, durations, and fre-
quencies, to determine its limits in detecting both overt and
subtle attacks. We also evaluate how a one-class support vector
machine (OCSVM) anomaly detector performs using the same
information.

The remainder of this paper is structured as follows. In
Section II we describe normal and attack traffic. In Section III
we explain the flow method in more detail. In Section IV we
describe the experimental evaluation and results. In Section V
we present our conclusions and suggestions for future work.

II. CAN BUS AND ATTACKS
A. Normal CAN bus traffic

The CAN bus standard is commonly used for internal
communication in automobiles. A car typically has two CAN
buses. One is high speed (e.g. 500 kbps) and is dedicated
to engine functions. The other may be lower speed (e.g. 125
kbps) and is dedicated to entertainment and convenience fea-
tures. The two buses are usually connected through a gateway.
The gateway allows restricted communication between the two
domains, for example so the dashboard on the low speed bus
can display engine alerts sent from the high speed bus. The
buses are populated by electronic control units (ECUs). These
ECUs broadcast packets that make up the traffic on the bus.

Packets contain an ID field and data bytes, as well as
additional bits for error correction, control, and low-level bus
logic. Bus arbitration is handled with a simple system: the
lower ID has priority. If two ECUs attempt to transmit at the
same time, the one sending a higher ID packet will detect the

lower ID packet and wait until the bus is free before sending
its message. Here we assume all messages are well-formed and
are thus only concerned with the ID an data fields. The time
sequence of these ID and data field pairs is the raw data we
are analyzing to identify anomalies. We do not have access
to the data dictionary used by the manufacturer of our test
vehicle, and so assume no knowledge about the meaning of
each packet.

We analyzed bus traffic from our test vehicle, a late-model
SUV. Each ID was observed to appear on the bus at a fixed
frequency. Only minor deviations in each ID’s period were
observed over about half an hour of observations.

Aside from driving the vehicle, no actions (opening win-
dows, turning lights on/off, etc.) were taken. It is possible
that such actions would cause additional non-periodic traffic
to appear on the bus, but we restrict the analysis here to only
periodic traffic. The methods presented here would need to be
re-evaluated for buses with non-periodic traffic.

B. Attack traffic

A variety of attacks have been described in the literature.
Miller and Valasek are particularly explicit in the descriptions
of their methods [1], which include reflashing ECUs, sending
extra control packets, and using diagnostic packets to achieve
various ends. Our detector evaluates CAN packets and does
not directly measure physical layer characteristics of the bus,
or other hardware in the vehicle. We consider only how an
attack would manifest on the CAN bus while the car is driving.
This excludes for example attacks on the wireless interfaces
of the car [3]. However secondary attacks that leveraged such
access would appear on the bus and be detectable. As viewed
from the bus, all published attacks produce some change in
packet traffic: unexpected packets appear, expected packets do
not appear, and/or the packet data contents are unusual. We
discuss each of these cases with the goals of identifying which
effects are in scope for this work, and how we will simulate
them.

Unexpected packets come in two varieties: diagnostic pack-
ets, or additional (or missing) instances of the normal periodic
IDs. Diagnostic packet insertions account for a large number
of attacks, but in principle they are easy to detect because
they should not occur under normal driving conditions. We
assume a practical detector would alert on such packets and
could be disabled when the car is legitimately being serviced.
Other attacks are of the first variety: additional normal-looking
packets inserted onto the CAN bus at a high rate. The high
rate is necessary because the malicious packets must compete
with normal messages for attention by their intended recipient.
Missing packets are more rare; we have seen only one example
of such an attack [6]. In this attack, a rogue controller on the
bus silences its target with clever use of CAN arbitration rules.
Missing packets could thus be evidence of an attack designed
to silence an ECU so that it can be replaced by a counterfeit
one.

Most attacks also require specific data contents to be ef-
fective. It is possible that an attack could consist of packets

arriving at the expected time but containing data with ma-
licious intent, e.g. sent by a compromised device. Detecting
anomalies in the data contents of packets is an important topic
but our focus is on attacks that affect packet frequency. We
do not address pure data field changes here.

Thus the scope of this investigation is limited to the insertion
of unexpected normal packets, and the erasure of normal
packets. High-rate packet insertions correspond to the majority
of published attacks that are not trivially detectable.

We inserted packets into and deleted packets from data
captures from a CAN bus as described in Section IV-B. Our
traffic modifications are not designed to elicit any specific
effects; rather, we are interested solely how sensitive our
detector is to detecting packet insertions and deletions. We
could extrapolate from our results to predict the detectability
of any attack that inserts or removes normal packets on the
CAN bus.

