
 275

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

THE FLOW SHOP SCHEDULING PROBLEM MODELED BY
MEANS OF TIMED PLACE PETRI NETS*

J. MEDINA-MARIN†, J. C. SECK-TUOH-MORA‡, N. HERNANDEZ-ROMERO§,
A. KARELIN¶ and F. NUÑEZ-PIÑA║

Engineering Department, Autonomous University of Hidalgo State
Pachuca, Hidalgo 42000, Mexico

†jmedina@uaeh.edu.mx,
‡jseck@uaeh.edu.mx,

§nhromero@uaeh.edu.mx,
¶karelin@uaeh.edu.mx,
║fede30net@gmail.com

www.uaeh.edu.mx

D. GRADIŠAR

Department of System and Control, Jožef Stefan Institute
Ljubljana, 1000, Slovenia

dejan.gradisar@ijs.si

The Flow Shop Scheduling Problem (FSSP) is a problem that is commonly found by
master production scheduling planners in Flexible Manufacturing Systems (FMS). The
planner should find the optimal scheduling to carry out a set of jobs in order to satisfy the
predefined objective (e.g., makespan). All the jobs are processed in a production line
composed of a set of shared machines. Furthermore, the jobs are processed in the same
sequence. In order to be able to analyze this problem in a better way, this problem needs
to be represented adequately for understanding the relationship among the operations that
are carried out. Thus, an FMS presenting the FSSP can be modeled by Petri nets (PNs),
which are a powerful tool that has been used to model and analyze discrete event
systems. Then, the makespan can be obtained by simulating the PN through the token
game animation. In this work, we propose a new way to calculate the makespan of FSSP
based on timed place PNs.

Keywords: Flow shop scheduling problem; makespan; Petri nets.

1. Introduction

Flexible Manufacturing Systems (FMSs) are very important in advancing
factory automation due to the ability to adjust to customers’ preferences and the

*This work was financially supported by the “Consejo Nacional de Ciencia y Tecnología -
CONACYT-Mexico” within the Project Grant CB-2014-01-236818.

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

276

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

speed to reconfigure the system. A FMS is a discrete event dynamic system
composed of jobs and shared resources [1]. When a manufacturer is designing
the master production schedule in a FMS with shared resources, it is common
that s/he has to face the decision about the best sequence of jobs in the FMS in
order to carry all operations out in the minimum time [2], [3].

This problem is called the Flow Shop Scheduling Problem (FSSP), which is
a combinatorial problem classified as NP-hard [4]. The makespan is the time
that all the jobs are processed in the FMS, and it depends on the order that all the
tasks are performed.

There have been published several research papers about finding the
minimum value of makespan in the FSSP. For instance, a D.S. Palmer proposed
a method to find an acceptable sequence in less time than exhaustive search [5].
Another algorithm based on heuristic strategies to find suitable solutions was
proposed in reference [6]. Dannenbring performed a similar work, where he
proposed eleven heuristics to solve the FSSP [7]. Nawas proposed an algorithm
based on the assumption that jobs with higher processing time must be treated
first; his algorithm is applied to static and dynamic sequencing environment [8].
In reference [9], Taillard applied taboo search to solve FSSP; moreover, he
implemented a parallel version of taboo search to improve the algorithm
execution time. Framinan and Leisten proposed a heuristic taking into account
the optimization of partial schedules; instead of optimize the whole schedule
[10]. Later, Framinan, Leisten and Ruiz-Usano proposed two multi-objective
heuristics, whose objectives to solve are makespan and flowtime minimization
[11].

Several metaheuristics have been used to find the minimum value for the
makespan, such as Simulated Annealing [12],[13]; Taboo Search [14], [15];
Genetic Algorithms [16]–[18]; Ant Colony Optimization [19], [20]; Iterated
Local Search [21]; and Particle Swarm Optimization Algorithms [22], [23], [27].
These proposals can find reasonable results in less time than exact methods. The
main outcome of these methods is that the global minimum could not be found;
however, good approximations are obtained in a short time. Thus, all of them
need a way to represent the FSSP in order to calculate the makespan. FSSP
modeling should be understandable and able to calculate the makespan of a job
operations sequence.

