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Formation of complex inorganic structures is widespread in nature.
Diatoms create intricately patterned cell walls of inorganic silicon
that are a biomimetic model for design and generation of three-
dimensional silica nanostructures. To date, only relatively simple
silica structures can be generated in vitro through manipulation of
known diatom phosphoproteins (silaffins) and long-chain poly-
amines. Here, we report the use of genome-wide transcriptome
analyses of the marine diatom Thalassiosira pseudonana to iden-
tify additional candidate gene products involved in the biological
manipulation of silicon. Whole-genome oligonucleotide tiling ar-
rays and tandem mass spectrometry identified transcripts for
>8,000 genes, �3,000 of which were not previously described and
included noncoding and antisense RNAs. Gene-specific expression
profiles detected a set of 75 genes induced only under low
concentrations of silicon but not under low concentrations of
nitrogen or iron, alkaline pH, or low temperatures. Most of these
induced gene products were predicted to contain secretory signals
and/or transmembrane domains but displayed no homology to
known proteins. Over half of these genes were newly discovered,
identified only through the use of tiling arrays. Unexpectedly, a
common set of 84 genes were induced by both silicon and iron
limitations, suggesting that biological manipulation of silicon may
share pathways in common with iron or, alternatively, that iron
may serve as a required cofactor for silicon processes. These results
provide insights into the transcriptional and translational basis for
the biological generation of elaborate silicon nanostructures by
these ecologically important microbes.

silica � transcriptome � iron � nitrogen � temperature

Marine diatoms are unicellular eukaryotic algae that gen-
erate �20% of the �100 billion metric tons of organic

carbon produced through photosynthesis on Earth each year (1,
2). A distinctive feature of diatoms is their requirement for the
element silicon, which they use to build cell walls composed of
amorphous, hydrated silicon dioxide (silica) embedded with
small amounts of organic material (3, 4). The silica-based
patterns of nano- and micrometer-sized pores, spines, and other
cell wall structures of diatoms are so detailed and precisely
replicated that taxonomists use these features to distinguish
between the estimated 105 to 106 species.

Silica patterning in diatoms is hypothesized to depend on both
self-assembly processes and controlled silica polymerization (5–9),
with the precipitating silica further ‘‘molded’’ by cytoskeletal in-
teractions (7). Long-chain polyamines and phosphoproteins known
as silaffins are the only diatom molecules thus far shown to have a
direct impact on silica precipitation in vitro, with the resulting pore
sizes of the formed structures determined by relative proportions of
polyamines and silaffins (5–9). The diatom silaffins display no
homology to silcateins, which initiate silica precipitation in sponges
(10). Diatom transporters have been sequenced and characterized

and have been shown to interact directly with silicon to actively
transport silicic acid against a large concentration gradient, al-
though the mechanism for intracellular storage of soluble silicic acid
is not known (11, 12). These diatom transporters display no
sequence homology to the silicon transporters recently identified in
rice (13). Despite availability of whole-genome sequence for two
marine diatoms (10) a molecular basis for the elaborate species-
specific silica structures has remained unclear, largely because of
this lack of homology to proteins involved in silicon manipulation
in other organisms. Here, we describe pathways and gene products
involved in silica processing in diatoms identified through the use
of whole-genome expression profiling.

Results and Discussion
Whole-Genome Expression Profiling Identifies Previously Undescribed
Diatom Genes. The lack of homology between proteins required for
biogenic silica manipulation in different organisms has complicated
identification of underlying pathways in diatoms through traditional
in silico homology-based approaches. We instead used tiling array-
based whole-genome expression profiles (14, 15) to discover po-
tentially unreported, essential genes because these methods are not
restricted by a priori assumptions of gene structure or location.
Probes were tiled across both strands of the �34-megabase Thalas-
siosira pseudonana genome (10), and the resulting arrays were
hybridized with RNA extracted from cells grown either in nutrient
complete media or in growth-limiting concentrations of silicon (the
biologically available form of silicon is silicic acid) [supporting
information (SI) Fig. 5 and SI Table 1]. The tiling array data
validated transcription of �41% (4, 653) of the 11,390 computa-
tionally predicted genes (SI Table 2). An additional 1,132 tran-
scripts were identified that did not correspond to modeled genes
(10) with few of these transcripts (�17%) predicted to encode
proteins with homology (e-value �10�5) to publicly available
proteins. These previously unidentified transcripts are operation-
ally referred to here as ’’unpredicted‘‘ transcriptional units (unpre-
dicted TUs) (SI Table 3) and have an average length of 1,549 bp,
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comparable with the average length of the computationally derived
genes. Importantly, one unpredicted TU encoded a putative pro-
tein that possesses a signal peptide and displays homology to the
proline-rich domain of the N terminus of tpSil1, a known silaffin
required for silica precipitation (12) (SI Fig. 6). Transcription was
also detected for a second putative protein carrying a domain with
homology to the proline-rich domains of silaffins tpSil1 and tpSil2
[Joint Genome Institute (JGI) protein ID 9558] computationally
predicted upon closure of a sequence gap (SI Fig. 6). These results
suggested that additional genes required for silicon manipulation
could be embedded within the previously undiscovered transcripts.

