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The Flow Shop Scheduling Problem (FSSP) is a problem that is commonly found by 
master production scheduling planners in Flexible Manufacturing Systems (FMS). The 
planner should find the optimal scheduling to carry out a set of jobs in order to satisfy the 
predefined objective (e.g., makespan). All the jobs are processed in a production line 
composed of a set of shared machines. Furthermore, the jobs are processed in the same 
sequence. In order to be able to analyze this problem in a better way, this problem needs 
to be represented adequately for understanding the relationship among the operations that 
are carried out. Thus, an FMS presenting the FSSP can be modeled by Petri nets (PNs), 
which are a powerful tool that has been used to model and analyze discrete event 
systems. Then, the makespan can be obtained by simulating the PN through the token 
game animation. In this work, we propose a new way to calculate the makespan of FSSP 
based on timed place PNs. 

Keywords: Flow shop scheduling problem; makespan; Petri nets. 

1.   Introduction 

Flexible Manufacturing Systems (FMSs) are very important in advancing 
factory automation due to the ability to adjust to customers’ preferences and the 
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CONACYT-Mexico” within the Project Grant CB-2014-01-236818. 
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speed to reconfigure the system. A FMS is a discrete event dynamic system 
composed of jobs and shared resources [1]. When a manufacturer is designing 
the master production schedule in a FMS with shared resources, it is common 
that s/he has to face the decision about the best sequence of jobs in the FMS in 
order to carry all operations out in the minimum time [2], [3]. 

This problem is called the Flow Shop Scheduling Problem (FSSP), which is 
a combinatorial problem classified as NP-hard [4]. The makespan is the time 
that all the jobs are processed in the FMS, and it depends on the order that all the 
tasks are performed. 

There have been published several research papers about finding the 
minimum value of makespan in the FSSP. For instance, a D.S. Palmer proposed 
a method to find an acceptable sequence in less time than exhaustive search [5]. 
Another algorithm based on heuristic strategies to find suitable solutions was 
proposed in reference [6]. Dannenbring performed a similar work, where he 
proposed eleven heuristics to solve the FSSP [7]. Nawas proposed an algorithm 
based on the assumption that jobs with higher processing time must be treated 
first; his algorithm is applied to static and dynamic sequencing environment [8]. 
In reference [9], Taillard applied taboo search to solve FSSP; moreover, he 
implemented a parallel version of taboo search to improve the algorithm 
execution time. Framinan and Leisten proposed a heuristic taking into account 
the optimization of partial schedules; instead of optimize the whole schedule 
[10]. Later, Framinan, Leisten and Ruiz-Usano proposed two multi-objective 
heuristics, whose objectives to solve are makespan and flowtime minimization 
[11]. 

Several metaheuristics have been used to find the minimum value for the 
makespan, such as Simulated Annealing [12],[13]; Taboo Search [14], [15]; 
Genetic Algorithms [16]–[18]; Ant Colony Optimization [19], [20]; Iterated 
Local Search [21]; and Particle Swarm Optimization Algorithms [22], [23], [27]. 
These proposals can find reasonable results in less time than exact methods. The 
main outcome of these methods is that the global minimum could not be found; 
however, good approximations are obtained in a short time. Thus, all of them 
need a way to represent the FSSP in order to calculate the makespan. FSSP 
modeling should be understandable and able to calculate the makespan of a job 
operations sequence. 

FMSs have been modeled via Petri Nets (PNs) in order to simulate and 
analyze them. PN theory is adequate to represent in a graphical and 
mathematical way Discrete Event Systems (DES) such as FMSs, because their 
dynamic behavior based on event occurrence can be modeled by PN elements 
(places and transitions) [24]. Moreover, PN theory offers analytical and 
graphical tools to study the modeled systems, based on the relationship among 
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the FMS resources denoted as PN elements. In [29], a timed Petri net is applied 
to model and simulate a production system, which is generated algorithmically. 

One important point in search methods is the calculus of the makespan, 
taking into account a certain processing order of the tasks. In this paper, we 
propose the use of an timed PN to calculate the makespan taking into account 
the PN transition firing. 

