
1

Edge-preserving image denoising via group
coordinate descent on the GPU

Madison G. McGaffin, Student Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

Abstract—Image denoising is a fundamental operation in im-

age processing, and its applications range from the direct (photo-

graphic enhancement) to the technical (as a subproblem in image

reconstruction algorithms). In many applications, the number of

pixels has continued to grow, while the serial execution speed of

computational hardware has begun to stall. New image processing

algorithms must exploit the power offered by massively parallel

architectures like graphics processing units (GPUs). This paper

describes a family of image denoising algorithms well-suited to

the GPU. The algorithms iteratively perform a set of independent,

parallel one-dimensional pixel-update subproblems. To match

GPU memory limitations, they perform these pixel updates in-

place and only store the noisy data, denoised image and problem

parameters. The algorithms can handle a wide range of edge-

preserving roughness penalties, including differentiable convex

penalties and anisotropic total variation (TV). Both algorithms

use the majorize-minimize (MM) framework to solve the one-

dimensional pixel update subproblem. Results from a large 2D

image denoising problem and a 3D medical imaging denoising

problem demonstrate that the proposed algorithms converge

rapidly in terms of both iteration and run-time.

I. INTRODUCTION

Image acquisition systems produce measurements corrupted
by noise. Removing that noise is called image denoising.
Despite decades of research and remarkable successes, image
denoising remains a vibrant field [6]. Over that time, image
sizes have increased, the computational machinery available
has grown in power and undergone significant architectural
changes, and new algorithms have been developed for recov-
ering useful information from noise-corrupted data.

Meanwhile, developments in image reconstruction have pro-
duced algorithms that rely on efficient denoising routines [17],
[22]. The measurements in this setting are corrupted by noise
and distorted by some physical process. Through variable
splitting and alternating minimization techniques, the task of
forming an image is decomposed into a series of smaller
iterated subproblems. One successful family of algorithms
separates “inverting” the physical system’s behavior from
denoising the image. Majorize-minimize algorithms like [1],
[13] also involve denoising-like subproblems. These problems
can be very high-dimensional: a routine chest X-ray computed
tomography (CT) scan has the equivalent number of voxels as
a 40 megapixel image and the reconstruction must account for
3D correlations between voxels.

Copyright (c) 2015 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.

The authors can be contacted at mcgaffin@umich.edu and
fessler@umich.edu.

Supported in part by NIH grants R01 HL 098686 and U01 EB018753, and
by equipment donations from Intel Corporation.

Growing problem sizes pose computational challenges for
algorithm designers. Transistor densities continue to increase
roughly with Moore’s Law, but advances in modern hardware
increasingly appear mostly in greater parallel-computing ca-
pabilities rather than single-threaded performance. Algorithm
designers can no longer rely on developments in processor
clock speed to ensure serial algorithms keep pace with in-
creasing problem size. To provide acceptable performance for
growing problem sizes, new algorithms should exploit highly
parallel hardware architectures.

A poster-child for highly parallel hardware is the graphics
processing unit (GPU). GPUs have always been specialized de-
vices for performing many computations in parallel, but using
GPU hardware for non-graphics tasks has in the past involved
laboriously translating algorithms into “graphics terminology.”
Fortunately, in the past decade, programming platforms have
developed around modern GPUs that enable algorithm de-
signers to harness these massively parallel architectures using
familiar C-like languages.

Despite these advances, designing algorithms for the GPU
involves different considerations than designing for a con-
ventional CPU. Algorithms for the CPU are often charac-
terized by the number of floating point operations (FLOPs)
they perform or the number of times they compute a cost
function gradient. To accelerate convergence, algorithms may
store extra information (e.g., previous update directions or
auxiliary/dual variables) or perform “global” operations (e.g.,
line searches or inner products). These designs can accelerate
an algorithm’s per-iteration convergence or reduce the number
of FLOPs required to achieve a desired level of accuracy, but
their memory requirements do not map well onto the GPU.

An ideal GPU algorithm is composed of a series of entirely
independent and parallel tasks performing the same operations
on different data. The number of FLOPs can be less important
than the parallelizability of those operations. Operations that
are classically considered fast, like inner products and FFTs,
can be relatively slow on the GPU due to memory accesses.
Memory is also a far more scarce resource on the GPU. This
makes successful, but memory-hungry, frameworks like the
primal-dual algorithm [3] or variable splitting less suitable on
the GPU. Fully exploiting GPU parallelism requires algorithms
with local memory accesses and limited memory requirements.

This paper presents a pair of image denoising algorithms
for the GPU. To exploit GPU parallelism, the algorithms use
group coordinate descent (GCD) to decompose the image
denoising problem into an iterated sequence of independent
one-dimensional pixel-update subproblems. They avoid any
additional memory requirements and are highly parallelizable.

2

Both algorithms solve these inner pixel-update subproblems
using the well-known majorize-minimize framework [10],
[11] and can handle a range of edge-preserving regularizers.
Because of these properties, the proposed algorithms can
efficiently solve large image denoising problems.

Section I-A introduces the image denoising framework and
poses the two classes of problems our algorithms solve. Sec-
tion II describes the shared GCD structure of our algorithms,
and Section III describes how two specific algorithms solve the
inner one-dimensional update problems. The experimental re-
sults from large-image denoising and X-ray CT reconstruction
in Section IV illustrate the proposed algorithms’ performance,
and Section V contains some concluding remarks.

