
Combining MODIS and AMSR-E based vegetation moisture 

retrievals for improved fire risk monitoring 

Swarvanu Dasguptaa and John J. Qua 
a Eastfire Lab, George Mason University, 4400 University Drive, Fairfax, Virginia, USA 

ABSTRACT 

Research has shown that remote sensing in both the optical and microwave domain has the capability of estimating 
vegetation water content (VWC). Though lower in spatial resolution than MODIS optical bands, AMSR-E microwave 
measurements are typically less affected by clouds, water vapor, aerosol or solar illumination, making them 
complementary to MODIS real time measurements over regions of clouds and haze. In this study we explored a wavelet 
based approach for combining vegetation water content observations derived from higher spatial resolution MODIS and 
lower spatial resolution AMSR-E microwave measurements. Regression analysis between AMSR-E VWC and spatially 
aggregated MODIS NDII (Normalized Difference Infrared Index) was first used to scale MODIS NDII to MODIS VWC 
products. Our approach for combining information from the two sensors resorts to multiresolution wavelet 
decomposition of MODIS VWC into a set of detail images and a single approximation image at AMSR-E resolution. 
The substitution method of image fusion is then undertaken, in which the approximation image is replaced by AMSR-E 
VWC image, prior to using inverse wavelet transform to construct a merged VWC product. The merged VWC product 
thus has information from both MODIS and AMSR-E measurements. The technique is applied over low vegetation 
regions in Texas grasslands to obtain merged VWC products at intermediate resolutions of ~1.5km. Apart from offering 
a way to calibrate MODIS VWC content products to AMSR-E observations, the technique has the potential for 
downscaling AMSR-E VWC to higher spatial resolution over moderately cloudy or hazy regions where MODIS 
reflective bands become contaminated by the atmosphere. During such situations when contaminated MODIS signals 
cannot be used to obtain the wavelet detail images, MODIS detail images from a preceding time step is used to 
downscale the current AMSR-E VWC to higher resolutions. This approach of using detail images from the recent past 
would be justified if the detail images containing the high frequency components of the image change slowly. 
Correlation analysis of detail images from consecutive time steps shows that this is approximately true, at-least for the 
low spatial resolution detail images. Our approach yields accuracy of around 77% on the average over the selected study 
region and temporal period. This technique thus has the potential for ensuring the data continuity of high spatial 
resolution VWC products, a requirement essential for fire risk monitoring. 

Keywords:  Fire risk, vegetation water content, wavelet transform. 

1. INTRODUCTION 

Vegetation water content is one of the critical parameters driving wildland fire susceptibility. The dynamic nature of this 
parameter ideally requires observations with high temporal and spatial resolutions. The ever increasing expanse of a 
vulnerable wildland urban interface with substantial human dimensions at stake has reinforced the need for such 
continuous monitoring. Recently grass fires across a drought-stricken stretch of Oklahoma, Texas and New Mexico 
burned more than 600,000 acres, destroying at least 470 homes and killing 5 people. Today remote sensing offers the 
potential of monitoring vegetation water content with the spatial and temporal resolution needed for prevention or better 
management of wildfires and prescribed fires, the latter becoming increasingly essential for controlling the buildup of 
fuel and in revitalizing the landscape. Research has shown that remote sensing in the optical, thermal and microwave 
domain all have the capability of estimating vegetation water content, albeit with uncertainties. The complementary 
nature of the measurements in the optical and microwave domain implies a need for integrating them for improved 
coverage in space and time. The potential for synergistic analyses of microwave, infrared and optical data to extract 
enhanced land surface information has been identified earlier1-2. In this study we explore a wavelet based approach for 
combining vegetation water content observations derived from higher spatial resolution MODIS (500mx500m) and 
lower spatial resolution AMSR-E (25kmx25km) microwave measurements over sparsely vegetated regions to obtain 
vegetation water content observations at intermediate resolutions of ~1.5km. The AMSR-E microwave measurements 
can provide reliable vegetation water content measurements only over sparsely vegetated regions such as grasslands. 