III. FLOW-BASED ANOMALY DETECTION

Our anomaly detector works by calculating statistics about
ongoing network traffic and comparing them with historical
values. The collections of statistics are called flows. In network
traffic analysis, flows contain statistics about a complete com-
munication between two endpoints. For example a flow might
contain the number and frequency of packets, the quantity of
data exchanged, and the duration of the connection. However
the flow concept must be modified for the CAN bus, because
traffic all traffic is broadcast, the endpoints are unknown, and
packets are sent constantly so there is no end of the transaction.

We modify the concept by adopting of the approach of
Valdes and Cheung, who evaluated flows for anomaly detec-
tion in industrial control system traffic [5]. Each CAN flow
collects the following features:

o ID: The packet ID

e N,: the number of packets in the flow

e up: the average Hamming distance between successive
packet data fields

e 037: the variance of the Hamming distance between suc-
cessive packet data fields

o (4 the average time difference between successive pack-
ets

o o2: the variance of the time difference between successive
packets

o T}: the time difference test value

o T}: the Hamming distance test value

o T': the combined time difference and Hamming test values

The test values are t-tests that compare the time and Hamming
difference means to their historical values:

Tx: Me — UHz (l)

[
n
2

where p, and o are replaced with the Hamming or time
difference mean and variance, and g, is the historical mean
for the relevant variable. In our experiments we compare the
effectiveness of the individual and combined test values. The

historical means are calculated over the data captures reserved
for training.

We initially chose a one-second window to calculate the
flows. This is a reasonable time scale to alert on anomalous
traffic of interest to the driver. However some IDs arrive at
a rate close to or equal to once per second. The statistics
of these slow flows calculated over a second are unusable.
For simplicity we exclude these from the trials and include
only those with a period equal to or below 50ms. These fast
IDs account for over 90% of the traffic on the bus. Also for
simplicity we focus solely on the fast CAN bus for these
experiments. A practical system would need to account for
both time scales and buses, e.g. by dividing flow analysis into
message frequency classes, or analyzing each flow individually
at its own time scale.

The window advances in half-second increments, generating
test statistics twice per second. Each window is assigned a
score equal to the highest test value over all the flows. A
sequence of window scores are combined to produce a single
anomaly score by taking the log sum, as recommended in [7]:

T

1
A(S,) > logT; 2)
i=1

T4

where T = T3,T5... Ty is the vector of scores, and A is
the anomaly score for the sequence S,.

A. One-class support vector machine

To compare with the simple approach above, we trained
a one-class support vector machine (OCSVM) to classify
flows. The OCSVM learns the distribution of a single class
from training data [8]. It can then be used to classify new
data as in or out of the training class. We use same flows
above as a basis for feature vectors for the OCSVM. The test
statistics and IDs are omitted, and the flows are concatenated
over IDs to produce a single feature vector for each window.
Thus the feature vector for each window contains the count,
mean and variance of time differences, and mean and variance
of Hamming differences for each ID. We used the scikit-
learn Python library [9] OCSVM implementation for our
experiments.

IV. EXPERIMENT
A. Data

We collected CAN bus data from a 2011 Ford Explorer.
Traffic was captured simultaneously from the two CAN buses
in the vehicle. During the captures the vehicle was was started,
driven at low speed for about five minutes, and then stopped.
No user controls (e.g. turning on the lights, opening windows)
were activated in any trip. This trip was repeated five times.
We used data from the first three captures for calculating
historical statistics and analysis. For the OCSVM experiments,
the first three captures were used to generate training data.
Segments from the fourth and fifth captures were used to
generate simulated attack data.

B. Simulating attack traffic

We simulate attack traffic by modifying captured data. New
packets are inserted into the capture record, starting at a
random time, for a given duration and insertion frequency.
If the bus is not free at those times, the new packet is queued
for insertion at the next time the bus would have been free.
The existing packets timestamps are then modified according
to three rules:

1) If an inserted packet would have caused an existing
packet to be delayed: the existing packet time stamp
is advanced to when the bus is again available.

2) If multiple packets are delayed, they are put in a queue.
When the simulated bus is free, packets in the queue are
put on the bus according to normal priority rules.

3) If a packet is added to the queue, and an older packet
with the same ID is present, the older one is discarded.

The data bytes of the inserted packets are copied from an
earlier instance of that packet ID. Erased packets are simply
removed from the capture with no other modifications. In these
experiments, we did not modify the data contents of existing
packets.

