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Abstract 
 

The multi-objective optimization for a multi-product multi-period four-echelon supply chain network consisting of manufacturing plants, 

distribution centers (DCs) and retailers each with uncertain services and uncertain customer nodes are aimed in this paper. The two 

objectives are minimization of the total supply chain cost and maximization of the average number of products dispatched to customers. 

The decision variables are the number and the locations of reliable DCs and retailers, the optimum number of items produced by plants, the 

optimum quantity of transported products, the optimum inventory of products at DCs, retailers and plants, and the optimum shortage 

quantity of the customer nodes. The problem is first formulated into the framework of a constrained multi-objective mixed integer linear 

programming model. After that, the problem is solved by using meta-heuristic algorithms that are Multi-objective Genetic Algorithm 

(MOGA), Fast Non-dominated Sorting Genetic Algorithms (NSGA-II) and Epsilon Constraint Methods via the MATLAB software to 

select the best in terms of the total supply chain cost and the total expected number of products dispatched to customers simultaneously. At 

the end, the performance of the proposed multi-objective optimization model of multi-product multi-period four-echelon supply chain 

network design is validated through three realizations and an innumerable of various analyses in a real world case study of Bangladesh. The 

obtained outcomes and their analyses recognize the efficiency and applicability of the proposed model under uncertainty. 
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1. Introduction 

Nowadays, supply chain management (SCM) which 

covers production planning for entire supply chain from 

the raw material supplier to the end customer has recently 

been the focus of many researchers. Though SCM has 

become the fundamental of the enterprise management in 

the 21st century, there is a high interest to exploit the full 

potential of SCM in enhancing organizational 

competitiveness. SCM has a tremendous impact on 

organizational performance in terms of competing based 

on price, quality, dependability, responsiveness, and 

flexibility in the global market and it is becoming a more 

matured discipline.  In most of the classical supply chain 

network designs, the goal has been to send products from 

one layer to another in order to supply demands such that 

sum of strategic and tactical/operational cost is 

minimized. For instance, Amiri (2006) developed a two 

stage SC model to select optimum location of production 

plants and distribution warehouses in order to dispatch the 

products from plants to customers with the goal of 

minimizing the total costs of the distribution network. A 

new three-stage production–distribution system with 

safety stock was formulated to minimize total supply 

costs by Gebennini. et at., (2009).  Konak.A. et al., 

(2006).  has shown that most of the real engineering 

problems actually do have multiple objectives, i.e., 

minimize cost, minimize risk, maximize performance, 

maximize reliability, etc. These are difficult but realistic 

problems. The multi objectives are conflict each other, 

and optimizing a particular solution with respect to a 

single objective can result in unacceptable results with 

respect to the other objectives. A reasonable solution to a 

multi-objective problem is to investigate a set of 

solutions, each of which satisfies the objectives at an 

acceptable level without being dominated by any other 

solution. In general, a multi-objective optimization, a 

single point optimal solution is not obtained, that can 

optimize all the objective function simultaneously. 

Therefore, multi objective optimization is not to search 

for the optimal solution, but for an efficient solution, 

which will make all the objective function as minimum as 

possible or that can provide best solution. 

 

There are two general approaches to multiple-objective

 

optimization. One is to combine the individual objective 

functions into a single composite function or move all but 

one objective to the constraint set. In the former case, 

determination of a single objective is possible with 

methods such as utility theory, weighted sum method, 

etc., but the problem lies in the proper selection of the 

weights or utility functions to characterize the decision-

maker‟s preferences. In practice, it can be very difficult to 

precisely and accurately select these weights, even for 

someone familiar with the problem domain. 

Compounding this drawback is that scaling amongst 

objectives is needed and small perturbations in the 

weights can sometimes lead to quite different solutions. 

The weighting method has several drawbacks (Ripon et

 

al., (2011): (1) it is difficult to determine the weight for 

each objective function beforehand; (2) only one Pareto 

optimal solution generated in one run; (3) as all the 

objective functions are added up linearly, this method is *Corresponding author Email address:mashum.billal@ipe.ruet.ac.bd 
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unable to find the Pareto optimal solutions that cannot be 

represented in linear form; (4) different combinations of 

weights may result in the same Pareto optimal solution. In 

the latter case, the problem is that to move objectives to 

the constraint set, a constraining value must be established 

for each of these former objectives. This can be rather 

arbitrary. In both cases, an optimization method would 

return a single solution rather than a set of solutions that 

can be examined for trade-offs. For this reason, decision-

makers often prefer a set of good solutions considering 

the multiple objectives. The second general approach is to 

determine an entire Pareto optimal solution set or a 

representative subset. A Pareto optimal set is a set of 

solutions that are non-dominated with respect to each 

other. While moving from one Pareto solution to another, 

there is always a certain amount of sacrifice in one 

objective(s) to achieve a certain amount of gain in the 

other(s). Pareto optimal solution sets are often preferred to 

single solutions because they can be practical when 

considering real-life problems since the final solution of 

the decision-maker is always a trade-off. Pareto optimal 

sets can be of varied sizes, but the size of the Pareto set 

usually increases with the increase in the number of 

objectives.  

In this paper, a multi-product multi-period four echelon 

supply chain consisting of a manufacturing plant that 

produces several products, distribution centers (DCs) that 

receive the products and stores them in order to satisfy 

customer‟s demands and the demands of retailer. Retailers 

receive the products from DCs and store them in order to 

satisfy customer‟s demands and customer nodes as final 

recipients of the products is considered, in which the 

distribution center and retailers are subject to random 

failure with demand uncertainty. The goal is to determine 

the optimum number of items produced by plants, the 

optimum quantity of products to be dispatched from 

plants to DCs and from DCs to retailers and to customers, 

and from retailers to customer nodes, the optimum 

inventory of products at DCs and plants, and the optimum 

shortage quantity of the customer nodes. The problem has 

two conflicting objectives. The first is to minimize the 

total chain cost and the second is to maximize the average 

total number of products dispatched to customers from 

DCs and retailers. The problem is first formulated into a 

bi-objective mixed-integer linear programming model. 

The customer demands are satisfied directly from 

distribution center or via retailers. Note that while the 

uncertainty involved in both distribution and retailers 

facilities of supply chain networks with demand 

uncertainty has not been considered in most of relevant 

works, this paper aims to provide a framework to address 

it by assuming that the distribution and retailers facilities 

are subject to random failures due to natural events, 

terrorist attacks, weather condition, labor absence, change 

in owner, politically unstable situation and so on. 

Moreover, the customers‟ demands are satisfied directly 

from distribution centers or via retailers. There are 

different methods are suggested to model two conflicting 

objectives in this research. These methods reflect different 

expectations and willing of decision makers.  

1.1 Literature review 

A supply chain consists of all parties involved, directly or 

indirectly, in fulfilling a customer request. The supply 

chain includes not only the manufacturer and suppliers, 

but also transporters, warehouses, retailers, and even 

customers themselves. Supply chain (SC) is an integrated 

system of facilities and activities that synchronizes inter 

related business functions of material procurement, 

material transformation to intermediates and final 

products and distribution of these products to customers. 

