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Abstract. We introduce a method for shape similarity based retrieval
in 3D object model database. The proposed method leads us to achieve
effectiveness and robustness in similar 3D object search supporting both
query by 3D model and query by 2D image. Our feature extraction mech-
anism is based on observation of human behavior in recognizing objects.
Our process of extracting spatial arrangement of a 3D object by surface
point distribution can be considered as using human tactile sensation
without visual information. On the other hand, the process of extract-
ing 2D features from multiple views can be considered as examining an
object by moving viewpoints(camera positions). We propose shape sig-
natures for 3D object model by measuring features of surface point and
the shape distance distribution from multiple views of 3D model. Our
method can be directly applied to industrial part retrieval and inspection
system where different geometric representations are used.

1 Introduction

One of the most important points in designing interactive 3D multimedia sys-
tems is how to handle 3D data in an efficient manner. A number of research
groups in the field of computer graphics and computer vision have attempted to
find efficient ways of representing 3D objects, specifically, to identify each object
based on its geometric properties. There are two main three-dimensional object
representation schemes. One is called “object-centered representation”, and the
other is “viewer-centered representation scheme”. Object-centered representa-
tion often uses explicit three-dimensional descriptions of objects of interest in
Euclidian space like solid geometry and surface-based representation. On the
other hand, viewer-centered representation usually relies on a collection of range
or intensity images of an object as the implicit description of its shape. Since
features extracted from a 2D image do not immediately correspond to the object
models, 3D to 2D or 2D to 3D transformations must be made before observed
features can be matched with the 3D object model. The multi-view models can
be quickly searched for matching features but require large amount of storage to
keep numerous 2D images from multiple viewpoints. How to derive the appear-
ance of an object from a novel viewpoint without keeping too many views is the
main difficulty. Since we are interested in the design of a multimedia retrieval
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system that provides various query methods for efficiency and robustness, the
speed of retrieving object model in the database might be more important issue
than storage issue. We follow the 3D object-centered representation scheme as
a main object representation but also utilize 2D views from each sampled view-
point to extract additional useful features that may enhance shape identification.
Once features from projection images have been extracted, it is not necessary to
keep them for later use. To obtain boundary information from 2D views of 3D
object we adapt one of the 2D shape descriptors, Fourier Descriptor (FD), that
have been used in many image-processing applications. Moment invariance and
Curvature Scale Space are also well known shape descriptors currently available.
Our object-centered feature extraction method, called histogram representation
of distance distribution, is a kind of spherical depth map with a surface approx-
imation.
This procedure involves sampling surface points from the object and measur-

ing the depth between surface intersection points and their corresponding points
on the unit sphere. For the object composed of many triangles with small varia-
tion of triangle size and shape, it may not be necessary to resample the surface
points. We restrict our experiment of resampling to objects having small number
of triangles and large variation in triangle size. Histogram representation of this
spherical depth map can be a characteristic of spatial arrangement of the object
of interest in 3D co-ordination system. Next, we explore shape distance distri-
bution based on observation of Human Visual System (HVS) mechanism. HVS
is well studied in cognition and psychophysical sciences. Examples include Ull-
man’s High-level Vision [1] and Schiffman’s Sensation and Perception [2]. From
selected viewpoints, we extract shape features and compute Euclidian distance
from them. These shape signatures are compared to one another during query
processing to find similar object in the 3D object model database. The impor-
tance of this approach becomes obvious when we reflect on HVS. Consider how
humans normally study three-dimensional object. We study the object by rotat-
ing the object and examining different views of the object. That is, we gather
characteristic information while changing the viewpoints and infer the object
appearance without explicitly constructing 3D alignment.
The organization of this paper is as follows. First, we will discuss background

and related work on shape representation and matching in section 2. Next in
section 3, we will introduce shape feature extraction methods based on object-
centered methods and multiple views. Section 4 presents experimental result. In
section 5 we discuss conclusions.

