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Abstract: The turn to nature has brought us many unforeseen great concepts and 
solutions. This course seems to hold on for many research domains. In this 
article, we study the applicability of biological mechanisms and techniques in 
the domain of communications. In particular, we study the behavior and the 
challenges in networked embedded systems that are meant to self-organize in 
large groups of nodes. Application examples include wireless sensor networks 
and sensor/actuator networks. Based on a review of the needs and 
requirements in such networks, we study selected bio-inspired networking 
approaches that claim to outperform other methods in specific domains. We 
study mechanisms in swarm intelligence, the artificial immune system, and 
approaches based on investigations on the cellular signaling pathways. As a 
major conclusion, we derive that bio-inspired networking techniques do have 
advantages compared to engineering methods. Nevertheless, the selection and 
employment must be carefully observed to achieve the desired performance 
gains. 
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1. INTRODUCTION 

The proliferation of wireless sensor networks (WSN) and similar ad hoc 
networks based on huge amounts of spontaneously interacting nodes is 
changing the world of telecommunications. In addition to the increasing 
number of communicating nodes, node mobility is an issue as addressed, for 
example, in sensor/actuator networks (SANET). Previously, controllability 
and determinism were the keywords during protocol development and 
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network research. Based on the primary objectives of WSN, nodes 
communicate using a radio interface, they are battery-driven, small, and 
cover only few resources. Therefore, new key factors have been identified 
for developing communication methods. Above all, the scalability of 
employed mechanisms has to be questioned. 

Researchers anticipate self-organization methods as the general solution 
to the depicted communication issues in WSN and SANET. Centralized 
management and optimized control will be replaced by methodologies that 
focus on local knowledge about the environment and adequate decision-
making processes. Similar problems are known and well-studied in nature. 
Therefore, such biological solutions should be analyzed for adaptation to the 
communication in ad hoc networks and WSN. 

The goal of this article is to provide an overview to some bio-inspired 
networking mechanisms and to introduce the underlying biological 
functionality as well as the adaptation to technical processes. Even though 
this article is not intended as a general review, it summarizes the best-known 
approaches and explains selected mechanisms in more detail. The rest of the 
article is structured as follows. Section 2 motivates the research on WSN and 
SANET and summarizes the major objectives and issues. Section 3 
introduces biologically inspired self-organization and its applicability to 
technical systems. Then, section 4 explains selected methods in more detail. 
Finally, section 5 concludes the paper. 

2. NETWORKED EMBEDDED SYSTEMS 

Networked embedded systems are used in many application scenarios. 
Above all, wireless sensor networks (WSN) are widely studied (Akyildiz, Su 
et al. 2002; Culler, Estrin et al. 2004). Sensor networks consist of multiple, 
usually hundreds or even thousands of sensor nodes. Such networks do not 
have a predominant topology but are created dynamically, ad hoc on 
demand. The nodes themselves can be of any size. Nevertheless, most 
publications understand sensor nodes as small, battery-driven devices with 
limited processing power and memory, radio communication, and sensors to 
measure physical parameters such as the temperature. 

Similarly, sensor/actuator networks (SANET) extend the idea of wireless 
sensor networks to mobile actuation systems, e.g. robot-like systems. In 
general, such SANET are build of cooperating mobile autonomous systems 
that allow some kind of actuation, e.g. handling, mobility (Akyildiz and 
Kasimoglu 2004). 

With WSN and SANET, new issues appeared that are not covered by 
existing communication methods and protocols. Some of these issues are 
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inherent in the idea of interconnecting thousands of networked embedded 
systems, other evolve based on particular application scenarios of WSN: 
• Node mobility – In general, sensor networks are believed to be 

stationary, i.e. to have a fixed topology – at least in terms of node 
location. Admittedly, node mobility is becoming a major concern of new 
application scenarios such as logistics. SANET, on the other hand, 
inherently include location dynamics and mobility. 