Scavarda et al. (2010), formulated a product variety 

problem considering emerging and developed markets 

and they utilize different techniques to collect data. The 

supply chain network design under demand uncertainty 

has been received significant importance in the recent 

time. Ren et al (2015) developed a Mixed-Integer Non-

linear Programming (MINLP) model in order to help the 

stakeholders/decision-maker to find out the most 

sustainable design in sustainable environment. For 

instance, Cardona-Valdés et al. (2011) proposed a bi-

objective two-echelon production distribution network 

under demand uncertainty to minimize both the total 

supply chain cost and the total service time, where they 

solved the stochastic optimization problem by L shaped 

algorithm. El-Sayed et al., (2010), extended a multi-

period three-echelon forward-reverse logistics network 

design under uncertainty where they considered three 

echelons in forward direction and two echelons in reverse 

direction in order to maximize the total expected profits. 

In the meanwhile, Schüt et al. (2009), formulated another 

two-stage SC stochastic problem under the short-term 

operations and demand uncertainty to minimize the total 

expected supply costs. After that, Chen et al. (2004), 

viewed a multi-product, multi-stage, and multi-period 

scheduling model was proposed with multiple 

incommensurable goals for a multi-echelon supply chain 

network with uncertain market demands and product 

prices.  

The uncertain market demands are a realistic situation for 

any kind of product and service due to this uncertainty is a 

common phenomenon in supply chain cost estimation. 

Georgiadis et al. (2011), mentioned a multi-product 

supply chain network design problem considering time 

varying uncertainty in terms of a number of likely 

scenarios and they solved the problem by using branch 

and bound algorithm. Facility location and task allocation 

problem with stochastic demand was examined by Wang 

et al. (2012), to make decisions at both strategic and 

operational levels to maximize profit, where an improved 

genetic algorithm (GA) was employed to solve the 

problem. Furthermore, Olivares-Benitez et al. (2012), 

formulated a new bi-objective mixed-integer SC problem 

which they solved by three classical  -constraint methods 

to produce Pareto-optimal points for decision making. 

Zhang et al. (2012) proposed a multi-echelon production 

system supply chain network for an automobile which 

involves material supply, component fabrication, 

manufacturing, and final product distribution activities 

under price and demand uncertainty. Pishvaee et al. 

(2010), proposed a bi-objective MIP model to minimize 
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the total SC costs and maximize the responsiveness of the 

closed loop logistics network and they used memetic 

algorithm and dynamic search algorithm was developed to 

solve the problem. Easwaran and Uster (2010), calculated 

a closed-loop multi-product logistics network design 

problem where hybrid manufacturing/remanufacturing 

facilities and finite-capacity hybrid distribution/collection 

centers are considered and the problem was solved by 

benders' decomposition method. Mehrbod et al. (2012), 

developed a multi-objective MIP formulation to minimize 

the SC total cost, the delivery time, and the collection 

time of used products in the closed loop network. Lu and 

Bostel (2007), presented a two-level location problem in 

which the forward and reverse flows are considered 

simultaneously and Lagrangian heuristics was developed 

to validate the problem. Ruiz-Femenia et al. (2013), 

analyzed the effect of demand uncertainty on the multi-

objective optimization of chemical supply chains, 

simultaneously considering their economic and 

environmental performance. Moreover, Rodriguez et al. 

(2014), proposed an optimization model to redesign the 

supply chain of spare part delivery under demand 

uncertainty from strategic and tactical perspectives in a 

planning horizon consisting of multiple periods. They 

addressed the risk-pooling effect was taken into account 

when defining inventory levels in distribution centers and 

customer zones. 

There are numerous method to solve multi-objective 

optimization that are discussed in different literature, for 

example, Shankar et al. (2013), conducted multi-objective 

optimization for four-echelon supply chain problem to 

reduce the total supply chain cost as well as to maximize 

fill rate. They used MOPSO algorithm which can be 

optimized more than two conflicting objectives 

simultaneously under uncertainty. Sarrafha et al. (2014) 

developed a multi-periodic structure for a supply chain 

network design for multi-product to reduce the total 

supply chain costs and the average tardiness of product to 

the distribution centers as well as to increase the 

responsiveness using a novel multi objective biography 

based optimization (MOBBO). Pasandideh et al. (2015), 

proposed a bi-objective mixed-integer linear 

programming model for multi-product multi-period three-

echelon supply chain network where they used six 

MODM methods to reduce the total cost and increase the 

responsiveness. Amin et al. (2013), proposed a facility 

location model for a general closed-loop supply chain 

network. The model was designed for multiple plants 

(manufacturing and remanufacturing), demand markets, 

collection centers, and products. The goal was to know 

how many and which plants and collection centers should 

be open, and which products and in which quantities 

should be stock in them. The objective function 

minimizes the total cost. Then, the model was solved by 

two methods including weighted sums and -constraint 

methods. Furthermore, trade-off surfaces of test problems 

are examined. The multi-objective model also is extended 

by stochastic programming (scenario-based) to examine 

the effects of uncertain demand and return on the network 

configuration. 

Pishvaee, et al. (2014) presented a mixed integer multi-

objective programming model for a medical supply chain 

network under uncertainty. Their model aimed to 

optimize three conflicting objectives including 

minimization of the total costs, minimization of the 

environmental effects, and maximization of social 

responsibilities. They defined several constraints and 

binary variables to convert the nonlinear model into a 

linear one and used an accelerated benders decomposition 

algorithm to solve the problem. Kannan et al. (2013), 

proposed an approach to rank and select the best green 

suppliers according to economic and environmental 

criteria in a SC, and then to allocate the optimum order 

quantities among them. The proposed approach is an 

integration of the fuzzy multi-attribute utility theory and 

multi-objective programming. Maximizing the total value 

of purchasing and minimizing the total cost of purchasing 

simultaneously are the objectives of the model.  

Pasandideh et al. (2015) proposed a bi-objective 

optimization of a multi-product multi-period three-

echelon supply chain network consisting of 

manufacturing plants, distribution centers (DCs) each 

with uncertain services, and customer nodes is aimed in 

this paper. The two objectives are minimization of the 

total cost while maximizing the average number of 

products dispatched to customers. In these paper only 

considered uncertainty in DCs and to solve the problem 

using the GAMS software, six multi-objective decision-

making (MODM) methods are investigated. Pasandideh et 

al. (2015) also proposed bi-objective optimization of a 

multi-product multi-period three-echelon supply chain 

network under uncertainty was aimed. The network 

consists of some manufacturing plants, distribution 

centers (DCs), and customer nodes. The contribution of 

this paper was to bring the existing models closer to 

reality. To solve the complicated problem, a non-

dominated sorting genetic algorithm (NSGA-II) was 

utilized next. As there was no benchmark available in the 

literature, another GA-based algorithm called non-

dominated ranking genetic algorithm (NRGA) was used. 