A. Optimization-based image denoising

Let y 2 RN be noisy pixel measurements collected by an
imaging system. In this paper, bold type indicates a vector
quantity, and variables not in bold are scalars; the jth element
of y is written y

j

. Let w
j

be some confidence we have in the
jth measurement, e.g., w

j

=

1
�

2
j

, the inverse of the variance
of y

j

. Let x 2 � ✓ RN be a candidate denoised image,
and let R denote a regularizer on x. The penalized weighted
least squares (PWLS) estimate of the image given the noisy
measurements y is the minimizer of the cost function J(x):

J(x) =
1

2

||x� y||2
W

+ R(x), (1)

bx = argmin
x2�

J(x), (2)

where W = diag
j

{w
j

}. The domain � = �1⇥�2⇥ · · ·⇥�
N

,
with �

j

convex, may codify a range of admissible pixel levels
(e.g., 0-255 for image denoising) or nonnegative values for
e.g., X-ray CT [26]. Similar to a prior distribution on x, R
is chosen to encourage expectations we have for the image.
A simple and popular choice is the first-order edge-preserving
regularizer:

R(x) = �

N

X

j=1

X

l2Nj

jl

 (x

j

� x

l

). (3)

This regularizer imposes a higher penalty on x as its “rough-
ness” (measured as the differences between nearby pixels) in-
creases. The global parameter � and local parameters

jl

� 0

adjust the strength of the regularizer relative to the data-fit
term [7]. The set N

j

contains the neighbors of the jth pixel,
as selected by the algorithm designer. The neighborhoods do
not contain their centers: i.e., j 62 N

j

. In 2D image denoising,
using the four or eight nearest neighbors of the jth pixel
are common choices; in 3D common choices are the six
cardinal neighbors or the twenty-six adjacent voxels. This
paper focuses on these first-order neighborhoods in 2D and
3D, but the presented algorithms can be extended to larger
neighborhoods and higher dimensions.

The symmetric and convex potential function adjusts
qualitatively how adjacent pixel differences are penalized.
Examples of are:

• the quadratic function, quad(t) =
1
2 t

2;

• smooth nonquadratic regularizers, e.g., the Fair potential
 Fair(t; �) = �

2
(|t/�|� log (1 + |t/�|)) [15]; and

• the absolute value function, abs(t) = |t|.
Potential functions that are relatively small around the origin
(e.g., quad and Fair) preserve small variations between neigh-
boring pixels. The absolute value function is comparatively
large around the origin, and can lead to denoised images with
“cartoony” uniform regions [19]. On the other hand, potential
functions that are relatively small away from the origin (e.g.,
 abs and Fair) penalize large differences (i.e., edges) less than
 quad. Choosing one of these potential functions makes R an
edge-preserving regularizer, and avoids over-smoothing edges
in the denoised image bx, but it also makes the denoising
problem (2) more difficult to solve.

Using abs in (3) yields the anisotropic TV regularizer [23].

II. GROUP COORDINATE DESCENT

This section describes the “outer loop” of algorithms de-
signed to solve (2) rapidly on the GPU. We use a superscript
(n), e.g., x(n), to indicate the state of a variable in the nth
iteration of the algorithm.

Consider optimizing J(x) in (2) with respect to the jth pixel
while holding the other pixels constant at x = x(n):

argmin
xj :x2�

w

j

2

(x

j

� y

j

)

2
+ 2�

X

l2Nj

jl

⇣

x

j

� x

(n)
l

⌘

. (4)

The only pixels involved in this optimization are the jth pixel
and its neighbors, N

j

. Consequently, if the pixels in N
j

are
held constant, we can optimize over the jth pixel without any
regard for the pixels outside N

j

.
Looping j through the pixels of x, j = 1, . . . , N , and

performing the one-dimensional update (4) is called the co-
ordinate descent algorithm [20]. This algorithm is convergent
and monotone in cost function. However, because each opti-
mization is performed serially, coordinate descent is ill-suited
to modern highly parallel hardware like the GPU.

GCD algorithms instead optimize over a group of elements
of x at a time while holding the others constant. The key to us-
ing GCD on a GPU efficiently is choosing appropriate groups
that allow massive parallelism. Let S1, . . . ,SM

be a partition
of the pixel coordinates of x; we write x = [xS1 , . . . ,xSM].
A GCD algorithm that uses these groups to optimize (2) will
loop over m = 1, . . .M and solve

x
(n+1)
Sm

= argmin
xSm :x2�

J

⇣

x
(n+1)
S1

, . . .x
(n+1)
Sm�1

,xSm ,x
(n)
Sm+1

, . . . ,x
(n)
SM

⌘

.

(5)

The mth group update subproblem (5) is a |S
m

|-dimensional
problem in general. However, we can design the groups
such that each of these subproblems decomposes into |S

m

|
completely independent one-dimensional subproblems. If

8m, 8j 2 S
m

, N
j

\ S
m

= ;, (6)

then in each of the group update subproblems (5), the neigh-
bors of all the pixels being optimized are held constant.
By the Markov-like property observed above, this breaks the
optimization over the pixels in S

m

into |S
m

| independent one-
dimensional subproblems.

3

1

1 1

12

2 2

2
3

3 3

34

4 4

4

Fig. 1: Illustration of the groups in (6) for a 2D imaging
problem with N

j

containing the four or eight pixels adjacent
to the jth pixel. Optimizing over the pixels in S1 (shaded)
involves independent one-dimensional update problems for
each pixel in the group.

for n = 1 up to Niter do

for m = 1 up to M do

Parfor j 2 S
m

Minimize (n)
j

(x

j

) w.r.t. x
j

2 �

j

.
EndParfor

end for

end for

Fig. 2: The GCD algorithm structure. The Parfor block con-
tains |S

k

| minimizations that are independent and implemented
in parallel. Section III details these optimizations.