A comprehensive gene-specific expression array that occupied a
single glass slide was designed to provide additional support for the
unpredicted TUs discovered with the tiling arrays and to further
refine which genes were specifically involved in silica biomanipu-
lation by examining four additional growth-limiting conditions.
Probes were selected that corresponded to all in silico predicted
genes, all available EST sequences, and the previously unidentified
unpredicted TUs. To generate the most extensive gene set possible,
probes were also selected from nearly 16,000 additional tiling array
probe clusters longer than 100 nt with hybridization signals above
background but not originally defined as an unpredicted TU. The
gene-specific expression array was hybridized with RNA isolated
from at least four biological replicates each of cells grown under six
different conditions: nutrient complete; growth limiting concentra-
tions of nitrogen, iron, or silicon; alkaline pH of 9.4 (reduces
dissolved CO2 concentrations); and a shift to lowered temperature
(SI Fig. 5 and SI Table 1).

Further support for the transcriptional data was provided by
tandem mass spectrometry (MS/MS) analysis of soluble, membrane
and cell-wall protein fractions of T. pseudonana cells grown under
nutrient-complete and silicic acid-limited conditions. The 682 de-
tected peptides were searched against a six-frame translation of the
T. pseudonana genome, and the peptides were found to map to 349
distinct proteins (SI Table 4), with identification of 16 peptides that
extended the length of computationally derived gene models.

Overall, combined analysis of tiling array, EST, gene-specific
expression array, and proteomics data provided support for tran-
scription of �70% of the in silico predicted genes (10) (SI Table 5).
Those genes not supported by our studies are likely expressed under
growth conditions not examined here (e.g., phosphate limitation).
Significantly, the combined data provided further support that the
unpredicted TUs detected via the tiling arrays corresponded to
previously unidentified genes. Overall, �3,470 genes were identi-
fied with this combined approach, which increases by �30% the
total number of genes (14, 860) predicted for T. pseudonana (Fig.
1 and SI Table 5).

Specific Induction of Genes in Response to Silicon Limitation. Seven
hundred nine genes were differentially expressed by �2-fold
[Bayesian t test (16, 17) P � 0.001] under at least one growth-

limiting condition relative to nutrient-replete conditions (SI Table
6). Independent quantitative reverse-transcriptase PCR (qRT-
PCR) experiments on 16 genes validated these results (SI Table 7).
Included among the subset of differentially expressed genes were 51
of the genes discovered via the tiling arrays and 73 genes that
encoded proteins with similarity (e-value �10�5) only to hypothet-
ical proteins from Phaeodactylum tricornutum, a second diatom for
which whole-genome sequence is available (www.jgi.doe.gov).
Thus, almost 20% of the differentially expressed genes detected
here have so far been identified only in diatoms.

Hierarchical clustering of the differentially expressed genes
identified condition-specific gene clusters and similarities in
genome-wide expression between the five limiting conditions
relative to control conditions (Fig. 2). A majority of the
down-regulated genes encoded proteins related to photosyn-
thetic processes such as light harvesting and electron transport
(SI Table 6). Silicon limitation specifically up-regulated 75
genes, including the most highly up-regulated genes in the
entire dataset (SI Table 6). Peptide support was detected for
translation of 5 transcripts up-regulated and 59 transcripts
down-regulated under silicon limitation (SI Table 4).

