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Abstract—Compressive Sensing (CS) is a stable and robust
technique that allows for the sub-sampling of data at a given
data rate: ‘compressive sampling’ or ‘compressive sensing’ at
rates smaller than the Nyquist sampling rate. It makes it possible
to create standalone and net-centric applications with fewer
resources required in Internet of Things (IoT). CS-based signal
and information acquisition/compression paradigm combines the
nonlinear reconstruction algorithm and random sampling on a
sparse basis that provides a promising approach to compress
signal and data in information systems. In this paper, we
investigates how CS can provide new insights into coexisting
heterogeneous IoT environments. First, we briefly introduce the
CS theory with respect to the sampling through providing a
compressed sampling process with low computation costs. Then,
a CS-based framework is proposed for IoT, in which the hub
nodes measure, transmit, and store the sampled data into the
fusion center. Then, an efficient cluster-sparse reconstruction
algorithm is proposed for in-network compression aiming at
more accurate data reconstruction and lower energy efficiency.
Therefore, compression should be performed locally at each
Access Point (AP) and reconstruction is executed jointly to
consider dependencies in the acquired data by the final fusion
center.

Index Terms—Compressive Sensing (CS), Internet of Things
(IoT), Wireless Sensor Networks (WSNs), Fusion Center

I. INTRODUCTION

Internet of Things (IoT) environment is expected to grow
tremendously in a few decades, thereby posing new challenges
for both existing Information Communication Technology
(ICT), designed with human communication in mind. Re-
searchers found that, in information systems, Wireless Sensor
Networks (WSNs) and IoT, many types of information have
a property called sparseness in the transformation process
which allows a certain number of samples enabling capturing
all required information without loss of information [1]. IoT
has emerged as a technological revolution in the information
industry. IoT is expected to be a worldwide network of
interconnected objects, and its development depends on a
number of new technologies, such as WSNs, cloud computing,
and information sensing [2]. In IoT-based information systems,
a low-cost data acquisition system is necessary to effectively
collect and process the data and information at IoT end nodes.
WSNs have the potential of a wide range of applications in
many industrial systems. WSNs can be integrated into the IoT,
which consists of a number of interconnected sensor nodes [3].

An IoT can involve thousands of independent components
including computers, sensors, RFID tags, or mobile phones, all
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are capable of generating and communicating data, in which
many techniques are involved for data collection, transmission,
and storage. In IoT, a desirable data compression ratio is
very important, which cannot be obtained by current methods
without introducing unacceptable distortions. Furthermore, for
most data compression solutions in IoT, three main problems
must be solved: resolution, sensitivity, and reliability. This
reality has driven much of the recent research on compressive
data acquisition, in which data is acquired directly in a
compressed format [4]. Recovery of the data typically requires
finding a solution to an undetermined linear system, which
becomes feasible when the underlying data possesses special
structure. Compressive Sensing (CS) is a stable and robust
technique that allows for the sub-sampling of data at a given
data rate: ‘compressive sampling’ or ‘compressive sensing’ at
rates smaller than the Nyquist sampling rate [5][6]. The theory
of CS states that if a signal is sparse in a transform domain,
then it can be reconstructed exactly from a small set of linear
measurements using tractable optimization algorithms. The CS
changes the rules of data acquisition in information systems by
exploiting a priori data sparsity information. The applications
of CS for data acquisition in WSNs have been studied recently
[7]. Authors in [7] investigated CS for networked data in
WSNs through considering the distributed data sources and
their sampling, transmission, and storage.

However, for the first time, our work studies information
acquisition in IoT with CS from the perspective of data-
compressed sampling, robust transmission, and accurate re-
construction to reduce the energy consumption, computation
costs, and data redundancy and increase the network capacity.
A common task of an IoT end node is to transmit the sensed
data to a specific node or fusion center (FC); however, how to
efficiently acquire, store, and transmit among a large number
of source nodes remains a challenge. It is obvious that various
IoT environments or platforms should co-exist with other IoT
ones in the real life, because tremendous IoT devices and
platforms come out nowadays. In this paper, assume that
multiple IoT platforms are utilized simultaneously, we describe
that how can huge amounts of information from those IoT
device be handled with at the same time.

II. COMPRESSIVE SENSING

Each node acquires i.i.d. signals. In this scenario, the com-
pressed sensing can be used to effectively reduce the sampling
rate without degenerating the reconstruction performance. A
k-sparse signal x ∈ Rn can be completely described by the k
nonzero components. x can be sampled with a diversifying
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matrix and a measurement vector y can be obtained. The
sampling process can be described as

y = Ax+ ϵ (1)

in which A denotes an m×n measurement matrix and ϵ is a
noise term.

