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Abstract—Stochastic decoding is an excellent approach for 

Low-Density Parity-Check (LDPC) codes which are adopted 

in many communication standards, including 10GBASE-T, 

DVB-S2, WiMAX. In this paper, we first research some 

novel schemes of stochastic LDPC decoding, like Noise-

Dependent Scaling (NDS), Edge Memories (EMs), Tracking 

forecast memories (TFMs) and majority-based tracking 

Forecast Memories (MTFMs). (7, 4) Hamming code and 

(2048, 1723) LDPC code from the IEEE 802.3an standard 

are used to simulate and analyze the advantages and 

disadvantages of these methods. Then, an early termination 

criterion is proposed as an efficient way to speed up the 

decoding procedure. Simulation results show that our 

method can decrease the computation complexity 

significantly with negligible performance loss. 
 

Index Terms—Low-Density Parity-Check (LDPC), 

stochastic decoding, Edge Memories (EMs), low complexity, 

early termination criterion 

 

I. INTRODUCTION 

In 1963, LDPC codes were first proposed by Gallager 

[1], which are an important class of linear block codes. 

However, because of limited technical conditions and 

lack of feasible decoding algorithm, LDPC codes were 

ignored at that time. Not until the proposal of Tanner 

graph [2] and the discovery of Turbo codes [3] did people 

restart the research of LDPC. After several years of study 

and development, breakthroughs were made in many 

aspects [4]-[6]. It has been demonstrated that LDPC 

codes can provide decoding performance close to the 

Shannon capacity limit [7]. For these reasons, LDPC 

codes have been adopted for several communication 

standards, including IEEE 802.3an (10GBASE-T) [8], 

IEEE 802.16 (WiMAX) [9], IEEE 802.11 (Wi-Fi) [10] 

and the digital video broadcasting (DVB-S2) standards 

[11]. 

Although LDPC codes have excellent coding 

performance, the high-complexity hardware architecture 

is the major challenge of LDPC decoder in actual 

applications. In recent years, stochastic decoding 

algorithms are proposed which can be used to implement 

the hardware of LDPC decoders [12]. And FPGA-based 

stochastic architectures that decode LDPC codes are 

realized in [6], [13]. It has also been applied for decoding 

non-binary LDPC codes in [14]. Stochastic decoding uses 
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Bernoulli bit stream to represent the probability messages. 

The operations in the probability domain can be 

converted into the brief bitwise operations by stochastic 

computation. Therefore stochastic decoding offers an 

affordable solution for fully parallel implementation of 

medium and long codes. 

However, stochastic decoding may encounter the 

latching problem, especially in long LDPC codes [15]. 

The latching problem is that Variable Nodes (VN) cannot 

be updated effectively in several decoding iterations 

because of the cycles in a factor graph. It results in the 

slow convergence of decoding procedure and degrades 

the decoding performance. 

To combat this problem, Edge Memories (EMs) and 

Noise-Dependent Scaling (NDS) are introduced [12]. 

NDS uses a scaling method to increase the level of 

switching activity over different ranges of SNRs. EMs 

utilizes M-bit shift register to re-randomize the stochastic 

bit streams, so that it can reduce the chance of latching 

obviously. And Tracking Forecast Memories (TFMs) is 

proposed [16] which can provide similar decoding 

performance to EMs while having lower hardware 

complexity. 

As we know, EMs and TFMs are assigned to each 

outgoing edge of a VN and consume considerable silicon 

area in ASIC stochastic decoders. In order to reduce more 

hardware complexity than EMs and TFMs, a new 

stochastic approach based on Majority-based Tracking 

Forecast Memories (MTFMs) is proposed in [17] for 

decoding LDPC codes. A VN needs only one MTFM so 

that the implementation of LDPC decoders can be much 

simpler than previous approaches. 

In this paper, we propose a new Early Termination 

Criterion for LDPC stochastic decoding. Normally, the 

decoding cycles are set very high for the sake of precision. 