They are lower in spatial resolution than optical MODIS measurements but are typically less affected by clouds, water 
vapor, aerosol or solar illumination, making them complementary to MODIS real time measurements over regions of 
clouds and haze. The technique presented may be a way for calibrating MODIS VWC to AMSR-E VWC data. 
Additionally it would be useful for downscaling AMSR-E lower spatial resolution observations to ~1.5 km spatial 
resolution over cloudy or hazy regions where MODIS optical signals become atmospherically contaminated.  

1.1. Vegetation water content using optical remote sensing 

Various empirical and physical models utilizing optical measurements have been investigated for estimating vegetation 
water content. Empirical methods exploiting the obvious correlation between vegetation greenness (chlorophyll content) 
and moisture content have used indices such as the NDVI or its variations, such as relative greenness, to assess 
vegetation moisture status3-5. Surface temperature (ST) has also been found to improve the sensitivity of optical indices 
to vegetation moisture, since vegetation temperature increases in drier plants on account of reduced evapotranspiration6. 
Measures such as the ratio of NDVI to ST7,3 have been found useful. Vegetation indices however are indirect measures 
of vegetation water and the species dependent nature of relationship between chlorophyll content and moisture content 
becomes a source of increased uncertainties. More direct methods for vegetation water estimation have typically utilized 
signals from liquid water absorption channels in the near infrared (NIR) or shortwave infrared (SWIR) and contrasted 
them with signals from liquid water insensitive channels in the near infrared (NIR). Several indices based on SWIR and 
NIR reflectances have been proposed such as NDWI, Normalized Difference Water Index 8; NDII, Normalized 
Difference Infrared Index 9; WI, the water index 10, SRWI, the Simple Ratio Water Index11; LWCI, the Leaf Water 
Content Index 12; GVMI, the Global Vegetation water Moisture Index 13. Studies 14-15 have shown that SWIR-NIR based 
indices are related to the weight of water per unit area or the vegetation water content. Relationships between SWIR-NIR 
based indices and vegetation water content however may be weakened by confounding reflectance contributions from 
various biophysical (leaf area index, leaf orientation, leaf size), geometric (solar and view zenith and azimuth angles), 
background (soil and or non-photosynthetically active vegetation) factors. More recently, the inversion of coupled leaf 
and canopy radiative transfer (RT) models have offered a more physically based approach to vegetation moisture 
estimation 11,16,17 However RT model inversions are computationally expensive and are prone to ambiguity 18,19 when 
prior information about various leaf biochemical parameters and leaf and canopy biophysical parameters are unavailable. 
The unavailability of prior information becomes particularly problematic during rapid real time assessments using RT 
inversions. The need for lower latency in monitoring the dynamic fire risk environment thus favors the use of fast, site-
specific empirical models for assessing local vegetation moisture status albeit with some uncertainties. The simple and 
computationally fast nature of NIR-SWIR indices make them particularly suitable for real time vegetation moisture and 
fire risk assessments. In this study we have selected the normalized difference infrared index NDII as a measure of 
vegetation water content. NDII calculated as (R0.86-R1.64)/(R0.86+R1.64) is a normalized index using the liquid water 
absorption 1.64 µm band (MODIS band 6) and the liquid water insensitive 0.86 µm band (MODIS band 2). The two 
MODIS instruments aboard Terra and Aqua typically makes two daytime observations, one in the morning (10.30am) 
and the other in the afternoon (1.30pm) respectively. Using MODIS NDII, it is possible to obtain daily vegetation water 
estimations at spatial resolutions of 500m. 

1.2. Vegetation water content using microwave remote sensing 

The AMSR-E instrument aboard Aqua measures brightness temperatures at six frequencies (6.92, 10.65, 18.7, 23.8, 36.5, 
and 89.0 GHz) with vertical and horizontal polarizations at each frequency for a total of 12 channels.  It achieves global 
swath coverage every two days or less, separately for ascending and descending passes, except for a small region near 
the poles. The mean footprint diameter ranges from 60km at 6.92 GHz to 5km at 89 GHz. The AMSR-E land surface 
products of surface soil moisture, vegetation water content and surface temperature are available on a daily basis in 
25km Equal-Area-Scalable Earth grid (EASE grid) with a global cylindrical, equal area projection true at 300N and 300S. 