Ren et. Al. (2015), developed a mixed integer non-linear 

model with the aim of helping the decision-maker to 

select the most sustainable design and planning supply 

chain network. The SC structure considers multiple feed 

stocks, transport modes, regions for    production and 

distribution centers. A sustainable measure was explored, 

which was based on the energy sustainability index trough 

a life cycle perspective. Fung et al. (2015), developed a 

procedure with the aims of infrastructure expansion 

minimization cost to face future demand variability in a 

mineral supply chain. A Meta heuristic formulation was 

designed based on the hybridization of mixed integer 

linear programming (MILP) and a simulated annealing 

approach taking advantages of different levels of data 

aggregation. The procedure demonstrated the ability to 

solve industrial problems of different sizes. Camacho et 

al. (2015), considered in its work the production planning 

and distribution of a supply chain with the aim of 

operation and transport costs minimization in a four 

echelon supply chain. A heuristic algorithm based on 
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Scatter Search that considers the Stackelberg‟s 

equilibrium was developed for the problem solution. 

Many researchers have widely applied GA to solve SCM 

problems. At first Ulungu et al. (1999)  proposed  a  

multi-objective SA (MOSA) are the meta-heuristics 

commonly used to find the Pareto front solutions in NP-

hard multi- objective problems.  Altiparmak et al. (2006), 

proposed a GA to find the set of Pareto- optimal solutions 

of a multi-objective four-echelon supply chain using two 

different weighting approaches. Hnaiena et al. (2010), 

developed a model for a SC of a two-level assembly 

system under lead time uncertainty in order to minimize 

the expected component holding costs and to maximize 

the customer service level for the finished product. They 

employed two multi-objective meta-heuristics based on 

GA to solve these problems. Prakash et al. (2012), 

provided a knowledge-based GA (KBGA) to optimize a 

SC network. Shi et al. (2017), formulated a multi-

objective Mixed Integer Programming model for a closed 

loop network design problem is. In addition to the overall 

costs, the model optimizes overall carbon emissions and 

the responsiveness of the network. An improved genetic 

algorithm based on the framework of NSGA II is 

developed to solve the problem and obtain Pareto optimal 

solutions. Rabiee et al.[36] compare the result obtain from 

NSGA-2, NRGA, MOGA and PAES in case of bi-

objective partial flexible job shop scheduling problem. 

Furthermore, Marufuzzaman et al. (2014), considered a 

two-stage stochastic programming model used to design 

and manage biodiesel supply chains. The model captures 

the impact of biomass supply and technology uncertainty 

on supply chain-related decisions. They solved this 

problem using algorithms that combine the Lagrangian 

relaxation and the L-shaped solution methods. Srinivas 

and Deb (1994) in NSGA classify the population into 

non-dominated fronts using the algorithm. 

Bandyopadhyay and Bhattacharya (2014), proposed a tri-

objective optimization problem for a two echelon serial 

supply chain. They considered a modification of non-

dominated sorting genetic algorithm-II (NSGA-II) with a 

mutation algorithm that has been embedded into the 

modified NSGA-II to solve the problem. The algorithm of 

NSGA-II shown better results than the existing best 

known results in the literature for these reason the author 

choose to find out the Pareto optimal solution. 

In the current work, multi-objective optimization 

methodology of a multi-product multi-period four-echelon 

supply chain network under uncertainty is aimed. The 

network consisting of manufacturing plants, distribution 

centers (DCs) and retailers each with uncertain services 

and customer nodes is aimed in this paper. The two 

objectives are minimization of the total supply chain cost 

while maximizing the average number of products 

dispatched to customers. From the above literature it is 

seen that the uncertainty involved in both distribution and 

retailers facilities of supply chain networks with demand 

uncertainty has not been considered in most of relevant 

works, this paper aims to provide a framework to address 

it by assuming that the distribution and retailers facilities 

are subject to random failures due to natural events, 

terrorist attacks, weather condition, labor absence, change 

in owner, politically unstable situation and so on. 

Moreover, the uncertain customers‟ demands are satisfied 

directly from distribution centers or via retailers that 

means if any retailer is unable to satisfy the customer 

demand the distribution centers are used to satisfy these 

demands. 

In a nutshell, the main contributions of the current paper 

that differentiate it from the available works in the 

literature are as follows: 

 Developing a new multi-objective MILP model 

for multi-product multi-period four echelon 

supply chain network design under uncertainty. 

 Proposing two conflicting objectives that are 

minimization of total supply chain cost and 

maximization of customer satisfaction by 

maximizing average total number of product 

dispatched to customer simultaneously under 

uncertain environments. 

 Moreover, the uncertain customer demand is 

satisfied directly from DCs and retailers. 

 The customer demand, DCs and warehouse are 

simultaneously considered in uncertain 

environments. 

 Solving the proposed problem by using number 

of recent well known multi-objective meta-

heuristic techniques: Non-dominated Sorting 

Genetic Algorithm (NSGA-II), Multi-Objective 

Genetic Algorithm (MOGA) and ε-constraint 

method is used to justify the obtained result. 

 In addition, the proposed optimization model has 

applied in a real world case study in Bangladesh 

to verify the obtained result. 

 

1.2 Research objectives 

The two conflicting objectives of this research paper are 

to  

 Minimization of total supply chain cost under 

uncertain environments. 

 Maximization of customer satisfaction by 

maximizing average total number of product 

dispatched to customer under uncertain 

environments. 

This research develops and demonstrates generalized 

formulation to manage uncertainty in supply chain, which 

provides decision support to logistics and supply chain 

managers.   

1.3 General methodology 

Based on the presented literature review and discussed 

issues, less attention has been devoted to development of 

a model under uncertainty. In addition, most of the studies 

in this area have focused on locations, numbers and 

capacities of network facilities as well as the material 

flow through the network. Furthermore, very limited 

studies have been conducted that consider the inherent 

uncertainty of various parameters of an integrated supply 

chain network. Taking these gaps into consideration, the 
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following research methodology has been proposed in this 

research proposal. 

Phase 1: 

In this phase, a comprehensive study have been performed 

to have better understanding of the current situation of the 

problem in manufacturing company located in 

Bangladesh in terms of products, infrastructures, and the 

material flow in their supply chain. For conducting the 

research, all types of products with their sources have 

recognized in their supply chain.  

Phase 2: 

Afterwards, the initial architecture of the closed loop 

supply chain that shows the supply chain entities 

(Manufacturers, DCs, and Customers etc.) and material 

flows have been designed. 

Phase 3:  

In the third phase, a multi-objective mathematical model 

has been developed for SC network configuration while 

the uncertainties of various parameters are considered. 

The proposed model has optimized multiple objective 

functions including total supply chain cost and customer 

scarification simultaneously. The outputs of the model 

have provided the optimum locations, numbers and 

capacities of network facilities as well as the material 

flows throughout the network. To solve the proposed 

model, pareto-efficient optimization approaches such as a 

non-dominated sorting genetic algorithm (NSGA-II) and 

MOGA have been utilized that implemented using 

appropriate optimization software. To justify the proposed 

model, a real-world case study in RFL Plastic industry in 

Bangladesh has applied to measure the efficiency of the 

proposed model. The optimization model solved two 

objective functions where the first objective of the model 

will be minimizing total supply chain cost and second 

objective will be maximizing customer satisfaction. 