Figure 1 illustrates a set of groups that satisfies the “contains
no neighbors” (6) requirement for a 2D problem and N

j

containing the four or eight pixels adjacent to j. In 3D, both
six-neighbor and twenty-six-neighbor N

j

use eight groups
arranged in a 2⇥ 2⇥ 2 “checkerboard” pattern.

To summarize, we propose GCD algorithms for (2) that loop
over the groups m = 1, . . . ,M and update the pixels in S

m

:

x
(n+1)
Sm

= argmin
xSm :x2�

X

j2Sm

(n)
j

(x

j

), where (7)

(n)
j

(x

j

) =

w

j

2

(x

j

� y

j

)

2
+ 2�

X

l2Nj

jl

⇣

x

j

� x

(n)
l

⌘

. (8)

Each of the (n)
j

are independent one-dimensional functions
and are minimized in parallel. Because the pixel updates
are performed in-place, this algorithm requires no additional
memory beyond storing x, y, W and the regularizer weights.
In many cases, W and the regularizer weights are uniform,
and the algorithm must store only two image-sized vectors!
These low memory requirements make the GCD algorithm
remarkably well-suited to the GPU. This GCD algorithm is
guaranteed to decrease the cost function J monotonically.
Convergence to a minimizer of J is ensured under mild
regularity conditions [11], [12]. Figure 2 summarizes the
proposed algorithm structure.

III. ONE-DIMENSIONAL SUBPROBLEMS

The complexity of solving each of the one-dimensional
subproblems in (7) depends on the choice of potential function
 . In this paper, we consider two cases:

• when is convex and differentiable (Section III-A); and
• when is the absolute value function, thus convex but

not differentiable (Section III-B).
One could also adapt these methods to non-convex potential
functions , albeit with weaker convergence guarantees. In
all cases, we approximately solve the one-dimensional sub-
problem (7) using the well-known majorize-minimize (MM)
approach, also called optimization transfer and functional sub-
stitution [5], [8]. In iteration n, the MM framework generates a
surrogate function �(n)

j

that may depend on x(n) and satisfies
the following “equality” and “lies-above” properties:

�

(n)
j

⇣

x

(n)
j

⌘

=

(n)
j

⇣

x

(n)
j

⌘

(9)

�

(n)
j

(x

j

) � (n)
j

(x

j

) 8x
j

2 �

j

. (10)

Majorize-minimize methods update x

j

by minimizing �(n)
j

,

x

(n+1)
j

= argmin
xj2�j

�

(n)
j

(x

j

). (11)

Because �
j

is convex, we find the unconstrained solution to
(11) then project it onto �

j

. This update is guaranteed to
decrease both the 1D cost function (n)

j

(x

j

) and the global
cost function J . Even though we are minimizing the surrogate
instead of the single-pixel cost function (n)

j

(x

j

), the GCD-
MM algorithm is convergent [11].

To implement the MM iteration (11), we need to effi-
ciently construct and minimize the surrogate �(n)

j

. The one-
dimensional cost function

(n)
j

is the sum of a quadratic
term and |N

j

| often nonquadratically penalized differences
(the

⇣

x

j

� x

(n)
l

⌘

terms). Figure 3 illustrates an example

(n)
j

using only three neighbors and the absolute value po-
tential function. The next two subsections describe how we
construct a surrogate �(n)

jl

for each of the nonquadratic terms

in (n)
j

. Replacing each
⇣

x

j

� x

(n)
l

⌘

in (8) with its surrogate

�

(n)
jl

(x

j

) gives us the following majorizer for (n)
j

in (11):

�

(n)
j

(x

j

) =

w

j

2

(x

j

� y

j

)

2
+ 2�

X

l2Nj

jl

�

(n)
jl

(x

j

). (12)

Constructing and minimizing (12) requires only a few registers
and a small number of visits to each pixel in N

j

. This keeps
the number of memory accesses low and the acccess pattern
regular, which is necessary for good GPU performance.

A. Convex and differentiable potential function

First we consider the simpler case of a convex and differ-
entiable cost function. Define the Huber curvature !(n)

jl

as

!

(n)
jl

=

0
⇣

x

(n)
j

� x

(n)
l

⌘

x

(n)
j

� x

(n)
l

. (13)

4

If !(n)
jl

is bounded and nonincreasing as
�

�

�

x

(n)
j

� x

(n)
l

�

�

�

!
1, then the following quadratic surrogate majorizes

⇣

x

j

� x

(n)
jl

⌘

at x(n)
j

and has optimal (i.e., minimal) curvature
[9, page 185]:

�

(n)
jl

(x

j

) =

⇣

x

(n)
j

⌘

+

⇣

x

j

� x

(n)
l

⌘

0
⇣

x

(n)
j

� x

(n)
l

⌘

+

!

(n)
jl

2

⇣

x

j

� x

(n)
l

⌘2
. (14)

Many potential functions have bounded and monotone non-
increasing Huber curvatures, including the Fair potential [15]
and the q-Generalized Gaussian potential function sometimes
used in X-ray CT reconstruction [26]. Because the Huber
curvature is optimally small, the closed-form MM update,

x

(n+1)
j

= x

(n)
j

�
w

j

⇣

x

(n)
j

� y

⌘

+ 2�

P

l2Nj

jl

0
⇣

x

(n)
j

� x

(n)
l

⌘

w

j

+ 2�

P

l2Nj

jl

!