2.   Flow Shop Scheduling Problem 

Scheduling tasks in a FMS is a typical combinatorial problem where it is 
needed to organize the processing of a set of jobs divided in operations, 
and each operation is carried out in a shared resource [25], [26]. 

In the FSSP, given the processing times pjk for each job j on every machine 
k, and a job sequence S = (s1, s2, …, sn) where n jobs ( j = 1, 2, …, n) will be 
processed by m machines (k = 1, 2, …, m), so the aim of FSSP is to find a 
sequence order for operation processing with the minimum value for the 
makespan. 

For instance, Table 1 shows a FMS with three machines, four jobs, and each 
job has three serial operations, one for each machine. 

Table 1.  Operation times in a FMS. 

Machines 
Jobs 

J1 J2 J3 J4 

M1 96 74 13 71 

M2 90 57 5 23 

M3 35 91 7 38 

Note: Every value is denoted in a time unit. 

3.   Petri Nets Concepts 

A PN is a graphical and mathematical tool that has been used to model 
concurrent, asynchronous, distributed, parallel, non-deterministic, and/or 
stochastic systems. 

The graph of a PN is directed, with weights in their arcs, and bipartite, 
whose nodes are of two types: places and transitions. Graphically, places are 
depicted as circles and transition as boxes or bars. PN arcs connect places to 
transitions or transition to places; it is not permissible to connect nodes of the 
same type. The state of the system is denoted in PN by the use of tokens, which 
are assigned to place nodes. 

A formal definition of a PN is presented as follows [24]. 
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A Petri net is a 5-tuple, PN = (P, T, F, W, M0) where: 
P = {p1, p2, …, pm} is a finite set of places, 
T = {t1, t2, …, tn} is a finite set of transitions, 
F  {P  T}  {T  P} is a set of arcs, 
W = F → {1, 2, 3, …} is a weight function, 
M0 = P → {0, 1, 2, 3, …} is the initial marking, 
P  T =  and P  T ≠ . 
The set of places that are connected to a transition is known as input places, 

which is denoted as t. On the other hand, the places connected from a transition 
are known as output places, and the set of output places are represented by t. 

The token movement through the PN represents the dynamical behavior of 
the system. In order to change the token position, the following transition firing 
rule is used [24]: 

1. A transition t T is enabled if every input place p  P of t has w(p,t) 
tokens or more. w(p,t) is the weight of the arc from p to t. 

2. An enabled transition t will fire if the event represented by t takes 
place. 

3. When an enabled transition t fires, w(p,t) tokens are removed from 
every input place p of t and w(t,p) tokens are added to every output 
place p of t. w(t,p) is the weight of the arc from t to p. 

3.1.   Timed Place Petri Nets 

PN transitions, places, and arcs can be assigned with a time unit, meaning a time 
delay defined according to a FMS that considers time in its operations. 

A Timed Place Petri Net (TPPN) is an extended PN, where a new element is 
added. It is a six-tuple TPPN = {P, T, F, W, M0, D), where the first fifth 
elements are similar to PN definition presented above, and D = {d1, d2, …, dm} 
denotes the time-delay for each place pj  P [28]. Output transitions ti for each 
pj will be enabled once the time indicated in pj is reached. 

3.2.   Analysis Methods of Petri Nets 

In this chapter, we are applying the matrix equation approach as the analytical 
method of PN theory in order to calculate the makespan of the FMS modeled. 

3.2.1.   Incidence Matrix and State Equation 

A PN with n transitions and m places can be expressed mathematically as an n  
m matrix of integers A = [aij]. The values for each element of the matrix are 
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given by: aij = aij
+ - aij

-, where aij
+ is the weight of the arc from ti to pj, and aij

- is 
the weight of the arc from pj to ti. 

The state equation is used to determine the marking of a PN after a 
transition firing, and it can be written as follows: 

Mk = Mk-1 + ATUk, k=1,2,…                                                                                                                                     (1) 
where Uk is a n  1 column vector of n - 1 zeros and one nonzero entries, which 
represents the transition tj that will fire. The nonzero entry is located in the 
position j of Uk. AT is the transpose of incidence matrix. Mk-1 is the marking 
before the firing of tj. And Mk is the reached marking after the firing of tj 
denoted in Uk. 