Then benefits of this model are: 1) the number of samples
generated by each node can be significantly reduced without
losing the reconstruction accuracy; 2) it may cause the signif-
icant reduction of communications over the networks; and 3)
the computation cost at nodes can be reduced.

In IoT networks, the measurement y can be represented as

y = [y1, · · · , ym]
T
=

n∑
j=1

Ai,jxj (2)

in which ym can be easily represented as a linear combination
of the sparsely represented signal xi.

Each node is able to compute xj by multiplying the corre-
sponding element of matrix Ai,j , which can be constructed by
choosing the entries as i.i.d realizations from some probability
distribution. Then, randomized gossip is used to aggregate
the Ai,jxj on a fusion center. In this way, y is available at
the fusion center. Considering that a network with n nodes
at location {pi}, i = i, · · · , n is monitoring multiple events,
assume that Na(t) nodes are in active mode and Ns(t) nodes
are in sleep mode at time t. Let xi denote the source value at
pi, i ∈ n. Then, measurement yi od node i can be represented
as

yi =
∑
j∈N

Aj,ixj + ϵi (3)

in which Ai,j = Ai,j is the influence of this event on sensor
point pi, and ϵi is the random measurement noise of zero
mean. Here, x is sparse and Ai,j can be learned during the
network deployment stage.

Assume that the influence Aj,i = 0, if the distance from
j to i is larger than the communication range. Then, the
measurement yi becomes yi = xi +

∑
j∈n Aj,ixj + ϵi,

furthermore, for the active nodes in the network, we have

ya = ΦAx+ ϵa (4)

where A is the n × n matrix where the (i, j)th element is
(Ai,j), Φ is the m×n measurement matrix that selects the m
rows of A corresponding to the active sensors, and ya and ϵa
are the m× 1 measurement and noise vectors, respectively.

III. THE PROPOSED SYSTEM

Here, a CS framework for signal or data acquisition in the
heterogeneous IoT platforms will be introduced. It acquires a
pre-defined continuous packets sequence of data per interval
with respect to a type of device, and after a compressed
sensing-based encoding procedure the encoded packets are
transmitted by wireless communications. The proposed CS-
based IoT system simplifies all end (or edge) components
as IoT nodes, as shown in Fig. 1. The proposed system
contains of three phases: 1) the design of compressed sensing
information end-node, which aims to reduce the sampling

rate and the number of samples without losing the essential
information; 2) the compressed data delivery scheme, in which
compressed data are delivered to IoT networks to minimize
the received data distortion and communication burden; and
3) data reconstruction and analysis at fusion centers. The CS-
based IoT system is a flexible architecture to implement a
range of different information acquisition in IoT.

The essential goal of IoT systems is to accurately acquire
the information about events of interest [8]. The information
acquisition networks usually consist of three core components:
1) an information sensing system, which can detect and
compressively sample the signals of events; 2) compressed
sampling, in which the systems sample information that are
preconditioned and transmitted over the networks; and 3)
reconstruction algorithms, in which the system accurately
reconstructs the original signal from the compressed samples.
Inadequate sampling may cause aliasing in signal reconstruc-
tion when the measurement matrices are not properly selected.
In contrast to conventional sensing and sampling systems,
the CS can extend them to a much broader class of signals.
The CS-based sampling process works by taking a small
number of samples of a compressible signal on a sparse
basis to reconstruct the original signals by using linear/convex
optimization methods. The CS theory typically requires the
projection matrix to be random, though in practice researchers
have often found that the same idea can be used in other
conventional sampling scenarios.
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Fig. 1: An example of co-existing various IoT systems.

Figure 1 represents an example of the proposed system’s
snapshot. Besides being somewhat different among many
IoT platforms, each has generally a typical structure, which
comprises of an end device, a hub and a fusion center. The
end device captures information according to its own purpose,
the hub takes charge of gathering data from many device
and forwards it to the fusion center. Finally, all of data is
conveyed to a fusion center which processes, manages and
analyzes it, respectively. At the middle point, the hubs are
called differently with respect to IoT platforms, i.e., hub, AP
(Access Point) or GW (Gateway). In the same manner, the
fusion center can be called by management center, AP, hub,
web-based platform or cloud-based server, etc., according to
IoT platforms.
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In general, each AP gets information xA within a certain
time slot made by concurrent signals x1, x2, and xNA from
devices, as follows

xA = [x1, x2, · · · , xNA ]
T (5)

where NA is the number of devices belonging to the AP.
Before delivering xA, our method apply information delivering
to the fusion center in IoT and WSNs with CS from the
perspective data-compressed sampling, robust transmission,
and the accurate reconstruction. Assumed that Φ̂A = ΦAΨ

−1
A ,

xA can be measured as

yA = Φ̂AxA = ΦAΨ
−1
A xA = ΦAαA, (6)

where Ψ−1
A is the transformation, which could be a wavelet

transform, the signal x can be represented as K-sparse data
only if K ≪ N entries of α are nonzero, and Φ is an M ×
N random measurement matrix, Φ ∈ RM×N to satisfy the
Restricted Isometry Property (RIP) [4].

