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Abstract: In this paper, passivity based stability conditions that are widely used in bilateral
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1. INTRODUCTION

In the last two decades, passivity based approaches for
stability analysis dominated the teleoperation literature
and many variations around this central theme have been
proposed (See Hokayem and Spong (2006) for a detailed
survey and Hashtrudi-Zaad and Salcudean (2001) for
passivity based controller architecture analysis). Starting
from the celebrated stability theorem of interconnected
passive systems (Llewellyn (1952)), the 2-port network
interpretation of bilateral teleoperation systems became
the standard of the field. In particular, contemporary
frequency domain analysis of these systems almost al-
ways relies on the Llewellyn’s conditions (or unconditional
stability, absolute stability etc.) theorem. Equivalently,
after performing a loop transformation such as scatter-
ing transformations or wave variables (e.g. Anderson and
Spong (1989); Niemeyer and Slotine (1991); Desoer and
Vidyasagar (1975)) Structured Singular Value (SSV) ar-
guments are used to assess stability.

This paper serves to present the stability analysis of
bilateral teleoperation systems via IQC framework and to
provide a link to the classical results. By this, we would
like to point out that seemingly different frequency domain
approaches can be put into one general framework and
more importantly, the problem can be cast in a pure
system theoretical point of view. Due to the flexibility of
the framework, the proofs are, unlike their original sources,
rather straightforward and easy to generalize.

Besides the two classical results, we provide one simple
exercise for the 3-port version of unconditional stability
theorem for which there is no obvious analog from the
corresponding engineering domains. Hence, this paper can
also be viewed as providing simplifications of the proofs
of the stability analysis tests in network theory, although
we will not attempt to include a detailed discussion of the
relevance. Finally, by the use of the Kalman-Yakubovich-
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Fig. 1. A 2-port network.

Popov (KYP) Lemma, the analysis problem can be con-
verted to an Linear Matrix Inequality (LMI) problem.

The notation is standard. For a hermitian matrix M ,
M � 0 (M ≺ 0) denotes positive (negative) definiteness.
Positive (negative) semi-definiteness is also denoted by
M � 0 (M � 0). The set of real rational, proper and stable
functions are denoted by RH∞. Consequently RH•×•∞
symbol denotes the real rational proper and stable transfer
matrices, where the size of the matrix does not play a role
in the discussion. For a signal f(t) the hat denotes the

Fourier transform i.e. f̂(iω). Ln2 denotes the space of real-
vector valued square summable functions. The norm on

Ln2 is defined as ‖f‖ =
√∫∞

0
f(t)T f(t)dt. ‖G‖∞ denotes the

infinity norm for the linear system G.

2. PRELIMINARIES

The ubiquitous passivity framework for the analysis of a
2-port network is shown in Figure 1 where the ∆s,∆l are
passive LTI operators, representing the load and the source
immitances. In this framework, the goal is to investigate
the properties of the network N to achieve interconnection
stability. In relation to teleoperation, the ∆ blocks refer to
the human operator and the unknown environment.

In general, we consider system interconnections as de-
picted in Figure 3 instead of the 2-port network setting.
In this terminology, G models the nominal teleoperation
system and ∆ is a block diagonal concatenation of un-
certainties e.g. human, environment, delays etc. Arriv-
ing to such an interconnection from a given immitance
representation is straightforward by signal manipulations.
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Fig. 2. Uncertain plant representation of a 2-port network.
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Fig. 3. The general interconnection

For example, admittance type of representations of 2-port
networks are, in general, compatible with such G − ∆
interconnections. The existence of such realizations are
guaranteed for nominally stable systems. One can also use
other types of immitance representations, but the resulting
G often does not admit a proper transfer function which
will be required later in this paper.

Definition 2.1. For a G − ∆ interconnection where G,∆
are stable causal LTI operators with compatible dimen-
sions, the interconnection is said to be well-posed if (I −
G∆) has a proper inverse. Moreover, the interconnection
is said to be stable if it is well posed and (I −G∆) has a
stable inverse.

Definition 2.2. Let a bounded, causal operator ∆ :
Lm2 [0,∞) → Ln2 [0,∞) be given. Then ∆ is said to satisfy
the Integral Quadratic Constraint defined by Π(iω) if (1)
holds for all v ∈ Lm2 .∫ ∞

−∞

(
∆̂(v)(iω)
v̂(iω)

)∗
Π(ω)

(
∆̂(v)(iω)
v̂(iω)

)
dω � 0 (1)

Many classical results from multiplier theory such as
Circle-, Popov- and Zames-Falb criteria (with a brief
historical account given in Megretski and Rantzer (1997))
have been incorporated in this framework.