• Network size – In contrast to other networks, the number of nodes that 
are building a network on demand can be very high. Structured networks 
such as the Internet benefit from a hierarchical organization and a 
centralized management of subnetworks. WSN and SANET are 
infrastructure-less networks facing scalability problems if too many 
nodes are concerned. 

• Deployment density – Depending on the application scenario, the node 
density in a WSN can be very high. This may break existing medium 
access control protocols and lead to energy exhaustion just for 
neighborhood detection. 

• Energy constraints – Instead of having unlimited energy for computation 
and communication, energy constraints are much more stringent than in 
fixed or cellular networks. Usually, sensor nodes are battery operated and 
in certain cases, the recharging of the energy source is impossible. We 
distinguish replenishable power sources, e.g. for wearable sensors, non-
replenishable power sources, e.g. for sensors deployed in remote, 
hazardous terrain, and regenerative power sources. 

• Data / information fusion – Limited bandwidth as well as the mentioned 
power constraints demand for aggregation techniques. Each data packet 
that has to be transported through a WSN is expensive. Aggregated data 
reduce the energy consumption and provide higher usefulness. 
 
In summary, it can be said that self-organization mechanisms are needed 

for higher scalability in WSN/SANET communication (Dressler 2006). The 
basic mechanisms that are available include neighborhood discovers, 
topology (re-)organization, and probabilistic approaches. Since optimization 
on a global level is no longer possible, there is always a discrepancy between 
multiple objectives. For examples, the latency of path-finding with on-
demand routing protocols may be too high and periodic routing overhead in 
a table-driven routing protocol may consume a significant amount of 
bandwidth (Akkaya and Younis 2004). On the other hand, the probability of 
successful transmissions might be too low for stateless approaches. 
Therefore, hybrid architectures may improve the scalability and optimize the 
network behavior depending on the application scenario. 
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Monolithic / centralized systems
Systems consisting of a single computer, its peripherals, and perhaps 
some remote terminals.

Distributed systems
“A distributed system is a collection of independent computers that 
appears to users as a single coherent system.”

Self-organizing autonomous systems
Autonomously acting single systems performing local programs and
acting on local data but participating on a global task, i.e. showing an 
emergent behavior.

 

Figure #-1. The changing world: centralized systems, decentralized control, and self-
organization 

Figure 1 illustrates the control and management of systems consisting of 
multiple subsystems. Centralized control is primarily used to operate in an 
environment consisting of a few nodes. Using centralized information about 
all systems, optimized solutions for communications and task allocation can 
be derived. Examples are perfect schedules for medium access and real-time 
failure detection and repair. Distributed control allows to manage larger 
numbers of systems in a scalable way by preserving most system 
characteristics such as controllability. Nevertheless, optimization becomes 
harder and the predictability is reduced. Finally, self-organizing systems 
should help to overcome all scalability problems. 

centralized
control

distributed
systems

self-organized
systems

determinism

scalability

 

Figure #-2. Antagonism between determinism / controllability vs. scalability in system 
management and control 



#. BIO-INSPIRED NETWORKING 5
 

Unfortunately, the determinism and the controllability of the overall 
system are reduced. The relation between determinism and scalability is 
depicted in figure 2. Another issue is the challenging change of the 
programming of such less predictable systems that are showing an emergent 
behavior. 

Referring to networked embedded systems and their management and 
control, self-organization mechanisms are needed in order to support a large 
amount of simultaneously intercommunicating nodes. In WSN and SANET, 
we need new methods to identify available communication paths, nodes, 
their capabilities, and resources. Additionally, the handling of data including 
storage, aggregation, and distribution must be changed and adapted to the 
new requirements. All the mentioned operations should be possible even 
without knowledge about the current network topology, available nodes, 
their addresses, their location, and others. 