The majority of the 75 genes induced by silicon limitation encode
proteins without predicted functions. For example, 24 of the 30
most highly induced transcripts encode proteins with low amino
acid complexity (enriched for S, T, K, R, or P) whose only obvious
features were that approximately half of them possess a secretory
signal sequence and/or at least one transmembrane-spanning do-
main (�-sheet and/or �-helix). One highly induced transcript cor-
responded to a small ORF (150 bp), suggesting that this transcript
might encode a small peptide or noncoding regulatory RNA. A
surprising feature of the 75 transcripts induced by silicon limitation
is the presence of a vertebrate-like consensus motif CANCAUG
(18) at positions �4 to �1 upstream of predicted initiator codons
(SI Table 8). Cytosine was present at positions �1 and �4 in 62%
and 59% of the silicon-limitation induced genes, respectively, vs.
44% and 40% for all genes. A greater preference for adenine at
position �3 (77% of the silicon-limitation-induced genes vs. 61%
for all genes, SI Table 8) has been associated with regulation of
translation initiation (19). The results obtained with the transcripts
induced by silicon limitation are in direct contrast with transcripts
differentially expressed under other limitations; transcripts induced
by nitrogen limitation, for example, display no distinctive motifs
upstream of the initiator codon, and a majority encode proteins
with a predicted function (SI Table 9).

The microarray data were further examined for evidence of
additional regulatory mechanisms associated with silicon bioma-
nipulation. Antisense expression, a commonly detected means of
posttranscriptional regulation (20–22) was identified for 385 genes,
each of which was longer than 300 nt (SI Table 10). Among these
were 10 genes with antisense signals that were reduced by �2-fold
under silicon limitation, suggesting a possible regulatory role in
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Fig. 1. Transcriptome statistics based on microarray and EST data for T. pseudonana. Microarrays (tiling and gene-specific) and ESTs provided transcriptional
support for 8,204 gene models; 3,470 previously unreported genes were predicted.
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silicon processes. A genome-wide search for possible long noncod-
ing RNAs using conservative search criteria identified a noncoding
transcript located on chromosome 1 (strand (�) position 2935331–
2936177) that was up-regulated 2-fold under silicon limitation,
which would be the first noncoding RNA identified associated with
silicon processes.

Despite the large number of transcripts induced by silicon
limitation that encode proteins with unknown functions, a number
of differentially expressed genes were also detected that encode
proteins reported to be involved in silicon transport and precipi-

tation (11, 23, 24). For example, silicon limitation alone strongly (9-
and 142-fold, respectively) induced transcription of two genes that
encode silicon transporters (SIT1 and SIT2), with their correspond-
ing peptides detected by mass spectrometry (SI Table 4); as
described (11), the gene encoding a third silicon transporter (SIT3)
was expressed at low levels under all conditions, with no evidence
of differential expression. Silicon limitation specifically down-
regulated genes encoding SIL3, a member of the silaffin family (12),
and the putative silaffin-like protein (JGI protein ID 9558) detected
with the tiling arrays (SI Fig. 6). Both results suggested that less
silica should be deposited when growth is limited by silicon avail-
ability. The reduced amount of silica deposited under these con-

5 µm
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5 m

D3D2B1

C3C2C1

D3D2D1

E3E2E1

F3F2F1

B2 B3

Fig. 3. Light and epifluorescent micrographs of T. pseudonana cells grown
under nutrient-replete conditions (A), exposed to low temperature (B),
growth-limiting concentrations of nitrate (C), alkaline pH (D), and growth-
limiting concentrations of iron (E) or silicon (F). Cells are shown at low
magnification (Left), and the same field of cells is shown at higher magnifi-
cation and visualized under either light (Center) or epifluorescent (Right)
microscopy. Red fluorescence is due to chlorophyll a fluorescence, and blue
fluorescence results from exposure of live cells to the pH-sensitive fluorescent
dye PDMPO (2-(4-pyridyl)-5{[4-dimethylaminoethyl-aminocarbamoyl)-
methoxy]phenyl}oxazole) for 12 h to stain freshly deposited silica. Silica
deposition at the valves is indicated by the arrow and at the girdle bands by
arrowheads.