FMSs have been modeled via Petri Nets (PNs) in order to simulate and
analyze them. PN theory is adequate to represent in a graphical and
mathematical way Discrete Event Systems (DES) such as FMSs, because their
dynamic behavior based on event occurrence can be modeled by PN elements
(places and transitions) [24]. Moreover, PN theory offers analytical and
graphical tools to study the modeled systems, based on the relationship among

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

 277

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

the FMS resources denoted as PN elements. In [29], a timed Petri net is applied
to model and simulate a production system, which is generated algorithmically.

One important point in search methods is the calculus of the makespan,
taking into account a certain processing order of the tasks. In this paper, we
propose the use of an timed PN to calculate the makespan taking into account
the PN transition firing.

2. Flow Shop Scheduling Problem

Scheduling tasks in a FMS is a typical combinatorial problem where it is
needed to organize the processing of a set of jobs divided in operations,
and each operation is carried out in a shared resource [25], [26].

In the FSSP, given the processing times pjk for each job j on every machine
k, and a job sequence S = (s1, s2, …, sn) where n jobs (j = 1, 2, …, n) will be
processed by m machines (k = 1, 2, …, m), so the aim of FSSP is to find a
sequence order for operation processing with the minimum value for the
makespan.

For instance, Table 1 shows a FMS with three machines, four jobs, and each
job has three serial operations, one for each machine.

Table 1. Operation times in a FMS.

Machines
Jobs

J1 J2 J3 J4

M1 96 74 13 71

M2 90 57 5 23

M3 35 91 7 38

Note: Every value is denoted in a time unit.

3. Petri Nets Concepts

A PN is a graphical and mathematical tool that has been used to model
concurrent, asynchronous, distributed, parallel, non-deterministic, and/or
stochastic systems.

The graph of a PN is directed, with weights in their arcs, and bipartite,
whose nodes are of two types: places and transitions. Graphically, places are
depicted as circles and transition as boxes or bars. PN arcs connect places to
transitions or transition to places; it is not permissible to connect nodes of the
same type. The state of the system is denoted in PN by the use of tokens, which
are assigned to place nodes.

A formal definition of a PN is presented as follows [24].

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

278

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

A Petri net is a 5-tuple, PN = (P, T, F, W, M0) where:
P = {p1, p2, …, pm} is a finite set of places,
T = {t1, t2, …, tn} is a finite set of transitions,
F  {P  T}  {T  P} is a set of arcs,
W = F → {1, 2, 3, …} is a weight function,
M0 = P → {0, 1, 2, 3, …} is the initial marking,
P  T =  and P  T ≠ .
The set of places that are connected to a transition is known as input places,

which is denoted as t. On the other hand, the places connected from a transition
are known as output places, and the set of output places are represented by t.

The token movement through the PN represents the dynamical behavior of
the system. In order to change the token position, the following transition firing
rule is used [24]:

1. A transition t T is enabled if every input place p  P of t has w(p,t)
tokens or more. w(p,t) is the weight of the arc from p to t.

2. An enabled transition t will fire if the event represented by t takes
place.

3. When an enabled transition t fires, w(p,t) tokens are removed from
every input place p of t and w(t,p) tokens are added to every output
place p of t. w(t,p) is the weight of the arc from t to p.

3.1. Timed Place Petri Nets

PN transitions, places, and arcs can be assigned with a time unit, meaning a time
delay defined according to a FMS that considers time in its operations.

A Timed Place Petri Net (TPPN) is an extended PN, where a new element is
added. It is a six-tuple TPPN = {P, T, F, W, M0, D), where the first fifth
elements are similar to PN definition presented above, and D = {d1, d2, …, dm}
denotes the time-delay for each place pj  P [28]. Output transitions ti for each
pj will be enabled once the time indicated in pj is reached.