(n)
jl

,

(15)

takes the largest step possible for a quadratic majorizer of
the form (12). To implement (15) efficiently, we use (13) to
replace the 0 terms with the product of !(n)

jl

and x

(n)
j

�x

(n)
l

.
The resulting algorithm is implemented with only one potential
function derivative per neighboring pixel.

B. The absolute value potential function

The quadratic majorizer in (14) applies to a class of differen-
tiable potential functions. TV uses the absolute value potential
function, and abs is not differentiable at the origin. In the
previous section’s terminology, the curvature !(n)

jl

“explodes”
if x

(n)
j

⇡ x

(n)
l

. TV denoising encourages neighboring pixels
to be identical to one another so this is a significant concern.
Even if x

(n)
j

6= x

(n)
l

in practice [21], the exploding surrogate
curvature may cause numerical problems.

A way to avoid this problem is to modify the curvatures to
prevent the !(n)

jl

from exploding. One approach is to replace
 abs with the hyperbola potential function, (t) =

p
✏+ t

2 �p
✏, with ✏ > 0 small, or similar “corner-rounded” absolute-

value-like function. While this makes the techniques in the
previous section directly applicable, it changes the global cost
function J , which may be suboptimal.

Another corner rounding approach is to “cap” the curvatures
at ✏�1 for small ✏ > 0:

!

(n)
jl,✏

=

1

max

n

✏,

�

�

�

x

(n)
j

� x

(n)
l

�

�

�

o

. (16)

Unfortunately, the quadratic function with curvature !

(n)
jl,✏

does not satisfy the “lies above” surrogate requirement (10)
when

�

�

�

x

(n)
j

� x

(n)
l

�

�

�

< ✏. Because �(n)
j

would not then be

a “proper” surrogate for (n)
j

, a GCD algorithm based on
(16) may not monotonically decrease the cost function J .
Empirically, we found that using !

(n)
jl,✏

appears to cause x(n)

to enter a suboptimal limit cycle around the optimum. Thus
we developed the following duality approach.

1) Duality approach: One way to handle the absolute value
function is to use its dual formulation [3], [4], [16], [27].
We write the absolute value function implicitly in terms of
a maximization over a dual variable �(n)

jl

:
�

�

�

x

j

� x

(n)
l

�

�

�

= max

�

(n)
jl 2[�1,1]

�

(n)
jl

⇣

x

j

� x

(n)
l

⌘

. (17)

Thus, by choosing any closed interval ⌦(n) ◆ [�1, 1], the
following is a surrogate for

�

�

�

x

j

� x

(n)
l

�

�

�

that satisfies both the
“equality” (9) and “lies above” (10) majorizer properties:

�

(n)
jl,⌦(n)(xj

) = max

�

(n)
jl 2⌦(n)

�

(n)
jl

⇣

x

j

� x

(n)
l

⌘

jl

�
�

(n)
jl

2

✓

⇣

�

(n)
jl

⌘2
� 1

◆

, (18)

where �

(n)
jl

=

�

�

�

x

(n)
j

� x

(n)
l

�

�

�

jl

. When ⌦

(n)
= [�1, 1],

�

(n)
jl,⌦(n) =

(n)
jl

. Selecting ⌦(n) larger than [�1, 1] increases
the domain of maximization in (18) and loosens the majoriza-
tion, and satisfies the “equality” (9) and “lies above” (10)
majorization conditions. Figure 4 illustrates �(n)

jl,⌦(n) for several
choices of ⌦(n).

Let D = |N
j

| be the number of neighbors of the jth pixel.
Denote the vector of dual variables �

j

=

h

�

(n)
j1 , . . . , �

(n)
jD

i

and

their domain ⌦(n)
= ⌦

(n)⇥ · · ·⇥⌦(n). We plug �(n)
jl,⌦(n) into

(12) to construct the surrogate function �(n)
j

:

�

(n)
j

(x

j

) = argmax
�j2⌦

(n)

L(n)
j

(x

j

,�
j

), where (19)

L(n)
j

(x

j

,�
j

) =

w

j

2

(x

j

� y

j

)

2
+ 2�

X

l2Nj

jl

�

(n)
jl

⇣

x

j

� x

(n)
l

⌘

�
�

(n)
jl

2

✓

⇣

�

(n)
jl

⌘2
� 1

◆

(20)

Figure 3 illustrates (n)
j

and �(n)
j

for two values of x

(n)
j

.
Note that, unlike the “corner-rounding” approximations, �(n)

j

faithfully preserves the nondifferentiable “corner” of (n)
j

at
the minimizer, x(n)

j

= 0.1.
To implement the majorize-minimize procedure (11) by

minimizing (20), we pass into the dual domain. Observe
that L(n)

j

is convex and continuous in x

j

and concave and
continuous in the �

(n)
jl

, and the set ⌦(n) is compact. We
invoke Sion’s minimax theorem [24] to transpose the order
of minimization and maximization:

argmin
xj

argmax
�j2⌦

(n)

L(n)
j

(x

j

,�
j

) = argmax
�j2⌦

(n)

argmin
xj

L(n)
j

(x

j

,�
j

).