The microwave emissivity of snow and water free land surfaces are primarily determined by soil  parameters 
(volumetric moisture content, surface roughness, volume structure and texture) and the overlying vegetation layer 
characteristics (water content, geometric structure, spatial distributions of stem and leaf components) 20. An accurate 
modeling of radiative transfer in the soil vegetation layer requires a large number of parameters, especially if the vertical 
and horizontal heterogeneity of the vegetation layer is taken into account. However a reduced set of parameters has been 
shown to be suitable for modeling the soil and vegetation effects since satellite microwave radiometer footprints such as 
for the AMSR-E are larger than the scales of surface heterogeneity 20. The AMSR-E land surface parameter algorithm 
thus uses a simplified physically-based radiative transfer model to retrieve surface soil moisture (g/cm3), vegetation 



water content (kg/m2) and surface temperature (K) 21.  Sensitivities to parameters (eg. atmospheric water vapor, liquid 
water, surface roughness, vegetation albedo) are typically an order of magnitude or so less than to these three main 
variables (surface soil moisture, temperature and vegetation water content) and hence are not dominant factors in the 
retrieval. The retrieval algorithm uses the two lowest frequencies (6.9 and 10.7 GHz) since modeling surface roughness 
and vegetation scattering effects above ~10GHz becomes more complex and uncertain. These two frequencies also have 
better vegetation penetration although at the cost of decreased spatial resolution 21.  

Microwave retrievals are more reliable in regions of low vegetation since sensitivities to moisture and vegetation 
decrease for high vegetation levels, typically above vegetation water content levels of 1.5kg/m 1. The vegetation water 
content (VWC) observations which we use in our study can be assumed to be an effective value averaged over the sensor 
footprint except in situations in which large contrasts occur within the footprint between roughly equal fractions of bare 
soil and dense vegetation1. This area average nature is an important property for combining AMSR-E and MODIS 
measurements at different spatial resolutions. Based on these observations we have restricted our analysis to primarily 
homogenous low vegetation grassland regions where microwave measurements are expected to be more reliable.  

1.3. Multiresolution analysis using wavelet techniques 

Since we have explored the combination AMSR-E vegetation water content observations with MODIS NDII 
measurements using multi-resolution wavelet analysis, a brief overview of the latter becomes pertinent at this stage.  The 
ensuing description has been adapted from earlier studies22-25.  

The wavelet transform allows multi-resolution decomposition, analysis and reconstruction of remotely sensed images 
and has potential applications in spatial structure analysis, geometric data merging, data compression, texture analysis 
and multi-sensor image fusion. The wavelet transform decomposes a function f into a group of functions which are 
simple dilations and translations of a unique wavelet function Ψ 26. For a given scale s at a location a, the forward 
wavelet transform (FWT) of a function f is given by, 

Wf(s, a)=f * Ψs (a) 
where, Ψs (x)=(1/s) Ψ(x/s) and * denotes the convolution operator. A 2D discrete wavelet transform of an image FR at 
resolution R yields four sub-images each at a lower spatial resolution, 2R:  a single context image F2R (approximation 
coefficients)and three detail images (horizontal coefficients CH

2R , vertical coefficients C
V
2R  and diagonal coefficients 

CD
2R).  The wavelet decomposition can be interpreted as signal decomposition in a set of independent, spatially-oriented 

frequency channels. The image F2R corresponds to the lowest frequencies, C
H
2R gives the horizontal high frequencies 

(vertical edges), CV
2R gives the vertical high frequencies (horizontal edges) while C

D
2R encompasses the high frequencies 

in both directions (diagonal). Thus while the approximation image encapsulates a lower resolution version of the original 
image, the detail images serve to store all local variations at a certain scale in a particular direction.  
 

