
 

 

 

Instituto Superior de Engenharia de Lisboa 
 

Departamento de Engenharia de Electrónica e 

Telecomunicações e de Computadores 

 

 

Interface de Fala  
para  

Dispositivos Móveis 
por 

João Freitas 

 

 
 

 

Submetido ao Departamento de Engenharia de Electrónica e Telecomunicações e de 

Computadores como requisito parcial para obtenção do grau de licenciado em 

Engenharia Informática e de Computadores 

 

ISEL, 15 de Setembro de 2007 

 



 

 

Interface de Fala para Dispositivos Móveis 
por 

João Freitas 

 

Submetido ao Departamento de Engenharia de Electrónica e Telecomunicações e de 

Computadores como requisito parcial para obtenção do grau de licenciado em 

Engenharia Informática e de Computadores 

 

ISEL, 15 de Setembro de 2007 

 

 

Autor __________________________________________________________________ 

Aluno n.º 26068, DEETC 

 

Certificado por ___________________________________________________________ 

Maria João Barros, orientador(a) do projecto 

 

Aceite por _______________________________________________________________ 

António Luís Freixo Guedes Osório, responsável de curso, ___/___/______ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Interface de Fala para Dispositivos Móveis 
por 

João Freitas 

 

Submetido ao Departamento de Engenharia de Electrónica e Telecomunicações e de 

Computadores como requisito parcial para obtenção do grau de licenciado em 

Engenharia Informática e de Computadores 

 

ISEL, 15 de Setembro de 2007 

 

Resumo 
 

As tecnologias da fala permitem aos utilizadores interagir com todo o tipo de 

máquinas através da fala. A interacção homem-máquina varia de acordo com o tipo de 

sistema automático e os dispositivos móveis (Pocket Pc e SmartPhone) não são excepção. 

O sucesso de uma aplicação de fala em dispositivos móveis está dependente de uma série 

de aspectos relacionados com a natureza da tarefa, por exemplo, cenários de utilização, 

tipo de utilizador, desempenho da aplicação, memória necessária, ruído ambiente e 

posição do dispositivo em relação ao utilizador. Para ter sucesso, as interfaces de fala 

devem ser superiores a interfaces alternativas que executam a mesma tarefa. Ao longo 

deste trabalho são apresentados problemas, desafios, metodologias e optimizações no 

desenvolvimento de interfaces de fala para aplicações móveis.  

Neste trabalho é apresentada uma versão do produto Voice Command adaptada ao 

Português Europeu. O Voice Command é uma aplicação para dispositivos Pocket PC e 

SmartPhone que permite ao utilizador comandar e controlar o seu dispositivo através da 

voz. Para realizar com sucesso esta adaptação foi previamente efectuado um estudo de 

interfaces fala para dispositivos móveis e desenvolvida uma versão compacta do motor 

de reconhecimento em Português Europeu. O motor de reconhecimento é depois 

integrado no Voice Command juntamente com um sintetizador, já existente e também em 

Português Europeu. No final é apresentada uma versão beta do produto completamente 

adaptada ao Português Europeu e o resultado de um estudo de usabilidade. Este estudo 

compara o uso da interface gráfica com a interface de fala ao executar tarefas básicas 

num dispositivo móvel e permite tirar conclusões sobre como melhorar a experiência do 

utilizador ao usar uma interface de fala. 



 

 

Palavras-chave: interface de fala; dispositivos móveis; Voice Command; Português 

Europeu. 