(21)

The inner minimization over x
j

can now be solved trivially in
terms of �(n)

j

:

x

j

(�
j

) = y

j

� �

w

X

l2Nj

�

(n)
jl

jl

. (22)

5

Plugging (22) into (20) and maximizing over �
j

2 ⌦(n), we
arrive at the following quadratic dual problem:

�⇤
j

2 argmax
�j2⌦

(n)

D

(n)
(�

j

), where (23)

D

(n)
(�

j

) = �1

2

�
j

0
✓

D+

1

w

��0
◆

�
j

+ �
j

0⇤�, (24)

where D = diag
l

n

2��

(n)
jl

o

, ⇤ = diag
l

n

y

j

� x

(n)
l

o

, and
� = vec

l

{2�
jl

}. Because expanding ⌦(n) only “loosens”
the majorization �

(n)
jl,⌦(n) we simply define ⌦(n) to include

the pseudoinverse

�+
j

=

✓

D+

1

w

��0
◆+

⇤�, (25)

and then solve (23) by finding the pseudoinverse. In practice,
this means we can solve the dual problem (23) as if it were
unconstrained.

2) Solving the dual problem: The dual problem (23) has
a diagonal-plus-rank-1 Hessian that can be trivially inverted
when the diagonal matrix D is full rank. However, when at
least one entry of D is small (i.e., when x

(n)
j

⇡ x

(n)
l

for
some l), the problem becomes ill-conditioned and requires
an iterative method or an expensive “direct method” (e.g.,
computing the eigenvalue decomposition of D+

1
w

��0 or the
“matrix pseudoinverse lemma” [14]). We propose an iterative
minorize-maximize procedure that exploits the diagonal-plus-
rank-1 Hessian.

This inner minorize-maximize procedure is iterative, so we
denote the subiteration number with a superscripted m. The
following function, S(m)

j

(�
j

) is a minorizer for D

(n)
j

(�
j

) at
�(m)
j

in the sense that it satisfies the “equality” property (9)
at �(m)

j

and a “lies-below” property analogous to the “lies
above” majorization property (10):

S

(m)
j

(�
j

) = D

(n)
j

⇣

�(m)
j

⌘

+

⇣

�
j

� �(m)
j

⌘

0rD

(n)
j

⇣

�(m)
j

⌘

� 1

2

⇣

�
j

� �(m)
j

⌘

0
✓

D
✏

+

1

w

��0
◆

⇣

�
j

� �(m)
j

⌘

,

(26)

where D
✏

= diag
l

{max {✏,D
ll

}}. Let H
✏

= D
✏

+

1
w

��0.
Substituting the “min” for a “max” in the MM procedure (11)
leads to the following iterative procedure for solving (23):

�(m+1)
j

= argmax
�j

S

(m)
j

(�
j

) (27)

= H�1
✏

⇣

⇤� �M
✏

�(m)
j

⌘

, (28)

where M
✏

= diag
l

n

max

n

0, ✏� �

(n)
jl

oo

. We multiply by
H�1

✏

efficiently using the matrix inversion lemma.
The recursion (28) reveals an interesting quality of the

minorize-maximize procedure. When all the neighbors x

(n)
l

are sufficiently different from x

(n)
j

, M
✏

is the zero-matrix
and the MM recursion (28) is stationary. In other words,
�(m)
j

converges in a single iteration. This corresponds to
the case where the heuristic “capped-curvature” majorize-
minimize algorithm produces a valid surrogate. On the other

Fig. 3: An example of the pixel-update cost function (n)
j

with
three neighbors and the absolute value potential function. The
majorizer �(n)

j

described in Section III-B1 is drawn at two
points: the suboptimal point x

(n)
j

= �1.0 and the optimum
x

(n)
j

= 0.1. In both cases, ⌦ = [�3, 3].

Fig. 4: The absolute value potential function and the majorizer
�

(n)
⌦ (x

j

) described in Section III-B1 with x

(n)
j

= �0.5.
Enlarging the domain ⌦ ”loosens” the majorizer.

hand, when some �(n)
jl

⇡ 0, the “capped-curvature” algorithm
may produce an invalid majorizer, but the recursion (28)
will eventually produce (by finding appropriate values for the
corresponding �(n)

jl

) and minimize a valid majorizer for (n)
j

.
A practical alternative to running an arbitrarily large number of
inner minorize-majorize iterations is to track the cost function
value (n)

j

⇣

x

j

⇣

�(m)
j

⌘⌘

and terminate the minorize-maximize
algorithm when

(n)
j

⇣

x

j

⇣

�(m)
j

⌘⌘

 (n)
j

⇣

x

(n)
j

⌘

. (29)

This check was inexpensive to integrate into the minorize-
maximize iteration, so we used it in the experiments be-
low. Nonetheless, it is possible that in late iterations, as
x

(n)
j

⇡ x

(n)
l

, the domain ⌦(n) grows and the majorizer �(n)
j

becomes increasingly loose. This would slow the convergence
of x(n) ! bx.

6

IV. EXPERIMENTS

This section presents two experiments using the TV reg-
ularizer (Section IV-A) and a differentiable edge-preserving
regularizer used in CT reconstruction (Section IV-B). All
the algorithms in the following experiments were run on
an NVIDIA Tesla C2050 GPU with 3 GB of memory and
implemented in OpenCL.

In addition to the algorithms described above, we applied
Nesterov’s first-order acceleration [18] to the GCD algorithm
after each loop through all the groups. Future research may
establish the theoretical convergence properties of these accel-
erated algorithms, and they appear to be stable.

A. Anisotropic TV denoising

In 2004, the Mars Opportunity rover transmitted pho-
tographs of its landing site in the “Eagle Crater” back to Earth.
Scientists at NASA/JPL combined these photographs into a
22,780 ⇥ 3,301-pixel (approximately 75 megapixel) grayscale
image [2]. Pixels were represented by floating-point numbers
between 0 and 255; storing each copy of the image required
approximately 300 MB of memory.