The forward wavelet transform is achieved by a combination of sub-sampling and convolution with two filters: a low 
pass filter H and a high pass filter G. During sub-sampling every other column or every other row is removed, resulting 
in reduced spatial dimensions of the four new images. Initially filters H and G are applied on FR along the columns. The 
two resulting intermediate images are sub-sampled along the columns before each of them serves as input for the filters 
H and G applied along the rows. Sub-sampling along the rows ends the process yielding the four final images 
(Figure.1a).In the process of inverse wavelet transform (IWT), the context and detail images at a particular spatial 
resolution 2R are used to reconstruct the context image at the next higher resolution level R using inverse filters Ĥ and Ĝ 
(Figure 1b).  
 



 
                                      (a)                                                                                 (b) 

Figure 1. (from Mertens et al 2004, Ranchin & Wald 2000) (a) Decomposition of FR (b) Reconstruction of FR 
 

The context or approximation image obtained in the process of each discrete forward wavelet transform may be 
successively subjected to additional forward wavelet transforms to generate context and detail images at subsequent 
lower spatial resolutions, namely 4R, 8R, 16R etc. At every step the spatial resolutions increase by a factor of 2. In the 
inverse wavelet transform phase, the approximation and detail images at a particular spatial resolution say 16R are used 
to reconstruct the context image at the next higher spatial resolution 8R. The context image at 8R is then combined with 
the detail images at 8R to obtain the context image at the next higher spatial resolution 4R. This can be continued until 
we finally reconstruct the original image at resolution R. Multiesolution wavelet analysis is depicted in Figure 2. 
Wavelet multiresolution analysis serves to establish the much needed link between different resolution levels of different 
sensors, and in this case between MODIS and AMSR-E. 
 
 
 

 
Figure 2. (from Mertens et al 2004, Ranchin & Wald 2000) Multiresolution analysis of source image FR 

 

Various types of filters are possible during the wavelet decomposition and reconstruction of images. In this study 
however we have used the simplest filter, namely the Haar filter. The Haar filter has only two coefficients and has the 
advantage of generating approximation images that are identical to images resulting from an averaging filter. This is an 
important property which we have exploited in our approach for combining AMSR-E and MODIS observations. 

Our basic approach of effecting the combination of high spatial resolution MODIS and low spatial resolution AMSR-
E requires two co-registered VWC images one from each sensor. The MODIS image is re-sampled and gridded to a 
resolution of ~ 0.0150 and is co-registered with the AMSR-E so that each AMSR-E pixel (25km or ~0.240) includes 



16x16 pixels of MODIS. In the second step the MODIS image is decomposed successively for four levels using Haar 
wavelets until we have an approximation image at the spatial resolution of AMSR-E. At this stage the MODIS 
approximation image is substituted with an appropriately scaled AMSR-E VWC image. The high resolution image at 
0.0150 is reconstructed back by successively applying the inverse Haar transform using the detail images at each stage. 
The high resolution image thus constructed encapsulates low spatial resolution information from AMSR-E and the detail 
information from MODIS. This image fusion technique popularly referred to as the substitution method has been used 
before in many studies to fuse remote sensing images from different sensors. Zhou et al 27 for example used a similar 
technique to merge Landsat TM and SPOT PAN images by performing an inverse wavelet transform using the 
approximation image from each TM band and detail images from SPOT PAN. Our technique can be modified over 
regions of cloud and haze cover where AMSR-E observations are considerably less contaminated than MODIS 
observations. During such a situation when atmosphere contaminated MODIS images cannot be used to obtain the 
required detail images, detail images pre-computed from MODIS observations in the recent past may be used to 
reconstruct the VWC image. The image thus reconstructed should be relatively accurate if the high frequency detail 
images change very slowly with time. Initial investigation shows that this assumption may be true allowing us the 
reconstruct high spatial resolution VWC images over cloudy or hazy regions having only AMSR-E data. 