Si Fe N T pHO2
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2.0
1.0
0.0
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Fig. 2. Hierarchical cluster display of 709 genes that are differentially
expressed (Bayesian t test P � 0.001, �2-fold difference in mRNA levels) under
silicon (Si)-, iron (Fe)-, nitrogen (N)-, or temperature (T)-limitation, or alkaline
pH (pH) relative to nutrient-replete growth. Each limitation corresponds to a
single column and each gene to a single row. The color chart indicates fold
change of expression by using a base 2-logarithmic scale. The color scale
ranges from saturated red (log2 ratios of 3.0 and above) for up-regulated
genes to saturated green (log2 ratios of �3.0 and below) for down-regulated
genes; black indicates no significance. Silicon and iron limitation resulted in a
cluster of coregulated genes (Cluster A) and genes up-regulated only under
silicon limitation (Cluster B) and genes up-regulated only under iron limitation
(Cluster C).
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ditions was readily detected by staining cells with the pH-sensitive
fluorescent dye PDMPO (2-(4-pyridyl)-5{[4-dimethylaminoethyl-
aminocarbamoyl)-methoxy]phenyl}oxazole), which is incorporated
into newly precipitated silica (Fig. 3). The greatly reduced, but still
detectable, staining of silicon-limited cells contrasted with the
strong staining of nutrient-replete cells or cells growing slowly, yet
still dividing, under low temperature (Fig. 3).

Induction of Common Pathways by Silicon and Iron Limitation. A
striking result of the hierarchical cluster analysis was the identifi-
cation of a common set of 84 genes that were up-regulated by both
iron and silicon limitation, but no other treatment (Cluster A Fig.
2). Together, these two treatments accounted for approximately
one-fourth of all differentially expressed genes but almost two-
thirds of the differentially expressed previously unidentified genes,
further emphasizing the distinctive aspects of silicon manipulation
in diatoms. Three genes within this cluster are localized to a small
region that spans only �8.1 kb on chromosome 1 (Fig. 4). Gene-
specific arrays and qRT-PCR analysis confirmed that each of these
adjacent genes was up-regulated under silicon limitation and that
two of the three genes were also induced by iron limitation. One of
the three predicted gene products possesses a signal peptide and
two of the three possess transmembrane spanning domains, fea-
tures consistent with targeting to the extracellular matrix. The
physically close association of these similarly expressed genes
suggests regulatory mechanisms similar to a bacterial operon (25)
and further suggests that the resulting gene products interact (26)
to carry out silicon manipulations.

Unexpectedly, genes known to be required for silica deposition

were influenced by availability of iron and silicon. The gene
encoding SIL1, a member of the silaffin family (12), was up-
regulated 3-fold only under iron limitation, and the distinctive
PDMPO staining of the iron limited cells, compared with cells
limited by the other nutrients (Fig. 3), supported a possible link
between iron availability and silica deposition. Both iron and silicon
limitation up-regulated genes that encoded enzymes required for
polyamine biosynthesis, compounds also implicated in silica depo-
sition (5). Two genes encoding cell wall (girdle band) associated
proteins (27) were up-regulated under iron and silicon limitations
and the corresponding peptides were detected with mass spectrom-
etry. A recent proteomics study identified 10 proteins hypothesized
to play a direct role in diatom silica precipitation and cell-wall
formation (24). Six of the genes encoding these putative cell-wall
proteins were up-regulated in our study only under silicon and iron
limitations, further substantiating the link between iron and silicon
and cell-wall processes. Finally, both iron and silicon limitation
resulted in aberrant cell morphologies with a distinctive cell aggre-
gation phenotype, suggesting that, in addition to potentially direct
effects on silica deposition, there were also changes in the extra-
cellular matrix of cells (Fig. 3). The potential for overlapping signal
transduction pathways triggered by these two nutrients comes from
the observation that genes encoding six protein kinases (JGI
protein ID 32738, 37322, 19048, 263081, and 33772; unpredicted
TU position: chr12�857573–859126) were specifically up-regulated
only by both iron and silicon limitation. Phosphorylation of silaffins
has been demonstrated in vitro to be necessary for silica precipita-
tion (4), and consequently, a subset of the kinases identified here
may be involved in these posttranslational events.
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Fig. 4. A physical cluster composed of unknown genes potentially involved in cell-wall and silicon processes (A) and their expression (B). (A) Heat map of both
DNA strands. Vertical bars represent tiled oligonucleotide probes (36-mer) for control and silicon limitation, with the color range indicating expression intensity
on a log2 scale. Light-blue boxes indicate the putative location of genes, and black arrows indicate the direction of transcription. (B) Putative functional
characteristics of proteins encoded by physical cluster genes and their expression based on gene-specific microarrays and quantitative (Q)RT-PCR (Q-PCR) Gene
expression is given as fold change (FC) under silicon and iron limitation relative to the control growth condition. Gene-specific arrays: n � 4; Q-PCR: n � 3. N
represents the number of biological replicates.
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Conclusions
This study describes a large subset of genes and proteins
potentially involved in formation of the nanopatterned diatom
cell wall, a resilient, but relatively light-weight structure that
provides protection (resistant to 100–700 tonnes per square
meter) to cells that survive by remaining afloat in the near
surface ocean (28). Most diatoms have an obligate requirement
for silicon, and the evidence presented here suggests that silicon
processes are tightly regulated through posttranscriptional and
translation initiation mechanisms. Some of the most highly
induced genes detected in this study were previously undiscov-
ered genes specifically associated with silicon limitation. An
important next step will be to determine which of these gene
products influence in vitro assays of silica precipitation.