We corrupted the composite image with additive white
Gaussian noise with standard deviation � = 20 gray levels
(see Figure 5a). Then we denoised the corrupted image by
solving the iterative denoising problem (2) with anisotropic
total variation (= abs) using all eight adjacent pixels
(|N

j

| = 8), empirically selected regularizer weight � = 7,
uniform weights (W = I,

jl

= 1), and the constraint
x

j

2 [0, 255]. Figure 5b shows an effectively converged
reference image, x⇤. All the algorithms in this section are
initialized from the noisy data, x(0)

= y.
We ran the Chambolle-Pock primal-dual algorithm (CP-

PDA) (Algorithm 2 in [3], adapted to anisotropic TV), the
separable quadratic surrogates [1] (SQS-✏) algorithm with
the “capped-curvature” corner-rounding approximation and
the proposed GCD algorithm with the same corner-rounding
approximation (GCD-✏). We also applied Nesterov’s first-
order acceleration to SQS (SQS-✏-N) and corner-rounded GCD
(GCD-✏-N). Finally, we ran GCD with two inner iterations of
the proposed duality-based majorizer and Nesterov’s first-order
acceleration (GCD(2)-N). In all cases, we chose ✏ = 2. Figure
6 plots cost function and root mean-square difference (RMSD)
to the reference image against algorithm iteration and time.

The Chambolle-Pock primal-dual algorithm converged
rapidly in terms of iteration, but considerably more slowly as a
function of time. This behavior, which is hidden when exper-
iments are performed with small images, is a consequence of
PDA’s high memory requirements. Even on the NVIDIA Tesla
with 3GB of memory, we could not store all the algorithm’s
variables (including the regularizer and data-fit weights) on
the GPU at once. Consequently we needed to occasionally
transfer memory between RAM and the GPU, which slowed
down PDA’s convergence speed with respect to time. Because
the PDA uses |N

j

| image-sized dual variables, this memory
burden would be even greater for a 3D denoising problem.
At least with modern GPU hardware, algorithms with lower

memory requirements like SQS-✏ and the GCD algorithms
seem more appropriate than PDA for large problems.

The SQS algorithm can be viewed as a one-group GCD
algorithm, where surrogate functions are used to decouple
the image update into a set of one-dimensional updates. In
that light, the major differences between the SQS and GCD
algorithms are pixel update order and majorizer looseness, and
both of these differences appear to be advantages for GCD.

Although both the SQS-✏ and GCD-✏ algorithms in this
experiment perform a corner-rounding approximation, GCD-
✏’s pixel update order appears to make it more robust to
the error introduced by that approximation. This can be seen
in the more accurate limit cycles reached by the GCD-
✏ algorithms compared to the respective SQS-✏ algorithms.
The GCD algorithms also do not need to majorize to pro-
duce one-dimensional subproblems; this makes GCD-✏’s one-
dimensional surrogate �(n)

j

“tighter” than the corresponding
one-dimensional surrogate produced by SQS. This increases
the step sizes that the GCDs algorithm take, as seen by GCD-
✏ reaching its limit cycle more rapidly than SQS-✏.

Unlike the SQS algorithms, the proposed GCD algorithm
can achieve more accurate solutions by performing more
iterations of the inner MM algorithm. This allows GCD(2)-N
to rapidly achieve a more accurate solution than the corner-
rounding algorithms.

1) Late-iteration behavior and multiple MM steps: To
further explore the effect of the number of inner MM iterations
on algorithm convergence, we also initialized GCD with

x(0)
= x⇤

+w, w ⇠ N(0, I), (30)

a point near the reference image. We ran GCD with up to 1, 2,
4 and 8 inner MM iterations. Each algorithm was terminated
early if possible using the monotone-cost stopping criteria
(29). Figure 6c plots RMSD to x⇤ against time for each
configuration.

This experiment reveals two important things. First, un-
surprisingly, increasing the maximum number of inner MM
iterations allows the GCD algorithms to converge to a solution
closer to x⇤. In all cases, the GCD algorithms produced a
more accurate solution than SQS-✏, including GCD-✏, which
“corner-rounds” in a similar way. Second, while more inner
iterations requires more time per outer iteration, algorithms
with more inner iterations may converge more quickly in time
than those with fewer. The markers in Figure 6c were all
placed at the 12th iteration. Although GCD(4) took nearly
half as long per iteration as GCD(8), the eight-inner-iterations
algorithm converged roughly as quickly in time and to a more
accurate limit cycle.

B. X-ray CT denoising

In diagnostic X-ray CT reconstruction, differentiable convex
potential functions are often preferred to the absolute value
potential function [26]. One choice of potential function is the
q-generalized Gaussian (qGG),

 (t) =

1
2 |t|

p

1 + |t/�|p�q

. (31)

7

(a) Noisy image, y

(b) Converged reference image, x⇤

Fig. 5: Initial noisy and converged reference images from the TV denoising experiment in Section IV-A. The original image is
an approximately 75-megapixel composite of pictures taken by NASA’s Mars Opportunity Rover; the insets are 512⇥512-pixel
subimages.

(a) RMSD to x

⇤ by iteration (b) RMSD to x

⇤ by time (c) RMSD to x

⇤ by time (x(0) near x⇤)

Fig. 6: Root-mean-squared-difference to the converged reference image x⇤ by iteration and time for the total variation denoising
experiment in Section IV-A.

The qGG potential function is both convex and differentiable
for appropriate choice of p, q and � > 0.