However, as we have researched, most checksums will 

converge in advance, thus making it unnecessary to 

proceed the remaining cycles. In our scheme, 

convergence points are obtained adaptively to different 

bit streams so that we could know when to stop the 

decoding procedures. With this new termination criterion, 

decoding cycles can be reduced significantly. Simulation 

results demonstrate that our proposed scheme 

outperforms conventional ones in computation 

complexity while losing little performance. The rest of 

this paper is organized as follows. In Section II we review 

the fundamentals of stochastic decoding. Section III 

describes approaches (NDS and EMs) to solve latching 
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problem and the low complexity approaches (TFMs and 

MTFMs). Section IV proposes the Early Termination 

Criterion, discusses different situations of the 

convergence and applies it to the implementation of 

LDPC decoding. Then, simulation results of the above 

methods are presented in Section V. Finally, Section V 

gives the conclusions. 

II. THE PRINCIPLE OF STOCHASTIC DECODING 

In Sum-Product Algorithm (SPA) belief messages 

passed between variable nodes and check nodes are in the 

form of probabilities with values between 0.0 and 1.0. 

Because of the complex calculation in the probability 

domain, it will require much hardware resources. 

Stochastic computation is a novel approach for 

decoding LDPC codes. In this approach, probabilities 

received from the channel are converted to Bernoulli 

sequences. The frequency of ‘1’s in a stream of bits 

represents a probability of belief message. For example, a 

probability of 0.2 can be converted to a stream of bits 

whose 20% of bits are ‘1’s. The transformation of a 

probability to a stochastic sequence is non-unique, which 

means that the order of `1's in a stochastic stream is not 

important. 

Stochastic decoding is an iterative-based decoding 

algorithm. In one iteration, belief messages are passed 

from the variable nodes to the check nodes along the 

interconnected edges, and then returned from the check 

nodes to the variable nodes. The operation of belief 

propagation between two types of nodes can be done by 

simple logic gates [4]. 

Let Pr( 1)
a

P a   and Pr(b 1)
b

P    be the 

probabilities of two inputs in a check node whose degree 

is 3. The output probability of the check node is: 

(1 ) (1 )
c a b b a

P P P P P                        (1) 

In a degree-2 variable node, the output message is: 

(1 )(1 )

a b

c

a b a b

P P
P

P P P P


  
                     (2) 

When implemented on the hardware, a check node 

needs only an XOR gate. The multiplication of two 

values can be performed by an AND gate and the division 

of two values can be approximated by a JK flip-flop. Fig. 

1 shows the hardware structures for (1) and (2). 

 

Figure 1.  The structures of (a) PN and (b) VN in stochastic decoders. 

The operation of a variable node is something more 

complex than a check node. When all inputs of a variable 

node are not equal, we must figure out what to output at 

the decoding cycle. For example, when a variable node 

holds on the previous bit on the edge, this is referred to a 

hold state of the variable node. When all the inputs are 

equal, we call it non-hold state. 

However, there is a challenge for practical application 

with these structures [15]. When a cycle in the factor 

graph exists, some variable nodes are prone to lock into a 

fixed state. Once the variable nodes cannot be updated 

effectively in several decoding iterations, it will lead to 

slow convergence and low performance of decoding. 

III. NOVEL ALGORITHMS FOR STOCHASTIC DECODING 

A. Combating the Latching Problem 

As described in Section II, a stochastic decoder is very 

sensitive to the level of random switching activity, there 

is possibility that it runs into a latching problem [18]. In 

[12], two approaches are proposed to deal with the 

latching problem. One approach is Noise-Dependent 

Scaling (NDS), the other is Edge Memories (EMs). NDS 

increases the level of switching activity in stochastic 

streams over different SNRs, the received channel LLRs 

are scaled by a factor which is proportional to the noise 

level in the channel. 

Assuming a BPSK transmission over an AWGN 

channel, the scaled LLR 
i

L  for the i-th symbol iy  in the 

received block is calculated as: 

0
4

( )
i

i i

N y
L L

Y Y

 
                           (3) 

where 
0

N  is the noise power spectral density, 

0
4 /

i i
L y N  is the channel LLR for 

i
y , Y  is a fixed 

maximum value of the received symbols. For example, 

for a BPSK modulation Y  can be set at 6. And   is also 

a constant factor whose value is chosen based on the best 

BER performance. 

When the hold state occurs, it is not a good idea to 

output the bit from the last non-hold state all the time. 