 
2. Problem Description 

In this section, nomenclatures, the problem, and the 

assumptions required to model the problem are introduced 

before the mathematical formulation. 

2.1. Nomenclatures 

The notations including indices, parameters, and decision 

variables are: 

 

The figure 1 indicates that one manufacturing plant 

produces several products that are transferred to the three 

DCs to store and satisfy the demand of customer and 

retailer. The figure 1 also indicates that four retailers 

receive products from DCs to store and satisfy the five 

customer demands. In addition, the customer demand is 

satisfied from direct DCs when the retailer is unable to 

satisfy the demand.  

 

 

 

 

Manufacturer 

 M 
Distributors 

k= 1,2…….K 
Retailers 

j=1,2,3…J 
Customers 

i=1,2…..I 

 
 

Periods t=1,2,3..T  &  Products p=1,2,3….P 

Fig. 1. A four echelon Supply Chain Network Configuration 

 

Indices: 

m index used for a manufacturing plant 

k 
index used for a potential location of DCs, k = 1, 

2, ..., K 

j 
index used for a potential location of retailers,  j = 

1, 2, ..., J 

i index for a customers, i = 1, 2, ..., I 

p index for a finished products, p = 1, 2, ...,P,  

t 
index used for a period with a fixed length of , t 

= 1, 2, …, T, Z=Inflation rate 

N Number of Year 

 

Parameters: 

 

   
 

 
unit production cost of product p by 

manufacturing plant m in period t 

    
 

 
unit transportation cost of product p to DC k by 

plant m in period t 

    
 

 
unit transportation cost of product p to retailer j 

by DC k in period t 

    
 

 
unit transportation cost of product p to customer 

i by DC k in period t 
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unit transportation cost of product p to customer 

I by retailer j in period t 

   
 
 

unit inventory holding cost of product p by 

retailer j in period t                

   
 

 
unit inventory holding cost of product p by DC k 

in period t                

   
 

 
unit inventory holding cost of product p by plant 

m in period t                

    
 

 
setup cost of producing product p by plant m in 

period t 

    
 

 
unit shortage cost of product p in supplying the 

demand of customer i in period t 

   fixed cost of selecting a center to establish DC k       

   
 

 
production time needed by plant m to produce 

one unit of product p in period t 

   
 

 
set up time of producing product p by plant m in 

period t 

    
 

 
total available production time for plant m to 

produce product p in period t 

   
total storage capacity available in retailer j to 

store product in a period t 

   
storage capacity available for DC k to store 

products in a period t 

   
storage capacity available for plant m to store 

products in a period t 

  
 

 
total transportation capacity available for plant 

m to dispatch product p in a period t 

   
 

 
uncertain demand of product p by customer i in 

period t 

   volume of one unit product p (  ) 

    
the parameter of an exponential distribution used 

for failure rate of  DC k in period t 

    
the parameter of an exponential distribution used 

for failure rate of  retailer j in period t 

 

Decision variables: 

   
 

= 1, if product p is produced by plant m in period t, 0 

otherwise 

  = 1, if warehouse j is established, 0 otherwise 

   
 

= quantity of product p produced by plant m in period 

t 

    
 

= quantity of product p dispatched by plant m to DC 

k in period t 

    
 

= quantity of product p dispatched by DC k to retailer 

j in period t 

    
 

= quantity of product p dispatched by retailer j to 

customer i in period t 

    
 

= quantity of product p dispatched by DC k to 

customer i in period t 

   
 

= shortage quantity of product p for customer demand i 

in period t 

   
 

= inventory of product p in plant m at the end of period 

t 

   
 

 = inventory of product p in DC k at the end of period t 

   
 

 = inventory of product p in retailer j at the end of 

period t 

 

2.2 The Problem statement 

Consider  a multi-product multi-period four echelon 

supply chain consisting of a manufacturing plant that 

produces several products, distribution centers (DCs) that 

receive the products and stores them in order to satisfy 

customers demands when retailers is unable to satisfy the 

customers demand and the demands of retailers, retailers 

receive the products from DCs and stores them in order to 

satisfy uncertain customers‟ demands and customer nodes 

as final recipients of the products is considered, in which 

the distribution center and retailers are subject to random 

failure with demand uncertainty Fig. 1. The network 

operates in a stochastic environment where all the input 

parameters such as demands, warehouses and DCs that do 

not operate perfect all the time, are known with certainty. 

Besides, the manufacturing plants are 100% reliable with 

limited production and transportation capacities in a 

period and that the capacity of a warehouse to store 

products is limited in a period. The time required DC k to 

fail in a period Tk follows an exponential distribution with 

a mean of    , and the time required retailer j to fail in a 

period Tj follows an exponential distribution with a mean 

of       This may happen due to natural events, terrorist 

attacks, change in owners, labor mistake, weather 

conditions, political instability, etc. As a result, the 

reliability of DC (Rk), in dispatching products to the 

customers in a period is  

 

Rk= P(Tk > ) =      ;    =1; 2; . . . K (1) 

 

The reliability of retailer (Rj), in dispatching products to 

the customers in a period is  

  

Rj= P(Tj > ) =  -   ;  j =1; 2; . . . J (2) 

                          

Moreover, at the beginning of the planning horizon, all of 

the DCs and retailers are functional and that their return to 

the functional state after their failure is not possible. This 

means that the average number of product k dispatched 

from potential DC k to customer i is           
 

, and the 

average number of product k dispatched from potential 

retailer j to customer i is           
 

, as well as the 

average number of product  dispatched from potential 

retailer j to customer i is           
 

. In addition, based on 

the fixed establishment costs, the capacities, and the 

reliabilities of the warehouses, the network manager must 

decide on a subset of potential warehouses to be located at 

certain places to fulfill customers‟ demands. The 

decision-making issues to locate warehouses with certain 

reliabilities are strategic and require long-term planning. 

In this case, most of decision changes at length of short or 

even medium period involve exorbitant expenditures and 

hence are not justifiable. Moreover, the mean and 

standard deviations of demands are calculated carefully in 

order to consider the demand uncertainty. 
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2.3. Problem Modeling 

One of the important goals of a supply chain network is 

the customer satisfaction of the product fill. Thus, the 

DCs and Retailers with the highest reliability in the 

planning horizon must be established to fulfill customers‟ 

demands as much as possible.  

The proposed model is an extended version of the model 

proposed by Pasandideh et all (2015). The main 

distinctions of this paper with respect to the paper 

presented by Pasandideh et all (2015), are as follows: 

 Pasandideh et all (2015), presented a mathematical 

model for a three-echelon supply chain network. 

Here, the authors extend the presented SCN problem 

for a four-echelon SCN problem including 

manufacturers, DCs, Retailers and Customers. 