3. SELF-ORGANIZATION: “FROM NATURE TO 
ENGINEERING” 

The turn to nature for solutions to technological questions has bought us 
many unforeseen great concepts. This encouraging course seems to hold on 
for many aspects in technology. First studies on biological self-organization 
and its possible adaptation to technical solutions date back to the 1960ies. 
Von Foerster (Von Foerster 1960) and Eigen (Eigen and Schuster 1979) 
proposed to employ self-organization methods as known from many areas in 
biology. They saw the primary application in engineering in general. 
Nevertheless, it has been shown that communications can benefit from 
biologically inspired mechanisms as well. 

3.1 Basic Principles of Self-Organization 

There are three major principles of self-organization mechanisms: 
feedback loops, local state evaluation, and interaction between individuals. 
Additionally, probabilistic methods that provide scalability and some degree 
of predictability can be found in nature and adapted to technology. This 
process needs careful consideration to prevent mistakes due to limited 
knowledge about the biological processes or due to missing correlations 
between the natural and the technical models (Dressler 2006). 

Figure 3 depicts a system that employs all three major principles. The 
main system is performing some action on a source to provide an outcome. 
Based on this system, the mentioned mechanisms for self-organization need 
to be discussed in more detail: 
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Figure #-3. System control using positive and negative feedback loops 

• Feedback loops – One major component in understanding the interaction 
of components producing a complex pattern are positive and negative 
feedback loops. Positive feedback acts as an amplifier for a given effect. 
In order to prevent overreactions and mis-regulations, negative feedback 
is used to efficiently control the system behavior. There is a positive 
feedback loop depicted in figure 3, the activation of the processing step. 
Additionally, a negative feedback loop is included. The outcome directly 
suppresses and environmental reaction and, therefore, reduces the 
activation capabilities. 

• Local state – The second ingredient is the local state. This means that all 
subsystems are acquiring and action upon information that are stored 
locally. Any global control or dependency is prevented in order to enable 
fully autonomous behavior embedded into a global context. The idea of 
using local state only is depicted in our example by missing external 
control processes. 

• Interactions – Information transfer between individuals is necessary to 
update the local state. There are two ways to conduct such interactions: 
direct interaction or communication between related subsystems and 
indirect information exchange by interacting with the environment. This 
process is also known as stigmercy (Di Caro and Dorgio 1998). The 
example in figure 3 includes stigmertic interactions. The system 
influences the environment (it produces some effect). This effect can be 
measured and directly increases or decreases the activation capabilities to 
the system behavior. 

• Probabilistic methods – In order to prevent synchronization problems and 
to increase the variety of application domains. Scalability is often 
achieved by random selections. 
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3.2 Bio-inspired Techniques in Technical Systems 

The development in the area of bio-inspired engineering is relying on 
various research fields including swarm intelligence, the artificial immune 
system, evolutionary and genetic algorithms, and cell and molecular biology 
based approaches. Some of the best known approaches should be 
summarized here whereas selected methods are depicted in more detail in the 
following section. 

The behavior of large groups of interacting small insects such as ants and 
bees builds the basis for the field of swarm intelligence. Simple and 
seemingly unrelated, autonomously working individuals are considered to 
compose complex cooperative tasks. Similar actions are required in various 
areas of engineering and computer science. Thus, swarm intelligence is 
forming a basis for building self-organizing systems (Bonabeau, Dorigo et 
al. 1999; Kennedy and Eberhart 2001). The main focus lies on the formation 
of groups or clusters that allow efficient task allocation mechanisms. 
Successful application of swarm intelligence methods has been demonstrated 
in task allocation and control of multi-robot systems (Krieger, Billeter et al. 
2000; Dorigo, Trianni et al. 2004). Recently, similar applicability has been 
shown in sensor networks (Labella and Dressler 2006). 

The immune system of mammals builds the basis for research on the 
artificial immune system (AIS). The reaction of the immune system, even to 
unknown attacks, is a highly adaptive process. Therefore, it seems obvious 
to apply the same mechanisms for self-organization and self-healing 
operations in computer networks. In the last decade, several architectures for 
an AIS have been proposed (Kephart 1994; Hofmeyer and Forrest 2000). 
Application examples include autonomous communication (Suzuki and 
Yamamoto 2001) as well as ad hoc networking (Le Boudec and 
Sarafijanovic 2004). Additionally, security scenarios including virus and 
intrusion detection already benefited from AIS approaches (Kim and Bentley 
2001b; Kim and Bentley 2002). 