Since each AP (or Hub, GW) has its own random matrix,
each data is encoded separately and is delivered to the fusion
center. The fusion center can be reconstructed

 yA

yH

yG

 =

 Φ̂A

Φ̂H

Φ̂G


 xA

xH

xG

+

 ϵA
ϵH
ϵG

 (7)

If some IoT environments have more importance than other
IoT devices (wellness devices such as heart rate monitor-
ing, photoplethysmographic wristband are more critical than
humidity, thermometer with respect to purposes), the fusion
center could consider this importance when reconstructing de-
livered data from heterogeneous IoT platforms. Borrowing the
concepts from [9], we introduce an importance to measurement
matrix per each AP with respect to different kinds of IoT
devices or IoT platforms.

The measurement matrix for weighted CS is obtained by
multiplying the weight matrix w (calculated in view of re-
construction, which is beyond the scope of this paper) by
the random and transform matrices. Weighted CS samples the
multi-view image signals more compressively for a given re-
construction quality since the measurement matrix is expressed
as

yw
A = Φ̂w

AxA = ΦAwΨ−1xA = ΦAwαA. (8)

The CoSaMP algorithm [10] guarantees the same perfor-
mance as the best optimization-based CS recovery approaches.
Each image from a sensor node has a different weight. As
such, it is advisable to also focus on each image’s weight
and amplitude on the decoder side to achieve an optimized
weighted CS. Since CoSaMP guarantees that the performance
for robust recovery follows the best convex optimization
approach, we modified this state-of-the-art CS recovery al-
gorithm using weighted CS.

After applying weighted CS encoding to each AP separately,
the weighted CS scheme reconstructs each piece of data
according to its own importance on the decoder side, if the
weight matrix w is an identity matrix I when the weight is
not considered. The weighted CoSaMP algorithm sequentially

TABLE I: Weighted CoSaMP algorithm

Input: M ×N matrix Φ, sample vector y = Φα+ ϵ and
sparsity of K , weight vector w

Output: K-sparse approximation a of α

1: a0 ← 0 (Initialization)
2: v← y
3: k ← 0
while halting criterion do
4: k ← k + 1
5: u← Φ∗v (Signal proxy)
6: Ω← supp (W(u, 2K)) (Identification)

7: Λ← Ω ∪ supp
(
ak−1

)
(Support merger)

8: b|Λ ← Φ†
Λu (Estimation)

9: b|Λc ← 0

10: ak ←W(b,K) (Pruning)
11: v← y −Φak (Sample update)
until (while)

selects the most important element with respect to the weight
rather than its own amplitude. The detailed weighted CoSaMP
procedure is described in Table I. All of the steps are identical
to those of CoSaMP, except for the stages of ‘identification’
and ‘pruning’; the weighted CS decoder applies reconstruction
weighting in those stages. We define W(α,K) as an algorithm
that obtains the best K-approximation of α in the subspaces

W(α,K) = arg min
αK∈ΣK

w∥α−αK∥2. (9)

IV. SIMULATION RESULTS
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Fig. 2: A difference between the number of measurements with
respect to conventional and CS-based IoT methods.

In Fig. 2 the number of measurements as a function of the
inverse sparsity level for conventional encoding and CS-based
IoT methods is compared. As shown in Fig. 2, the values
indicate that the CS-based IoT method introduces a gain in
the number of measurements as compared to the conventional
encoding method. In other words, while the CS-based method
uses the same number of non-zero values as conventional one,
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it exhibits improved compression efficiency due to a reduction
in the number of measurements.

V. CONCLUSION

CS makes it possible to create standalone and net-centric
applications with fewer resources required in Internet of
Things (IoT). CS-based signal and information acquisi-
tion/compression paradigm combines the nonlinear reconstruc-
tion algorithm and random sampling on a sparse basis that
provides a promising approach to compress signal and data
in information systems. We investigated how CS can provide
new insights into coexisting heterogeneous IoT environments.
Compression should be performed locally at each Access
Point (AP) and reconstruction was executed jointly to consider
dependencies in the acquired data by the final fusion center.
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