3.2. Analysis Methods of Petri Nets

In this chapter, we are applying the matrix equation approach as the analytical
method of PN theory in order to calculate the makespan of the FMS modeled.

3.2.1. Incidence Matrix and State Equation

A PN with n transitions and m places can be expressed mathematically as an n 
m matrix of integers A = [aij]. The values for each element of the matrix are

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

 279

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

given by: aij = aij
+ - aij

-, where aij
+ is the weight of the arc from ti to pj, and aij

- is
the weight of the arc from pj to ti.

The state equation is used to determine the marking of a PN after a
transition firing, and it can be written as follows:

Mk = Mk-1 + ATUk, k=1,2,… (1)
where Uk is a n  1 column vector of n - 1 zeros and one nonzero entries, which
represents the transition tj that will fire. The nonzero entry is located in the
position j of Uk. AT is the transpose of incidence matrix. Mk-1 is the marking
before the firing of tj. And Mk is the reached marking after the firing of tj
denoted in Uk.

3.2.2. Reachability Analysis Method

All the possible states that a system can reach from the initial state of a PN can
be derived by using the reachability tree or graph [1].

There are two ways to generate the reachability tree of a Petri net from an
initial marking: depth-first and breadth-first. In the depth-first strategy, all the
enabled transitions are identified and one of them is fired, creating a new
marking. If it is a marking that has been created previously or a marking that has
no enabled transitions, stop exploring it, and return to the preceding marking;
next, continue with the unexplored transitions. Otherwise, from the new
marking, identify the enabled transitions and fire one of them. Continue with
these steps until all the transitions have been fired and all markings have been
generated if the number of markings is finite.

In the second strategy, all the enabled transitions are identified and fired,
generating new markings. For every new marking, that is not old or end
marking, again identify and fire all the enabled transitions of the same level.
Then, repeat the steps described above to the following levels of the reachability
tree until all the levels have been explored.

4. FSSP modeled by a Timed Place Petri Net

In this work we are proposing a different way to obtain the makespan by using
timed place PNs. The main idea is to denote every flow shop operation by a
simple PN structure composed of one place denoting the operation time,
one input transition tj to place pi, and one output transition tj+1 from place pi.
(Figure 1).

Thus, the processing time τ is stored in the place between the transitions,
and it corresponds to the operation time defined in the FSSP. For each operation
of job Ji performed in machine Mi there is a processing time ij. (Table 2).

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

280

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

Fig. 1. PN structure denoting one single operation of a job, which is processed in a shared machine
during τ time units.

Table 2. Matrix for operation times in a FMS.

Machines
 Jobs

J1 J2 J3 J4 …

M1 11 12 13 14 …

M2 21 22 23 24 …

M3 31 32 33 34 …

… … … … … …

The first operation of the first job has no dependencies from another
operations, and it starts immediately; however, remaining operations depend on
the previous operation in the same machine, the previous operation of the same
job, or both (Figure 2). Indeed, PN modeling allows setting dependencies among
operations and it is taken into advantage in order to define the operations
sequence of the FSSP.

Fig. 2. Job operations dependency from previous operations of the same job, and/or previous
operations performed in the same machine.

!
tj

tj+1

pi

!11

!12

!13

!21

!22!31

J1

J2

J3

M1

M2

M3

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

 281

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

As we mentioned above, the first job is processed instantly in every
machine as soon as the previous machine finishes. Similarly, the first machine
processes all the operations as soon as the previous operation job is processed.
In these cases, the operations have only one dependency and the accumulative
time is the sum of the processing time for all the operations of the first job, or
the sum for the operations processed in the first machine. However, the other
operations take into account the maximum time from two previous operations,
the previous operation in the same machine and the previous operation of the
same job.

Once the job operations have been denoted as PN structures, it is important
to link them in order to create a unique PN model representing the whole
flexible manufacturing system.

Linking lines in figure 2 are represented as places connecting PN transitions
for each job operation. Hence, any FMS with a number of shared machines and
a number of jobs can be modeled by PNs as shown in figure 3.

