
International Symposium on Turbo Codes and Iterative Information Processing (ISTC), Aug 2014, Bremen, Germany, 1 / 5

Highly Flexible Design of Multi-Rate

Multi-Length Quasi-Cyclic LDPC Codes

Moritz Beermann, Florian Wickert, Peter Vary

Institute of Communication Systems and Data Processing ()

RWTH Aachen University, Germany

{beermann|wickert|vary}@ind.rwth-aachen.de

Abstract—The design of Low-Density Parity-Check (LDPC)
codes with fixed code rate and block length for a fixed channel
condition has been well investigated and very close-to-capacity
performance can be achieved by careful optimization of a code’s
degree distributions. The growing variety of services supported by
mobile communication systems, however, constitutes the need for
highly flexible Forward Error Correction (FEC) schemes. Pursu-
ing this need, we present a design method for the construction of
quasi-cyclic (QC) LDPC codes supporting arbitrarily many block
lengths and code rates using only a single common mother code.
Different block lengths are achieved by an optimized expansion
of the mother code’s lifting matrix. For the support of multiple
code rates, a joint optimization of shortening and puncturing
distributions as well as an optimized check matrix construction
based on the progressive edge-growth algorithm is employed.

I. INTRODUCTION

Low-Density Parity-Check (LDPC) codes doubtlessly be-

long to today’s most widely used and most extensively opti-

mized Forward Error Correction (FEC) schemes [1]. For many

fixed transmission channels, the performance of specifically

tailored LDPC codes has been shown to closely approach the

capacity limit, given that the channel condition is known and

the block length, and thus the latency, tends to infinity. FEC

implementations of modern communication systems, however,

are required to operate over a wide range of transmission

qualities and at the same time support an ever-growing variety

of applications. While theoretically possible, it is far from

being practical to keep one specifically optimized code in

readiness for each of the overabundance of possible scenarios.

A number of contributions have dealt with constructing

rate-compatible LDPC codes which are capable of realizing

multiple code rates using only a single so-called mother code.

Tian and Jones [2] were the first to propose a combined

approach using information shortening and parity puncturing

to cover code rates 0.1 to 0.9 with a single mother code.

More recently, also length-compatible LDPC codes have been

investigated [3], which allow to use multiple code lengths at

a fixed code rate. Most practically employed LDPC codes are

quasi-cyclic (QC) LDPC codes, which are especially suitable

for a parallelized implementation due to their structure of

cyclically shifted identity matrices. Furthermore, QC LDPC

codes inherently support multiple code lengths by using dif-

ferent lifting factors together with a common lifting matrix

to construct codes of different lengths without changing the

underlying code structure and, thus, allowing to use a single

hardware implementation.

While some approaches exist to combine multi-length

QC [4] or other structured [5], [6] LDPC codes with rate-

compatibility, they are either limited to special ranges of code

rate and length combinations, or only the rate adaptation is

optimized without explicitly considering how to achieve good

performance at multiple code lengths.

In this paper, we propose a novel highly flexible algorithm to

construct a single QC lifting matrix that offers good error cor-

rection performance at arbitrarily many code rates and lengths.

Both the asymptotic as well as the finite length performance

are considered by using jointly optimized puncturing and

shortening schemes as proposed in [7] together with a novel

progressive edge-growth (PEG) [8] based construction method

successively taking multiple lifting factors into account to

guarantee good performance at all resulting code lengths.

II. QUASI-CYCLIC LDPC CODES

A. Notation and General Description

A systematic, binary (N,K) LDPC code with N code

bits, K = N − M information bits, and thus code rate

r = K
N is described by a binary sparse parity check matrix

H of full rank, with elements Hm,n, and of dimension

M × N . We denote the submatrix consisting of columns n1

to n2 by H[n1 :n2]. Equivalently to the matrix description,

a bipartite graph with N variable nodes, M check nodes,

and edges according to the non-zero entries of H is often

used for illustrating message-passing decoders like the well-

known Belief Propagation (BP) algorithm. Since a completely

random structure of the parity check matrix is not well suited

for implementation, most practical systems employ so-called

quasi-cyclic (QC) LDPC codes. The parity check matrix of

QC LDPC codes can be efficiently stored and its structure

enables a straightforward parallelized decoder implementation.