C. Experiment procedure

The goal of our experiments is to determine the sensitivity
of our detector to a range of packet insertion rates and
durations. The test data was divided into three-second-long
segments. About half the segments were randomly selected
to be unaltered, and so constitute normal traffic. The other
half were modified to include additional packets or to remove
packets. For each modified segment, a single packet ID was se-
lected for insertion or erasure according to the rules described
above. All IDs were selected the same number of times.

Every experiment tested a different insert duration and rate.
The rate is not absolute, but rather is a multiple of the insertion
ID’s average packet frequency. Thus for an experiment with
a given insertion rate, the absolute insertion frequencies vary
over the IDs. We generated simulated insertions with durations
ranging from 100ms to 1s. For each duration, packets were
inserted at 1x, 5x, and 10x their average rate. The raw test
data was reused for each combination of insertion parameters.
Reusing the raw data is not ideal, but we had insufficient data
to perform completely independent experiments. In practice
the data varied very little over each capture, so we believe the
effect of reusing data for simulation made little difference in
the results.

We evaluate performance using Receiver Operating Char-
acteristic (ROC) graphs and the Area Under Curve (AUC)
measure. ROC curves provide a way to compare different
methods that is independent of the decision threshold. A ROC
plots a methods false positive rate against its true positive rate
for a range of decision thresholds. The ideal discriminator is at
the top left of the graph, with 100% detection and zero false-
positives. The diagonal of the graph represents random guesses
and is the worst possible case. The area under curve (AUC) is
simply the area under a ROC curve. The AUC condenses the

curve to a single number, which makes it easier to compare
a large number of results. However the AUC can obscure
important differences at particular false positive rates. As was
discussed in the introduction, performance at the lowest false
positive rates may be all that matters for a practical application.

D. Results

The first result was that the Hamming distance test statistics
was counterproductive in detecting anomalies. The test statistic
combining timing and Hamming measures had no discrimina-
tive power between normal and inserted traffic. Consequently
we only evaluated results using the time test statistic for the
flow detector.

ROC curves for for the time statistic detector are shown
in Fig. 1 for a range of test cases. Only a cross section of
cases are shown; Table I shows the AUC for all results. We
see a steady improvement in discrimination as the number of
insertions increases. However only in the longest insertion case
(1s) are the detection rates practically useful. The erasure case
is notably more difficult to detect with this method.

Fig. 2 shows the OCSVM detector results for a selection of
test cases, and Table II gives the AUC for all test cases. The
OCSVM was able to perfectly detect all test cases where the
duration of the alteration was 0.5s or higher. The performance
on the remaining cases is also clearly superior to the test
statistic.

The superior performance of the OCSVM merits further
investigation. Was the OCSVM able to make use of the

1.0 — : T T
_y - - = -~ T - _
% 0.8}! e o B
e -
.g 0.6- 4
+ .
2
A 0.4r — 10x, 0.5s]
E R - . 1x, 0.4s
0.2F -+ 1x,0.3s]
: 0x, 0.7s
0.0L . . .
0.00 0.05 0.10 0.15 0.20
False Positive Rate
Figure. 1. ROC curves for the detector using the amalgamated max time

test statistic. The curves show a cross-section of results from Table 1.

TABLE I
FREQUENCY DETECTOR WITH MAX TIME TEST AUC RESULTS. 0X RATE
DENOTES ERASURE.

additional information in the flows, such as the packet count?
Or did it simply do a better job of classifying based on
the timing information? To answer this question we ran the
experiment with every possible combination of features. The
top five feature combinations in a representative experiment
(0.2s insert duration, 10x insertion rate) were:

1y
2)
3)
4)
5)

ot

s Np
i, U?
Mt Np: U}2L
Mt 0121~

We note that the mean time is included in the top five, and
is by itself the best feature in this experiment. These results
suggest that the mean time between packets provides all the
discriminatory power being used by the OCSVM. At the other
extreme, the Hamming measures by themselves perform little
better than a random guess. Surprisingly, the packet count
feature was equally weak. We conclude that the OCSVM is
making better use of the timing information, and not taking
advantage of additional data such as the interpacket timing
variance or packet count.

Finally, to challenge the OCSVM further we ran the trials
again with shorter flow windows. Using just the mean and
variance of the interpacket timing as features, the experiment
was repeated with flow windows of 0.5 and 0.2s durations.
Surprisingly, performance actually improved as the window
size went down. For a 0.2s window, insertions of just three
packets were reliably detected. We re-ran the experiments
using the t-test detector with shorter windows as well, but
found that this reduced performance significantly.