The most surprising result, however, was the tight coupling of
pathways initiated by iron and silicon bioavailability. One explana-
tion for this result is that iron may serve as a cofactor for
silicon-specific gene products. A second possibility is that iron is
directly incorporated into the silica cell wall in a regulated manner.
Support for this latter explanation comes from limited data indi-
cating that the relative proportion of iron found within the silica cell
wall is higher in cells maintained at extremely low concentrations of
bioavailable iron ([FeIII] �10�10.5 M) than in cells grown under
moderately limiting concentrations of bioavailable iron ([FeIII]
�10�9.5 M) (29). Both possible explanations provide venues for
further optimization of in vitro manipulations of silica precipitation
by diatom molecules.

Our results also have ramifications for understanding the growth
of diatoms in nature. Productivity of �30% of the world’s oceans
is limited by iron availability, and numerous field and laboratory
studies have provided evidence that diatoms produce more heavily
silicified cell walls in these environments (30–32). Because diatoms
are responsible for �20% of global primary productivity (1, 2),
changes in diatom sinking rates due to an increase in the amount
of silica within the cell wall can influence biogeochemical cycles in
the ocean (33, 34). During glacial periods, enhanced iron delivery
is hypothesized to have significantly lowered atmospheric pCO2 by
reducing the silicon requirements of diatoms in the Southern
Ocean, allowing the excess silicon to ‘‘leak’’ out of the region and
fuel diatom productivity in the subtropics—the so-called Silicic
Acid Leakage Hypothesis (35). The most commonly accepted
explanation for the influence of iron on silica deposition is that iron
limitation (through reductions of growth rate) simply lengthens the
period during which silicon can be taken up and thus deposited (31,
32). Our results suggest that the relation between iron and silicon
availability is more complicated and reflects an active interaction
between these pathways. Development of molecular indicators of
the iron/silicon nutritional status of diatoms in situ will enhance
understanding of these important controls of marine productivity.
The work described here therefore provides avenues for under-
standing diatom biology that have potential impacts from the
nanoscale to the global scale.

Methods
Culture Work. Axenic T. pseudonana clone CCMP 1335, for which the whole-
genome sequence is available, was used for this study. Cultures were maintained
in natural seawater autoclaved and supplemented with 2� f/2 nutrients (36) at
20° � 1°C and 100 �mol of photons m�2�s�1 (24-h light). Nitrogen- and silicon-
limitation experiments were conducted with sea water collected from 100 m that
had been amended with 2� f/2 nutrients but without the addition of either
nitrate or silicic acid. Sea water collected from �20 m was used for the iron-
limitation experiment; 2� f/2 nutrients were added except for dissolved iron.
Alkaline pH, which decreases dissolved CO2 concentrations, was obtained by
increasing the pH of 2� f/2 sea water to 8.5 by adding 1 M NaOH. In the absence
of bubbling, the pH increased to a final pH of 9.4 due to photosynthetic activity.
Temperature limitation entailed transferring an exponentially growing culture
maintained in nutrient-replete 2� f/2 sea water at 20°C to 4°C for 24 h. All
limitation experiments were conducted in parallel with growth of the nutrient-
complete cultures. Cells were harvested for RNA when the growth rate began to

significantly decrease compared with the control cultures (SI Fig. 5). Dissolved
nutrients (phosphate, silicate, and nitrate) were measured for each treatment
according to Whitledge et al. (37) (SI Table 1).