Fig. 3. PN model representing the job operations of a FMS (figure 2), where processing time τ is
stored in PN places.

For instance, Table 1 shows the processing times needed for three machines

that will process four jobs. All jobs are processed in the same order in all
machines. Every value represents the processing time  needed by an operation
Oij. which belongs to a job Jj and it is carried out in a machine Mi.

!

! !

! ! !

11

12

13

21

2231

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

282

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

The PN model for this example is shown in figure 4. It contains twelve PN
structures representing every job operation, an input place, an output place, and
seventeen connecting places. Thus, the initial marking M0 is a vector with 31
elements, 30 of them are zero and the 13th element is equal to 1.

Fig. 4. PN model representing a FMS (figure 2), where processing time τ is stored in PN places. (a)
TPPN model for the job sequence [1 2 3 4]. (b) TPPN model for the job sequence [2 1 4 3].

The TPPN model generated by the algorithm create_TPPN taking into

account the job sequence order is shown in figure 4(a). For a different sequence
order the PN structure is the same; however, the processing time values are
assigned to different places, according to the desired order. For instance, for the
job sequence order [2 1 4 3] the TPPN obtained is denoted in figure 4(b).

96

t1

t2

p1

t9

t10

p5

t3

t4

p2

t17

t18

p9

t11

t12

p6

t5

t6

p3

t19

t20

p10

t13

t14

p7

t21

t22

p11

p13

p14

p15

p17

p18p19

p20p21

p24

p25p26

p27p28

74

13

t7

t8

p4

p16

71

t15

t16

p8

90

57

t23

t24

p12

p31

5

23

35

91

7

38

p22p23

p29p30

(a)

74

t1

t2

p1

t9

t10

p5

t3

t4

p2

t17

t18

p9

t11

t12

p6

t5

t6

p3

t19

t20

p10

t13

t14

p7

t21

t22

p11

p13

p14

p15

p17

p18p19

p20p21

p24

p25p26

p27p28

96

71

t7

t8

p4

p16

13

t15

t16

p8

57

90

t23

t24

p12

p31

23

5

91

35

38

7

p22p23

p29p30

(b)

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

 283

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

5. Algorithms

5.1. Algorithm utilized to create the PN model

In this algorithm the PN model is created from the processing time data for
every job processed in each machine. The output is the PN model that represents
the FMS.

Algorithm create_TPPN
Input: ij, OS
Ou tput: PN

1. Initialize variables
 place = 1
 trans = 1
2. For i = 1 to NumberOfMachines
 For j = 1 to NumberOfJobs
 Aout(trans,place) = 1
 trans = trans+1
 Ain(trans,place) = 1
 trans = trans+1
 place = place+1
 End For
End For
3. For i = 1 to NumberOfMachines
 For j = 1 to NumberOfJobs
 if(i==1 && j==1)
 Ain(1,place) = 1
 pos = place;
 place = place+1
 elseif i==1
 Aout(2*(j-1),place) = 1
 Ain(2*j-1,place) = 1
 place = place+1
 elseif j==1
 Aout(2*(i-2)*nj+2*j,place) = 1
 Ain(2*(i-1)*nj+1,place) = 1
 place = place+1
 else
 Aout(2*(i-2)*nj + 2*j,place) = 1
 Ain(2*(i-1)*nj+2*j-1,place) = 1
 place = place+1
 Aout(2*nj*(i-1)+2*(j-1),place) = 1
 Ain(2*nj*(i-1)+2*j-1,place) = 1
 place = place+1
 End If
 End For
End For
4. Aout(nt,place) = 1
5. PN = Aout - Ain

In Step 1 the variables place and trans are initialized to 1. In Step 2, the
PN structure for every operation Oij is created, it contains one place and two
transitions. Next, in Step 3 the places to link the PN structures obtained in Step 2

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

284

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

are added to the PN model. In Step 4 the last place is connected to the PN.
Finally, in Step 5, the PN is obtained from the subtraction of output arcs (Aout)
minus input arcs (Ain).