The QC check matrix is given by

H
[Z] =




I
A1,1
s I

A1,2
s · · · I

A1,N′

s

I
A2,1
s I

A2,2
s · · · I

A2,N′

s

...
...

. . .
...

I
AM′,1
s I

AM′,2
s · · · I

AM′,N′

s




, (1)

with the lifting factor Z and N ′ = N/Z and M ′ = M/Z.

All submatrices in (1) are either an all-zero matrix of size

Z×Z or a cyclically shifted identity matrix of size Z×Z. The

Z × Z identity matrix, cyclically right shifted by c positions

International Symposium on Turbo Codes and Iterative Information Processing (ISTC), Aug 2014, Bremen, Germany, 2 / 5

is denoted I
c
s . Furthermore, for notational convenience, we

define I
−1
s as the Z × Z all-zero matrix. To efficiently

store a QC check matrix, the so-called lifting matrix A with

dimension M ′×N ′ and entries Am′,n′ ∈ {−1, 0, 1, . . . , Z−1}
is used. Entry Am′,n′ represents the number of right shifts of

the submatrix at rows (m′ − 1)Z + 1, . . . ,m′Z and columns

(n′ − 1)Z + 1, . . . , n′Z of H
[Z] (or an all-zero matrix if

Am′,n′ = −1). In the following, primed index variables (e.g.,

m′) are used whenever referring to a position within the

M ′×N ′ lifting matrix A and unprimed index variables when

referring to a position within the M ×N check matrix H
[Z].

B. Degree Distributions and Thresholds

The distribution of the different column and row weights

of H (and equally H
[Z]) can be described by a so-called

degree distribution (DD) pair [9] in node perspective with the

following polynomial notation:

Λ(x) =

cmax∑

i=2

Λix
i , R(x) =

rmax∑

j=2

Rjx
j ,

where cmax is the maximum column weight and rmax the

maximum row weight. The coefficients Λi and Rj correspond

to the proportion of columns of weight i and rows of weight

j, respectively. Due to the unity column and row weights

of a (shifted) identity matrix, both column and row DDs of

the expanded parity check matrix H
[Z] are equivalent to the

column and row DDs of the lifting matrix A if the weight of

a column (row) in A is defined as the number of entries that

differ from −1. The asymptotically (for N →∞) achievable

error correcting performance of an LDPC code is mainly

determined by its DD pair. Via density evolution (DE) analysis,

a threshold of the lowest channel quality for which error free

decoding is theoretically possible under BP decoding can be

computed [9]. In this paper, we consider DDs optimized for

the Binary Input Additive White Gaussian Noise (BIAWGN)

channel from [7].

III. MULTI-RATE OPTIMIZATION

For achieving rate-compatibility using only a single mother

code and supporting an arbitrary number of L code rates with

arbitrary range between 0 and 1, we consider a combination

of information shortening and parity puncturing as already

presented in [7]. While all details of the DD based optimiza-

tion process can be found in [7], here we only outline the

general features of the approach and explain how to tailor the

approach towards QC LDPC codes. Additionally, we present

an improved method for the construction of a rate-compatible

parity check matrix, based on the PEG algorithm for QC

LDPC codes [10] using the PEG improvement proposed

in [11] and ensuring fast recoverability [12] of punctured bits.

A. Information Shortening and Parity Puncturing

Starting from a systematic (N,K) mother code of fixed

code rate rµ, information shortening allows to realize lower

code rates rl < rµ by only using Keff of the information

positions and w.l.o.g. setting the remaining Ks = K − Keff

positions to zero. The resulting effective code rate is given by

rl =
Keff

Keff +M
=

(
1− Keff

K

)
rµ

1− Keff

K rµ
< rµ. (2)

On the other hand, puncturing Mp = M−Meff of the generated

parity bits before transmission results in the effective code rate

rh =
K

K +Meff

=
rµ

1− (1− rµ)
Mp

M

> rµ. (3)

In the following, we will assume that always the first Ks

positions within the information bits are shortened and the last

Mp positions within the parity bits are punctured. This can be

achieved by intentionally constructing the parity check matrix

this way or by reordering the matrix columns accordingly.