While CT reconstruction involves solving a more general
regularized least-squares problem, variable splitting and al-
ternating minimization methods can produce algorithms that
handle the system physics and edge-preserving regularizer in
separate subproblems. In some memory-conservative variable
splitting approaches [17] or majorize-minimize algorithms
using separable quadratic surrogates [1], [13], the regularizer
appears in a denoising problem like (2).

In this experiment we solved a denoising problem that
could arise from a variable splitting X-ray CT reconstruction
algorithm. The data came from a 512⇥ 512⇥ 65-pixel helical
shoulder image provided by GE Healthcare. Pixels were repre-
sented between 0 and 2,600 modified Hounsfield units (HU).
We used the qGG potential function (with q = 2, p = 1.2 and
� = 10 HU) and nonuniform regularizer weights typical of
helical CT reconstruction [25]. The regularizer penalized all

adjacent 3D neigbhors, i.e., |N
j

| = 26. We set the diagonal
weight matrix W to

W = diag
j

⇢

[A0SA]

jj

2

�

, (32)

where A is the so-called CT system matrix and S contains
the statistical weights of the measurements [26].

We initialized each algorithm with x(0)
= xFBP, the output

of the classical analytical filtered backprojection (FBP) algo-
rithm. To include second-order methods like preconditioned
conjugate gradients in our comparison, we dropped the con-
ventional nonnegativity constraint used in X-ray CT. Figure 7a
illustrates the center slice of xFBP and an effectively converged
reference image, x⇤.

We solved the denoising problem with the proposed GCD
algorithm, the separable quadratic surrogate algorithm (SQS),
and preconditioned conjugate gradients (PCG) using a diago-
nal preconditioner. We also ran GCD and SQS with Nesterov’s
first-order acceleration (GCD-N and SQS-N). Figures 7b

8

Noisy image, y = xFBP

Converged reference image, x⇤

(a) Center slice of intial and converged
images

(b) RMSD to x

⇤ by iteration (c) RMSD to x

⇤ by time

Fig. 7: Results from the X-ray CT denoising problem. Figure 7a displays the center slices of the initial noisy filtered
backprojection image and the converged reference. Both are displayed on a 800 - 1200 modified Hounsfield unit (HU) scale.

and 7c plot the progress of each algorithm towards x⇤ as a
function of iteration and time, respectively.

Preconditioned conjugate gradients converged quickly per
iteration but comparably to SQS by time. The high computa-
tional cost of PCG on the GPU is caused by the algorithm’s
inner products and multiple inner steps; the diagonal precondi-
tioner added negligible computational cost. Inner products are
classically considered to be computationally cheap operations,
but on the GPU and for this family of denoising problems, they
are a considerable computational burden. The algorithms that
perform only local memory accesses (SQS and GCD) and their
accelerated variants converged significantly more quickly by
wall time. Of these, GCD and GCD-N converged the fastest.

V. CONCLUSIONS

The trend in modern computing hardware is towards
increased parallelism instead of better serial performance.
This paper presented image denoising algorithms for edge-
preserving regularization that play to the strengths of GPUs,
the exemplar of this parallelism trend. By avoiding operations
like inner products or complex preconditioners and minimizing
memory usage, the proposed GCD algorithms provide impres-
sive convergence rates. The additional increase in performance
provided by Nesterov’s first-order acceleration is exciting, and
further work is needed to characterize the theoretical behavior
of the accelerated algorithms. This paper focuses on gray scale
images, but the general approach is extensible to color images
and video.

REFERENCES

[1] H. Erdoğan and J. A. Fessler. Ordered subsets algorithms for transmis-
sion tomography. Phys. Med. Biol., 44(11):2835–51, November 1999.

[2] NASA Jet Propulsion Laboratory / Caltech. PIA05600: Eyeing “Eagle
Crater”, 2004.

[3] A. Chambolle and T. Pock. A first-order primal-dual algorithm for
convex problems with applications to imaging. J. Math. Im. Vision,
40(1):120–145, 2011.

[4] T. F. Chan, G. H. Golub, and P. Mulet. A nonlinear primal-dual
method for total variation-based image restoration. SIAM J. Sci. Comp.,
20(6):1964–77, 1999.

[5] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud. Determin-
istic edge-preserving regularization in computed imaging. IEEE Trans.
Im. Proc., 6(2):298–311, February 1997.

[6] P. Chatterjee and P. Milanfar. Is denoising dead? IEEE Trans. Im. Proc.,
19(4):985–911, April 2010.

[7] J. A. Fessler and W. L. Rogers. Spatial resolution properties of
penalized-likelihood image reconstruction methods: Space-invariant to-
mographs. IEEE Trans. Im. Proc., 5(9):1346–58, September 1996.

[8] D. Geman and G. Reynolds. Constrained restoration and the recovery
of discontinuities. IEEE Trans. Patt. Anal. Mach. Int., 14(3):367–83,
March 1992.

[9] P. J. Huber. Robust statistics. Wiley, New York, 1981.
[10] D. R. Hunter and K. Lange. A tutorial on MM algorithms. American

Statistician, 58(1):30–7, February 2004.
[11] M. W. Jacobson and J. A. Fessler. An expanded theoretical treatment

of iteration-dependent majorize-minimize algorithms. IEEE Trans. Im.
Proc., 16(10):2411–22, October 2007.

[12] S. T. Jensen, S. Johansen, and S. L. Lauritzen. Globally convergent
algorithms for maximizing a likelihood function. Biometrika, 78(4):867–
77, December 1991.