2 Related Work

There has been a great deal of study for shape descriptors in 2D images, ranging
from simple geometric attributes to various transformation techniques. These
techniques can be categorized as reconstructive and non-reconstructive tech-
niques, depending on whether or not they allow the original shape of the object
to be approximated. A good categorization of 2D shape description technique
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can be found in [3][4]. The choice of specific description techniques depends to-
tally on the nature of applications. Shape similarity has also been studied for
3D geometric model of the objects in computer vision and other object recog-
nition areas. In most cases, they utilize range data to compare 3D local surface
information with existing 3D object model stored in the database. The most
widely used 3D object model description in computer graphics is based on geo-
metrical information such as vertex points, surface point cloud, edge lists, facets
and normal vector information. 3D modelling software such as CAD applications
utilizes a solid modelling concept along with surface description. To be useful
in large databases especially content-based retrieval system, feature extraction
techniques should be simple, inexpensive and robust. Surface points distribution
has some simple and efficient characteristics. Since Gauss introduced a repre-
sentation method that maps normal vectors of surface patch to the sphere [5],
related representation method have been developed as extensions of this mapping
scheme. Extended Gaussian Image (EGI) [6] maps mass to the corresponding
point on the Gaussian sphere. This mass distribution depends on the shape of
the object. Distributed EGI (DEGI) [7] has been derived to avoid the problem
for non-convex object of EGI. This method tessellates viewing sphere and recal-
culates a partial EGI for each viewing direction to determine the attitude of a
non-convex object.
The EGI uniquely defines a convex polyhedron. However, non-convex object

that has more than two separated region with the same surface normal may
have the same representation with any convex object. A direct way of expand-
ing 2D descriptor to 3D is to consider the 3D shape as composition of infinite
2D slice stack along a given direction. This is a common technique in medical
applications. The other straightforward approach is to describe 3D object with
multiple projection images. Aircraft detection is one of the applications utiliz-
ing this approach. Other 2D and 3D shape descriptors that are currently used
in different applications will be discussed in the next section. Distributed EGI,
a partial EGI for each viewing direction is considered to avoid this drawback.
The hidden area, which is occluded, does not contribute EGI mass on Gaussian
sphere.
Complex EGI (CEGI) [8] is introduced which measures the distance from the

arbitrary origin to each surface patch to discriminate non-convex object having
the same EGI representation. The weight at each point is complex number, Aejd

whose magnitude is the surface area and whose phase is the distance over the
Gaussian sphere. The complex weight associate with a surface patch is, where
A is the area of a patch with surface normal, the normal distance d to a fixed
origin. Since Complex EGI has no surface location information more than two
parts on an object may be mapped on the same point of the sphere with the
same weight.
Spherical Attribute Image (SAI) [9] provides a method to make one to one

mapping between a non-convex object surface and a spherical surface. Most of
3D models are represented by unstructured triangular patches called free-form
surface. SAI method deforms tessellated sphere called geodesic dome to original



854 J.-J. Song and F. Golshani

object surface as close as possible before extracting Gaussian curvature from
it. This is a process that provides structured mesh without surface segmenta-
tion. The distribution based on the simplex angle is referred to as the Spherical
Attribute Image.

3 Shape Features

Our approach mimics the behavior of human object recognition by providing
features from 2D visual information and 3D spatial arrangement of objects.
Humans use tactile and visual sensations to recognize an object of interest.
Using three-dimensional spatial arrangement from distribution of surface points
can be considered as touching object by hands to recognize its global shape
whereas using visual information such as 2D contour information from different
viewpoints can be considered as exploring object by rotating object to recognize
its appearance. The following figure in Fig. 1 shows overview of our proposed
retrieval process based on spatial features. The concept of aligning a 3D model
with its principal axes may play an important role in 3D object feature analysis.
Since the bounding box of the 3D object may vary by its initial object pose, the
object alignment by its principal axes eliminate rotation normalization process
in 3D object feature analysis. The fundamental problem to obtain principal
axes of the 3D object lies on its computational complexity. To improve this
problem, some methods have been proposed such as 1) Principle Component
Analysis(PCA) with vertex weight [10], 2) PCA with weight proportional to
triangle area [11]. Another problem is that the different size of triangles consisting
of the object surface may cause widely varying normalized coordinate frame for

Fig. 1. Overview of proposed retrieval process. CSS: Curvature Scale Space, FD:
Fourier Descriptor



3D Object Retrieval by Shape Similarity 855

Fig. 2. (a) Problem of unbiased point distribution caused by various shape of triangle,
(b) Biased point distribution after adding points

models that are identical. A typical method to generate unbiased random points
with respect to the surface area of a polygon model is to subdivide triangles
and obtain inner points. However, the various shape of triangle cause the biased
point distribution. Our method improves it by adding points on triangle edges
as well as faces as shown in Fig. 2. We first obtain inner points by applying
recursive subdivision algorithm and add points on triangle edges recursively.