 

Orientador(a) do projecto: Maria João Barros, DEETC-ISEL, Instituto Superior de 

Engenharia de Lisboa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Instituto Superior de Engenharia de Lisboa 
 

Departamento de Engenharia de Electrónica e 

Telecomunicações e de Computadores 

 

 

Spoken Language Interface  
for  

Mobile Devices 
by 

João Freitas 

 

 

 

Submited to the Departamento de Engenharia de Electrónica e Telecomunicações e de 

Computadores as a partial requisite to obtain the degree of Graduated in 

Computer Science Engineering 

 
ISEL, 15 September 2007 

 

 



 

 

Spoken Language Interface for Mobile Devices 
por 

João Freitas 

 

Submited to the Departamento de Engenharia de Electrónica e Telecomunicações e de 

Computadores as a partial requisite to obtain the degree of Graduated in 

Computer Science Engineering 

 

ISEL, 15 de Setembro de 2007 

 

Abstract 

 
Spoken language technologies allow the users to interact with all kind of machines 

through speech. Human-computer interaction varies according with the type of 

automated system and mobile devices (Pocket Pc and SmartPhone) aren’t exceptions. 

The success of a speech application in mobile devices is dependent on a series of aspects 

related with the nature of the task such as usage scenarios, type of user application 

performance, required memory, environment, associated background noise variation and 

device positioning towards the user. To be successful, speech interfaces should be 

superior to alternative interfaces that perform the same task. On the course of this work, 

problems, challenges, methodologies and optimizations concerning the development of 

spoken language interfaces are presented. 

In this work it is presented a localized version of Voice Command in European 

Portuguese. Voice Command is a product designed for Pocket PC and Smartphone 

devices that allows the user to command and control the device using his voice. To 

accomplish this objective a previous study of spoken language interfaces is presented 

focusing on mobile applications. A compacted version of a European Portuguese Speech 

Recognizer engine was also developed, which is then integrated into Voice Command 

along with a European Portuguese Text-to-speech engine already developed. At the end it 

is presented a beta version of the product fully localized to European Portuguese, as well 

as the results of a usability evaluation. This evaluation allows comparing a graphical 

interface with a spoken language interface when accomplishing the same tasks in a 

mobile device. They also allow to conclude how to improve user experience when using a 

spoken language interface. 

 



 

 

 

Keywords: Spoken language interface; mobile devices; Voice Command; European 

Portuguese. 

 

 
Project’s director: Maria João Barros, DEETC-ISEL, Instituto Superior de Engenharia 

de Lisboa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my father 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

i 

 

CONTENTS 

 
CONTENTS ........................................................................................................................ i 

LIST OF FIGURES ......................................................................................................... vi 

LIST OF TABLES ......................................................................................................... viii 

ACKNOWLEDGEMENTS ............................................................................................ ix 

GLOSSARY OF ABBREVIATIONS AND ACRONYMS ........................................... x 

Chapter 1 ........................................................................................................................... 1 

Introduction ....................................................................................................................... 1 

1.1 Motivations .......................................................................................................... 2 

1.1.1 Spoken Language Interface ................................................................................ 2 

1.1.2 Mobility .............................................................................................................. 3 

1.1.3 European Portuguese in speech applications ..................................................... 4 

1.2 Objectives ............................................................................................................. 5 

1.2.1 Study and analysis of spoken language technology ........................................... 5 

1.2.2 Mobile application development ........................................................................ 5 

1.2.3 Localization of Voice Command to EP.............................................................. 6 

1.3 Scope .................................................................................................................... 6 

1.4 Audience .............................................................................................................. 7 

1.5 Document Structure ............................................................................................. 7 

Chapter 2 ........................................................................................................................... 9 

Spoken Language Technology ......................................................................................... 9 

2.1 Spoken language systems ..................................................................................... 9 

2.1.1 Automatic speech recognition ............................................................................ 9 

2.1.1.1 Acoustic-phonetic .............................................................................................. 10 

2.1.1.2 Pattern recognition ............................................................................................ 10 

2.1.1.3 Artificial intelligence .......................................................................................... 12 

2.1.2 Text-to-speech synthesis .................................................................................. 12 

2.1.2.1 Text analysis module ......................................................................................... 13 

2.1.2.2 Phonetic analysis module .................................................................................. 13 



 

ii 

 