Theorem 1. (Megretski and Rantzer (1997)). Let the sys-
tem model G ∈ RHn×m∞ be given and let ∆ : Lm2 → Ln2
be a bounded causal operator. Suppose that

(1) for every τ ∈ [0, 1], the interconnection of G and τ∆
is well-posed;

(2) for every τ ∈ [0, 1], τ∆ satisfies the IQC defined by
Π(iω) which is bounded as a function of ω ∈ R;

(3) there exists some ε > 0 such that(
I

G(iω)

)∗
Π(iω)

(
I

G(iω)

)
� −εI for all ω ∈ R. (2)

Then the G−∆ interconnection in Figure 3 is stable.

Hence, if we are given with an IQC constraint that is satis-
fied by the uncertainty set of interest, the robust stability
guarantee in the face of this particular uncertainty set boils
down to the feasibility of (2). As quite frequently used
in control theory, one can use the Kalman-Yakubovich-
Popov (KYP) Lemma (See Rantzer (1996)) to convert
these frequency dependent inequalities into Linear Matrix
Inequalities (LMIs) by using the state space representa-
tions.

We use a simplified version of the general IQC theorem due
to the passive LTI assumption of the involving operators:

Theorem 2. Assume that G,∆ ∈ RH•×•∞ . Under these
assumptions, the G−∆ interconnection is well-posed and
stable if there exist a Hermitian matrix Π such that(

∆(iω)
I

)∗
Π

(
∆(iω)
I

)
� 0 (3)(

I
G(iω)

)∗
Π

(
I

G(iω)

)
≺ 0 (4)

hold for all ω ∈ R ∪ {∞}.

In particular, we recover the small-gain and passivity
(under negative feedback sign) theorems respectively, if
one replaces the constant symmetric matrix

(−I 0
0 I

)
or

( 0 I
I 0 ) as Π multiplier e.g.

Re{∆(iω)} ≥ 0

Re{G(iω)} > 0
⇐⇒

(
∆(iω)

1

)∗(
0 1
1 0

)(
∆(iω)

1

)
≥ 0(

1
−G(iω)

)∗(
0 1
1 0

)(
1

−G(iω)

)
< 0

(5)
for all ω ∈ R ∪ {∞}.

3. EQUIVALENT IQC STABILITY TESTS FOR
COMMON STABILITY APPROACHES

In this section, we give the equivalent tests for the widely
used results from network theory. It is shown that fre-
quently used stability tests in bilateral teleoperation con-
text, can be seen as particular cases of robustness tests.
The conditions follow from a straightforward application
of the IQC theorem and the emphasis is on the resulting
conditions and to the best of our knowledge, has not been
stated elsewhere. Our main motivation is explicitly show
the underlying basic connection to the systems theory and
moreover to demonstrate that the analysis can be done
without confining the problem into a particular network
theoretical setting.

We point out the fact that in the following enumerated
cases, we only prove the sufficiency of the results, and
leave the necessity direction to a later section where we
give some brief remarks about the exactness of the tests.

3.1 Llewellyn Stability Criteria

The well known conditions for stability of a two-port
network, formulated in Llewellyn (1952); Bolinder (1957);
Rollett (1962), are recalled in the following theorem. An
explicit indication of the frequency dependence is omitted
for notational convenience.

Theorem 3. [Llewellyn’s 2-port Stability Theorem] A 2-
port network, as depicted in Figure 1, described by its
immitance matrix

N =

(
N11 N12

N21 N22

)
and interconnected to passive termination immitances, is
stable if and only if

R11 > 0 or R22 > 0, (6)

and
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4 (R11R22 +X12X21) (R11R22 −R12R21)

− (R12X21 −R21X12)
2
> 0 (7)

or
2R11R22 − |N12N21| − <N12N21 > 0 (7′)

for all ω ∈ R ∪ {∞} , where Rij and Xij denotes the
real and imaginary parts of the corresponding block of
Nij respectively.

As shown in Rollett (1962), the conditions stated in
this theorem are invariant under immitance substitution.
Hence, without loss of generality, we assume that the
network and the terminations are setup in accordance with
a G−∆ interconnection as in Figure 2. Otherwise, one can
reshuffle the signals by elementary signal manipulations.
This particular choice greatly simplifies the presentation.