The use of EMs is a good way to deal with this problem. 

An EM is assigned to every edge of VN which can 

provide the approximate information when the hold state 

occurs. 

Bits from VN can be classified into two types: 

regenerative bits and conservative bits [13]. Only 

regenerative bits can correctly reflect the belief messages 

from CN because it is generated when a VN is in the non-

hold state. When the non-hold state occurs, a VN outputs 

the newly generated regenerative bit and EM is updated 

with the regenerative bit. When the hold state occurs, the 

VN outputs a bit randomly chosen from the relevant EM. 

An EM can be implemented by an M-bit shift-register, 

which stores no more than M regenerative bits. So it is 

for sure that VN generates a proper bit relying on the 

most recent regenerative bits when it is in the hold state. 
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NDS and EMs can work together in stochastic 

decoding for LDPC codes [19]. Section V will show the 

simulations of decoding with NDS and EMs. 

B. Reduced Hardware Complexity 

Though EMs have good decoding performance, they 

occupy much silicon area when implemented in ASICs. 

In order to reduce the hardware complexity, Tracking 

Forecast Memories (TFMs) and Majority-based tracking 

forecast memories (MTFMs) is proposed in [16], [17]. 

TFMs are similar to EMs for using information from 

the previous reliable regenerative bits to generate 

approximate bits when VN is in the hold state. A TFM 

hold a probability of stochastic streams from VN and 

recursively updates it based on the previous regenerative 

bits. 

Let ( )b t  be the regenerative bit from a VN and P( )t  

be the probability kept by a TFM. When the non-hold 

state occurs, P( )t  is updated as follows: 

( 1) (1 ( )) ( ) ( ) ( )P t t P t t b t                  (4) 

where ( )t  is the coefficient and 0 ( ) 1t  . When the 

hold state happens, P( )t  is compared to a (pseudo) 

random number R( )t , and the new bit ( )b t  is generated 

as follows: 

1   for ( ) ( )
( )

0   otherwise        

P t R t
b t


 





                    (5) 

TFMs are assigned to every edge of VN. The 

workflow of one edge with TFM is shown in Fig. 2. 

 

Figure 2.  The workflow of one edge with TFM. 

Different from EMs and TFMs that a VN uses one 

memory in every edge, only one MTFM is needed in each 

VN. The algorithm of MTFMs has a different update rule 

from that of TFMs, it is based on majority of regenerative 

bits of VN. As we know, there are several edges in a VN. 

For some edges, it may be in the hold state; for others, it 

is in the non-hold state. The MTFM is updated only if a 

certain percentage of edges are in the non-hold state at 

least. Let ( )S t  be the number of edges which are in the 

non-hold state and 
u

T  is referred as a threshold to update 

an MTFM. 

( )
u

S t T                                   (6) 

When more than half of the regenerative bits are ‘1’s, 

we believe that VN's regenerative bits ( )b t  are ‘1’s for 

any edge which is in the hold state. 

The operations of VN with MTFMs are the following: 

1) When an edge of VN is in the non-hold state, it 

directly uses the corresponding regenerative bit as 

the outgoing bit of the edge. 

2) When an edge is in the hold state, the MTFM 

generates “regenerative bits” for the edge. The 

edge outputs the “regenerative bits” as the 

outgoing bit. 

MTFMs significantly reduce the hardware complexity 

than TFMs. However, as MTFMs generate the same 

regenerative bit for all edges which are in the hold state, 

while, actually, different edges have different 

probabilities to be ‘1’, so the decoding performance of 

MTFMs is not as good as TFMs. Section V will show the 

simulation of decoding with TFMs and MTFMs. 

IV. EARLY TERMINATION CRITERION 

Normally, there are two termination criteria for 

stochastic decoding: (1) if all the PNs are satisfied or (2) 

if a maximum number of DCs has been exceeded. 

Decoder outputs the sign-bit of each up/down counter as 

the decoded codeword when either criteria is satisfied. 

 

Figure 3.  Checksums of different decoding bits in a LDPC frame, the 
order of the curves is top-down. 

In Sum-Product Algorithm, some research has been 

done on the change regulations of LLRs’ values in VNs 

and PNs, and stopping schemes are made to decrease 

iteration numbers [20]-[22]. As stochastic computation 

has high accuracy, we also believe that there is no need 

for all decoding procedures to finish the maximum DCs. 