2.1.2.3 Prosodic analysis module .................................................................................. 14 

2.1.2.4 Speech synthesis module .................................................................................. 14 

2.2 Hidden Markov Models ..................................................................................... 16 

2.2.1 Definition of Hidden Markov Model ............................................................... 16 

2.2.2 The three basic HMM problems....................................................................... 17 

2.2.3 Types of HMMS............................................................................................... 19 

2.2.4 Structure and topology ..................................................................................... 19 

2.2.5 HMMs in speech recognition ........................................................................... 20 

2.3 Speech components for speech applications ...................................................... 21 

2.3.1 Acoustic models training .................................................................................. 22 

2.3.1.1 Corpus ................................................................................................................ 22 

2.3.1.2 Lexicon ............................................................................................................... 23 

2.3.1.3 Acoustic models ................................................................................................. 24 

2.3.2 Speech recognition engine ............................................................................... 25 

2.3.2.1 Engine recognition procedure ........................................................................... 26 

2.3.2.2 Senones ............................................................................................................. 27 

2.3.2.3 Confidence scoring ............................................................................................ 27 

2.3.3 Speech API ....................................................................................................... 28 

2.3.4 Grammars ......................................................................................................... 29 

2.3.4.1 Static and Dynamic Grammar Rules .................................................................. 30 

2.3.5 Speech applications .......................................................................................... 31 

2.3.5.1 Architecture ....................................................................................................... 31 

2.4 Microsoft Voice Command ................................................................................ 32 

2.4.1 Definition ......................................................................................................... 32 

2.4.2 Application objective and features ................................................................... 32 

2.4.3 How does it work ............................................................................................. 33 

2.4.4 Target audience ................................................................................................ 34 

2.4.5 Competitors ...................................................................................................... 34 

2.4.6 Long term key objectives ................................................................................. 34 

2.5 Other commercial solutions ............................................................................... 35 

2.5.1 Cyberon Voice Commander ............................................................................. 35 



 

iii 

 

2.5.2 Cyberon Java Talking Dictionary .................................................................... 36 

2.5.3 Vsuite ............................................................................................................... 36 

2.5.4 VSearch ............................................................................................................ 36 

2.5.5 VoiceMode ....................................................................................................... 37 

2.5.6 VSpeak ............................................................................................................. 37 

2.5.7 Comparison and analysis .................................................................................. 37 

2.6 Conclusion ......................................................................................................... 38 

Chapter 3 ......................................................................................................................... 40 

Development of a Speech Interface for Mobility ......................................................... 40 

3.1 Speech engine localization ................................................................................. 40 

3.1.1 Training overview ............................................................................................ 40 

3.1.1.1 Corpus specifications ......................................................................................... 40 

3.1.1.2 Data pre-processing ........................................................................................... 42 

3.1.1.3 Lexicon generation ............................................................................................ 43 

3.1.1.4 Training .............................................................................................................. 44 

3.1.1.5 Compilation ....................................................................................................... 45 

3.1.1.6 Registration ....................................................................................................... 46 

3.2 Speech application development ........................................................................ 47 

3.2.1 Pocket Reco ...................................................................................................... 47 

3.2.2 System description ........................................................................................... 48 

3.2.3 Architecture ...................................................................................................... 49 

3.2.4 Implementation................................................................................................. 51 

3.2.4.1 API for Text-to-Speech ....................................................................................... 52 

3.2.4.2 API for Speech Recognition ............................................................................... 53 

3.2.4.3 Events ................................................................................................................ 53 

3.2.5 Grammar........................................................................................................... 54 

3.2.5.1 Semantic-based recognitions ............................................................................ 54 

3.2.6 Name matching algorithm ................................................................................ 55 

3.2.7 Experimental results ......................................................................................... 56 

3.3 Experiment analysis ........................................................................................... 58 

Chapter 4 ......................................................................................................................... 60 



 

iv 

 

Voice Command European Portuguese Localization .................................................. 60 