The stability conditions of Theorem 3 can be reproduced
via the IQC theorem as follows. If ∆l and ∆s are passive
and stable LTI systems, they satisfy

∆l + ∆∗l ≥ 0 and ∆s + ∆∗s ≥ 0

for all ω ∈ R∪ {∞}. If we choose arbitrary λ1(ω) > 0 and
λ2(ω) > 0, it is clear that the inequalities

λ1(∆l + ∆∗l ) ≥ 0

λ2(∆s + ∆∗s) ≥ 0

persist to hold, which in turn can be combined into∆l 0
0 ∆s

1 0
0 1


∗ 0 0 λ1 0

0 0 0 λ2

λ1 0 0 0
0 λ2 0 0


∆l 0

0 ∆s

1 0
0 1

 � 0.

After division by λ2(ω) and with λ(ω) = λ1(ω)
λ2(ω) we obtain∆l 0

0 ∆s

1 0
0 1


∗ 0 0 λ 0

0 0 0 1
λ 0 0 0
0 1 0 0


∆l 0

0 ∆s

1 0
0 1

 � 0. (8)

Therefore, we have constructed a whole family of multipli-
ers, parameterized by λ(ω) > 0, such that the quadratic
constraint (8) holds for all passive ∆l,∆s ∈ RH∞. Sta-
bility of the G − ∆ interconnection is then guaranteed if
one can find a positive λ(ω) such that the corresponding
frequency domain inequality (FDI) is also satisfied at each
frequency. Without indicating frequency dependency, this
FDI reads as 1 0

0 1
−N11 −N12

−N21 −N22


∗ 0 0 λ 0

0 0 0 1
λ 0 0 0
0 1 0 0


 1 0

0 1
−N11 −N12

−N21 −N22

 ≺ 0. (9)

where the negation of N is due to the negative feedback
sign that is required for passive interconnections. There-
fore, the resulting condition is reduced to checking whether
there exists a λ > 0 such that

H =

(
−2λR11 −λN12 −N∗21

−λN∗12 −N21 −2R22

)
≺ 0

holds at each frequency. This leads us to the relation with
the classical results. Indeed, the 2×2 matrix H is negative
definite if and only if

R11 > 0 or R22 > 0 (10)

and

detH =
(
−R2

12 −X2
12

)
λ2 −R2

21 −X2
21

+ (4R11R22 − 2R12R21 + 2X12X21)λ > 0 (11)

Since the coefficient of the quadratic term of this poly-
nomial is negative, the apex of this parabola should stay
above the λ-axis for some λ > 0 for all frequencies. Using
the apex coordinates of a concave parabola one can show
that this is equivalent to (7) . Symmetry of the resulting
conditions with respect to the indices is shown by simply
switching the roles of λ1 and λ2 in our derivation.

Remark 4. In the previous FDI condition (9), if one as-
sumes λ = 1 over all frequencies, we also recover the strict
version of Raisbeck’s conditions (Raisbeck (1954)). Com-
parison of Raisbeck’s and Llewellyn’s criteria shows that
the use of frequency dependent multipliers demonstrate
the possibility of a substantial decrease of conservatism
in the stability analysis. In fact, the difference between
Llewellyn’s remarkable conditions and Raisbeck’s condi-
tions is a dynamic multiplier instead of the static ( 0 1

1 0 ).

Remark 5. One should also note that Llewellyn’s condi-
tions are both sufficient and necessary, hence there is
no conservatism regarding the stability test. The con-
servatism that is often associated with this test is due
to the assumptions that are made on the properties of
human and environment. Thus, if one wishes to reduce
the conservatism, additional structural information about
the operators should be included.

Remark 6. If we assume further that the uncertainties are
passive but not necessarily LTI, then we resort to a static
(constant over all frequencies) λ and sufficient conditions
follow. Nevertheless it is less conservative than the classical
passivity theorem with λ = 1.

3.2 Unconditional Stability Analysis of 3-port Networks

Recently, in Khademian and Hashtrudi-Zaad (2010), the
Llewellyn’s analysis method is applied to three port net-
works. The main idea is to obtain a 2-port network by
terminating one of the ports with a known environment
model and then applying the test on the resulting particu-
lar 2-port network. We obtain the exact conditions for the
unconditional stability of a 3-port in a similar fashion from
the previous case without a port termination. The practi-
cality of this test is limited and it is a demonstration of the
simplicity to obtain stability conditions for the scenarios
for which there are no obvious circuit theoretical analogies.
As we should expect, this test is more conservative than of
Khademian and Hashtrudi-Zaad (2010) since they include
additional information about the model of the port that
is terminated, therefore the uncertainty set modeled by
the problem is significantly smaller. This is exactly in
accordance with our claim that we have to include more
information about the uncertainty sets to deal with robust-
ness with reduced conservatism. Nevertheless, it might be
of use for certain network analysis problems where stability
of the network is the only concern.