In case of shortening, the decoding process can equivalently

be described by straightforward decoding of the code corre-

sponding to the truncated matrix H[Ks+1:N] [2], [13]. For the

asymptotic analysis of a shortened code of rate rl we refer to

the column DD of the truncated matrix as the effective DD (in

node perspective)

Λ[rl](x) =

cmax∑

i=2

Λ
[rl]
i xi.

The theoretical effect of punctured (and thus erased) bits

during BP decoding was incorporated into the DE framework

by Ha et al. in [14]. In accordance with [14], [7], we define

the puncturing polynomial (PP) of the effective rate rh as

Π[rh](x) =

cmax∑

i=2

Π
[rh]
i xi,

where Π
[rh]
i denotes the fraction of degree i nodes to be

punctured. For the asymptotic evaluation of the shortened

codes, straightforward density evolution using Λ[rl](x) can be

used. For the punctured codes, an adaptation of the modified

density evolution for punctured LDPC codes as proposed for

a Gaussian Approximation in [14] to the case of discretized

density evolution is employed.

B. Joint Rate-Compatible Optimization [7]

Given a set of L target code rates r1 < r2 < · · · < rL
including a mother code rate rµ ∈ {r1, . . . , rL} in an arbitrary

range between 0 and 1, the joint rate-compatible optimization

process presented in [7] yields L polynomials:

• Λ[rµ](x) = Λ(x): a variable node degree distribution for

the mother code of rate rµ ∈ {r1, . . . , rL},
• Λ[rl](x): an effective variable node degree distribution for

each target code rate rl ∈ {r1, . . . , rµ−1} with rl < rµ,

• Π[rh](x): a puncturing polynomial for each target code

rate rh ∈ {rµ+1, . . . , rL} with rh > rµ.

During the optimization, check node DDs are assumed to be

concentrated to at most two consecutive degrees, which has

been proven not to degrade the performance [15] and can be

ensured by the subsequent matrix construction.

International Symposium on Turbo Codes and Iterative Information Processing (ISTC), Aug 2014, Bremen, Germany, 3 / 5

H H

Λ

Λ

Λ[rµ−1] Λ[r2] Λ[r1]

· · ·

· · ·
· · ·

Π[rL]

Π[rL−1] Π[rµ+1]

︸ ︷︷ ︸

information part

︸ ︷︷ ︸

information part

︸ ︷︷ ︸

parity part

︸ ︷︷ ︸

parity part

PEG
processing

I1I2Iµ

Fig. 1. Visualization of rate-compatible matrix structure

C. Application to QC LDPC Codes

Even though, the described bit-wise shortening and punc-

turing methods can in principle be applied to QC LDPC

codes, we restrict our approach to operate on submatrix

level to comply with the structured quasi-cyclic concept. By

always shortening (puncturing) all Z bits corresponding to one

submatrix, operations can be performed based on the lifting

matrix A instead of the fully expanded check matrix H
[Z],

maintaining the block structure of the resulting shortened

(punctured) code. Consequently, either K ′
s = Ks

Z blocks are

shortened or M ′
p =

Mp

Z blocks are punctured. As described in

Sec. II-B, by designing the lifting matrix A according to the

jointly optimized DDs, the expanded check matrix H
[Z] will

by definition exhibit the same DDs. This strategy will also

prove useful for supporting multiple block lengths since the

same shortening (puncturing) rules can be used for different

lifting factors Z.

D. Optimized Rate-Compatible (RC) Matrix Construction

To construct a rate-compatible (RC) lifting matrix A that

follows the shortening and puncturing distributions specified

by the joint optimization, we define the variable node degree

sequence d = (d1, . . . , dN ′), such that each submatrix as

shown in Fig. 1 has the correct column degree distribution.

1) Check Node Concentration: Using the RC degree se-

quence d, we employ the QC PEG algorithm [10], processing

columns from right to left to ensure a (nearly) concentrated

check node DD of the effective shortened matrices.