Tiling Arrays, RNA Work, and Gene Identification. A total of 1,308,958 36-mer
probes were chosen uniformly from both strands of the 34-Mb T. pseudonana
genome (version 2, www.jgi.doe.goc) with gaps of 10 nt between consecutive
probes. Microarrays were fabricated by using a modified Maskless Array Synthe-
sizer (MAS) as described (14, 15). Total RNA was extracted by using the Concert
Plant RNA Reagent according to manufacturer’s instructions for large-scale RNA
isolation (Invitrogen). Total RNA was converted to double-stranded cDNA by
using an oligodT primer containing the T7 RNA polymerase promoter. In vitro
transcriptionfor labelingofcRNA,hybridization,andwashingofarrayswasdone
as described (15). Arrays were scanned by using an Arrayworx scanner (Applied
Precision).

Raw data from all 16 tiling arrays were normalized to the same scale by using
a quantile normalization procedure. A preliminary set of TUs were first deter-
minedbycombiningneighboringprobes that showedsignalsaboveacutoff.This
cutoff was computed from the hybridization levels of the random probes syn-
thesized on the arrays, so that 85% of the random probes had signals below the
level. All neighboring probes located within 100 bases and with signals above the
cutoffwerecombined into largerclusters. In total,15,960clusters longer than100
nt were determined. A set of total TUs was derived from the normalized tiling
arraydatabasedonmorestringentcutoffandfilteringcriteria.To identify theset
of TUs that included the primary unpredicted TUs, a nonlinear median-of-means
low-pass filter operating on a sliding window of three probes at a time was used
toreducenoiseandremovesingleprobeanomalies.AsetofTUsthat includedthe
secondary unpredicted TUs was derived from gene-only array data by using 14 of
the gene-only arrays. Primary and secondary TUs were initially identified on the
version 2 genome and then mapped to version 3 by using BLAST (38). TUs that did
not overlap a gene model on the same strand were identified as unpredicted TUs.
Blast (39) searches (BlastX in three reading frames; e-value cutoff 1e-5) of unpre-
dicted TU sequence and gene model sequence were performed against the
National Center for Biotechnology Information (NCBI) nonredundant protein
database and also against Arabidopsis thaliana, Plasmodium yoelii, Phytoph-
thora ramorum, Phaeodactylum tricornutum, Tetrahymena thermophila,
Chlamydomonas reinhardtii, Dictyostelium discoideum, Plasmodium falciparum,
and Cyanidioschyzon merolae. KOGs were assigned to unpredicted TU sequences
and gene models based on best blast hit to the KOG database (40). InterPro IDs
were assigned to unpredicted TUs by searching sense strand ORFs (100-aa cutoff)
against interproscan databases by using the standalone version of InterPoScan v
12.1 (41). InterPro IDs for gene models were obtained from the Department of
Energy Joint Genome Institute. A genome-wide search for possible long noncod-
ing RNAs was performed by identifying TUs longer than 600 nt for which the
longestpredictedpeptidecorrespondedtoless thanhalf theTUlength.TheseTUs
were further screened for overlap with untranslated regions of nearby coding
genes.

RACE (rapid amplification of cDNA ends) experiments were conducted for five
genes (JGI protein ID 20810, 269307, 42123, 25040, and 264902) identified by
tiling arrays to validate TU predictions (SI Fig. 7). Full-length sequences of these
genes were obtained by using the FirstChoice RLM RACE kit from Ambion
according to instructions in the manual of the kit.

Gene-Specific Arrays and Differential Expression. A gene-specific array was
designed with 176,320 36-mer genomic probes that included up to 68 probes
from each gene and unpredicted TU. The gene-specific array was hybridized with
RNA from 5 different growth conditions (SI Fig. 5). RNA sample preparation and
hybridization conditions are described above. Gene Cluster 3.0 (42) was used for
hierarchical cluster analysis on differentially expressed TUs. A Bayesian t test (16,
17) with P � 0.001 and �2-fold difference was used to identify differences in
expression between treatments and controls. The program Java TreeView (http://
jtreeview.sourceforge.net/) was used to generate images. Tiling and gene-
specific array data are available from our web page (www.systemix.org/diatom/)
and have been deposited in NCBIs Gene Expression Omnibus (GEO, www.ncbi.
nlm.nih.gov/geo/) and are accessible through GEO Series accession number
GSE9697. IndependentqRT-PCRswereconductedwithasubsetof16genesunder
silicon, iron, and nitrogen limitation as well as under the control condition to
validate the gene-specific arrays (SI Table 7). Triplicate or quadruplicate 20-�l
qRT-PCRs were performed for each selected gene and biological replicate. Indi-
vidual reactions contained 2 �l of cDNA from the RT reaction, 10 �l of iQ SYBR
green Supermix (Bio-Rad), 4.8 �l of water, and 1.6 �l of forward and reverse
primers.AmplificationswereconductedonaniCycler iQReal-TimePCRDetection
System (Bio-Rad) with a program of 95°C for 3 h, followed by 45 cycles of 95°C for
10 s, 60°C for 30 s, and 72°C for 50 s. Amplification efficiencies were calculated
with the program LinReg PCR (43). Efficiencies for each triplicate set of reactions