According to our statistics shown in Fig. 3 that 

demonstrates checksum of all the check nodes in a LDPC 

frame, we can see that some checksums (Curve 2, Curve 

3, Curve 4, Curve 5) are in downward trends, and become 

stable (0 or some fixed value) at certain DCs. After that, 

the decoding result will not change. There are five curves 

in the figure, whose convergence speeds are not the same. 

So we can adaptively stop decoding in advance for 

different LDPC frames, which will reduce the amount of 

calculation greatly. 

Our proposed early termination criterion is shown in 

Fig. 4. For decoded frames whose checksums can be 

stabilized to a value for at least “max” times, we should 

stop the procedure in advance; otherwise, we should 

continue decoding until the number of DCs reaches 
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maximum. Of course this may not always be right, it is a 

compromise between complexity and performance. 

 

Figure 4.  Early termination criterion for stochastic LDPC decoding. 

V. SIMULATION 

A. Simulation Results of NDS and EMs 

As analyzed in Section III, the addition of NDS and 

EMs can significantly improve the effect of traditional 

stochastic decoding which is affected by the latching 

problem. For simplicity, we choose (7, 4) Hamming code 

to simulate the performance of BER. The maximum 

number of DCs is 2K. The iteration number in SPA is 10. 

DCs are not equivalent to the iterations in SPA. The 

length of EMs is 32. 

 

Figure 5.  Simulation results for (7, 4) hamming code using NDS and 
EMs. 

We can see in Fig. 5 that both of NDS and EMs used 

in stochastic decoding can achieve a better performance 

than traditional stochastic decoding. In order to see the 

impacts of NDS and EMs respectively, stochastic 

decoding with NDS and without EMs and stochastic 

decoding without NDS and with EMs are simulated for 

comparison. The simulation results show that EMs 

contribute more to the performance than NDS. We also 

simulate the stochastic decoding with both NDS and EMs, 

the result show that the combined scheme has comparable 

BER performance to floating point SPA decoding 

algorithm. 

B. Simulation Results of TFMs, MTFMs 

We choose (2048, 1723) LDPC code which is used in 

the IEEE 802.3an (10GBASE-T) standard to simulate the 

two means. The maximum number of DCs is 10K. The 

iterations of SPA is 10. The length of EMs is set to 32. 

The parameters of TFMs and MTFMs are the same as 

[16], [17]. 

 

Figure 6.  Simulation results for (2048, 1723) LDPC code using TFMs 
and MTFMs. 

Fig. 6 shows BER performance for a (2048, 1723) 

LDPC code using low-complexity stochastic decoding. 

As shown, TFMs performs a little better than EMs, while 

the hardware complexity of it is simpler than EMs. 

Though at 
4

10BER


 , the performance loss of MTFMs 

compared to EMs is about 0.03dB, a VN needs just only 

one MTFM for all edges. So it is much easier for MTFMs 

to be implemented. 

 

Figure 7.  Simulation results for (2048, 1723) LDPC code using 
proposed termination criterion. 
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C. Simulation Results of Proposed Termination 

Criterion 

Simulation parameters are the same as the above. From 

Fig. 7, we can see that our proposed termination criterion 

can adapt to different convergence situations well. At 

BER of 
4

10


, our scheme loses only 0.07dB than EMs, 

while the average decoding speed is 63% faster. 

Considering the great amount of computation it reduces, 

the compromise is worthy. 

VI. CONCLUSIONS 

In this paper, we have presented a tutorial overview of 

some novel methods for decoding state-of-the-art LDPC 

codes, like NDS, EMs, TFMs and MTFMs. By realizing 

these methods integrally, we can know the advantages 

and disadvantages of them. Besides, it also helps 

calibrating our simulation ways and platform, which 

contributes to the correct implementation of our new 

method. And then an early termination criterion for 

stochastic LDPC decoding is proposed. Theoretical 

analysis and simulation results indicate that our proposed 

scheme is able to provide similar decoding performance 

as traditional ones while having much less computation. 

Some further comparisons and association schemes will 

be researched in the next step. 
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