 Their proposed model aimed to merely minimize the 

total cost and maximize product fill rate considering 

only warehouse reliability. Here, the authors extend 

the presented SCN problem to a multi-objective 

mixed integer non-linear programming model 

considering both DCs and retailers reliability.  

 Moreover, Pasandideh et all (2015), presented a 

mathematical model where the customer demand is 

satisfied only from DCs, but here the authors 

presented a mathematical model where the customer 

demand is satisfied from both DCs and retailers that 

means customer satisfaction rate must be increased. 

 Their proposed model considers deterministic 

demand and validates the model using estimated 

data in these model authors considers uncertain 

demand and the model is validated using primary 

data. 

  The authors improved the model by incorporating 

inflation rate, stipulated lead time and the problem is 

solved by using well-known multi-objective meta-

heurists algorithms   . 

The proposed model according to the assumptions and the 

objectives, the model of the problem at hand is a mixed-

integer linear programming (MIP) as follows. 
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The first objective function shown in Eq. (3) aims to 

minimize the total cost of the SC network, where the first 

term in the right hand side (RHS) refers to the fixed cost 

of establishing warehouses. The rest of the terms in RHS 

of Eq. (3) refer respectively to the transportation cost of 

the products from the plants to warehouses, the setup cost 

of production, the production cost of the plants, the end 

inventory holding cost of the products in warehouses at 

plant, the end inventory holding cost of the products in 

warehouses at DC, the end inventory holding cost of the 

products in warehouses at retailer, the transportation cost 

of products from DC to retailers, the transportation cost of 

products from retailers to customers, the transportation 

cost of products from DC to customers, the shortage cost 

of customers‟ demands. The second objective function in 

Eq. (4) considers customer satisfaction by maximizing the 

average total number of products dispatched to customers 

from both DCs and retailers. The constraints in Ineq. (5) 

guarantee that the total required time to produce the 

products cannot exceed the total available time. 

Constraints (6) limit the volume of the products 

dispatched to potential warehouses to their total storage 

capacity. Constraints (7) require that the quantity of a 

product dispatched to each customer in a period cannot 

exceed his/her demand. The constraints in Ineq. (8) 

restrict the end-product inventory of potential warehouses 

to their available capacity. Constraints (9) specify that the 

total quantity shipped from a plant cannot exceed its 

capacity. The constraints in Ineq. (10) state that the 

production volume must be less than the total storage 

capacity at the plants. Constraints (11) ensure that the 

end-product inventory is less than the total storage 

capacity at the plants. Constraints (12) ensure that the 

end-product inventory is less than the total storage 

capacity at the retailers.  Constraints (13) ensure that the 

end-product inventory is less than the total storage 

capacity at the DC. The constraints in Eq. (14) are balance 

equations for the end-product inventory at potential 

retailers. Similarly, Constraints (15) are balance equations 

for the end-product inventory at the DC. Constraints (16) 

are balance equations for the end-product inventory at the 

plant. The constraints in Eq. (17) are balance equations 

for shortages of the customers‟ demands. To conclude the 

formulation, types of the variables and their possible 

values are defined in (18) and (19). 

3. Implementation 

 

In this section, the case study that has been conducted in 

Bangladesh at RFL Plastic Limited in Hobigonj is 

described. RFL has the most sophisticated distribution 

network through partnership, collaboration and 

knowledge sharing. Currently the company is serving 

more than 36 countries around the globe. RPL aims to 

make each of its products a paragon of quality and 

technical excellence. Through its constant endeavors of 

research and innovation it strives to come up with new 

products that help architects and builders to bring new 

creations in market. The strength behind this business 

growth is large production capacity, good quality of 

products, international standards for products 

maintenance, having technically sound production & 

operation team, strong distribution network and after sales 

service. In 2015, about 175,000 orders was cancelled in 

Bangladesh due to political instability, natural events, 

terrorist attacks, weather condition, labor absence, change 
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in owner etc. The total supply chain cost was high 

because the lack of coordination. Moreover, the customer 

satisfaction was not the primary factor of that company. 

In order to collect data, a Plastic Industry situated at 

Hobigonj, was visited by the authors. Data was collected 

on main products plastic flash tank and round mirror.  

 

3.1 Data description 

To demonstrate the practicality of the proposed 

methodology, RFL Plastic Limited was used as a study. 

RFL Plastic Limited is situated at Hobigonj Industrial 

Park (HIP), Hobigonj. Here many types of products are 

produced two of them are considered here. They are: 

1. Plastic flash tank 

2. Round mirror 

Let, Plant1=M-1, Customer-1= Cus-1 to Customer-5= 

Cus-5, Distribution Center-1 = DC-1 to Distribution 

Center-3= DC-3, Period 1=T1 and Period 2=T2.  

Here all of the cost is in taka and time in hours.  

 

Table 1 

 Unit production cost of product p by manufacturing plant m in period t 

 M-1 

Product-1 600 

Product-2 320 
 

 

Table 2 

 Unit transportation cost of product p to DC k by plant m in period t 

 DC-1(P1&P2) DC-2 (P1&P2) DC-3 (P1&P2) 

M-1 10,5 9.9,4.9 10.10,5.10 
 

Table 3 

Unit transportation cost of product p to DC k by plant m in period t 
 

 Retailer-1(P1&P2) Retailer-2 (P1&P2) Retailer-3 (P1&P2) Retailer-4(P1&P2) 

DC-1 9.9,4.9 10,5 10.10,5.10 10,5 

DC-2 10.10,5.10 10,5 9.9,4.9 10,5 

DC-3 9.9,4.9 10,5 10,5 10.10,5.10 
 

 

Table 4 

 Unit transportation cost of product p to customer i by retailer j in period 
 

 Cus-1(P1&P2) Cus-2(P1&P2) Cus-3(P1&P2) Cus-4(P1&P2) Cus-5(P1&P2) 

Retailer-1 9.9,4.9 10,5 10.15,5.15 10,5 10.10,5.10 

Retailer-2 10.10,5.10 10,5.5 9.9,4.9 10,5 9.9,4.9 

Retailer-3 9.9,4.9 10,5 10,5 10.20,5.20 10,5 

Retailer-4 10.10,5.10 10,5.2 9.5,4.5 10.5,9.5 9.5,4.5 
 

Table 5 

 Unit transportation cost of product p to customer i by DC k in period t 
 

 Cus-1(P1&P2) Cus-2(P1&P2) Cus-3(P1&P2) Cus-4(P1&P2) Cus-5(P1&P2) 

DC-1 12.5,6.5 13.5,7.5 11.5,7 12,6 13,7 

DC-2 11.5,7 12,6 13,7 12.5,6.5 13.5,6.5 

DC-3 12,6 12.5,6.5 13.5,7.5 13.5,7 11.5,6 
 

Table 6 

 Unit Inventory holding cost of product p by plant m in period t      
 

 M-1,(T1&T2) 

Product-1 2, 2.1 

Product-2 1.2, 1.1 
         

 Table 7 

 Unit inventory holding cost of product p by DC k in period t   
         

 DC-1,(T1&T2) DC-2,(T1&T2) DC-3,(T1&T2) 