3.1 Depth Distribution

In order to make consistent environment for feature extraction we first generate
unit sphere, where radius equals 1 (r = 1) and locate each object model in the
center of the unit sphere. To make every object fit into unit sphere we need to
find center of each object model and normalize it for size. The sampling points on
a unit sphere can simply be obtain by subdividing polyhedron such as octagon,
dodecahedron and icosahedrons. Once we determine the number of sampling
points and find coordinates of each sampling point on the surface of the unit
sphere, we shoot imaginary ray from each sampling point to the center of unit
sphere. The length of each ray equals to 1, the radius of sphere. Since we locate
3D object model at the center of unit sphere, each ray is certain to intersect with
the object. We compute intersection points and calculate distance between the
starting point of the ray and the intersection point on the object surface. We use
the heart of ray tracing technique to determine the intersection point of a ray
with an object. To accomplish this task we use the parametric representation of
a vector. Each point along the ray from A(x1, y1, z1) to B(x2, y2, z2) is defined
by some value t such that




x = x1 + (x2 − x1)t = x1 + it
y = y1 + (y2 − y1)t = y1 + jt
z = z1 + (z2 − z1)t = z1 + kt


 (1)
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Since we are using triangle mesh format for object models, we need to con-
sider ray/plane intersection. A plane is a geometric entity that divides the space
through which it passes in two. A plane, unlike a sphere, continues on infinitely;
that is, it is unbounded. We begin with the equation of a plane, which is defined
as:

A(x1 + it) +B(y1 + jt) + C(z1 + kt) +D = 0 (2)

Then the intersection is given by:

t =
−(Ax1 +By1 + Cz1 +D)

(Ai+Bj + Ck)
(3)

The point of intersection is calculated by substituting the value of t back into the
ray equation. The next step is to determine if the intersection point is inside the
polygon (triangle in our case). A number of different methods are available to
solve this problem. One such algorithm works by shooting a ray in an arbitrary
direction from the intersection point and counting the number of line segments
crossed. If the number of crossings is odd, the point is inside the polygon; else it
is outside. This is known as Jordan curve theorem. The detail explanation of ray
tracing technique and Jordan curve theorem can be found in [12]. Now, we can
calculate each distance between ray starting point and intersection point on the
object surface and display each distance in a graph. This process corresponds
to deformation of sphere to object surface as used in SAI. The advantage of
our method is that we can get points from hidden surface. The fast ray-tracing
algorithm can reduce computation time. To represent this distance distribution
as a histogram we may set bin size to 0.1 for the distance (min 0.0, max 1.0) so
that each distance belongs to one out of ten bins.

3.2 Spatial Arrangement Estimation

In this section, the histogram representations of 3D object features we devised for
shape discrimination are described. The probability distributions of 3D object
using distances of surface point pairs are discussed in [13]. In that paper, the
authors utilized simple geometric attributes of surface points such as distance of
two random points, angle between three random points, area of triangle between
three random points and volume of tetrahedron between four random points and
called them shape functions. We propose the way to estimate spatial arrangement
of the object shape by utilizing Discrete Curvature and Normal Vectors as well
as geometric attributes. The first step is to compute the Discrete Curvature of
vertex points of triangle mesh. We use the Discrete Gaussian Curvature k which
is defined as following Formula.

k =
c

A
(4)

where c is the complete angle and A is barycentric area of triangles containing
the corresponding vertex. The complete angle can be define as

c = 2π
m∑

i=1

θi (5)
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and the barycentric area can be obtained from

A =
1
3

m∑
i=1

ti (6)

Where m is number of neighborhood triangles containing the corresponding
vertex, θi is adjacent angles between triangle edges containing the vertex and
ti is area of ith triangle. The curvature value paly an important role in sorting
the surface points in an order. Simply, we can measure distances from random
pairs of surface points, differences of Discrete Curvature values and angles of
normal vectors. Then, we produce three histograms based on the measurements.
These histograms are turned out to be three different signatures of the same
3D object. In order to reduce computation time to generate signatures we select
some surface points which have high curvature values. Then, the computations
for generating signatures can be performed only for those selected surface points.
In later case every pairs of selected points can be involved to generate shape
signatures.