2) ACE Properties: We have observed that the performance

of PEG codes (especially in the error floor domain) is strongly

influenced by the order in which degrees are generated,

which is confirmed by analyzing the codes’ approximate cycle

extrinsic message degree (ACE) properties [16]. By generating

degrees in strictly ascending order, as initially proposed by

Hu [8], cycles with only low degree variable nodes, and thus

low ACE values, are effectively avoided. If a more randomized

degree order, as in case of our specially constructed degree

sequence, is used, this property is not conserved and low ACE

cycles are created. To counteract this effect, we employ two

improvements. Firstly, using the RC degree sequence from

above, within each submatrix relevant for shortening, columns

are generated in ascending degree order. The index sets of

these matrices are given by I1 = {N ′ − M ′

1−r1
+ 1, . . . , N ′}

and Ii = {N
′− M ′

1−ri
+1, . . . , N ′− M ′

1−ri−1
} for i ∈ {2, . . . , µ},

PEG PEG

pp pp

0

0

0

0

0

0
1

1
1

.

.. .
..

.

..

.

.. .
..

.

..

· · ·· · · · · ·· · ·

︸
︷
︷
︸

potentially

dead check

nodes

︸
︷
︷

︸

guaranteed

survived

check nodes

︸
︷
︷

︸ potentially

dead check

nodes

︸
︷
︷

︸

guaranteed

survived

check nodes

Fig. 2. Ensuring recoverability of all punctured bits marked by “p”. Dark
shaded area has already been filled by PEG, light shaded area is still empty.
Definition of dead check nodes and survived check nodes according to [12].

where I1 is visualized by the darkest and Iµ by the lightest

shade of gray in the left-hand side of Fig. 1. This way, the

check concentration of submatrices is maintained and low

ACE cycles within each submatrix are reduced. Secondly,

to further reduce the number of low ACE cycles between

submatrices, we use the improved PEG rule as proposed

in [11], which selects the check node that maximizes the

local ACE value whenever multiple check node candidates

are present throughout the PEG algorithm.

3) Recoverability of Punctured Bits: To ensure fast recov-

erability of punctured bits, whenever processing a punctured

variable node during PEG, we connect it to exactly one guar-

anteed survived check node [12] that has not been connected

to any other punctured node so far (cf. Fig. 2). Hence, the

current punctured node will be 1-step-recoverable. Before

proceeding with the next node, the connected guaranteed

survived check node is marked as potentially dead check

node [12]. Since this check node might later be connected

to other punctured nodes, not all punctured nodes will remain

1-step-recoverable. However, due to the inherent randomness

of the PEG algorithm, creating long chains of dependent

punctured nodes with the proposed method is very unlikely.

Empirical observations show that even if as many as 90% of

the parity bits are punctured, all of them are recoverable within

a few iterations. A full algorithmic description is included in

Alg. 1 together with the multi-length optimization of Sec. IV.

IV. MULTI-LENGTH OPTIMIZATION

The proposed algorithm yields a multi-rate multi-length

code by considering the RC degree sequence d from above

(cf. Sec. III-D) and a set P containing the punctured positions

(which in our case are always the rightmost positions). It

is based on the QC PEG [10] algorithm and, thus, connects

variable node blocks to check node blocks one at a time. To

obtain a lifting matrix A that can be expanded by factors

Z1 < · · · < Ze, whenever placing a value in the lifting

matrix, we first select candidates from all combinations of

block indices and shift values from {0, . . . , Z1 − 1} for the

expansion by Z1, and then for Z2 add all combinations with

shift values from {Z1, . . . , Z2 − 1} that do not change the

candidates for the smaller expansion if the shift value is taken

modulo Z1. For Z3 to Ze we repeat this step and finally

pick an index and shift value combination from the resulting

candidates that hence proved to be good at all expansions.

We define V [i] (C[i]) as the set of all variable (check) node

indices and M
[i]
n (N

[i]
m) as the set of all check (variable)