Product-1 1.9, 2 2, 1.9 2.1,2 

Product-2 1.1,1 1.2,1 1.10, 1.2 
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Table 8 

Unit inventory holding cost of product p by retailer j in period t       
          

 Retailer-1,(T1&T2) Retailer-2,(T1&T2) Retailer-3,(T1&T2) Retailer-4,(T1&T2) 

Product-1 2.2, 2 2,2.20 2.15, 2 2,2.15 

Product-2 1.3,1.15 1.15,1 1.50,1.10 1.20,1.15 
 

Table 9 

 Setup cost of producing product p by plant m in period t 
 

 M-1(T1 &T2) 

Product-1 8,8 

Product-2 7,7 
 

Table 10 

Unit shortage cost of product p in supplying the demand of customer i in period t 
 

 Cus-1 Cus-2 Cus-3 Cus-4 Cus-5 

Product-1 800 700 750 900 700 

Product-2 550 500 450 500 550 
 

Table11 

 Fixed cost of selecting a center to establish DC k       
 

 DC-1(Tk.) DC-2(Tk.) DC-3(Tk.) 

Fixed-Cost 2050000 2100000 2000000 
  

    Table 12 

Production time needed by plant m to produce one unit of product p in period t 
 

 Product-1 Product-1 Total available time (P1&P2) 

M-1 0.25 h 0.20 h 1584, 1056 same for T2 
 

Table 13 

 Set up time of producing product p by plant m in period t 
 

 Product-1, (T1 &T2) Product-1, (T1 &T2) 

M-1 8, 8 7,7 
 

Table14 

 Total storage capacity available    
 

Item Retailer-1 Retailer-1 Retailer-1 Retailer-1 DC-1 DC-1 DC-1 M-1 

Storage 

capacity 
1000 800 900 900 1350 1200 1000 3500 

 

Table 15 

Total transportation capacity available for plant m to dispatch product p in a period t 
 

 Product-1(T1 &T2) Product-1(T1 &T2) 

M-1 3200, 2800 2600, 2400 
 

Table16 

 Uncertain demand of product p by customer i in period t 
 

 Cus-1 Cus-2 Cus-3 Cus-4 Cus-5 

Product-1 1300 1200 1200 1400 1150 

Product-2 1100 950 1200 900 1100 
Total 11500 

Table17 

Volume of one unit product p (  ) 
 

Item Product-1 Product-2 

Volume (  ) 0.44 0.28 

Data Source: All of the data are collected from RFL plastic limited. 
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3.2 A solution procedure 

There are generally two approaches to solve complicated 

multi-objective optimization problems. In the first 

approach, the problem is first converted to a single-

objective optimization using some multi-criteria decision 

making (MCDM) methods described in Hwang and 

Masud (1979).Then, a single-objective evolutionary 

algorithm (SOEA) such as GA, simulated annealing (SA), 

imperialist competition algorithm (ICA), harmony search 

algorithm (HAS), and particle swarm optimization (PSO), 

epsilon constraint methods, is employed to solve the 

single-objective problem in one single simulation run, 

Deb et al. (2001). In the second approach, a multi-

objective evolutionary algorithm (MOEA) such as non-

dominated sorting genetic algorithm (NSGA-II), non-

dominated ranking genetic algorithm (NRGA), and multi-

objective particle swarm optimization (MOPSO), is 

directly used to find a set of optimal solutions called 

Pareto optimal front in a single simulation run. As 

MOEAs are usually fast to find Pareto fronts in a single 

simulation run and that SOEAs require several runs to 

obtain a front, a MOEA is utilized in this section to solve 

the complex bi-objective optimization problem at hand. 

Among MOEAs, the NSGA-II due to its popularity, its 

capability to solve similar problems, and its ease of use is 

chosen.  
 

Genetic Algorithm (GA) 

Genetic Algorithms relies on the mechanics of the natural 

selection and natural genetics. They conjugate the 

survival of the fittest string structures. The structured 

creates randomized information exchange to make an 

algorithm of the innovative flair of human search. Genetic 

Algorithms have been developed by Holland (1975) 

which is a population based probabilistic and optimization 

technique. They are classified as global search heuristics  

and they also are a specific class of evolutionary 

algorithms that use techniques stimulated by evolutionary 

biology such as inheritance, mutation, selection, and 

crossover (also called recombination).They are 

implemented as a computer simulation of candidate 

solutions to an optimization problem expresses towards 

better solution. Conventionally, solutions are described in  

binary strings of 0s and 1s, but other encodings are not 

also impossible. The evolution usually begins from a 

population of randomly produced individuals and occurs 

in generations. In each generation, the fitness of every 

individual in the population is appraised, multiple 

individuals are selected from the current population 

(based on their fitness), and modified (recombined and 

possibly mutated) to originate a new population. The new 

population is also used in the next iteration of the 

algorithm. Commonly, the algorithm completes when 

either a maximum number of generations has been 

generated, or an optimal fitness level has been reached for 

the population. If the algorithm has completed owing to a 

maximum number of generations, an optimal solution 

may or may not have been reached.  

 

 

Working Cycle of a GA: 

1. A set of beginning population of individuals is 

produced indiscriminately. 

2. Fitness of every individual of the population is 

appraised. 

3. The appraised function is given by the 

programmer and delivers the individuals a score. 

4. Two individuals are chosen based on their 

suitability, the higher the suitability, the higher 

the chance of being chosen.  

5. These individuals then "reproduce" to generate 

one or more offspring, after which the offspring 

are mutated randomly.  

6. This continues until an optimal solution has been 

obtained or a particular number of generations 

have exceeded, depending on the necessity of the 

programmer. 

 

General Criteria of Genetic Algorithm (GA) 

1. Initialization 

2. Selection 

3. Crossover 

4. Mutation 

5. Termination 

 

Initialization 

Initially the individual solutions are indiscriminately 

produced to form a beginning population. The population 

size relies on the characteristics of the problem, but 

symbolically holds several hundreds or thousands of 

possible solutions. Traditionally, the population is 

produced indiscriminately, covering the whole range of 

possible solutions (the search space).  

 

Selection 

During every possible generation, a ratio of the existing 

population is chosen to reproduce a new generation. 

Separate solutions are chosen via a fitness-based process, 

where fitter solutions (as measured by a fitness function) 

are commonly to be selected. Particular selection methods 

rate the fitness of every solution and discriminately 

choose the best solutions. Another methods rate only an 

indiscriminate sample of the population, as the process 

may be time-consuming. Most functions are stochastic so 

that a proportion of less perfect solutions are chosen.  

 

Crossover 

Crossover is a mechanism that produces new individuals 

by joining parts from two Individuals. Crossover is 

experimental which makes a huge jump in between two 

areas. Single point, Multipoint and identical crossovers 

are available. Simulated Binary Crossover produces 

children solutions to the different in parent solution. 

 

Mutation 

Mutation is a mechanism that produces new individual by 

creates alternates in a single Individual.  Mutation is 

experimental that produces indiscriminate light 

deviations, so staying close to the parent. Simply mutation 

can present new information. 
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Termination 

This process is repeated until the termination condition 

has been succeeded.  