[13] D. Kim, D. Pal, J-B. Thibault, and J. A. Fessler. Accelerating ordered
subsets image reconstruction for X-ray CT using spatially non-uniform
optimization transfer. IEEE Trans. Med. Imag., 32(11):1965–78, Novem-
ber 2013.

[14] K. Kohno, M. Kawamoto, and Y. Inouye. A matrix pseudoinversion
lemma and its application to block-based adaptive blind deconvolution
for MIMO systems. IEEE Trans. Circ. Sys. I, Fundamental theory and
applications, 57(7):1499–1512, July 2010.

[15] K. Lange. Convergence of EM image reconstruction algorithms with
Gibbs smoothing. IEEE Trans. Med. Imag., 9(4):439–46, December
1990. Corrections, T-MI, 10:2(288), June 1991.

[16] M. G. McGaffin and J. A. Fessler. Fast edge-preserving image denoising
via group coordinate descent on the GPU. In Proc. SPIE 9020
Computational Imaging XII, page 90200P, 2014.

[17] M. G. McGaffin, S. Ramani, and J. A. Fessler. Reduced memory
augmented Lagrangian algorithm for 3D iterative X-ray CT image
reconstruction. In Proc. SPIE 8313 Medical Imaging 2012: Phys. Med.
Im., page 831327, 2012.

[18] Y. Nesterov. A method of solving a convex programming problem with
convergence rate O(1/k2). Soviet Math. Dokl., 27(2):372–76, 1983.

[19] M. Nikolova, M. K. Ng, and C-P. Tam. Fast nonconvex nonsmooth
minimization methods for image restoration and reconstruction. IEEE
Trans. Im. Proc., 19(12):3073–88, December 2010.

[20] J. Nocedal and S. J. Wright. Numerical optimization. Springer, New
York, 1999.

[21] J. P. Oliveira, J. M. Bioucas-Dias, and M. A. T. Figueiredo. Adaptive
total variation image deblurring: A majorization-minimization approach.
Signal Processing, 89(9):1683–93, September 2009.

[22] S. Ramani and J. A. Fessler. A splitting-based iterative algorithm for

9

accelerated statistical X-ray CT reconstruction. IEEE Trans. Med. Imag.,
31(3):677–88, March 2012.

[23] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noise removal algorithm. Physica D, 60(1-4):259–68, November 1992.

[24] M. Sion. On general minimax theorems. Pacific J. Math., 8(1):171–6,
1958.

[25] J. W. Stayman and J. A. Fessler. Regularization for uniform spatial
resolution properties in penalized-likelihood image reconstruction. IEEE
Trans. Med. Imag., 19(6):601–15, June 2000.

[26] J-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh. A three-dimensional
statistical approach to improved image quality for multi-slice helical CT.
Med. Phys., 34(11):4526–44, November 2007.

[27] M. Zhu, S. Wright, and T. Chan. Duality-based algorithms for
total-variation-regularized image restoration. Comput. Optim. Appl.,
47(3):377–400, 2010.

Madison G. McGaffin received the BSEE degree
in 2010 from Tufts University in Medford, Mas-
sachusetts and the MSEE degree in 2012 from the
University of Michigan in Ann Arbor, where he is
currently pursuing the Ph.D. degree, also in electrical
engineering.

His research interests include statistical image
reconstruction and parallel computing.

Jeffrey A. Fessler received the BSEE degree from
Purdue University in 1985, the MSEE degree from
Stanford University in 1986, and the M.S. degree in
Statistics from Stanford University in 1989. From
1985 to 1988 he was a National Science Foundation
Graduate Fellow at Stanford, where he earned a
Ph.D. in electrical engineering in 1990. He has
worked at the University of Michigan since then.
From 1991 to 1992 he was a Department of Energy
Alexander Hollaender Post-Doctoral Fellow in the
Division of Nuclear Medicine. From 1993 to 1995

he was an Assistant Professor in Nuclear Medicine and the Bioengineering
Program. He is now a Professor in the Departments of Electrical Engineering
and Computer Science, Radiology, and Biomedical Engineering. He is a
Fellow of the IEEE, for contributions to the theory and practice of image
reconstruction. He received the Francois Erbsmann award for his IPMI93
presentation, and received the Edward Hoffman Medical Imaging Scientist
Award in 2013. He has been an associate editor for the IEEE Signal Processing
Letters, the IEEE Trans. on Medical Imaging, and the IEEE Trans. on
Image Processing. He is currently an associate editor for the IEEE Trans. on
Computational Imaging. He was co-chair of the 1997 SPIE conference on
Image Reconstruction and Restoration, technical program co-chair of the 2002
IEEE Intl. Symposium on Biomedical Imaging (ISBI), and was general chair
of ISBI 2007. He served as chair of the Steering Committee of the IEEE
Trans. on Medical Imaging, and as Chair of the ISBI Steering Committee. He
served as Associate Chair of his Department from 2006-2008. His research
interests are in statistical aspects of imaging problems, and he has supervised
doctoral research in PET, SPECT, X-ray CT, MRI, and optical imaging
problems.

	Introduction
	Optimization-based image denoising

	Group coordinate descent
	One-dimensional subproblems
	Convex and differentiable potential function
	The absolute value potential function
	Duality approach
	Solving the dual problem

	Experiments
	Anisotropic TV denoising
	Late-iteration behavior and multiple MM steps

	X-ray CT denoising

	Conclusions
	References
	Biographies
	Madison G. McGaffin
	Jeffrey A. Fessler

