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Abstract: This paper presents a global approach devoted to the detection of Mobile Objects
from images acquired by a single camera embedded on a vehicle or a robot. The general method
is presented involving at first optical flow extraction from tracked interest points, then clustering
between static points belonging to the background and mobile ones extracted on different
mobile objects, and then the tracking procedure performed for every detected mobile object.
First results obtained from a sequential implementation, have shown that the latency time
was too important. Here two improvements are proposed: first, a probabilistic map is built in
order to detect points in more probable regions where a mobile object could be found. Then
sequential and parallel architectures proposed to integrate point detection, point tracking and
point clustering, are analyzed with respect to the latency time. Finally experimental results are
presented and discussed.
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1. INTRODUCTION

This paper presents a visual-based approach for the clas-
sical Mobile Obstacle Detection and Tracking problem.
Such a module is required on a vehicle which must nav-
igate in cluttered and dynamical environments, typically
on an autonomous service robot, or on a car manually
driven. In these two contexts, many research works have
been devoted to detect obstacles, to estimate their states
(position, speed...), to identify their nature (other robot
or vehicle, cycle, pedestrian, pet. . . ) and to prevent from
collisions: here only the detection and tracking functions
are considered.

This problem has been studied using different sensors:
laser, radar, vision. . . Many works for driver assistance
concern laser-based obstacle detection and tracking Vu
and Aycard (2009). In order to track obstacles, it is re-
quired to estimate from the same sensory data, the egomo-
tion of the vehicle: a global probabilistic framework known
as SLAMMOT has been proposed in Wang et al. (2007).
SLAMMOT combines SLAM (Simultaneous Localization
and Mapping) with MOT (Mobile Object Tracking). Some
works have made more robust the Object Detection func-
tion, from the fusion with monovision Gate et al. (2009), or
with stereovision using the v-disparity concept Labayrade
et al. (2005). In Alenya et al. (2009), a biologically-inspired
monocular approach is proposed estimating the Time To
Contact (TTC) from the rate of change of size of features.
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Nevertheless, in spite of numerous contributions, Mobile
Obstacle Detection and Tracking still remains a challenge
when it is based only on one embedded camera. This paper
tackle this challenge, trying especially to minimize the
latency time, i.e. the time required by the system to detect
the obstacle after it enters the view field of the camera.
As it has been proved in numerous works Davison (2003);
Sola et al. (2005); Civera et al. (2008), 2D information
is sufficient in order to estimate the robot motion using
a Visual SLAM algorithm, based on static points. This
paper proposes a strategy in order to detect these static
points, and moreover to detect and cluster the moving ones
in order to detect and to track mobile objects: it is the first
step towards a Visual SLAMMOT approach.

There are various methods for feature detection and track-
ing using a single mobile camera. In Davison (2003); Sola
et al. (2005), new 2D points are extracted from every
image by the Harris detector in selected regions of interest;
for every one, an appearance model is memorized, and
a new landmark is added in the stochastic map, using a
gaussian mixture Sola et al. (2005) or the Inverse Depth
Parametrization Civera et al. (2008). Then, from every
image, an Active Search strategy is applied in order to find
2D points matched with landmarks of the map: a point is
searched using its appearance model, only in a predicted
area, computed from the back-projection of a landmark.

This approach could fail if some points added in the map,
are mobile, because extracted on dynamic objects. The
stochatic map can be extended with a speed for every point
added in the map, so that mobile points could be detected
and discarded from a probabilistic test. This method works
fine, but adds to many computations and does not allow
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to characterize an image region as a moving obstacle.
Another method widely used for robotics applications is
based on the optical flow, extracted from interest points,
typically extracted by the Harris detector and tracked by
the KLT algorithm Shi and Tomasi (1994); points are
tracked in the image space, estimating only their apparent
motions in order to make more robust the function.

Clustering techniques allow to partition the set of tracked
points in subsets that correspond to the static scene
background, and to every detected moving 3D object.
In Veit et al. (2007) a clustering algorithm based on
the a contrario method Desolneux et al. (2008) has been
validated. It has been also used in Poon et al. (2009) to
detect moving objects in short sequences; additionally, a
3D reconstruction is performed on tracked points to better
associate points on moving objects; experimental results
are only based on images acquired from fixed cameras.