4.1 Behavior Localization ........................................................................................ 60 

4.2 Initial status and resources ................................................................................. 60 

4.3 Architecture ........................................................................................................ 61 

4.4 Development environment ................................................................................. 63 

4.4.1 CoreXT Development Environment ................................................................ 63 

4.4.2 Source Depot .................................................................................................... 64 

4.4.3 Build ................................................................................................................. 65 

4.4.4 Setup variant builder ........................................................................................ 66 

4.4.4.1 Main section ...................................................................................................... 66 

4.4.4.2 Localization section ........................................................................................... 67 

4.5 European Portuguese Engines Integration ......................................................... 67 

4.5.1 Speech Recognition engine .............................................................................. 67 

4.5.2 Text-to-speech engine ...................................................................................... 68 

4.5.2.1 Broker Mechanism ............................................................................................ 68 

4.5.2.2 Modules to be linked to the Application module .............................................. 69 

4.6 Features Localization ......................................................................................... 69 

4.6.1 Cultural Research ............................................................................................. 70 

4.6.2 Digit Dial Design ............................................................................................. 70 

4.6.3 Localization of Voice Commands, Voice Prompts and GUI ........................... 71 

4.6.4 Translation – Translate Help, Setup Strings, Readme, etc. .............................. 72 

4.7 Product Setup ..................................................................................................... 72 

4.8 VC Localization Issues ...................................................................................... 74 

4.8.1 Cosmetic bugs .................................................................................................. 74 

4.8.2 Debug ............................................................................................................... 75 

4.9 Basic Verification Tests ..................................................................................... 76 

4.10 Usability evaluation ........................................................................................... 81 

4.10.1 Objective .......................................................................................................... 82 

4.10.2 Usability evaluation methodology ................................................................... 82 

4.10.3 Subject profiles ................................................................................................. 84 

4.10.4 Evaluation results and analysis ........................................................................ 85 



 

v 

 

4.10.5 Subject comments ............................................................................................ 87 

4.11 Result analysis .................................................................................................... 89 

Chapter 5 ......................................................................................................................... 92 

Conclusions and Future work ........................................................................................ 92 

5.1 Summary of accomplishments ........................................................................... 92 

5.2 Future work ........................................................................................................ 94 

REFERENCES ................................................................................................................ 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

 

LIST OF FIGURES 
 

Figure 1 - Phoneme lattice [Rabiner93] ................................................................... 10 

Figure 2 - Basic architecture of a SR system based on pattern recognition ............. 11 

Figure 3 - Basic system architecture of a TTS system ............................................. 13 

Figure 4 - Left-to-right model .................................................................................. 20 

Figure 5 - Block of an isolated entity recognizer ..................................................... 21 

Figure 6 - Speech applications components ............................................................. 22 

Figure 7 - Engine runtime ........................................................................................ 25 

Figure 8 - Speech signal before and after an STFT ................................................. 27 

Figure 9 - SAPI overview ........................................................................................ 29 

Figure 10 - Pseudo grammar ...................................................................................... 30 

Figure 11 - Pseudo dynamic rule ............................................................................... 31 

Figure 12 - Components of speech applications ........................................................ 32 

Figure 13 - Comparison between VC and the best competitor (2004) ...................... 34 

Figure 14 - Java Talking Dictionary screenshots ....................................................... 36 

Figure 15 - Line responsible for the HYP generation in Autotrain configuration file43 

Figure 16 - Data pre-processing flow ........................................................................ 43 

Figure 17 - Feature extraction process ....................................................................... 44 

Figure 18 - Used HMM model topology ................................................................... 45 

Figure 19 - Changed options for model compilation (Autotrain configuration file) . 45 

Figure 20 - Engine registry ........................................................................................ 47 

Figure 21 - Activity diagram for the application features .......................................... 49 

Figure 22 - Diagram of the speech architecture ......................................................... 50 

Figure 23 - UML diagram of the implementation ...................................................... 52 