3.2.2.   Reachability Analysis Method 

All the possible states that a system can reach from the initial state of a PN can 
be derived by using the reachability tree or graph [1].  

There are two ways to generate the reachability tree of a Petri net from an 
initial marking: depth-first and breadth-first. In the depth-first strategy, all the 
enabled transitions are identified and one of them is fired, creating a new 
marking. If it is a marking that has been created previously or a marking that has 
no enabled transitions, stop exploring it, and return to the preceding marking; 
next, continue with the unexplored transitions. Otherwise, from the new 
marking, identify the enabled transitions and fire one of them. Continue with 
these steps until all the transitions have been fired and all markings have been 
generated if the number of markings is finite. 

In the second strategy, all the enabled transitions are identified and fired, 
generating new markings. For every new marking, that is not old or end 
marking, again identify and fire all the enabled transitions of the same level. 
Then, repeat the steps described above to the following levels of the reachability 
tree until all the levels have been explored. 

4.   FSSP modeled by a Timed Place Petri Net 

In this work we are proposing a different way to obtain the makespan by using 
timed place PNs. The main idea is to denote every flow shop operation by a 
simple PN structure composed of one place denoting the operation time,                
one input transition tj to place pi, and one output transition tj+1 from place pi. 
(Figure 1). 

Thus, the processing time τ is stored in the place between the transitions, 
and it corresponds to the operation time defined in the FSSP. For each operation 
of job Ji performed in machine Mi there is a processing time ij. (Table 2). 
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Fig. 1.  PN structure denoting one single operation of a job, which is processed in a shared machine 
during  τ time units. 

Table 2.  Matrix for operation times in a FMS. 

Machines 
 Jobs 

J1 J2 J3 J4 … 

M1 11 12 13 14 … 

M2 21 22 23 24 … 

M3 31 32 33 34 … 

… … … … … … 

The first operation of the first job has no dependencies from another 
operations, and it starts immediately; however, remaining operations depend on 
the previous operation in the same machine, the previous operation of the same 
job, or both (Figure 2). Indeed, PN modeling allows setting dependencies among 
operations and it is taken into advantage in order to define the operations 
sequence of the FSSP. 

 

Fig. 2. Job operations dependency from previous operations of the same job, and/or previous 
operations performed in the same machine. 
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As we mentioned above, the first job is processed instantly in every 
machine as soon as the previous machine finishes. Similarly, the first machine 
processes all the operations as soon as the previous operation job is processed. 
In these cases, the operations have only one dependency and the accumulative 
time is the sum of the processing time for all the operations of the first job, or 
the sum for the operations processed in the first machine. However, the other 
operations take into account the maximum time from two previous operations, 
the previous operation in the same machine and the previous operation of the 
same job. 

Once the job operations have been denoted as PN structures, it is important 
to link them in order to create a unique PN model representing the whole 
flexible manufacturing system. 

Linking lines in figure 2 are represented as places connecting PN transitions 
for each job operation. Hence, any FMS with a number of shared machines and 
a number of jobs can be modeled by PNs as shown in figure 3. 

  
Fig. 3. PN model representing the job operations of a FMS (figure 2), where processing time τ is 
stored in PN places. 

 
For instance, Table 1 shows the processing times needed for three machines 

that will process four jobs. All jobs are processed in the same order in all 
machines. Every value represents the processing time  needed by an operation 
Oij. which belongs to a job Jj and it is carried out in a machine Mi. 
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The PN model for this example is shown in figure 4. It contains twelve PN 
structures representing every job operation, an input place, an output place, and 
seventeen connecting places. Thus, the initial marking M0 is a vector with 31 
elements, 30 of them are zero and the 13th element is equal to 1.  

 

 
Fig. 4. PN model representing a FMS (figure 2), where processing time τ is stored in PN places. (a) 
TPPN model for the job sequence [1 2 3 4]. (b) TPPN model for the job sequence [2 1 4 3]. 