This paper proposes a visual module integrating several
functions (KLT tracker, a contrario clustering and object
tracker based on Extended Kalman Filtering or EKF-
based), that continuously detects moving objects from a
mobile robot navigating in an outdoor open environment.
In our initial method presented in Almanza-Ojeda et al.
(2010), the latency time was not considered as a funda-
mental evaluation criterion for this application; it is shown
here how to reduce this latency time thanks to an active
method to monitor continuously the full view field, and
thanks to a parallel implementation of the method.

Outline: section 2 describes the complete system, includ-
ing SLAM and MOT modules not taken into account in
this paper. Then section 3 is focused on the active point
detection method. Sequential and parallel architectures
are evaluated in section 4 with respect to the latency time.
Section 5 presents some experimental results. Finally, sec-
tion 6 summarizes our contribution and presents on-going
works.

2. OVERALL STRATEGY FOR MOBILE OBJECT
DETECTION AND TRACKING

Figure 1 shows the relationships between all functions and
data structures involved in our visual system, devoted
both to visual SLAM and to Mobile Object Detection and
Tracking. The grey functions or data will not be considered
in this paper. Moreover other functions required in an ef-
ficient obstacle detection system are not represented here,
like for example Object identification or the construction
of a robot-centered occupancy grid.

Many authors Gate et al. (2009); Wang et al. (2007) have
identified cross-correlations between these functions. For
example, detection depends on the camera localization
because the optical flow in an image sequence is created
both by the egomotion of the camera (i.e. of the robot on
which it is mounted) and by the motion of other objects.
But the visual-based robot localization in an unknown or
partially known environment depends on the construction
of a stochastic map with only static points, so on the
clustering process able to discriminate static and dynamic
points.

Point Detection

Fig. 1. The Mobile Object detection and Tracking system

The efficiency of our method relies on points detected
initially by the first function presented on the left on
figure 1. The KLT tracker will be applied on a fixed number
of points Npts, (typically Npts = 150). The classical
method extracts points on every image in order to replace
the lost ones. Here point detection and point tracking are
separated. The Point Detection function must profit from
all knowledge already found on previous images, or from
contextual or application-dependant knowledge. So every
time points have to be selected, it exploits a probabilistic
map, built from a discretization of the image space; this
map gives the probability on every image cell, to find a
dynamic point. Initially this probability is uniform; then
it is updated according to several criteria discussed in 3.

New points are detected in cells which have the higher
probability; initially these points are uniformly distributed
in the image. Then as one goes along the method, points
are replaced once they have been either lost by the point
tracker, or identified as static, while dynamic points are
kept in the points set and tracked continuously.

Point Tracking

The points set is used by the Point Tracking function,
which applies the classical Shi-Tomasi algorithm Shi and
Tomasi (1994) in order to build point trails during Nim
successive images. Some points are lost, or are not tracked
during Nim iterations; only N complete tracks will be
considered in the next step.

Point Clustering

This function must identify which points belong to the
background, and which ones belong to dynamic objects.
It is the critical step: the a contrario clustering technique
identifies one group as meaningful if all their elements show
a different distribution than an established background
random model. Contrary to most of clustering techniques,
neither initial number of clusters is required nor param-
eters have to be tuned. In unknown environment context
these characteristics results are very favorable. Our imple-
mentation of this method is described in Almanza-Ojeda
et al. (2010).

This function generates a list of static points and a listO of
M clusters or potential objects, each one defined by a list
of points and by characteristics: the cluster barycenter and
the mean points velocity. It takes as inputs, information
coming from the SLAM function, in order to compensate
the camera egomotion when possible (i.e. on the ground
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plane). It also takes as inputs, information coming from
the MOT function, required for two actions:

• decide when a potential object must be fused with
objects already detected and tracked by the MOT
function. The apparent motion estimated for each
tracked objet is compared with the characteristics of
each potential object for establishing a decision rule
for merging.
• update the probability map, taking into account the

objects characteristics when evaluating the probabil-
ity to find mobile points on every cell.