Figure 24 - Gender distribution .................................................................................. 57 

Figure 25 - HCI comparison ...................................................................................... 57 

Figure 26 - Time difference between HCIs ............................................................... 58 

Figure 27 - Features architecture ............................................................................... 61 

Figure 28 - Application deconstruction ..................................................................... 62 

Figure 29 - Excerpt of a resource file containing voice prompts ............................... 71 



 

vii 

 

Figure 30 - Using cabwiz tool to generate a Pocket PC CAB file ............................. 73 

Figure 31 - Incomplete options label ......................................................................... 74 

Figure 32 - Imperceptible option in definitions menu ............................................... 74 

Figure 33 - User experience profile ........................................................................... 85 

Figure 34 - Time taken in accomplishing the tasks (VUI and GUI) .......................... 86 

Figure 35 - Average number of attempts for each task .............................................. 87 

Figure 36 - Number of attempts for each task ........................................................... 87 

Figure 37 - Questionnaire results ............................................................................... 88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 

 

LIST OF TABLES 
 

Table 1 - Recognition results ......................................................................................... 28 

Table 2 - Application comparison ................................................................................. 38 

Table 3 - Speakers distribution of over regions............................................................. 41 

Table 4 - Speaker distribution over age groups and sexes ............................................ 41 

Table 5 - Distribution of speakers over main environments ......................................... 42 

Table 6 - Compiled files ................................................................................................ 46 

Table 7 - User distribution ............................................................................................. 57 

Table 8 - Time taken to perform the tasks ..................................................................... 57 

Table 9 - Code tree structure ......................................................................................... 64 

Table 10 - Size of the language independent modules .................................................. 68 

Table 11 - Size of the language dependent modules ..................................................... 68 

Table 12 - Features list of the BVT ............................................................................... 77 

Table 13 - Test Pocket PC characteristics ..................................................................... 77 

Table 14 - Stock data information ................................................................................. 78 

Table 15 - BVT tests ..................................................................................................... 81 

Table 16 - Tasks performed in the usability evaluation test. ......................................... 82 

 

 

 

 

 

 

 

 

 



 

ix 

 

ACKNOWLEDGEMENTS 

 
I would like to express my sincere appreciation to Eng. Maria João Barros for her 

excellent orientation, help and availability throughout this work. 

 

I would like to thank Professor Miguel Sales Dias for the opportunity to accomplish 

this project and his excellent supervision and orientation. 

 

I would like to thank Eng. António Calado for his excellent co-orientation, advices and 

guidance in this project. 

 

 I would like to thank to the rest of the MLDC members, for their support, advices and 

help during this project. 

 

 I would like to thank to my friends and family, in particular to my mother and Diana, 

for their invaluable care, motivation and support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 

 

GLOSSARY OF ABBREVIATIONS 

AND ACRONYMS 
 

API Application Programming Interface 

ASR Automatic Speech Recognition 

BVT Basic Verification Tests 

CAB Cabinet (file format) 

CE Compact Edition 

CFG Context-Free Grammar 

COM Component Object Model 

EP European Portuguese 

G2P Grapheme to Phoneme 

GUI Graphical User Interface 

HCI Human-Computer Interface 

HMM Hidden Markov Model 

HTC High Tech Computer Corp 

HTK Hidden Markov Model Toolkit 

HYP Internal Microsoft Format 

IDE Integrated Development Environment 

IS Install Shield 

ISEL Instituto Superior de Engenharia de Lisboa 

IT Information Technologies 

JNI Java Native Interface 

KB Kilobyte 

MB Megabyte 

MFCC  Mel Frequency Cepstral Coefficients 

MLDC Microsoft Language Development Center 

MS Microsoft 

OEM Original Equipment Manufacture 

PPC Pocket PC 



 

xi 

 