Evolutionary algorithms (EA) are self-manipulating mechanisms. The 
evolution in nature is the basis for such methodologies. In particular, there 
are multiple ways for organisms to learn. A natural selection process 
(survival of the fittest) is going on letting only the optimal prepared 
organisms to survive and to reproduce. Changes appear for example by 
mutations. An overview to evolutionary algorithms is provided for example 
in (Bentley, Gordon et al. 2001; Das, Banerjee et al. 2004). 

An emerging research area looks for cell and molecular biology based 
approaches. All organisms are built in the same way. They are composed of 
organs, which consist of tissues and finally of cells. This structure is very 
similar to computer networks, which is also true for the signaling pathways. 



8 Chapter #
 
Therefore, research on methods in cell and molecular biology promises high 
potentials for computer networking in general and adaptive sensor networks 
and network security in particular (Dressler and Krüger 2004; Krüger and 
Dressler 2005). 

While many advantages can be identified that make the use of bio-
inspired techniques successful, we also need to comment the limitations of 
bio-inspired mechanisms. Biology always makes compromises between 
different goals and it is well known that biology sometimes fails. 
Additionally, some natural mechanisms are not well understood and well-
defined problems may be solved by other means. 

4. BIO-INSPIRED NETWORKING 

Primarily, the focus of this section is to demystify the concepts of bio-
inspired networking. Based on selected approaches, the objectives and 
solution paths of biologically inspired methods are depicted in more detail. 

4.1 Swarm intelligence 

The collaborative work of a multitude of individual, i.e. autonomous 
systems is necessary in many areas of engineering. Swarms of small insects 
such as bees or ants address similar issues. For example, ants solve complex 
tasks by simple local means. There is only indirect interaction between 
individuals through modifications of the environment, e.g. pheromone trails 
are used for efficient foraging. Finally, the productivity of all involved ants 
is better than the sum of their single activities and ants are “grand masters” 
in search and exploration. 

 

Figure #-4. The emergent collective intelligence of groups of simple agents (Bonabeau, 
Dorigo et al. 1999) 
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The basic principles are simple. All individuals, i.e. the systems that 
collaborate on an overall task, follow simple rules that lead to an impressive 
global behavior, i.e. emerging behavior based on the simple rules and 
interactions between the systems, either directly or indirectly via the 
environment. An example is described in figure 4. The foraging algorithm 
used by termites to collect wood chips is shown on the left hand side. Using 
a simulation model, the overall visible behavior was studied (Bonabeau, 
Dorigo et al. 1999). Quickly, the chips are heaped together and structures 
emerge from the scene as shown on the right hand side. 

 
Attractor-based routing and task allocation 

 
As a specific example to demonstrate the capabilities of swarm 

intelligence methods in networking, we chose an attractor scheme for routing 
and task allocation (Labella and Dressler 2006). This algorithm is based on 
the AntHocNet approach that enables self-organized routing control in ad 
hoc networks (Di Caro, Ducatelle et al. 2005). The pheromone trail 
mechanism is exploited to search for optimal paths thought ad hoc networks. 
After a short learning phase, the optimal solution can be derived from 
previously (over suboptimal paths) transmitted messages. 

The new approach is based on a probabilistic scheme. Each node 
performs a local decision process that provides the basis for task allocation 
and routing decisions. The basic idea is as simple as powerful. If a node 
successfully performed a particular task (whether forwarding a packet or 
anything else), the probability to perform this task again is increased. 
Similarly, the probability is decreased if the node failed for a particular task. 
Additionally, each node observes the behavior of the surrounding nodes to 
update its local behavior accordingly. 