Visual SLAM

Static points are sent to the SLAM function Davison
(2003); Civera et al. (2008). At every iteration, this func-
tion adds new visual landmarks (here only 3D points) in
the map. It exploits the same probability map so that
observations of landmarks of the map are uniformly dis-
tributed in the current image, are not close to dynamic
objects and are selected in cells that will remain visible
for a long time, knowing the robot dynamics. Only short
memory SLAM is applied: landmarks are removed from
the map as soon as they are behind the robot.

This function has its own way to track points, based on the
Active Search strategy and on the landmark 3D positions
estimated in the stochastic map. So static points are no
more tracked by the Point Tracking function.

Mobile Object Tracking

Finally, clusters of mobile points are processed by this
MOT function: at first, image-based tracking is done using
KLT, but including a Kalman Filtering step applied only
to the barycenter of the points cluster. It allows to make
more consistent the points tracking, since it is assumed
that these points belong to a same rigid object. Later
the region of every mobile object will be segmented and
tracked using the snake tracker presented in A.Marin-
Hernandez et al. (2004); the snake will be initialized with
the hull of the points cluster, and guided using color
information extracted inside this hull.

3. ACTIVE POINT DETECTION.

Due to the fact that our detection function is based on a
sparse optical flow, it is required to actively select points
to be tracked, in regions where the occurrence of a mobile
object is the more probable. To describe the behavior of
this occurrence, a probability map acts as an occupancy
grid, in the sense that higher probabilities represent oc-
cupied (mobile) zones and lower probabilities free (static)
ones, where to monitor the arrival of new mobile points.
These probabilities are given to the Point Detection func-
tion which seeks for locations of potential new points. As
these points are tracked during Nim successive images,
new mobile cells appear and the probability map must be
updated.

As an example, Figure 2 shows positions of tracked points
for an image of the sequence presented in section 5.
Points labelled O have been classified as static; points
labelled + have been identified as dynamic. This grid is

Fig. 2. Results of the Point Clustering function.

only used to illustrate the idea that the image could be
totally divided in cells, but normally, cells are formed only
around detected points, as it is explained hereafter. Cells
on the image without points stay with a fair probability.
Therefore, in this map three kind of cells are highlighted
: fair, occupied and empty. If a priori context-based
information are not taken into account, all locations have
the same probability to contain dynamic points; all cells
(u, v) in the probability map are initialized by p(u, v, t =
0) = p0 where p0 is a symbolic value that represents a fair
cell. When a mobile point is detected in (u, v), it becomes
the center of an occupied area of size rxr; reversely, empty
cells are formed around static points. Probabilities are
updated at every iteration in function of point motions: if a
mobile point is tracked from (u, v) at time t− 1 to (u′, v′)
at time t, p(u, v, t) will be lower than p(u, v, t − 1), and
this cell (u, v) could be labeled as empty; p(u′, v′, t) will
be higher than p(u′, v′, t− 1), and the cell (u′, v′) becomes
now an occupied cell.

The probability values in the map are modified by a
bidimensional Gaussian function centered on (u, v), with
σu and σv function of r. The eq. 1 gives the spatio-
temporal evolution of probability into occupied, empty and
fair cells at each current image. The probability that a cell
belongs to a dynamic object, is inversely proportional to its
distance to the closer detected mobile point; it decreases
by the bell shape of the Gaussian function, and then
temporally, by the inverse of the value established by the
first case in the eq. 2.

p(u, v, t) =
∑

u,v∈Cell

(α(u, v)t−1 + G(µu, µv, σu, σv)) (1)

where α(u, v) function describes the previous probability
in the cell in function of the ”label” of the cell, that is:

α(u, v)t =

{
pmax − p(u, v)t−1 if Cell(u, v)t−1 occupied

p0 if Cell(u, v)t−1 empty
0 if Cell(u, v)t−1 fair

(2)

with pmax = 1.