2. STUDY AREA AND DATASETS USED 

Our study region was selected in a predominantly grassland region of Texas (Figure 3) where microwave observations of 
VWC are expected to be more reliable due to the low vegetation cover. The region is located between 33.270N and 
32.110N and 100.61W and 98.78W.  

 
Figure 3. Study Region 

We acquired MODIS Terra 8 day surface reflectance products over the study region during the temporal period 
between August 13th 2005 and December 10th 2005 for a total of 15 eight-day surface reflectance datasets. The 
MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid product, MOD09A1, is a composite of best 
observations from the previous 8 daily L2G Surface Reflectance products (MYD09GHK). This MODIS product 
provides estimates of the surface spectral reflectance for each solar reflectance band (bands 1-7) as it would be measured 
at ground level in the absence of atmospheric scattering or absorption. MODIS band 2 and band 6 surface reflectance 
were used to obtain the MODIS NDII images. We also acquired AMSR-E/Aqua Daily L3 vegetation water content data 



products during the same period. A 5 pixel x 7 pixel AMSR-E VWC image covering the approximately 125kmx175km 
study region was extracted from each pass (ascending and descending) in each product.  The extracted images were 
averaged over 8 day periods to obtain 5x7 averaged AMSR-E VWC products corresponding to the MODIS 8 day 
reflectance products. NDII images were re-sampled and re-projected to yield 80x112 pixels (resolution of ~0.0150) over 
the same region.  The images were co-registered with the AMSR-E images so that each AMSR-E pixel corresponded to a 
16x16 sub-block of the MODIS image. Although the proposed technique of combining MODIS and AMSR-E 
observations is meant to be applicable to daily observations, in this study we have used 8 day products as a first step in 
investigating and evaluating our approach.  

3. METHODOLOGY 

Preprocessing of MODIS and AMSR-E data as discussed in the previous section yielded 15 pairs of AMSR-E vegetation 
water content and MODIS NDII images over the study region. Each AMSR-E pixel corresponded to a 16x16 block of 
MODIS NDII. In order to derive MODIS VWC images from MODIS NDII, we needed to establish the relationship 
between NDII and VWC over the region and temporal period selected. As a first step the MODIS NDII was first 
aggregated to AMSR-E resolution by averaging each 16x16 MODIS NDII pixel block into a single NDII value 
corresponding to the AMSR-E pixel size. Since the AMSR-E observation has been shown to be area averaged measures 
over the sensor footprint, AMSR-E VWC and aggregated MODIS NDII (a measure of VWC) is expected to have a linear 
relationship.  This relationship was investigated using linear regression analysis. The linear relationship was reasonably 
assumed to be applicable at the MODIS resolution and was subsequently used to generate 15 datasets of MODIS VWC.  

Each MODIS VWC image was subjected to four levels of wavelet transforms using Haar wavelets, each step yielding 
detail images at decreasing spatial resolutions (80x112 � 40x56 � 20x28 � 10x14 � 5x7). The final decomposition 
yielded an approximation context image at the same resolution as AMSR-E. A single level decomposition of an image f 
yields an approximation image each pixel of which is equal to 2 times the average of a small 2x2 square containing 
adjacent values from the image f.  This is true since we are using the Haar wavelets for our decomposition and it follows 
that our final approximation image is 24 (for 4 levels of decomposition) times the average of a 16x16 sub-block of 
MODIS VWC.  At this stage we have 12 detail images (3 for each of the 4 levels of decomposition) and an 
approximation image at the same resolution as the AMSR-E VWC. In the final step the approximation image is replaced 
by AMSR-E VWC image scaled by 16. The reconstruction step then uses the AMSR-E VWC and the pre-computed 
MODIS detail images to synthesize the higher spatial resolution VWC. This synthesized VWC image is thus a product 
combined from AMSR-E and MODIS observations.  