5.2. Algorithm applied to calculate the makespan

Once the PN model is obtained, we are able to compute the makespan of the
FMS according to a job operation sequence. The algorithm to perform this
calculus is the following.

Algorithm getMakespan
Input: PN, S, M0, D

Output: Makespan

1. Initialize variables
 Dacum = [0 0 0 … 0]
2. For i = 1 to NumberOfTransitions
 // input places to ti
 ip = ti
 // output places from ti
 op = ti
 max = -;
 For j=1 to |ip|
 If Dacum(ip(j)) > max
 max = Dacum(ip(j));
 End If
 End For
 For k=1 to |op|
 Dacum(op(k)) = max + D(op(k));
 End For
 End For
3. Makespan = Dacum(NumberOfPlaces)

In Step 1, the variable Dacum is initialized to a vector with zero values.
This variable is utilized to accumulate the total time needed to perform all the
operations. In Step 2, every enabled transition is fired, and the maximum
accumulated time from its input places is taken and placed in the output place
plus the corresponding time . In Step 3 the accumulated time is assigned to the
variable Makespan.

5.3. Example

For the job sequence [1 2 3 4], whose TPPN shown in figure 4(a), the calculus
of the makespan is as follows. Vector D contains the processing times for every

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

 285

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

machine in the system (figure 5a). At the beginning, Dacum has only zero
values, and this vector has 31 elements. Starting the PN simulation by firing the
enabled transition t1, the value 96 is assigned to Dacum in the position of place
p1. Next, the enabled transition t2 is fired and its firing assigns the value 96 to
Dacum in the position of its output places p14 and p17. After that, enabled
transition t3 is fired, and the accumulative value in its input place p14 (96) plus
the processing time in D in the position of its output place p2 (=74) is assigned
to Dacum in the position of p2 (96+74=170).

All the transitions are fired in the same way, but in the case of two input
places, the maximum accumulative time from both input places is considered for
the sum of the total time.

In this example, the total time needed to process all the jobs is 379 time
units, as shown in figure 5(b).

Fig. 5. (a) Vector D stores the time needed for every machine Mi to process each job Jj. (b)
Reachability tree denoting the evolution of vector Dacum depending on the fired transitions.

On the other hand, applying the algorithm getMakespan to the TPPN of

figure 4(b) representing the job sequence [2 1 4 3], the total time required to
finish all the jobs is 340 time units.

(a)
Vector*D
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31
96 74 13 71 90 57 5 23 35 91 7 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b)
Vector*Dacum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0

t1
96 0

t2
96 0 0 0 0 0 0 0 0 0 0 0 0 96 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t3,*t9
96 170 0 0 186 0 0 0 0 0 0 0 0 96 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t4,*t10
96 170 0 0 186 0 0 0 0 0 0 0 0 96 170 0 96 170 186 0 0 0 0 186 0 0 0 0 0 0 0

t5,*t11,*t17
96 170 183 0 186 243 0 0 221 0 0 0 0 96 170 0 96 170 186 0 0 0 0 186 0 0 0 0 0 0 0

t6,*t12,*t18
96 170 183 0 186 243 0 0 221 0 0 0 0 96 170 183 96 170 186 183 243 0 0 186 243 221 0 0 0 0 0

t7,*t13,*t19
96 170 183 254 186 243 248 0 221 334 0 0 0 96 170 183 96 170 186 183 243 0 0 186 243 221 0 0 0 0 0

t8,*t14,*t20
96 170 183 254 186 243 248 0 221 334 0 0 0 96 170 183 96 170 186 183 243 254 248 186 243 221 248 334 0 0 0

t15,*t21
96 170 183 254 186 243 248 277 221 334 341 0 0 96 170 183 96 170 186 183 243 254 248 186 243 221 248 334 0 0 0

t16,*t22
96 170 183 254 186 243 248 277 221 334 341 0 0 96 170 183 96 170 186 183 243 254 248 186 243 221 248 334 277 341 0

t23
96 170 183 254 186 243 248 277 221 334 341 379 0 96 170 183 96 170 186 183 243 254 248 186 243 221 248 334 277 341 0

t24
96 170 183 254 186 243 248 277 221 334 341 379 0 96 170 183 96 170 186 183 243 254 248 186 243 221 248 334 277 341 379