International Symposium on Turbo Codes and Iterative Information Processing (ISTC), Aug 2014, Bremen, Germany, 4 / 5

node indices connected to variable (check) node n (m), each

with respect to the current check matrix H
[Zi] expanded

from A with lifting factor Zi. The order in which blocks

are processed was already discussed in Sec. III-D2. The set

S is defined as all guaranteed survived check node block

positions in the lifting matrix and initially contains all of

them. Whenever the first check node block is connected to

variable node block n′, a minimum degree check node m
from C[e] is picked. If n′ is punctured, this chosen node

additionally has to be a guaranteed survived check node from

S to ensure 1-step-recoverability for now. Because of the

circular structure of the submatrices in H
[Zi], the remaining

variable nodes in group n′ are implicitly connected through

the cyclically shifted identity matrix. The corresponding shift

value A⌈ m
Zi

⌉,n′ = s[e](m) in the lifting matrix is determined

by the function s[i](m) := (M ′Zi + 1 −m) mod Zi, which

ensures connecting row m and column n = (n′−1)Zi+1 (i.e.,

the first column index within block n′) in the expanded matrix

H
[Zi]. If variable node block n′ is punctured, the connected

check node block ⌈m/Ze⌉ is declared potentially dead and

therefore removed from S .

The remaining dn′ − 1 block connections are established

one after another by randomly picking a check node m
from candidate set K[e], which is constructed as follows. K[i]

denotes the set of check node index candidates for expansion

factor Zi. Candidate set K[1] at the smallest expansion factor

Z1 is initialized with the indices of all check nodes in H
[Z1]

that are not yet connected to variable node block n′. If n′ is

punctured, all guaranteed survived check nodes are removed

from K[1] since exactly one of them was already connected

by the first edge (cf. Sec. III-D3). Next, a tree in H
[Zi] is

expanded to find the set T l
n, containing all check nodes in

the tree originating from the first variable node n in group n′

up to depth l, such that T l
n stops increasing or T̄ l

n 6= ∅ but

T̄ l+1
n = ∅, where T̄ l

n is the complement set of T l
n. Then, l is

decremented until there is at least one check node in T l
n that

is also a candidate in K[i]. The temporary set H comprises all

check nodes having minimum current degree within T l
n∩K

[i].

As proposed in [11], the candidate set K[i] is then compiled

from all check nodes in H that maximize ACE[i]
m(n), the ACE

value of the shortest cycle passing through variable node n
and check node m if an edge was placed between n and m in

matrix H
[Zi]. For the next expansion factor Zi+1, candidate

set K[i+1] is constructed by including all check nodes, for

which a corresponding check node in each K[j] with j ≤ i
exists, such that these check nodes are in the same group and

the remainders of their shift values are equal if divided by the

respective lifting factor Zj . This process is repeated until K[e]

is found. Finally, a check node m is randomly chosen from

K[e] and connected to variable node n. Again, the remaining

variable nodes in group n′ are implicitly connected by the

shifted identity matrix with shift value s[e](m).

V. SIMULATION RESULTS

To show the effectiveness of the proposed algorithm, a

single rate 1/2 lifting matrix with M ′ = 63 and N ′ = 126 was

constructed, which is capable of operating at effective code

Algorithm 1 Multi-Rate Multi-Length QC ACE-Opt. PEG

Input: M ′, N ′, Z = (Z1, . . . , Ze), d = (d1, . . . , dN ′),P

Output: A ∈ {−1, 0, 1, . . . , Ze − 1}M
′×N ′

Am′,n′ ← −1, ∀m′, n′

S ← {1, . . . ,M ′}
for ñ′ = N ′ . . . 1 do

pick n′ ∈ Ii as highest unconnected index with lowest

degree and i ∈ {1, . . . , µ} such that ñ′ ∈ Ii
for d = 1 . . . dn′ do

if d = 1 and n′ ∈ P then

randomly pick m ∈ argmin
m̃∈C[e] : ⌈ m̃

Ze
⌉∈S

|N
[e]
m̃ |

S ← S \
{
⌈ mZe
⌉
}

else if d = 1 then

randomly pick m ∈ argmin
m̃∈C[e]

|N
[e]
m̃ |

else

K[1] ← C[1] \
⋃n′Z1

ñ=(n′−1)Z1+1M
[1]
ñ

if n′ ∈ P then

K[1] ← K[1] \
{
m ∈ C[1] : ⌈ mZ1

⌉ ∈ S
}

end if

for i = 1 . . . e do

n← (n′ − 1)Zi + 1
expand tree from variable node n in H

[Zi] until

T l
n stops increasing or T̄ l

n 6= ∅ but T̄ l+1
n = ∅

while T̄ l
n ∩ K

[i] = ∅ do

l← l − 1
end while

H ← argmin
m∈T̄ l

n∩K[i]