PTG Portuguese 

PTT Push-to-talk 

RCW Runtime Callable Wrapper 

SAPI Speech API 

SCG Speech Components Group, placed at Redmond 

SLU Spoken Language Understanding 

SR Speech Recognition 

STFT Short-Time Fourier Transform 

TAM  Text Analysis Module 

TTS Text-to-speech 

UX User Experience 

VC Voice Command 

VUI Voice User Interface 

WM Windows Mobile 

XML Extensible Markup Language 



Final Project Report                                                                                                         1 

Chapter 1  
 

Introduction 
 

 

he present document describes some of the methodologies and processes that are 

involved in the creation of spoken language interfaces for mobile devices. This 

includes the development of acoustic models based on Hidden Markov Models (HMMs), 

spoken language systems, spoken language interfaces as a Human-Computer Interface 

(HCI), component integration such as, speech recognition (SR) and text-to-speech (TTS) 

modules and Voice Command (VC) adaptation to a specific language (European 

Portuguese), all considering a mobility environment. 

 

Spoken language technology has suffered a significant evolution in the last years, 

being present nowadays in the daily life of many people. The tendency is that systems 

based on speech continue to extend its presence amongst humans [Huang01].  

 

“The ultimate impact of spoken language technologies depends on whether you can 

fully integrate the enabling technologies with applications so that users find it easy to 

communicate with computers.” 

Huang X., Acero A., Hon H. in  

  Spoken Language Processing, 2001 [Huang01] 

 

The adoption of spoken language technology as an HCI has the basic goal to improve 

the interaction between users and computers by making computers more usable and 

receptive to the user’s needs. Nonetheless, the impact and receptiveness of a speech 

application on the users is dependent on the following aspects: 

 Nature of the task – Which is the main goal to accomplish. 

 Usage scenario – In which scenario is the task executed. 

 Interface design – User interface engineering. 

 Language – In which language is the system developed. 

T 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         2  
Introduction 

 

 Environment – In which environmental conditions is the task executed.  

 Target platform - In which platform it is supposed the software to run. 

 User group – Which user profile is the application directed to. 

 

Spoken language applications are able to recognize and/or synthesize speech. 

Automatic speech recognition (ASR) can be described as the process of converting a 

speech signal, pronounced by a human user, to a sequence of words, through computer 

algorithms [Rabiner93].  Text-to-speech synthesis can be viewed as the process of 

converting normal language text into speech [Huang01], [Black07]. This work focus on 

the speech recognition problem, but it also describes the integration of a TTS engine on 

mobile devices.  

1.1 Motivations 

In this section it is described the following: 

 The motivations/challenges behind the adoption of a spoken language as an 

interface modality or as a control modality. 

 The integration process of spoken language technologies on mobile 

applications as an HCI modality;  

 The relevance and importance of a language in a spoken language interface, in 

this case European Portuguese (EP). 

1.1.1 Spoken Language Interface  

Since the beginning of times, speech communication has been and will be the dominant 

mode of human social bonding and information exchange [Huang01]. 

A spoken language interface allows interacting, through speech, with a computer. 

Speech can be adopted as a primary interface modality or as a command and control 

modality in parallel with others, such as mouse, keyboard, touch-screen or joystick. The 

combination of speech with other interaction modalities is generally more effective than a 

unimodal interface, due the inexistence of a 100% accurate method to perform speech 

recognition [Huang01] [Acero06]. Spoken language interfaces impose the challenge that 

neither speech recognition nor understanding is perfect, therefore application developers 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         3  
Introduction 

 

should fully understand the strengths and weaknesses of the underlying speech 

technologies and identify the appropriate situations where speech technology can be 

effectively used.  

The evolution path leads to a world where we are surrounded by automatic systems 

[Huang01], and in many situations there is no space left for the incorporation of a 

keyboard or a graphical interface. For example, with wearable computers it may be 

impossible to incorporate a large keyboard. Another classic example of “busy hands, 

busy eyes” scenarios, where a spoken language interface benefits the user, is while 

driving a vehicle. When driving, safety is compromised by any visual distraction and 

hands are required for controlling the vehicle.  