By applying eq. 1 at each iteration, certain zones among
cells of previous positions of the same point will be
superposed. However, this still keeps the priority in the
empty cells, normally behind the point in current image.
On the left of Figure 3, this idea is depicted as a darkness
zone which not only involves dynamical set of points (given
by the Point Clustering) but also all the previous locations
of these dynamical points. This results in an enlarged zone
restricted by the occupied cells, but the rest of the zone
is highly interesting to find new points in. Cells in which
points have been detected as static at the end of Nim
images, are set to the value of an occupied cell because
we are mainly interested in mobile points. Both enlarged

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

2222



Fig. 3. (left) Updated probability map from the clustering
result; (right) idem using simulated contextual knowl-
edge.

zones and static point cell values are changed each 2Nim
images, when the probability is reset to p0 fair value and
only current dynamic points are set as occupied cells.
Figure 3 depicts on the right the application of a simulated
context-dependant criterion, e.g. in a road context: red
lines represent the road boundaries and the horizon line. It
is not useful in such a situation to monitor zones above the
horizon line: obstacles will arrive either from the horizon
line for cars moving on the opposite way, or from the image
bottom for an overtaking car.

Some other criteria, linked either to the robot dynamics
or to contextual knowledge, will be integrated soon. Typ-
ically, if the robot turns on the left, it is useful to look for
monitoring the left side of the image, so to increase the
probabilities on the corresponding cells.

4. SEQUENTIAL VS PARALLEL ARCHITECTURE

An important property for a method in charge of detecting
obstacles, is the latency time. Up-to-now only a software
implementation has been evaluated: so all functions are
executed in sequence. Only the Point Detection, Point
Tracking and Point Clustering functions are considered in
this analysis: they are noted respectively D, T and C in
the following. The execution times of these functions are
supposed bounded, and noted TD, TT and TC .

The latency time will be expressed as N time units, se-
lected as TD the execution duration of the Point Detection
process, i.e. the classical Shi-Tomasi algorithm, which is
executed basically at 15Hz on our implementation. As it
was explained in 2, the detection and tracking functions
have been decoupled: the point detection is executed only
when required in order to replace lost points or points
detected as static by the Point Clustering function. It
is considered here that TT = NimTD and TC = nTD

(Nim = 6 and n = 2 for the two first timing charts).

Let us first analyze the sequential method; figure 4
presents how and when data structures are exchanged
between the three processes D, T and C.

• At first D selects a set with Npts points and sends it
to T (dotted lines).
• T tracks these points on Nim successive images, and

sendsN point trails to C (solid lines):Npts−N points
have been lost.
• C analyzes these trails, updates the probability map

and sends this map to D (dashed lines).
• A new iteration can begin... D selects Npts minus the

number of dynamic points identified by C ...etc ...

Only one process is active at a given time. Let us consider
the worse situation: an obstacle appears just after the
initial point detection. So it cannot be detected at the
first iteration. If the active strategy to detect points is
efficient, it will be detected at the second one. So the
latency time is 2TT + 2TC + TD ... here 17 time units.
How to minimize this time? At first let us suppose that

Fig. 4. Timing for the sequential architecture

several T processes can be executed in parallel, for example
on a FPGA implementation, or using several processors.
Figure 5 presents how it will work, considering that Nim
is equal to kTcluster (here k=3).

• D select the first points set, and send it to a first
T process. Then it waits during TC and does again
the same operation in order to give a second points
set to a second T process. Again it waits during TC

and selects a third points set for a third T process.
During these three first D activations, the probability
map is not yet updated by C: so D updates itself the
map so that the three selected points sets optimize
the probability to find mobile objects.

• the three T processes are executed in parallel, with a
shift of TC + TD; thanks to these shifts, they could
send the point trails to only one C process, which
could analyze these data in sequence.

• at every activation, C updates the probability map,
and sends it to D, so that at its fourth activation, D
can select new points around detected mobile objects
... and it can iterate.