The only modification needed here compared to the pre-
vious case, is to take a system description N ∈ RH3×3

∞
and three passive uncertainty blocks living inRH∞. Then,
from the following quadratic constraint which reflects the
passivity requirement of these blocks(

∆
I

)∗(
0 Λ
Λ 0

)(
∆
I

)
� 0 (12)

for all ω ∈ R ∪ {∞} where we omit the explicit frequency
dependence and also we use the abbreviations
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∆ = blkdiag{∆1(iω),∆2(iω),∆3(iω)} (13)

Λ = blkdiag{λ1(ω), λ2(ω), λ3(ω)} (14)

Then, we obtain the corresponding FDI as follows:(
I
−N

)∗(
0 Λ
Λ 0

)(
I
−N

)
≺ 0 (15)

Hence, we obtain the 3-port unconditional stability condi-
tions as follows

Theorem 7. [Llewellyn’s 3-port Stability Theorem] A 3-
port network described by its transfer function N ∈
RH3×3

∞ and interconnected to the passive and block di-
agonal ∆ as given in (13) is stable if and only if, there
exists a Λ � 0 such that (15) holds for all ω ∈ R ∪ {∞} .

Now, if one studies this negativity condition in detail,
the exact conditions for unconditional stability can be
obtained from the negative definiteness of a 3 × 3 matrix
by a symbolic computation. Consequently, if one wishes
to obtain formulas similar to (6),(7), the resulting con-
ditions are quite tedious. Moreover, the variation in pre-
senting the resulting conditions would be again due to the
different representations of this negativity condition e.g.
symbolic eigenvalue computation, the sign definiteness of
the cofactors etc. whereas in the IQC formulation this
is completely avoided and via KYP lemma, it can be
numerically checked via LMIs in an exact fashion, without
frequency gridding. This represents the formulation power
and simplicity, at the same time, provides an example
of the theoretical restrictions imposed by confining the
problem into one particular engineering domain.

3.3 Rollett’s Stability Conditions

As we derived the Llewellyn’s stability conditions, it is also
similarly straightforward to derive unconditional stability
when the network is represented with the scattering pa-
rameters. The corresponding interconnection is given by(

q1

q2

)
=

(
S11 S12

S21 S22

)(
p1

p2

)
,

(
p1

p2

)
=

(
∆l 0
0 ∆s

)(
q1

q2

)
(16)

Rollett’s conditions 1 (Rollett (1962); Kurokawa (1965))
for stability formulated as follows: At every frequency, the
inequality

K =
1 + |∇|2 − |S11|2 − |S22|2

2 |S12S21|
> 1 (17)

holds together with an auxillary condition that can be
stated in at least five different ways e.g.

1− |S11|2 > |S12S21| , (1− |S22|2) > |S12S21|
(Woods (1976)), and where ∇ = S11S22 − S12S21. The
variable ∇ is used to avoid confusion with our general
uncertainty variable ∆. With almost identical arguments,
one derives the following quadratic constraints for stable
LTI systems ∆l and ∆s whose gain is bounded by one
(while omitting the frequency dependence):∆l 0

0 ∆s

1 0
0 1


∗−λ 0

0 −1
λ 0
0 1


∆l 0

0 ∆s

1 0
0 1

 � 0 (18)

1 Interestingly, it is just Llewellyn’s conditions in scattering coordi-
nates.

via the inequalities,

λ1(ω)(−∆l(iω)∗∆l(iω) + 1) ≥ 0

λ2(ω)(−∆s(iω)∗∆s(iω) + 1) ≥ 0

Then, from the FDI, stability is assured if one can find a
positive frequency dependent λ such that 1 0

0 1
S11 S12

S21 S22


∗−λ 0

0 −1
λ 0
0 1


 1 0

0 1
S11 S12

S21 S22

 ≺ 0 (19)

or,equivalently,

H =

(
|S21|2 + λ(|S11|2 − 1) S22S

∗
21 + λS12S

∗
11

S∗22S21 + λS∗12S11 |S22|2 − 1 + λ |S12|2
)
≺ 0

holds for all frequencies. Then, it is elementary to show
the negative definiteness of H, say by showing det (H) > 0
and any of the diagonal entries of H being negative for all
ω ∈ R ∪ {∞}. Positivity of the determinant of H means