More formally, this algorithm can be written as follows. Each node n 
associates to a task i to an attractor τi with i ∈ T. At the moment of selecting 
a task to perform, the node computes a probability for to choose task i as 
follows: 

∑
∈

=

Tk
k

iiP β

β

τ
τ)(  (1) 

The parameter β was introduced to increase the exploitation of good 
paths. Each node initializes τi with τinit. If the node successfully performed 
the given task i, τi is recalculated as follows: τi = min{τmax, τi + Δτ }. 
Similarly, τi is reduced for unsuccessful operations: τi = min{τmax, τi - Δτ }. 
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The complete algorithm, the corresponding calculations, and an in-deep 
evaluation can be found in (Labella and Dressler 2006). In this paper, a set 
of experiments was performed to demonstrate the advantages of the attractor 
scheme. The simulation setup is shown in figure 5. 25 nodes were places in a 
grid on a playground of 500x500m. Four different tasks were defined to be 
performed by all these nodes. Disregarding the task allocation, we want to 
focus on the associated route selection in this network. 

 

Figure #-5. Simulation setup for evaluation of the attractor based task allocation and routing 

Figure 6 shows selected simulation results. On the left and side, we show 
a typical snapshot of the distribution of tasks in the network. The plot refers 
to task T3. It can be seen, that when a node had high probability of 
performing T3, its neighbors were likely to have a low one. The routes that 
were used to send the data to the base host are depicted in the same figure on 
the right hand side. The network was split in two halves: there were few 
links between the top right triangle and the bottom left triangle. This figure 
does not represent the steady state of the network. The network reached a 
dynamic equilibrium, where things continually changed. This is especially 
true for the depicted routes, since the routing tables entries were removed 
after a while, and new discoveries took place. 

This example illustrated an architecture for attractor based task allocation 
and routing. The nodes make use of solutions inspired by ants’ behavior. The 
control architecture is based on strong interlayer and inter-agent interactions. 
The latter are local, meaning that they occur only between agents within a 
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given range, smaller than the experimental area. The architecture is based on 
probabilistic decisions. During the lifetime of the network, the nodes adapt 
the probability to execute one task among a given set. The architecture 
exploits the interactions between agents, but only within a limited range. The 
local interactions are however enough to induce pattern at the global level, 
i.e. to provide a self-organizing behavior. No particular knowledge of the 
environment or of the other nodes’ activity is required. Additionally, the 
architecture is based on a cross-layer design. Application and network layers 
collaborate on a common objective. 

    

Figure #-6. Simulation results (Labella and Dressler 2006). Left: Distribution of task T3 
among the nodes. The darker the circle, the higher is the probability that an agent performs 

T3. Right: Routes to deliver the output of T3 to the base host (in upper left corner). The 
arrows show for every node the known next hops. The thickness of the arrows is proportional 

to the probability of choosing a node as next hop. 

4.2 Artificial Immune System 

Artificial immune systems are computational systems inspired by 
theoretical immunology and observed immune functions, principles and 
models, which are applied to complex problem domains (de Castro and 
Timmis 2002). The primary goal of an artificial immune system (AIS) is to 
efficiently detect changes in the environment or deviations from the normal 
system behavior. The most impressing capabilities of the immune system are 
its recognition capabilities (anomaly detection, noise tolerance), the 
robustness, its diversity, the capability of reinforcement learning, and the 
possibility to memorize observations. These features allow to build self-
optimizing and self-learning processes. 
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The role of the mammal immune system can be summarized as follows. 
It should protect the body from infections. For this, two immune responses 
were identified. The primary one is to launch a response to invading 
pathogens leading to an unspecific response (using Leucoytes). In contrast, 
the secondary immune response remembers past encounters, i.e. it represents 
the immunologic memory. It allows a faster response the second time around 
showing a very specific response (using B-cells and T-cells). 