|N
[i]
m |; K[i]← argmax

m∈H
ACE[i]

m(n)

if i < e then

K[i+1] ← {m ∈ C[i+1] : ∀j ≤ i, ∃ m̃ ∈ K[j],
⌈ m
Zi+1
⌉=⌈ m̃Zj

⌉ ∧ s[i+1](m) mod Zj=s[j](m̃)}
end if

end for

randomly pick m ∈ K[e]

end if

A⌈m/Ze⌉,n′ ← s[e](m)
end for

end for

rates ri ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and using

lifting factors Zi ∈ {4, 8, 16, 32, 64, 128, 256} at block lengths

N ′Zi = Ni ∈ {504, 1008, 2016, 4032, 8064, 16128, 32256}.
The optimized degree distributions with maximum variable

node degree 10 and puncturing polynomials were taken from

setup M5 in [7, Table I]. Performance is evaluated by measur-

ing the gap in terms of Eb/N0 of bit error rate (BER) curves

after 100 BP iterations to the BIAWGN capacity at BER 10−4,

which is chosen since possible error floor effects are not yet

specifically handled during code construction.

Figure 3 shows the gap to capacity over the code rate for

different code lengths from 504 to 32256. As a reference, the

performance of dedicated PEG codes is shown, which have

been constructed with optimized DDs of the same maximum

degree of 10 for each rate and with the same effective code

length as the multi-rate multi-length code at each operating

International Symposium on Turbo Codes and Iterative Information Processing (ISTC), Aug 2014, Bremen, Germany, 5 / 5

0.1 0.3 0.5 0.7 0.9
0

1

2

3

4

5

6

proposed Alg. 1

dedicated PEG

Zi ∈ {4, 8, 32, 256}

ga
p
to

ca
p
ac
it
y
/
d
B

effective code rate

BER 10−4

Fig. 3. Eb/N0-gap to BIAWGN capacity for BER 10−4 with 100 BP
iterations over code rate for different lifting factors of proposed Alg. 1. Black
lines show performance of dedicated PEG codes of same code rate and length.

point. It can be seen that the proposed approach and the

dedicated PEG codes perform very similar at the mother code

rate 0.5 and at code rates where shortening is used (i.e.,

below 0.5)1, while a performance loss of the multi-rate multi-

length code is visible which grows with increasing amount of

punctured bits (i.e., at code rates above 0.5).

In Fig. 4, the mean gap to capacity achieved at each code

length (averaged over all code rates 0.1 to 0.9) of the proposed

approach and again the dedicated PEG codes is depicted. It can

be seen that the performance penalty of having only a single

code for all rates and lengths as compared to having multiple

dedicated codes decreases with increasing block length. Since

we are not aware of any scheme based on a single mother code

offering a comparable extent of flexibility in terms of both

code rate and length, as further reference the three schemes

Tian [2], [7, M5], and [7, M8] with code lengths around

10000 are shown, which only support rate-compatibility but

no length-compatibility.

VI. CONCLUSION

A novel PEG-based algorithm was proposed to construct

a single multi-rate and multi-length lifting matrix of a QC

LDPC code by optimized matrix expansion and jointly op-

timized information shortening and parity puncturing. The

effectiveness of the proposed scheme was demonstrated by

a single mother code covering the code rate range from 0.1
to 0.9 and code lengths from 504 to 32256 with only a total

average performance loss of 0.19 dB compared to a set of

63 specifically optimized PEG codes for each rate and length

combination. While 63 encoder/decoder pairs are needed for

this set, the proposed multi-rate multi-length code can be han-

dled by a single encoder/decoder implementation. To the best

of our knowledge, no multi-rate multi-length approach based

on a single mother LDPC code with the same flexibility and

comparable performance has been presented so far. Even better

performance can be expected for less widespread code rate

ranges which still cover the requirements of many applications.

1While the DE thresholds of the dedicated codes are better than those of
the proposed scheme, they are in some cases outperformed at BER 10−4 due
to the different degree ordering in the PEG part of the proposed algorithm.