1.0 ™ . T T
T 1 .

08FF 1 4 Ci e
2 I
5 :
~ :
E :]
s
2
& o04fF
g — 5%,04s
& : — - 10x, 0.4s

021 .. -+ 10x,0.3s|]

---+ 5x,0.3s
00 Il Il I
0.00 0.05 0.10 0.15 0.20
False Positive Rate
Figure. 2. ROC curves for the OCSVM detector. The curves show a cross-

section of results from Table II.

TABLE II
OCSVM DETECTOR AUC RESULTS. 0X RATE DENOTES ERASURE. CASES

Rate
Duration (s) 0Ox 1x 5x 10x
0.3 0.7314 0.9072 0.9332 0.9564
0.4 0.7600 0.9669 0.9768 0.9636
0.5 0.7883 0.9825 0.9979 0.9988
0.7 0.8100 0.9890 0.9991 0.9998
1.0 0.8720 0.9999 1.0000 1.0000

WITH AUC OF 1 ARE NOT SHOWN.

Rate
Duration (s) 0x 1x 5x 10x
0.3 0.9620 09715 0.9625 0.9856
0.4 0.9874 0.9900 0.9905 0.9893

V. CONCLUSION

Our key findings in the use of flows for anomaly detection
are as follows. First, for this kind of traffic insertion, the
Hamming distance of data packets was an unreliable measure
of normality. Only the interpacket timing statistic was reliable
for detecting inserted packets. However a simple t-test using
this statistic did not detect anomalies at practical false alarm
rates. An OCSVM using the same information was able to
detect very short packet insertions with acceptable false alarm
rates. However, to show we can achieve the extremely low
false alarm rates discussed in the introduction, we would need
to repeat these experiments with much more data.

What constitutes a realistic threat is not addressed here.
Some classes of attacks, such as those in the data fields of
packets, would not be detectable with these methods. However
we note that most of the attacks revealed in the literature so
far would be perfectly detectable.

Finally our data did not include non-periodic packet types.
If a normal packet is not periodic then detection of extra
insertions could be more challenging. The flow methods
described here may be sufficient, but their performance would
depend on the nature of the non-periodic packet timing. A
complete solution must be capable of dealing with all these
cases. Only with more data gathered from more vehicles can
these challenges be addressed.

REFERENCES

[1] C. Miller and C. Valasek, “Adventures in Automotive Networks and
Control Units,” IOActive Labs Research, Tech. Rep., Aug. 2013. [Online].
Available: http://blog.ioactive.com/2013/08/car-hacking-content.html

[2] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental Security Analysis of a Modern Automobile,” in 2010 I[EEE
Symposium on Security and Privacy (SP), 2010, pp. 447-462.

[3] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno,
“Comprehensive experimental analyses of automotive attack surfaces,”
in Proceedings of the 20th USENIX conference on Security, ser. SEC’11.
Berkeley, CA, USA: USENIX Association, 2011, pp. 6-6. [Online].
Available: http://dl.acm.org/citation.cfm?id=2028067.2028073

[4] M. Muter, A. Groll, and F. Freiling, “A structured approach to anomaly
detection for in-vehicle networks,” in 2010 Sixth International Conference
on Information Assurance and Security (IAS), 2010, pp. 92-98.

[5] A. Valdes and S. Cheung, “Communication pattern anomaly detection
in process control systems,” in IEEE Conference on Technologies for
Homeland Security, 2009. HST 09, 2009, pp. 22-29.

[6] A. G. Illera and J. V. Vidal, “Dude WTF In My Can,” presented
at Black Hat Asia 2014, Singapore, Mar. 2014. [Online]. Available:
https://youtu.be/Y1YmJOZYMic

[7] V. Chandola, V. Mithal, and V. Kumar, “Comparative Evaluation of
Anomaly Detection Techniques for Sequence Data,” in Proceedings of
the 2008 Eighth IEEE International Conference on Data Mining, ser.
ICDM °08. Washington, DC, USA: IEEE Computer Society, 2008, pp.
743-748. [Online]. Available: http://dx.doi.org/10.1109/ICDM.2008.151

[8] B. Schlkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the Support of a High-Dimensional Distribu-
tion,” Neural Computation, vol. 13, no. 7, pp. 1443-1471, Jul. 2001.
[Online]. Available: http://dx.doi.org/10.1162/089976601750264965

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
d. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of
Machine Learning Research, vol. 12, p. 28252830, Oct. 2011. [Online].
Available: http://jmlr.csail.mit.edu/papers/v12/pedregosal 1a.html