(1− |S22|2 − |S11|2 + |∇|2)λ− |S12|2 λ2 − |S21|2 > 0 (20)

Using the shorthand notation, f(λ) = −aλ2 + bλ − c > 0
with a, c > 0, for (20), we require the apex coordinates(
b

2a ,
b2−4ac

4a

)
both be positive. Since a > 0, we have

(1 + |∇|2 − |S22|2 − |S11|2)2 > 4 |S12S21|2 (21)

from b2 > 4ac. Moreover, for the constraint b > 0,
negativity of the diagonal terms leads to

λ(1− |S11|2) > |S21|2 or 1− |S22|2 > λ |S12|2 (22)

To make the connection to the classical auxiliary condi-

tions, observe that evaluating f(λ) at λ0 =
√

c
a =

|S21|
|S12|

would lead to the condition b > 0 since f(λ0) = b
√

c
a −

2c > 0, hence (22) becomes

1− |S11|2 > |S12S21| or 1− |S22|2 > |S12S21| (23)

In the literature, λ0 is denoted by “maximum stable power
gain”. Finally, now that we have included the condition
b > 0 explicitly, one can take the square root of (21) and
obtain

1 + |∇|2 − |S22|2 − |S11|2 > 2 |S12S21| (24)

which is precisely Rollett’s first condition.

This test formulated in terms of existence of a λ > 0 also
recovers the stability parameter µ of Edwards and Sinsky
(1992) in the sense that we have only one condition to be
checked for the stability test. Recently, the µ parameter
has been used in the context of teleoperation in Haddadi
and Hashtrudi-Zaad (2009) and their results can also be
obtained similarly by modifying the multiplier for output
strictly passive uncertainties.

Remark 8. We can derive these results from the passivity
point of view. This requires only to perform the congruence
transformation(

0 1
1 0

)
=

(
1√
2b

(
1 −b
1 b

))T (−1 0
0 1

)(
1√
2b

(
1 −b
1 b

))
(25)

with the usual scattering transformation matrix, which
turns the multiplier for small-gain conditions into the one
imposing passivity constraints. One can see that plugging
(25) into (5) provides the simplest relation between two
interpretations. By this relation, we simply reemphasize
that the scattering transformations (Anderson and Spong
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(1989)) and wave variable (Niemeyer and Slotine (1991,
2004)) methods utilize the equivalence of stability im-
plications of the small gain and passivity theorems un-
der certain loop transformations (Desoer and Vidyasagar,
1975, Sec. VI.10). Therefore, loop transformations are not
essential to analyze the stability of teleoperation problems
since we can either use (8) or (18) with scattering trans-
formation to characterize the passive LTI uncertainties.

For example, one can further perform delay robustness
tests without any scattering transformation since the sta-
bility test does not rely on solely the passivity theorem.
In fact, the uncertainties are characterized by their own
quadratic constraints. Hence, no “passification” step is
required. This approach has been used in (Polat (2011a,b))
for uncertain delays and time-varying parametric uncer-
tainty scenarios.

There has been a discussion in various studies (e.g. Lom-
bardi and Neri (1999); Edwards and Sinsky (1992); Woods
(1976)) whether testing both or one of the conditions in
(23) is sufficient. Note that, it just rolls out from our
FDI condition that we need only one of these auxiliary
conditions. In fact, (19) renders this discussion obsolete
since we deal with a single matrix inequality to be tested at
each frequency. Even further, we obtain a one-shot solution
from the corresponding LMI problem.

Avoiding the Frequency Gridding: Either the existence
of frequency dependent multipliers, say λ in the previous
cases, or the classical conditions in their original form,
one has to check sufficiently large number of points on
the frequency axis. Even this might not directly guaran-
tee stability since the decision is based on the gridding
resolution. Instead, we can use the well-established semi-
definite programming algorithms (Boyd et al. (1994)), by
introducing suitable parameterizations of the frequency-
dependent multiplier λ and using state-space descriptions.
Then, KYP lemma allows to convert the FDI into one
feasibility test of semi-definite programming without the
need for any frequency-gridding. This is the line of reason-
ing which allows to handle substantially more complicated
uncertainty structures and, to a certain extend, even per-
mits to perform optimal controller synthesis. Due to space
constraints, we only present the resulting LMI conditions
for the Rollett test, since the details can be found elsewhere
e.g. Megretski and Rantzer (1997).