10
3

10
4

1

1.5

2

2.5

3

3.5

proposed Alg. 1

dedicated PEG

Tian [2] M5 from [7]

M8 from [7]

m
ea
n
ga
p
to

ca
p
ac
it
y
/
d
B

code length

BER 10−4

Fig. 4. Mean gap to capacity at BER 10−4 with 100 BP iterations averaged
over all code rates for each code length. Black lines shows performance of
dedicated PEG codes of same code lengths averaged over all code rates.

REFERENCES

[1] D. J. C. MacKay and R. M. Neal, “Good Codes Based on Very Sparse
Matrices,” Cryptography and Coding, 5th IMA Conference, Springer,
Berlin, Germany, 1995, pp. 100–111.

[2] T. Tian and C. R. Jones, “Construction of Rate-Compatible LDPC Codes
Utilizing Information Shortening and Parity Puncturing,” EURASIP J.
Wirel. Commun. Netw., vol. 5, pp. 789–795, Oct. 2005.

[3] K.-J. Kim, J.-H. Chung, and K. Yang, “Design of Length-Compatible
Low-Density Parity-Check Codes,” IEEE Comm. Lett., vol. 16, no. 5,
pp. 734–737, May 2012.

[4] L. Fan, K. Peng, C. Pan, and J. Song, “Multiple-Rate Multiple-Length
QC-LDPC Codes Design with Near Shannon Limit Performance,” Proc.
IEEE Int. Symp. on Broadband Multimedia Systems and Broadcasting,
June 2013, pp. 1–6.

[5] M. El-Khamy, J. Hou, and N. Bhushan, “Design of Rate-Compatible
Structured LDPC Codes for Hybrid ARQ Applications,” IEEE J. Sel.
Areas Commun., vol. 27, no. 6, pp. 965–973, Aug. 2009.

[6] T. Nguyen, A. Nosratinia, and D. Divsalar, “The Design of Rate-
Compatible Protograph LDPC Codes,” IEEE Trans. Comm., vol. 60,
no. 10, pp. 2841–2850, Oct. 2012.

[7] M. Beermann and P. Vary, “Joint Optimization of Multi-Rate LDPC
Code Ensembles for the AWGN Channel Based on Shortening and
Puncturing,” Proc. IEEE Wireless Communications and Networking
Conference (WCNC), Istanbul, Turkey, Apr. 2014.

[8] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and Irregular
Progressive Edge-Growth Tanner Graphs,” IEEE Trans. Inform. Theory,
vol. 51, no. 1, pp. 386–398, Jan. 2005.

[9] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of Capacity-
Approaching Irregular Low-Density Parity-Check Codes,” IEEE Trans.
Inform. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[10] Z. Li and B. V. K. V. Kumar, “A Class of Good Quasi-Cyclic Low-
Density Parity Check Codes Based on Progressive Edge Growth Graph,”
Asilomar Conference on Signals, Systems and Computers, Nov 2004.

[11] H. Xiao and A. H. Banihashemi, “Improved Progressive-Edge-Growth
(PEG) Construction of Irregular LDPC Codes,” IEEE Comm. Lett.,
vol. 8, no. 12, pp. 715–717, Dec. 2004.

[12] J. Ha, J. Kim, D. Klinc, and S. McLaughlin, “Rate-Compatible Punc-
tured Low-Density Parity-Check Codes with Short Block Lengths,”
IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 728–738, Feb. 2006.

[13] M. Beermann and P. Vary, “Breaking Cycles with Dummy Bits: Im-
proved Rate-Compatible LDPC Codes with Short Block Lengths,” Pro-
ceedings of International ITG Conference on Systems, Communications
and Coding, München, Germany, Jan. 2013.

[14] J. Ha, J. Kim, and S. McLaughlin, “Rate-Compatible Puncturing of
Low-Density Parity-Check Codes,” IEEE Trans. Inform. Theory, vol. 50,
no. 11, pp. 2824–2836, Nov. 2004.

[15] S. Chung, T. J. Richardson, and R. Urbanke, “Analysis of Sum-
Product Decoding of Low-Density Parity-Check Codes Using a Gaussian
Approximation,” IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 657–
670, Feb. 2001.

[16] T. Tian, C. Jones, J. Villasenor, and R. Wesel, “Selective Avoidance
of Cycles in Irregular LDPC Code Construction,” IEEE Trans. Inform.
Theory, vol. 52, no. 8, pp. 1242–1247, Aug. 2004.