Mock et al. PNAS Early Edition � 5 of 6

EN
V

IR
O

N
M

EN
TA

L
SC

IE
N

CE
S

http://www.pnas.org/cgi/content/full/0707946105/DC1
http://www.pnas.org/cgi/content/full/0707946105/DC1
http://www.pnas.org/cgi/content/full/0707946105/DC1
http://www.pnas.org/cgi/content/full/0707946105/DC1
http://www.pnas.org/cgi/content/full/0707946105/DC1


were averaged together. Relative expression levels were calculated with the
program Q-Gene (44) by using CT values from Bio-Rad iCycler iQ Real Time
Detection System Software v.3 and averaged reaction efficiencies.

Tandem Mass Spectrometry and Proteome Analysis. Silicon limited cells were
suspended and washed in buffer containing protease inhibitors and broken by
agitation with glass beads in a Bead Beater apparatus largely as described by
Frigeri et al. (24). Cell lysates were separated by centrifugation into cell-wall
(400 � g and 1,500 � g), membrane (184,000 � g), and soluble fractions. Cell-wall
fractions were suspended to �1 mg of protein�ml�1 in 0.2–0.5 ml of 50 mM
ammonium bicarbonate, 2 mM DTT buffer, and either digested directly with
trypsin or first extracted with boiling 2% SDS, 10 mM DTT, 50 mM EDTA, and 1.0
M urea and then precipitated with 10% TCA, suspended in 8.0 M urea and 10 mM
DTT and then diluted to 1.0 M urea in 50 mM ammonium bicarbonate buffer for
trypsin digestion. Proteins from soluble and membrane fractions were digested
with trypsin as described (45, 46). Peptides were extracted on Varian Spec PT C18
cartridges, suspended to �1.0 �g��l�1 in 0.3% formic acid, and separated at 200
nl�min�1 on an Agilent HP 1100 HPLC (fused silica C18 column, 100 �M � 11 cm)
coupled for MS/MS analysis to a QTOF 2 mass spectrometer (Micromass) as
described (45, 46). Alternatively, the same HPLC setup was used to spot 0.2-�l
samples (1,050 spots) mixed with cyano-4-hydroxycinnamic acid (4 mg�ml�1) and
an internal standardontoaMALDI targetplateforMS/MSanalysisonanABI4800
MALDI TOF-TOF mass spectrometer. After deisotoping and background subtrac-
tion as described (45, 46), peptides and proteins were identified via Mascot (47),

with the following search conditions: MS and MS/MS search tolerances were 0.2
Da, allowing for oxidation of methionine and N-terminal acetylation as variable
modifications, and tryptic digestion was assumed with up to two missed cleav-
ages. Mascot searches were performed separately against each of two databases.
Thefirst (JGI) containedforwardandreversedproteinsequencesderivedfromJGI
gene models (T. pseudonana v3.0), whereas the second (6-RF) contained protein
sequences derived from translation of the entire T. pseudonana v3.0 genome in
all six reading frames. The second database also contained reversed forms of each
amino acid sequence. Protein sequences of common contaminant proteins such
asporcine trypsinandhumankeratinswereappendedtobothdatabases.Mascot
score thresholds corresponding to an estimated 1% peptide false discovery rate
were established by using a reversed database strategy as described by Huttlin et
al. (48). Thresholds were 28 and 40 for QTOF data searched against the JGI and
6-RF databases, respectively, whereas equivalent thresholds were 28 and 39 for
TOF/TOF data.
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