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

286

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

6. Conclusion

The nature of flexible manufacturing systems allows the use of shared resources;
however, this versatility produces complications when the manufacturers think
about the best sequence to process all the jobs. One of these is know as Flow
Shop Scheduling Problem, which is a NP-hard problem that have been analyzed
applying different kinds of techniques, such as exact models and heuristics
strategies. One important calculus in the FSSP is the makespan value, which
depends on the sequence of operations for each job and the order of machine
utilization.

In this work we propose a timed place PN model to represent the processing
times in a FMS with a number of jobs ready to be processed, and a number of
machines utilized to process the jobs. Moreover, two algorithms are described.
The first one is used to create the PN model from the time processing needed for
each job operation. And the second algorithm obtains the total time required to
finish all the jobs in a defined job sequence.

 As further work, we are applying this PN representation in a heuristic
method in order to find an acceptable job sequence to find a minimum
makespan.

References

1. M.C. Zhou, and K. Venkatesh, Modeling, Simulation, and Control of
Flexible Manufacturing Systems. (World Scientific, NY, 1999).

2. M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, Fourth Edition,
(Springer, NY, 2012).

3. J.K. Lenstra, A.H.G. Kan, and P. Brucker, Complexity of machine
scheduling problem, Annals of Discrete Mathematics, vol. 1, pp. 343-362.
(1977).

4. A.H.G. Rinnooy Kan, Machine Scheduling Problems: Classification,
Complexity and Computations, Nojhoff, The Hague. (1976).

5. D.S. Palmer, Sequencing jobs through a multistage process in the minimum
total time: A quick method of obtaining a near-optimum, Operational
Research Quarterly, vol. 16, pp. 101-107. (1965).

6. H.G. Campbell, R.A. Dudek, and M.L. Smith, A heuristic algorithm for the
n job, m machine sequencing problem, Management Science, vol. 16, no.
10, pp. B630-B637. (1970).

7. D.G. Dannenbring, An evaluation of flow shop sequencing heuristics,
Management Science, vol. 23, no. 11, pp. 1174-1182. (1977).

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

 287

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

8. M. Nawaz, E.E. Enscore Jr., and I. Ham, A heuristic algorithm for the m-
machine, n-job flow shop sequencing problem, Omega, vol. 11, no. 1, pp.
91-95. (1983).

9. E. Taillard, Some efficient heuristic methods for the flowshop sequencing
problems, European Journal of Operational Research, vol. 47, pp. 65-74.
(1990).

10. J .M. Framinan, and R. Leisten, An efficient constructive heuristic for
flowtime minimisation in permutation flow shops, Omega, vol. 31, pp. 311-
317. (2003).

11. J.M. Framinan, R. Leisten, and R. Ruiz-Usano, Efficient heuristics for
flowshop sequencing with the objectives of makespan and flowtime
minimisation, European Journal of Operational Research, vol. 141, pp.
559-569. (2002).

12. I.H. Osman, and C. Potts, Simulated annealing for permutation flow shop
scheduling, Omega, vol. 17, no. 6, pp. 551-557. (1989).

13. F. Ogbu, and D. Smith, The application of the simulated annealing
algorithm to the solution of the n/m/Cmax flowshop problem, Computers
and Operations Research, vol. 17, no. 3, pp. 243-253. (1990).

14. J. Grabowski, and M. Wodecki, A very fast tabu search algorithm for the
permutation flowshop problem with makespan criterion, Computers and
Operations Research, vol. 31, no. 11, pp. 1891-1909. (2004).

15. E. Nowicki, and C. Smutnicki, A fast tabu search algorithm for the
permutation flowshop problem, European Journal of Operational Research,
vol. 91, pp. 160-175. (1996).