The immune recognition is based on the complementarity between the 
binding region of a receptor and a portion of an antigen called epitope. 
Antibodies have a single type of receptor, while antigens might show several 
epitopes. This means that different antibodies can recognize a single antigen. 
The immune system needs to be able to differentiate between self and non-
self cells. Antigenic encounters may result in cell death; therefore, the 
immune system establishes some kind of positive and negative selection. 

The scope of AIS is widespread. There are applications for fault and 
anomaly detection, data mining (machine learning, pattern recognition), 
agent based systems, control, and robotics. In the mammal immune system, 
the shape of the molecules defines the degree of binding. In an AIS, a similar 
distance measure is needed. Typically, antigens and antibodies are described 
in form of vectors, i.e. Ab=<Ab1, Ab2,…,AbL> and Ag=<Ag1, Ag2,…,AgL>. 
Different shape-spaces can be used depending on the current environment: 
• Real-valued shape-space: the attribute strings are real-valued vectors 
• Integer shape-space: the attribute strings are composed of integer values 
• Hamming shape-space: composed of attribute strings built out of a finite 

alphabet of length k 
• Symbolic shape-space: usually composed of different types of attribute 

strings, such as a ‘name’, a ‘color’, etc. 
Based on this definition, the matching of antigens to antibodies can be 

described using their affinity. The affinity is related to the distance. For 
example, the Euclidian distance can be used: 

∑
=

−=
L

i
ji AgAbD

1

2)(  (2) 

Other distance measures such as Hamming, Manhattan can be used as 
well. The main application in computer science and engineering is anomaly 
detection. The normal behavior of a system is often characterized by a series 
of observations over time. The problem of detecting novelties, or anomalies, 
can be viewed as finding deviations of a characteristic property in the 
system. For computer scientists, the identification of computational viruses 
and network intrusions is considered one of the most important anomaly 
detection tasks. 
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One of the first AIS was presented in (Kephart 1994). Based on this 
work, misbehavior detection and attack or intrusion detection systems were 
developed based on the working principles of the natural immune system 
(Kim and Bentley 2001b; Kim and Bentley 2002; Le Boudec and 
Sarafijanovic 2004). Besides network security applications, the operation 
and control of multi-robot systems was addressed by AIS approaches. The 
collaborative behavior of robots collecting objects in an environment is 
difficult to optimize without central control. It was shown that an emerging 
collective behavior through communicating robots using an AIS overcomes 
some of the problems. The immune network theory was used to suppress or 
encourage robots behavior (Lee, Jun et al. 1999). 

 
Misbehavior detection in mobile ad hoc networks 

 
In ad hoc networks, each node serves as an end system as well as a 

router. This allows to build dynamic on demand network topologies 
supporting mobile systems as well. Various routing protocols for mobile ad 
hoc networks have been proposed focusing on the efficiency in terms of 
route detection and maintenance (time, overhead, etc). This dynamic 
behavior allows – on the one hand – to enable sophisticated mobile 
applications. On the other hand, such dynamics also opens ways to attack the 
network on the routing protocol layer. Such attacks might be initiated for 
denial of service reasons as well as for overtaking the ad hoc network for 
private services. A third reason for misbehavior in ad hoc networks is the 
occurrence of faulty nodes. Either the system might be erroneous or the 
routing protocol might be incorrectly implemented. A misbehavior detection 
scheme using an artificial immune system as its basis has been developed 
(Le Boudec and Sarafijanovic 2004). It works for a particular ad hoc routing 
protocol, DSR (dynamic source routing). 