Spoken language interfaces also offer obvious benefits for individuals challenged with 

a variety of physical disabilities, such as blindness, physical limitations/handicaps and 

motor skills. 

1.1.2 Mobility 

The work presented here targets the mobile environment. Mobile devices are currently 

widely spread amongst the world population, existing 2,168,433,600 devices worldwide 

and 11,448,000 devices in Portugal, according to [CIAWeb]. This statistics demonstrate a 

clear interest in the use of mobile devices by the Portuguese population, having an 

average of more than one device per habitant (considering that Portugal has a population 

of 10,536,000 (2004) habitants [GovWeb]).  

 The common user of a mobile phone wants it to be functional and naturally easy to 

use. However, the trend leads to smaller devices with an increasing amount of features 

and services culminating in an interface overload. Although users are attracted by these 

new features and services, they also want a functional, easy to use device where it isn’t 

needed to read an extensive manual to perform a simple phone call. 

The process of integrating spoken language technologies in mobile applications as a 

HCI modality is highly dependent on the nature of the service provided by such 

technologies, for example, deleting an email is completely different of checking the 

battery of a device. In any case, such interface should make the interaction between the 

user and the device easier. A well-designed HCI requires the consideration of the 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         4  
Introduction 

 

particular user group of the application, making sure that the interface matches the way 

users expect it to behave [Freitas07]. 

Mobility scenarios add challenges to the development of speech applications, due to 

hardware limitations, such as memory and performance, and conditions imposed by the 

different usage scenarios, e.g. environmental noise, device positioning towards the user 

and lack of privacy. Since these devices are also often used in a noisy environment it is 

necessary a robust speech recognition system. Chapter 3 illustrates precisely the process 

of designing and developing an application with a spoken language interface for a mobile 

device. 

Voice Command is an example of an application that provides a spoken language 

interface to accomplish tasks in mobile devices (described in section 2.4). 

1.1.3 European Portuguese in speech applications 

Speech applications face another challenge: users want to interact with the application in 

their native language and use their own pronunciation. The localization
1
 of speech or 

recognition and synthesis modules for a new language includes a complex set of 

procedures, which vary if we are considering recognition or synthesis. Some are of 

linguistic nature (pronunciation lexicons, phone sets, annotated and orthographically 

transcribed speech corpus, etc.) and some are of mathematical/stochastic/algorithmic 

nature (acoustic models, language models, prosody models, grapheme-phoneme 

mappings, etc.).  

 The Portuguese users can also use speech systems in other languages than their native 

one, when they know a second language, but the recognition rate and usability of the 

speech system will commonly decrease. The use of non-native accents has a negative 

effect in automatic speech recognition [Teixeira97]. The acoustic models, which are the 

main part of the recognition engine, are trained with speech data from native speakers and 

will present better recognition results with a native accent input. The experiments 

performed in section also reveal that users tend to cease using a non-native speech system 

because the commands don’t come out on a natural way, preferring a slower graphical 

interface. This way, it becomes important that users have the possibility to use speech 

                                                 
1
 The term localization, used in the engineering community, refers to the adaptation of a system to a certain 

language variant. The adaptation is not only linguistically, but also cultural and technological. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         5  
Introduction 

 

systems in EP, especially those with special needs that depend on this type of applications 

to use a mobile device. 

This project enlarges the existent number of speech applications in EP, for mobile 

devices, providing at the same time the language expansion in the technological world. 

1.2 Objectives 

The core objective of this project is the study of spoken language interfaces for mobile 

devices, culminating with the localization of Voice Command to EP. To accomplish the 

objectives the work has been divided in three main phases: 

1. Study and analysis of spoken language technology; 

2. Mobile application development; 

3. Localization of Voice Command to EP. 

 

The first two phases can be seen as a necessary preparation for the third phase of the 

project. For the localization of Voice Command it is necessary to have a basic knowledge 

of spoken language systems, as well as understand how the different components interact 

between them. It is also important to understand the theory behind these components and 

what can be done in order to improve them.  