Common terminating conditions are: 

1. An optimal solution is got that satisfies the 

minimum criteria.  

2. Fixed number of generations succeeded. 

3. Allocated budget reached  

4. The highest ranking solution's fitness has 

reached a bulk that possible iterations no longer 

generate better results.  

5. Manual inspection  

6. Any Combinations of the above. 

 

Genetic Algorithm in Step by Step 

Step1: Produce random population of n 

chromosomes. 

Step2: Calculate the fitness f(x) of the n 

chromosomes in the population. 

Step3: Generate new population by iterating 

three steps (selection, crossover and mutation) 

until new population is created. 

Step4: Use new produced population for the 

operation of algorithm. 

Step5: If the condition is satisfied, stop and get 

the best solution in the running population. 

Step6: If the condition is not satisfied, then go to 

step2 and repeat the loop. 

 

3.3 Epsilon constraint method 

The  - constraint method was actually suggested by 

Haimes, et al. (1971). This method lessens the number of 

objectives of multi objective problems. Only one of the 

objectives is considered as main objective functions and 

other objective functions are turned into constraints. So 

the multi objective problems are turned into single 

objective problems, then it is called  - constraint problem. 

By changing   values with the proper interval, a number 

of Pareto optimal solutions can be found. This method can 

also quash the disadvantages of the weighting method 

proposal by Berube, et al. (2009). Ideal point and nadir 

point can be determined by acquiring the full Pareto front. 

Ideal point and nadir point specifies the lower and upper 

bounds of Pareto optimal points. 

 

Working cycle of  - constraint method: 

1. Calculate the ideal and nadir point of the 

objective functions. 

2. Produce a Pareto optimal starting point. 

3. Ask for favorable information from the decision 

maker (set of new solutions to be produced). 

4. Produce new Pareto optimal solution according 

to the favorable. 

5. If some solutions are produced, ask the decision 

maker to choose the best solution. 

6. Stop (If the decision maker wants; otherwise go 

to step3). 

This process can solve problems with integer objective 

values and may achieve dominated points. So, the full non 

dominated set can be achieved after finishing dominated 

solutions. The  - constraint problems can be solved 

through continuously diminishing the values of  . 

3.4 NSGA-II 

NSGAII, first introduced by Deb et al. (2001), is one of 

the most applicable and propounded algorithms based on 

GA to solve multi-objective optimization problems. 

NSGA-II starts generating a random parent population of 

size nPop. During several consecutive generations, the 

objective values of a population are evaluated using an 

evaluation function. Then, the population is ranked based 

on the non-domination sorting procedure to create Pareto 

fronts. Each individual of the population under evaluation 

obtains a rank equal to its non-domination level (1 is the 

best level, 2 is the next-best level, and so on), where the 

first front contains individuals with the smallest rank, the 

second front corresponds to the individuals with the 

second rank, and so on. In the next step, the crowding 

distance between members on each front is calculated by 

a linear distance criterion. As a binary tournament 

selection operator based on a crowded-comparison 

operator is used, it is necessary to calculate both the rank 

and the crowding distance of each member in the 

population. Using this selection operator, two members 

are first selected among the population. Then, the member 

with the larger crowding distance is selected if they share 

an equal rank. Otherwise, the member with the lower rank 

is chosen. Next, a new population of offspring with a size 

of n is created using the selection, the crossover, and the 

mutation operators to create a population consisting of the 

current and the new population of the size of (nPop + n). 

Finally, a population of an exact size of nPop is obtained 

using the sorting procedure. In this procedure, solutions 

are sorted twice: first based on their crowding distances in 

descending order, second based on their ranks in 

ascending order. The new population is used to generate 

the next new offspring by repeating the above steps in 

order. This process is repeated until the stopping 

condition is met. At the end of NSGA-II implementation, 

a set of non-dominated Pareto-optimal solutions are 

obtained, as all the solutions are the best in a sense of 

multi-objective optimization. 
 

Procedure of NSGA-II 

 Step 1: Create a random parent population P0 of 

size N. 

 Set t = 0. 

 Step 2: Apply crossover and mutation to P0 to 

create offspring population Q0 of size N. 

 Step 3: If the stopping criterion is satisfied, stop 

and return to Pt. 

 Step 4: Set Rt = Pt U Qt. 

 Step 5: Using the fast non-dominated sorting 

algorithm, identify the non-dominated fronts F1, 

F2, …….,Fk in Rt. 

 Step 6: For i = 1,……,k do following steps: 

 Step 6.1: Calculate crowding distance of the 

solutions  
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 Step 6.1.1: Rank the population and identify non-

dominated fronts F1, F2……….. FR.  For each 

front j = 1,…….., R, repeat Steps 6.1.2 and 6.1.3 

 Step 6.1.2: For each objective function k, sort the 

solutions in Fj in the ascending order. Let l = | Fj | 

and x[i;k] represent the ith solution in the sorted 

list with respect to the objective function k. 

Assign cdk(X[i;k]) =   and cdk(X[i;k]) =  , and for 

i = 2, …., l-1 assign 

 cdk(X[i,k])  
                          

   

  
      

    

 Step 6.1.3: To find the total crowding distance 

cd(x) of a solution x, sum the solution‟s 

crowding distances with respect to each 

objective, i.e., cd(x) = ∑          

 6.2: Create P t +1 as follows: 

 Case 1: If | Pt+1 | + | Fi |   N, then set P t+1 = P 

t+1   Fi; 

 Case 2 If | Pt+1 | + | Fi |   N, then add the least 

crowded N - | P t+1 | solutions from Fi to Pt+1. 

 Step 7: Use binary tournament selection based on 

the crowding distance to select parents from Pt+1. 

Apply crossover and mutation to Pt+1 to create 

offspring population Qt+1 of size N. 

 Step 8: Set t = t + 1, and go to Step 3. 

 
4. Results Analysis 

When the Problem size was small then the results were 

approximately same for Fast Non-dominated Sorting 

Genetic Algorithms (NSGA-II), Multi-objective Genetic 

Algorithms (MOGA) and Epsilon Constraint Methods. 

The considered small size problem was as follows: 

1) Shimizu and Aiyoshi (2013) 

minx f1(x, y) = x2 + (y − 10)2 

s.t.  

− x + y   0 

x   [0, 15] 

miny f2(x, y) = (x + 2y − 30)2 

s.t.  

x + y − 20   0 

y   [0, 20] 
 

 

Fig.2. Comparison of pareto front among NSGA-II, MOGA & Epsilon Constraint Methods 

In epsilon constraint method one objective was considered 

primary function where the other objective was 

considered as constraints. In epsilon constraint method 

would return a single solution rather than a set of 

solutions that can be examined for trade-offs to take 

proper decision. For this reason, decision-makers often 

prefer a set of good solutions considering the multiple 

objectives. From the above figure 02 it has seen that the 

epsilon constraint method gives twenty points at twenty 

simulations run that means one point in one simulation 

run. From the above figure 02 it also seen that NSGA-II 

gives more pareto optimal points than MOGA & Epsilon 

Constraint Methods. So among the three methods NSGA-

II is best methods because it gives more Pareto optimal 

solution in a single simulation run which are effective to 

take proper decisions. The epsilon constraint method 

gives the approximate same result though it was a small 

size problem, and MOGA gives the moderate results in 

this case because it gives moderate number of Pareto 

optimal solution in a single simulation run that can be 

examined for trade-offs to take proper conclusion. Based 

on the average time required to produce the set of pareto 

optimal solution the MOGA gives the best result because 

it takes less time to produce the same amount of pareto 

optimal solution in a single simulation run than NSGA-II. 