The system is inspired by the natural immune system of vertebrates. The 
goal was to build a system that, like its natural counterpart, automatically 
learns and detects new misbehavior. It employs negative selection, an 
algorithm used by the natural immune system. In the original paper, the 
mapping of the natural immune system concepts such as self, antigen and 
antibody to a mobile ad hoc network is defined and the resulting algorithm 
for misbehavior detection is presented. The following elements have been 
defined: 
• Body: the entire mobile ad-hoc network 
• Self-Cells: well behaving nodes 
• Non-Self Cells: misbehaving nodes 
• Antigen: Sequence of observed DSR protocol events recognized in 

sequence of packet headers. Examples of events are “data packet sent”, 
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“data packet received”, “data packet received followed by data packet 
sent”, “route request packet received followed by route reply sent” 

• Antibody: A pattern with the same format as the compact representation 
of antigen 

• Negative Selection: Antibodies are created during an offline learning 
phase. In a deployed system this would be done in a testbed with nodes 
deployed by an operator 
Since antigens represent traces of observed protocol events, such 

sequences would become very long in a short period of time. Therefore, all 
traces need to be limited by providing a time limit Δt for the observation 
interval. A typical sequence (the letters represent different protocol events) 
would look like this: l1=(EAFBHHEDEBHDHDHDHD,…). Then, a number 
of “genes” are defined. A gene is an atomic pattern used for matching. 
Typical examples are g1=#E in sequence or g2=#(H*D) in sequence. With 
this information, l1 can be mapped to an antigen like this: l2=(3 2 7 6). 
Finally, the antigens are encoded in a binary representation. The numeric 
range of antigens is split into several intervals and the bit in the 
representation is set to one if the antigen belongs to this particular interval: 
l3=(0000000010 0000000010 0000001000 0000001000). 

  

Figure #-7. Impact of misbehavior and parameters tuning (Le Boudec and Sarafijanovic 
2004): Probability of correct detection of misbehaving nodes (true positive) and misdetection 
of well behaving nodes (false positive) versus misbehavior probability for the misbehaving 

node (left) and number of self antigens collected for learning (right) 

As previously described, a matching function must be defined to 
associate antigens to antibodies. Antibodies have the same format as 
antigens (such as l3), except that they may have any number of nucleotides 
equal to 1. An antibody matches an antigen if the antibody has a 1 in every 
position where the antigen has a 1. This approach has already been 
successfully demonstrated in (Kim and Bentley 2001a). It is used in this 
paper as a method that allows a detection system to have good coverage of a 
large set of possible non-self antigens with a relatively small number of 
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antibodies. Antibodies are created randomly, uniformly over the set of 
possible antibodies. During negative selection, antibodies that match any self 
antigen are discarded. 

The primary evaluation criteria for such detection approaches are the true 
positive detection rate and the false positive detection rate, thus the number 
of successfully identified misbehaving nodes and the number of accidentally 
mis-identified nodes, respectively. As shown in figure 7, the approach shows 
quite encouraging results. 

4.3 Intercellular information exchange 

Regarding efficient networking, the investigation in the structure and 
organization of intercellular communication seems to be valuable. Molecular 
biology is the basis of all biological systems. It features a high specificity of 
information transfer. Interestingly, we find many similar structures in 
biology and in technology, especially in computer networking (Krüger and 
Dressler 2005). The primary concepts are intra- and intercellular signaling 
pathways and diffuse communication in large scale structures. Considering 
the knowledge about molecular biology and its similarity to communication 
networks (Dressler and Krüger 2004), it is possible to extract the following 
lessons to learn: efficient response to a request, shortening of information 
pathways, and directing of messages to an applicable destination. 

The information pathways can be distinguished into local and remote. 
Local: a signal reaches only cells in the neighborhood. The signal induces a 
signaling cascade in each target cell resulting in a very specific answer 
which vice versa affects neighboring cells. Remote: a signal is released in 
the blood stream, a medium which carries it to distant cells and induces an 
answer in these cells which then passes on the information or can activate 
helper cells (e.g. the immune system). Signals can appear in form of 
particles, i.e. proteins and hormones, as well as of environmental conditions 
that can be observed and changed, e.g. the calcium concentration. 