3.3 Shape Signature from Multiple Views

According to the recent psychophysical finding human perceives three-dimen-
sional object from multiple view of two-dimensional shapes not from construc-
tion of 3D alignment. Consider how we study three-dimensional object in our
real life. We study an object by rotating it, or changing the viewing angles. Shi-
mon Ullman argued for the theory that view-independent object recognition by
human is not based on an internally stored model of the object, but upon the
outputs of neurons that respond to various two dimensional views of that object.
In this section we propose a shape signature of 3D object models from multiple
views for shape discrimination. We compute circularity of each 2D shape from
different viewpoints and measure the shape distance between them. The circu-
larity can be obtained from the ratio of boundary and area. A simple geometric
shape like circle, rectangle can be used as the basis of various shapes. Then, the
distances of simple geometric attributes between the basis and each shape from
different viewpoints can be measured. This distance histogram generated from
the distance valuses is considered as shape signature of the 3D model. Alter-
natively we can also measure the 2D shape distances from a pair of randomly
selected viewpoints and demonstrate the probability distribution of them for an
object signature. Many 2D shape features can be used for our approach. Fourier
Descriptor(FD) allows us to compactly describe 2D shape from arbitrary view-
points. Curvature Scale Space and Moment invariants can be used as the other
2D shape descriptor as well.

4 The Experiments

In this experiment, we first generated 2D binary projection images of Boeing-747
aircraft from different viewing directions as shown in Fig. 3. We utilized basic
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Fig. 3. Boeing 747 aircraft and its viewing sphere on the left and 2D projection binary
images from different viewing directions on the left.

geometric attributes. For more reliable feature we will apply Curvature Scale
Space and Moment Invariant features in future experiment. If we assume that
3D object have been initially located by principle axis we can directly consider
the graph as a signature of the object model. However, since we have eliminated
a procedure to find principle axis for the 3D model, the shape distance histogram
can be used as the signature instead. Fig. 4(a) shows graph of geometric attribute
(circularity) taken from 32 different viewpoints for Boeing 747 aircraft object.
After computing circularity from each 2D images we can obtain distance from
each pairs of circularity. This produces 1024 shape distances respectively. Then,
histogram of shape distances for each geometric attribute will be obtained from
them, which has 10 bins as shown in Fig. 4(b). Alternatively, shape distances
can be obtained from random pairs of views.

5 Discussion and Conclusion

1D representation of the boundary of 2D shape has been developed in the context
of image analysis for several decades. Our object-centered feature extraction
approach can be conceptually extended from 2D shape feature extraction such
as function of tangent angle and arc length, distance between shape centroid
and boundary points, complex function using arc length parameter value. The
dominant characteristic of our approach compared with others [14][15][16][17]
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Fig. 4. (a)Graphs of circularity for Boeing 747 model x-axis: 32 different views y-axis:
circularity. (b)Histogram of shape distance by circularity.

can be found in providing both object-centered and viewer-centered features by
observation of human behavior for the object recognition. Especially, our view-
centered approach mimics HVS to characterize 3D object by drawing several
representative 2D view as appearance of a 3D object. Most view-based approach
restrict its views to one viewing plane, namely, those generated be “walking
around” the object without considering object pose which differ from the initial
scanning. They usually assume that the object poses in stable condition, which
is very ambiguous for object orientation. The main drawback is that it does
not provide correspondences for arbitrary views of the object. In this paper we
have proposed shape descriptors for general 3D object models based on object-
centered and view-centered representation scheme respectively. We introduced
1D representation of the 3D shape using features of surface points. As another
approach based on observation of HVS we explained a way to measure 2D shape
distance from a pair of viewpoints and how to construct a histogram. These shape
description method can be incorporated with the 3D shape distance measure that
has geometrical differences in 3D model database. To be able to provide 2D image
query interface our system need to develop efficient grouping algorithm based
on 2D view similarity to reduce number of views of an object and clustering
algorithm to hand large model database.
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