 
The TPPN model generated by the algorithm create_TPPN taking into 

account the job sequence order is shown in figure 4(a). For a different sequence 
order the PN structure is the same; however, the processing time values are 
assigned to different places, according to the desired order. For instance, for the 
job sequence order [2 1 4 3] the TPPN obtained is denoted in figure 4(b). 
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5.   Algorithms 

5.1.   Algorithm utilized to create the PN model 

In this algorithm the PN model is created from the processing time data for 
every job processed in each machine. The output is the PN model that represents 
the FMS. 

Algorithm create_TPPN 
Input: ij, OS 
Ou tput: PN 

1. Initialize variables  
 place = 1 
 trans = 1 
2. For i = 1 to NumberOfMachines  
 For j = 1 to NumberOfJobs 
        Aout(trans,place) = 1 
        trans = trans+1 
        Ain(trans,place) = 1 
        trans = trans+1 
        place = place+1 
 End For 
End For 
3. For i = 1 to NumberOfMachines  
     For j = 1 to NumberOfJobs 
       if(i==1 && j==1) 
         Ain(1,place) = 1 
         pos = place; 
         place = place+1 
       elseif i==1 
         Aout(2*(j-1),place) = 1 
         Ain(2*j-1,place) = 1 
         place = place+1 
       elseif j==1 
         Aout(2*(i-2)*nj+2*j,place) = 1 
         Ain(2*(i-1)*nj+1,place) = 1 
         place = place+1 
       else 
         Aout(2*(i-2)*nj + 2*j,place) = 1 
         Ain(2*(i-1)*nj+2*j-1,place) = 1 
         place = place+1 
         Aout(2*nj*(i-1)+2*(j-1),place) = 1 
         Ain(2*nj*(i-1)+2*j-1,place) = 1 
         place = place+1 
       End If 
    End For 
End For 
4. Aout(nt,place) = 1 
5. PN = Aout - Ain 

In Step 1 the variables place and trans are initialized to 1. In Step 2, the 
PN structure for every operation Oij is created, it contains one place and two 
transitions. Next, in Step 3 the places to link the PN structures obtained in Step 2 
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are added to the PN model. In Step 4 the last place is connected to the PN. 
Finally, in Step 5, the PN is obtained from the subtraction of output arcs (Aout) 
minus input arcs (Ain). 

5.2.   Algorithm applied to calculate the makespan 

Once the PN model is obtained, we are able to compute the makespan of the 
FMS according to a job operation sequence. The algorithm to perform this 
calculus is the following. 

Algorithm getMakespan 
Input: PN, S, M0, D  

Output: Makespan 

 
1. Initialize variables  
 Dacum = [0 0 0 … 0] 
2. For i = 1 to NumberOfTransitions  
 // input places to ti 
    ip = ti 
    // output places from ti 
    op = ti  
    max = -; 
    For j=1 to |ip| 
        If Dacum(ip(j)) > max 
            max = Dacum(ip(j)); 
        End If 
    End For 
    For k=1 to |op| 
        Dacum(op(k)) = max + D(op(k)); 
    End For 
  End For 
3. Makespan = Dacum(NumberOfPlaces) 

In Step 1, the variable Dacum is initialized to a vector with zero values. 
This variable is utilized to accumulate the total time needed to perform all the 
operations. In Step 2, every enabled transition is fired, and the maximum 
accumulated time from its input places is taken and placed in the output place 
plus the corresponding time . In Step 3 the accumulated time is assigned to the 
variable Makespan. 