 
Inhibitors and promoters forming efficient feedback loops 

 
An example for successful application of the described communication 

method in WSN is the feedback loop mechanism (Dressler, Krüger et al. 
2005). Here, the Angiotensin-based regulation process for the blood pressure 
was used to model the control loop for an efficient regulatory process in an 
organism. In the case of a decreasing arterial blood pressure, the kidney is 
starting to produce a specific protein, renin. This protein initiates a cascade 
of conversions and activations, respectively. So it promotes the conversion 
of another protein (angiotensinogen) to a shorter one (now called angiotensin 
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I), which is finally translated to angiotensin II. This protein represents the 
final answer which now has many effects on different cells in different 
organs in order to increase the blood pressure to normal level. At the same 
time, a molecular negative feedback mechanism finishes the whole cellular 
reaction. If all receptor are bound by angiotensin II, the reaction is blocked 
which in turn also blocks the primary conversion of angiotensinogen to 
angiotensin II in the way that the initial renin secretion is blocked. This 
process is shown in figure 8. 

Kidney

Renin

Angiotensinogen

Angiotensin I
ACE

Angiotensin II

Arterial blood pressure ↓

Adenohypophysis
(brain):    
vasopressin

aldosterone
contraction

Kidney:      
→ Na+

retention → regulation 
of blood volume

Smooth muscle cells: 

Increase of 
blood volume

Liver

Arterial blood pressure ↑

 

Figure #-8. Overview of the regulation of signaling cascades responsible for regulating the 
blood pressure 

This process was adapted to work in a sensor network by using the 
following two concepts: 
1. The density of the sensor network allows for alternate feedback loops via 

the environment: directly via the physical phenomena which are to be 
controlled by the infrastructure. 

2. Indirect communication allows for more flexible organization of 
autonomous infrastructures, reduces control messages. 
In a sensor network, the control of activities requires the information 

exchange between multiple nodes in the network. Such communication is 
needed for at least two reasons. First, the control information must be 
transported to the appropriate destination and, secondly, the destination must 
respond to the request by confirming the instructions. All conventionally 
designed network protocols for such a function follow the same principles. A 
transmission of a data packet destined for the particular target is initiated. 
State information is accumulated at several points in the network until a 
response packet is received which confirms the transaction. The paradigms 
for data transport in sensor networks are already changing. Directed 
diffusion, which was introduced (Intanagonwiwat, Govindan et al. 2000) has 
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some interesting features: data-centric dissemination, reinforcement-based 
adaptation to the empirically best path, and in-network data aggregation and 
caching. Similar changes are expected for the control information flow 
which we are focusing on. 

As learnt from biology, a diffuse communication principle has been 
proposed (Dressler 2005; Dressler, Krüger et al. 2005). A message to be sent 
is given a priority. This priority depicts the importance of the particular task 
to achieve. Based on this priority, the message is sent to a percentage of the 
direct neighbors and an even lower percentage of remotely accessible nodes. 
This process is repeated until the desired job is confirmed running or the job 
is globally canceled. Therefore, a randomness factor is applied to the 
dispersion of information or, in particular, to the distribution of tasks. The 
benefit lies in a better system efficiency and reliability, explicitly in 
unreliable multihop ad hoc wireless sensor networks. 

5. CONCLUSION 

In conclusion, it can be said that many approaches for bio-inspired 
networking have been studied and we can already see first impressive 
solutions and applications. Basically, the following mechanisms have been 
adapted to solve open issues in networking: feedback loops, i.e. positive 
feedback to initiate actuation or data aggregation, and negative feedback for 
network congestion control and smooth regulation; local state information 
for efficient data fusion, energy control, and clustering; and weighted 
probabilistic approaches for task allocation, controlled communication and 
congestion control. Finally, we are facing a multi-objective optimization 
process that balances between overhead (latency vs. energy) vs. 
predictability. 

Self-organization mechanisms for communication and coordination 
between networked embedded systems need further research and 
development. There are many objectives and many directions, but similar 
solutions can be derived. Bio-inspired networking is just one but powerful 
approach. Ongoing research objectives include the efficient data 
dissemination, handling and storage in WSN as well as task allocation 
schemes and distributed control in SANET. 
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