16. T. Aldowaisan, and A. Allahverdi, New heuristics for no-wait f1owshops to
minimize makespan, Computers and Operations Research, vol. 30, no. 8,
pp. 1219-1231. (2003).

17. T. Murata, H. Ishibuchi, and H. Tallaka, Genetic algorithms for f1owshop
scheduling problems, Computers and Industrial Engineering, vol. 30, no. 4,
pp. 1601-1071. (1996).

18. R. Ruiz, C. Maroto, and J. Alcaraz, Two new robust genetic algorithms for
the flowshop scheduling problems, Omega, vol. 34, pp. 461-476. (2006).

19. C. Rajendran, and H. Ziegler, Ant-colony algorithms for permutation
f1owshop scheduling to minimize makespan/total flowtime of jobs,
European Journal of Operational Research, vol. 155, no. 2, pp. 426-438.
(2004).

20. T. Stutzle, An ant approach to the f1owshop problem, In: Proceedings of
the 6th European Congress on Intelligent Techniques and Soft Computing
(EUFIT'98), (Verlag Mainz, Aachen, Germany, 1998).

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

288

IAENG Transactions on Engineering Sciences (Vol. II) 9in x 6in b3054-ch20

21. T. Stutzle, Applying iterated local search to the permutation f1owshop
problem, Technical Report, AIDA-98-04, Darmstad University of
Technology, Computer Science Department, Intellctics Group, Darmstad,
Germany. (1998).

22. M.F. Tasgetiren, M. Sevkli, Y.C. Liang, and G. Gencyilmaz, Particle swarm
optimization algorithm for permutation flowshop sequencing problem, In:
Proceedings of the 4th International Workshop on Ant Colony Optimization
and Swarm Intelligence (ANTS2004), LNCS 3172. (Brussels, Belgium,
2004).

23. M.F.Tasgetiren, Y.C. Liang, M. Sevkli, and G. Gencyilmaz, Particle swarm
optimization algorithm for makespan and total f1owtime minimization in
the permutation f1owshop sequencing problem, European Journal of
Operational Research. (2006).

24. T. Murata, Petri Nets: Properties, Analysis and Applications, Proceedings
of the IEEE, vol. 77, no. 4, pp. 541-580. (1989).

25. M.A. Gonzalez-Hernandez, Metaheuristics solutions for Job-Shop
Scheduling Problem with sequence-dependent setup times, PhD Thesis.
University of Oviedo. (2011).

26. R. Qing-dao-er-ji, and Wang, Y. A new hybrid genetic algorithm for job
shop scheduling problem, Computers and Operations Research, vol. 39.
(2012).

27. Q.K. Pan, M.F. Tasgetiren, and Y.C. Liang, A Discrete Particle Swarm
Optimization Algorithm for the Permutation Flowshop Sequencing Problem
with Makespan Criterion, Research and Development in Intelligent Systems
XXIII. (Springer London, 2007).

28. Z. Zhao, G. Zhang, and Z. Bing, Scheduling Optimization for FMS Based
on Petri Net Modeling and GA, Proceedings of the IEEE International
Conference on Automation and Logistics. (Chongqing, China, 2011).

29. D. Gradišar, and G. Mušic, Production-process modeling based on
production-management data: a Petri-net approach, International Journal of
Computer Integrated Manufacturing, vol. 20, Issue 8. (2007).

30. J. Medina-Marin, D. Gradisar, J. C. Seck-Tuoh-Mora, N. Hernandez-
Romero, and F. Nunez-Piña, “A Petri Net Model to obtain the Makespan in
the Flow Shop Scheduling Problem,” Lecture Notes in Engineering and
Computer Science: Proceedings of The World Congress on Engineering and
Computer Science 2016, 19-21 October, 2016, San Francisco, USA, pp.
788-792.

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n
E

ng
in

ee
ri

ng
 S

ci
en

ce
s

D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r

Ju
an

 C
ar

lo
s

Se
ck

 T
uo

h
M

or
a

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.