In the worse situation, if an obstacle appears just after
the first D activation, then it will be detected only after
the second points selection, so after TT + 2TC +TD... here
11 time units. The latency time can be only minimized,

Fig. 5. Timing for a parallel architecture with only one
clustering process

considering that the process D is always active; so it selects
points sets at every period, and activates a T process. So
more T processes will be activated in parallel, and it will
be mandatory also to execute several C processes. Figure 6
presents the timing chart of such a parallel architecture:

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

2223



exchanges of data structures have not been represented,
but every points set has un number from 1 to 15 here:
this number i is above a D execution, on the left of a T
execution, and above a C execution. Vertical dotted lines
have been added to make more visible when a process
communicates its result to the next one. Here we have
selected TT = 4TD and TC = 2TD, only to improve the
readability.

The number of parallel C processes depends on the ratio
TT /TC , here equal to 2: the first one receives the point
trails for points sets with an odd number, while the second
one processes points sets with an even number. During the
8 first iterations of D, the probability map is only updated
by D, without considering the C results, i.e. detected
mobile objects. In the global system, it will be updated
also by the SLAM process, upgrading the probability to
find an obstacle where the robot goes.

In this situation which requires 10 parallel executions, the
latency time becomes minimal, i.e. TD+TT +TC , assuming
that points are selected on the obstacle image as soon as
it appears.

Fig. 6. Timing for a parallel architecture with several
clustering processes

5. EXPERIMENTAL RESULTS

Robot navigation was performed on a parking with a
camera mounted on the robot (640 × 480 at 10Hz). The
number Npts of points given to the KLT tracker is set
to 130, which is the better trade off between expected
results and processing time. Figure 7 presents some images
in which two moving objects go across the robot view field.

Image 7a shows the bounding box on a moving object
(labeled O1) which enters from the right side of the image;
all detected points inside this box are used to initialize
the object model. Two times of TT later a second moving
object O2 is detected, on the left side of the image 7b.
Also, this figure shows the current position of the object
O1 detected before, now tracked by the EKF-based object
tracker. Object region could grow at each time of TT

when new clusters are detected, thanks to the cluster
fusion mechanism. An example of this behavior is shown
in figure 7c where we clearly see that the bounding box of
O2 was enlarged. It means that a third object was detected

by the clustering process but after a merging test, it has
been included in the O2 model.

This first row of images shows the evolution of the envi-
ronment during 20 images; along these images, O1 and O2

always move in frontal-parallel planes with respect to the
image plane. However, middle row of figure 7 shows that
the object O2 performs a diagonal movement across the
robot view field. It is an interesting situation because the
method finds that some regions in the same object present
important differences in their velocities and orientations.

This is illustrated in image 7d, where a new cluster cannot
be included in a detected object because the points in
O2 (half lateral side of the car) and those extracted on
the back of the car, have different displacements and
consequently different velocities. So we initialize and track
the third object independently of the others; two times
of TT later, merging is possible as it is illustrated on
figure 7e. In the same time, the bounding box of O1 is
reduced because it is partially occluded by O2. Also both
images depict two detected objects in the ground caused by
camera movement. These moving ”objects” are detected
normally in the lower part of the image (their egomotions
are more noticeable) however, they are quickly filtered
because they move out of image bounds. In figure 7f, O1

is hidden.

Bottom row of images in figure 7 shows that O1 is detected
again. In other hand the bounding box of O2 becomes
smaller until it disappears and finallyO1 is totally detected
and tracked until it disappears from the camera view field.

6. CONCLUSIONS AND FUTURE WORKS

This paper has presented a method for the Detection and
the Tracking of Moving Obstacles from images acquired by
an embedded camera. Such a method must be executed in
real time, so that the latency time in the worst case could
be minimized. It is shown that a parallel architecture is
required in order to reduce this latency time at its mini-
mum, executing in parallel functions for points detection,
tracking and clustering.

This result is only guaranteed if points are detected on
obstacles. It is the reason why a probability map is
continuously updated in order to select new points in the
region where new objects have the higher probability to
appear. By now a parallel architecture is implemented on a
multi-processor architecture, made from a large-size Altera
FPGA.
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