In epsilon constraint method would return a single 

solution rather than a set of solutions that‟s why average 

time required to produce the set of pareto optimal solution 

is very high.  
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Fig. 3. Comparison of pareto front among NSGA-II, MOGA & Epsilon Constraint Method 

 
 

When the authors considered the proposed large size 

problem then algorithms gives different result. From the 

figure 03 it has seen that the NSGA-II gives more pareto 

optimal points that are very important for trade off for the 

two conflicting objectives to take proper decisions. The 

MOGA gives the moderate results in this case because it 

gives moderate number of pareto optimal solution in a 

single simulation run that can be examined for trade-offs 

to take proper decision. In epsilon constraint method 

would return a single solution rather than a set of 

solutions in a single run that is why it is the worst method 

among these methods. Therefore among the three 

methods NSGA-II is best methods in that case because it 

gives more pareto optimal solution in a single simulation 

run that can be examined for trade-offs to take proper 

decision. The epsilon constraint method gives the 

different poor result though it is a large size problem, and  

its very time consuming to produce set of pareto optimal 

points that can be examined for trade-offs to take proper 

decisions. MOGA gives the more diversified set of 

solution and it was very fast to find set of pareto optimal 

points. Based on the average time required to produce the 

set of pareto optimal solution the MOGA gives the best 

result because it takes less time to produce the same 

amount of pareto optimal solution in a single simulation 

run than NSGA-II. In epsilon constraint method would 

return a single solution rather than a set of solutions that‟s 

why average time required to produce the set of pareto 

optimal solution is very high and convergence rate are 

slow. The proposed technique increased the number of 

product dispatched to customer by providing optimum 

amount of product directly from distribution center to 

customer area as shown in table 18. 

The table 19 is indicated the product flow from retailers to 

customer zone. In this case the product flow is reduced as 

the product is transferred from both DCs and retailers. 

The first objective function indicates minimize average 

total Supply chain cost is z1= Tk. 7505011 and the second 

objective function indicates maximize average number of 

product dispatched to customer from retailer and directly 

form distribution in case when retailer is unable to satisfy 

the demand is  z2= 16772 units per 6 months. The authors 

considered the time horizon for six months because in 

fixed time horizon and it is easy to calculate the number 

of accident that may happen due to natural events, 

terrorist attacks, change in owners, labor mistake, weather 

conditions, political instability, etc.  
 

Table 18 

Product dissemination from distribution centers to customer zone. 
Period 

 

DCs 

 

Product 

 

Customer Zone (Units) 

1 2 3 4 5 

1 

1 
1 89 89 89 88 89 

2 91 88 90 89 88 

2 
1 88 89 89 92 89 

2 89 89 90 88 90 

3 
1 89 91 89 91 88 

2 90 89 90 90 89 

2 

1 
1 88 90 88 89 89 

2 89 89 91 90 88 

2 
1 89 88 88 89 92 

2 91 88 89 90 92 

3 
1 90 89 89 89 90 

2 89 90 88 89 91 

17771.612

17771.612

17771.612

17771.613

17771.613

17771.613

17771.613

17771.613

17771.613

17771.613

17771.613

7505010.875050117505011.27505011.47505011.67505011.87505012

O
b

je
ct

iv
e

 2
 

Objective 1 

Comparison of pareto front  among NSGA-II, MOGA & 

Epsilon Constraint Method  

MOG
A
Epsil
on
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Table 19 

 product distribution from retailers to customer zone. 
Period 

 

Retailer 

 

Product 

 

Customer Zone (Units) 

1 2 3 4 5 

1 

1 
1 75 71 71 72 72 

2 72 73 73 72 71 

2 
1 70 71 73 71 71 

2 72 72 74 75 74 

3 
1 73 73 72 73 73 

2 72 75 74 72 72 

4 
1 72 72 72 74 72 

2 72 72 72 74 72 

2 

1 
1 73 72 74 74 72 

2 71 74 72 75 72 

2 
1 74 72 73 73 71 

2 73 73 73 72 72 

3 
1 73 73 72 74 72 

2 74 73 71 72 74 

4 
1 71 71 72 72 72 

2 73 71 71 73 71 

 

5. Conclusions and Future Work 

A new multi-objective optimization model for multi-

product multi-period four echelon supply chain problem 

under uncertainty was considered in this paper. The 

proposed model aims to optimize two conflicting 

objectives simultaneously, that were minimize total 

supply chain cost and maximize the average total number 

of products dispatched to the customer. The problem was 

first formulated into the framework of a constrained 

multi-objective mixed integer linear programming model. 

As the model developed in this study was hard and time 

consuming to be solved analytically, a multi-objective 

genetic algorithm (MOGA) was utilized to find Pareto 

fronts. Since there was no benchmark available in the 

literature to validate the results obtained, another GA-

based multi-objective evolutionary algorithm called non-

dominated sorting GA (NSGA-II) was used as well. The 

proposed multi objective mixed integer linear programing 

problem was also solved Epsilon Constraint Methods via 

the MATLAB software to find pareto front but it was very 

time consuming because it would return a single solution 

rather than a set of solutions in a single run. So among the 

three methods NSGA-II was best methods in that case 

because it gives more pareto optimal solution in a single 

simulation run that can be examined for trade-offs to take 

proper decision. The proposed model was validated by 

using multi objective Meta heuristics algorithms MOGA 

& NSGA-II. To demonstrate the practicality of the 

proposed methodology, RFL Plastic limited was used to 

as a study. This research can be beneficial to all SCs and 

logistics manager under uncertain environments. Food, 

pharmacological, and industrial product supply chains are 

some instances for which this work can be applicable. In 

the developed model the back word supply chain are not 

considered.  

There are several recommendations for future work as 

follows: 

 Considering using other meta-heuristics such as 

MOPSO, multi-objective harmony searches 

(MOHS) and multi-objective simulated 

annealing (MOSA) to solve the problem.  

 Designing and analyzing the problem under a 

four-echelon SCN to minimize total supply chain 

cost and maximize total number of product 

dispatched to customer considering the whole 

network uncertainty. 

 Using other probability distributions such as the 

uniform distribution to model uncertainties 

involved and using queuing models to hybridize 

the problem further. 

 Considering some input parameters as fuzzy 

numbers to bring the application closer to reality 

 In addition, one can formulate the problem 

considering lost sale or a mixed form of 

backorder and lost sale. 
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