Assume a multiplier λ(ω) ∈ R factorized as

λ(ω) = Φ(iω)∗DΦ(iω)

such that D ∈ Rn×n is a symmetric matrix and

Φ(s) =

(
1

1

s+ a

1

(s+ a)2
· · · 1

(s+ a)n−1

)T
for some fixed a > 0 and sufficiently large n ∈ Z+. Then
one can rewrite (19) as

(
I
S

)∗Φ
1

Φ
1


∗−D 0

0 −1
D 0
0 1


Φ

1
Φ

1

(IS
)
≺ 0

(26)
hence, by denoting Ψ = ( Φ

1 ), (19) becomes

(
Ψ

ΨS

)∗−D 0
0 −1

D 0
0 1


︸ ︷︷ ︸

P

(
Ψ

ΨS

)
≺ 0 (27)

Define the following minimal state space realizations

Φ(s) =

[
AΦ BΦ

CΦ DΦ

]
,

(
Ψ

ΨS

)
(s) =

[
A B
C D

]
then via KYP Lemma, existence of a symmetric matrix
D such that Φ(iω)∗DΦ(iω) > 0 and (19) holds for all
ω ∈ R ∪ {∞} is equivalent to the existence of symmetric
matrices D,Z and X such that following LMIs hold(

I 0
A B
C D

)T (
0 X 0
X 0 0
0 0 P

)(
I 0
A B
C D

)T
≺ 0 (28)

(
I 0
AΦ BΦ

CΦ DΦ

)T (
0 Z 0
Z 0 0
0 0 D

)(
I 0
AΦ BΦ

CΦ DΦ

)
� 0 (29)

By slightly changing the multiplier P, Llewellyn’s condi-
tions can be obtained through identical steps.

3.4 Exactness of Robustness Tests

As we have mentioned before, the IQC tests presented in
these cases only prove sufficiency of the stability condi-
tions. Still, in all these cases necessity can be seen to
be a specialization of a celebrated exactness result in
structured singular-value theory as discussed in Packard
and Doyle (1993); Scherer (2005). It is far beyond the
scope of this paper to give the all possible cases where
the robustness tests are exact, but for a particular class
of the LTI uncertainty cases (and for a very limited cases
of time varying real parametric uncertainties), it is well-
known that the structured robust stability tests can be
shown to be exact. Nevertheless, for our purposes, it is
sufficient to mention that all cases presented above are in
accordance with the uncertainty types for which the tests
are exact (e.g. (Packard and Doyle, 1993, Table 1)). In
particular, 3-port counterpart of the Llewellyn’s conditions
are indeed sufficient and necessary. Another interesting
important case is when the designer defines a performance
channel and tests robust performance against two LTI
passive uncertainty blocks. This problem also satisfies the
exactness conditions and gives a direct opportunity to test
different scenarios with respect to a performance index.
For a detailed discussion, we refer to Packard and Doyle
(1993); Fan et al. (1988); Scherer (2005).

4. CONCLUSIONS

In summary, applying IQC theory to the standard con-
figurations as considered in a 2-port network analogy,
allows to recover the existing stability results. On the other
hand, the IQC framework offers interesting possibilities for
generalizations that are worthwhile to be investigated in
the context of stability analysis and controller synthesis for
teleoperation systems. We have emphasized the relation
between network stability results and techniques from
multiplier theory, in order to substantiate that, network
stability theorems can be viewed as specializations of
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those obtained with the IQC framework of robust control.
Although it is certainly not our intention to question
the existing engineering insights and the related physical
intuition brought in by network theory, microwave theory
etc., it might be worthwhile to pursue the somewhat more
abstract IQC approach for applications in bilateral teleop-
eration context.

This opens up the way either to apply existing or to de-
velop new IQC-based multiplier results for handling non-
linearities, delays or sampling effects in order to address
the special complications in teleoperation. As a particular
strength of this framework, one can effectively include
structural information about the involved uncertainty that
goes beyond passivity. Moreover it is rather straightfor-
ward to include performance specifications as well. One
could then model the human operator and the environment
in a somewhat more refined fashion and directly analyze
realistic performance specifications while still guaranteeing
stability.

We strongly believe that this allows to investigate various
possibilities for tuning haptic controllers that go beyond
the manually tuned PID controllers in order to achieve
optimal performance (and thus improving the quality of
the teleoperator) without sacrificing stability, instead of
solely relying on the mechanical properties of the devices.
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