Our main objective in this study is to investigate whether detail images pre-computed from wavelet decomposition of 
a MODIS VWC image at a previous time step can be used to reliably reconstruct high spatial resolution VWC at the next 
time step. Using detail images from a previous time step would become necessary over cloudy or hazy regions where it 
would not be possible to compute detail images from the contaminated MODIS optical signals. The technique should 
yield reliable estimations of VWC, if the detail images change slowly over time. Of course the technique would fail if a 
fire event occurs between the two time steps, since in that case the detail images of the previous step may be drastically 
different from those at the current time step.  In order to investigate the time varying nature of the detail images we 
analyzed the correlation between pairs of consecutive detail images. In a further step we reconstructed high spatial 
resolution VWC images using AMSR-E VWC observations from the current time step and MODIS detail images from 
the previous time step. These proxy high spatial resolution merged VWC images were then compared to the reference 
high spatial VWC images computed from AMSR-E VWC and MODIS detail images both from the current time-step. 
The accuracy of the proxy VWC images were evaluated by value-range based classifications of the proxy and actual 
merged VWC images and determining the extent to which the classifications agree.  

4. RESULTS AND DISCUSSION 

Our first goal is to investigate the relationship between MODIS NDII and AMSR-E VWC over the region and time 
selected. This was done by correlating AMSR-E VWC and MODIS NDII aggregated to AMSR-E resolution. Since 
AMSR-E VWC becomes unreliable at higher values of VWC, we have filtered out (MODIS NDII, AMSR-E VWC) 
pairs where AMSR-E VWC was greater than 3kg/m2. Figure 4 shows the correlation plot. The R2 value was found to be 
0.51 which is reasonably good. Given the multitude of factors (biophysical, geometrical, and atmospheric) that serve to 
confound the relationship between VWC and sensor observations in the optical and microwave domains, the R2 value is 
quite consistent with expected results. The least square linear regression line was found to be VWC=6.68NDII+2.61. 



This equation was applied on all the MODIS NDII images to obtain 15 MODIS VWC images over the time period 
between August and December. 

 
Figure 4. Correlation between AMSR-E VWC (kg/m2) and aggregated MODIS NDII (p~0) 

 

We applied our merging technique on coincident MODIS VWC and AMSR-E VWC images. The technique as described 
earlier resorts to successive wavelet decomposition of the high spatial resolution VWC upto 4 levels yielding 3 detail 
images at each level and an approximation image at the resolution of AMSR-E VWC. At this stage the approximation 
image is substituted by a scaled AMSR-E VWC and the VWC image is reconstructed to high spatial resolution by 
inverse wavelet decomposition using the appropriate detail images at each inverse step. Figure 5 shows the results of 
merging MODIS VWC and AMSR-E VWC for the 8 day period between 25th November and 2nd December 2005. It is 
evident that AMSR-E VWC acts as a calibrating image. The information from the AMSR-E VWC is downscaled to high 
resolution pixels while retaining the high frequency components from the MODIS image. 

Our primary objective is to investigate whether MODIS detail images from a previous time step could be used along 
with AMSR-E VWC at the current time step to create the merged VWC product for the current step. This technique, if 
reasonably accurate would be useful to downscale AMSR-E VWC over cloudy and hazy regions where MODIS 
reflectances become contaminated rendering them useless in determining the detail images for the current time step. The 
technique would be reasonably accurate if the MODIS detail images change very slowly with time. In order to 
investigate this assumption we correlated pairs of detail images at two consecutive time steps. We have 3 detail images at 
each of the 4 wavelet transform (WT) steps totaling to 12 types of detail images at each time step. We correlated each 
detail image (horizontal, vertical or diagonal coefficients) at time step t-1 to the corresponding (same WT level) detail 
image at time t. The mean correlations between consecutive detail image pairs for 12 types of detail images (4 levels x 3 
types: horizontal, vertical, diagonal) are given in Table 1. It shows that consecutive detail images at higher levels of 
decomposition (i..e lower resolution) are more correlated than detail images at lower levels of wavelet decomposition 
(i.e, higher resolution). This implies details at the highest spatial resolution change more with time than details at a low 
spatial resolution. The correlations are however reasonably high to investigate the reconstruction of merged VWC 
products using detail images from a previous time step. 