5.3.   Example 

For the job sequence [1 2 3 4], whose TPPN shown in figure 4(a), the calculus 
of the makespan is as follows. Vector D contains the processing times for every 

 I
A

E
N

G
 T

ra
ns

ac
tio

ns
 o

n 
E

ng
in

ee
ri

ng
 S

ci
en

ce
s 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r 

Ju
an

 C
ar

lo
s 

Se
ck

 T
uo

h 
M

or
a 

on
 0

3/
01

/1
8.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



 285 

IAENG Transactions on Engineering Sciences (Vol. II)                       9in x 6in                        b3054-ch20     

machine in the system (figure 5a). At the beginning, Dacum has only zero 
values, and this vector has 31 elements. Starting the PN simulation by firing the 
enabled transition t1, the value 96 is assigned to Dacum in the position of place 
p1. Next, the enabled transition t2 is fired and its firing assigns the value 96 to 
Dacum in the position of its output places p14 and p17. After that, enabled 
transition t3 is fired, and the accumulative value in its input place p14 (96) plus 
the processing time in D in the position of its output place p2 (=74) is assigned 
to Dacum in the position of p2 (96+74=170). 

All the transitions are fired in the same way, but in the case of two input 
places, the maximum accumulative time from both input places is considered for 
the sum of the total time. 

In this example, the total time needed to process all the jobs is 379 time 
units, as shown in figure 5(b). 

 

Fig. 5. (a) Vector D stores the time needed for every machine Mi to process each job Jj. (b) 
Reachability tree denoting the evolution of vector Dacum depending on the fired transitions. 

 
On the other hand, applying the algorithm getMakespan to the TPPN of 

figure 4(b) representing the job sequence [2 1 4 3], the total time required to 
finish all the jobs is 340 time units. 

(a)
Vector*D
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31
96 74 13 71 90 57 5 23 35 91 7 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b)
Vector*Dacum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t1
96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t2
96 0 0 0 0 0 0 0 0 0 0 0 0 96 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t3,*t9
96 170 0 0 186 0 0 0 0 0 0 0 0 96 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t4,*t10
96 170 0 0 186 0 0 0 0 0 0 0 0 96 170 0 96 170 186 0 0 0 0 186 0 0 0 0 0 0 0

t5,*t11,*t17
96 170 183 0 186 243 0 0 221 0 0 0 0 96 170 0 96 170 186 0 0 0 0 186 0 0 0 0 0 0 0

t6,*t12,*t18
96 170 183 0 186 243 0 0 221 0 0 0 0 96 170 183 96 170 186 183 243 0 0 186 243 221 0 0 0 0 0

t7,*t13,*t19
96 170 183 254 186 243 248 0 221 334 0 0 0 96 170 183 96 170 186 183 243 0 0 186 243 221 0 0 0 0 0

t8,*t14,*t20
96 170 183 254 186 243 248 0 221 334 0 0 0 96 170 183 96 170 186 183 243 254 248 186 243 221 248 334 0 0 0

t15,*t21
96 170 183 254 186 243 248 277 221 334 341 0 0 96 170 183 96 170 186 183 243 254 248 186 243 221 248 334 0 0 0

t16,*t22
96 170 183 254 186 243 248 277 221 334 341 0 0 96 170 183 96 170 186 183 243 254 248 186 243 221 248 334 277 341 0

t23
96 170 183 254 186 243 248 277 221 334 341 379 0 96 170 183 96 170 186 183 243 254 248 186 243 221 248 334 277 341 0

t24
96 170 183 254 186 243 248 277 221 334 341 379 0 96 170 183 96 170 186 183 243 254 248 186 243 221 248 334 277 341 379
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6.   Conclusion 

The nature of flexible manufacturing systems allows the use of shared resources; 
however, this versatility produces complications when the manufacturers think 
about the best sequence to process all the jobs. One of these is know as Flow 
Shop Scheduling Problem, which is a NP-hard problem that have been analyzed 
applying different kinds of techniques, such as exact models and heuristics 
strategies. One important calculus in the FSSP is the makespan value, which 
depends on the sequence of operations for each job and the order of machine 
utilization. 

In this work we propose a timed place PN model to represent the processing 
times in a FMS with a number of jobs ready to be processed, and a number of 
machines utilized to process the jobs. Moreover, two algorithms are described. 
The first one is used to create the PN model from the time processing needed for 
each job operation. And the second algorithm obtains the total time required to 
finish all the jobs in a defined job sequence. 

 As further work, we are applying this PN representation in a heuristic 
method in order to find an acceptable job sequence to find a minimum 
makespan. 
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