Using inverse wavelet transforms we constructed proxy merged VWC images for a current time step using current 
AMSR-E VWC and MODIS detail images from the preceding time step. In order to evaluate the accuracy of our 



approach we compared the proxy merged VWCs with the actual merged VWC (created using MODIS detail images 
from the current time step). The comparison was done after value based classification of both the proxy and actual VWC 
images using value ranges of VWC. The value based classification classified each pixel to one of the 7 classes based on 
the VWC value at the pixel. The classified proxy merged VWC was compared with the classified actual merged VWC to 
compute the overall accuracy for each of the 8 day periods except the first one (since the preceding 8 day period wasn’t 
used in our analysis). The average overall accuracy was 77%. Figure 6 shows the actual merged and proxy merged VWC 
for the 8 day period between 25th November and 2nd December 2005. Figure 7 shows the corresponding classified 
images. 

 

Figure 5. Merging MODIS VWC and AMSR-E VWC using the substitution method for wavelet based image fusion (Period 25th 
November and 2nd December 2005) (VWC in kg/m2). 

Table 1.  Mean correlations between detail images from time step t with detail images from time step t-1 

 CH
  

(horizontal 
coeffs) 

CD
  (vertical 

coeffs) 
CD

  
(diagonal 
coeffs) 

WT level 1 0.76 0.71 0.68 

WT level 2 0.86 0.81 0.76 

WT level 3 0.91 0.87 0.87 

WT level 4 0.94 0.89 0.91 



 

                                (a)                                                                                                 (b) 

Figure 6. (a) Actual Merged VWC (kg/m2) product created using AMSR-E VWC approximation image and MODIS 
VWC detail images both from the current time step. (b) Proxy merged VWC (kg/m2) product created using AMSR-E 
VWC at current step and MODIS VWC detail images from the preceding time step (Current time step:  25th November and 
2nd December 2005, Preceding time step: 17th November to 24th November ) 

 

 

 

 

Figure 7. (a) Actual Merged VWC (kg/m2) product (classified) created using AMSR-E VWC approximation image and 
MODIS VWC detail images both from the current time step. (b) Proxy merged VWC (kg/m2) product (classified) created 
using AMSR-E VWC at current step and MODIS VWC detail images from the preceding time step (Current time step:  
25th November and 2nd December 2005, Preceding time step: 17th November to 24th November ): Overall accuracy: 
75.3% 

4. CONCLUSION 

We have explored a wavelet decomposition based technique for merging VWC products from optical MODIS and 
microwave AMSR-E sensors. The technique requires successive decompositions of MODIS VWC products, yielding 
high frequency detail images at each decomposition step and a single approximation “context” image at a the spatial 
resolution of AMSR-E VWC product. The approximation image is then substituted by an appropriately scaled AMSR-E 



VWC product before reconstructing a merged VWC product. The merged product has information from both MODIS 
and AMSR-E sensors. The technique is applied over low vegetation regions in Texas grasslands to obtain merged 
vegetation water content products at intermediate resolutions of ~1.5km. Apart from offering a way to calibrate MODIS 
VWC content products to AMSR-E observations, the technique has the potential for downscaling AMSR-E VWC to 
higher spatial resolution over moderately cloudy or hazy regions where MODIS reflective bands become contaminated 
by the atmosphere. During such situations when contaminated MODIS signals cannot be used to obtain the detail 
images, MODIS detail images from a preceding time step is used to downscale the current AMSR-E VWC to higher 
resolutions. This approach of using detail images from the recent past would be justified if the detail images containing 
the high frequency components of the image change slowly. A correlation analysis of corresponding detail images at 
consecutive time steps reveal that correlation is reasonably high. Correlation between detail images at higher levels of 
decomposition (low resolution) are more highly correlated than detail images at lower levels of decomposition (high 
resolution). This implies that errors would increase as AMSR-E observations are downscaled to higher spatial 
resolutions. Our approach yields accuracy of around 77% over the selected study region and temporal period. This 
technique thus has the potential for ensuring the data continuity of high spatial resolution VWC products and could be 
beneficial for fire risk monitoring. 
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