1.2.1 Study and analysis of spoken language technology 

The study and analysis of spoken language technology for mobile devices consist in 

understanding the basics of spoken language processing - speech processing, speech 

recognition, HMMs, acoustic modelling, environmental robustness and speech synthesis 

– and also analysing typical spoken language systems (architecture and speech interface 

design). 

1.2.2 Mobile application development 

In a second phase the development of mobile applications is explored, as well as the 

changes introduced by the mobility scenario in speech recognition and spoken language 

systems. As a case study an example command and control speech application, which 

allows the user to perform phone calls to a contact in EP, was developed. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         6  
Introduction 

 

1.2.3 Localization of Voice Command to EP 

The final phase of the project consists in adapting Voice Command to EP.  Voice 

Command (described in section 2.4) is an application especially designed for mobile 

devices, which allows the user to execute common features and interact with the device 

using voice commands. 

In a first stage it is performed a problem analysis, which includes exploring available 

features, application architecture, modules, components and source code, in order to 

understand the requirements for the localization process and the implications concerning 

the integration of the SR and TTS EP modules, for mobile devices. The localization or 

adaptation process also includes redefinition, training and altering the existent acoustic 

models in order to obtain a SR engine specific for mobile applications, such as Voice 

Command. This involves developing a Compact Edition (CE) SR engine directed for 

mobile devices in EP. In a second phase, the resulting engine is integrated in Voice 

Command along with a EP TTS existing engine, from Nuance [NuanceCommunications]. 

The application interface is redefined and adapted to the EP culture, changing dialogs, 

features, graphical interface, etc. In a concluding phase it is performed an usability 

evaluation, verification tests and beta testing of the application already localized to EP, in 

order to remove interface problems that interfere with the application success. 

1.3 Scope 

This project results of the cooperation between Microsoft Language Development Center 

(MLDC) and Instituto Superior de Engenharia de Lisboa (ISEL). MLDC is a 

development department in the Microsoft Portugal premises at Tagus Park, dedicated to 

Speech and Natural Language development.  

 

“MLDC is the first Microsoft Development Center outside of Redmond dedicated to 

key Speech and Natural Language developments, and is a clear demonstration of 

Microsoft efforts of stimulating a strong software industry in EMEA. To be successful, 

MLDC must have close relationships with academia, R&D laboratories, companies, 

government and European institutions. I will continue fostering and building these 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         7  
Introduction 

 

relationships in order to create more opportunities for language research and 

development here in Portugal.” 

 

Miguel Sales Dias, Director of the Microsoft Language Development Center 

[MLDCWeb] 

 

The presented work constitutes the final course project for ISEL, supervised by Prof. 

Maria João Barros, and an internship at MLDC, coordinated by Prof. Dr. Miguel Sales 

Dias, Director of the MLDC. All work was accomplished at MLDC with the orientation 

of Eng. António Calado. 

 

Until this date, this work has already spawned a paper on an international conference, 

proving the continuing interest of the scientific community in this area. Publication of 

this work follows: 

 Freitas, J., Barros, M. J., Calado, A., Dias, M. S., “Spoken Language Interface 

for Mobile Devices”, in the Proceedings of 3rd Language & Technology 

Conference, October,  2007 

1.4 Audience 

This project targets several interests such as: application development for mobile devices, 

localization engineering, spoken language processing and spoken language interfaces 

development. 

1.5 Document Structure 

The current document is structured as following: 

 

 Chapter 1, “Introduction” - This is the current chapter, which introduces the 

context in where this work was executed, what motivates it and the goals it 

accomplishes. 

 Chapter 2, “Spoken Language Technology” – In this chapter is presented the 

current state of the art for the subjects approached in this project. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         8  
Introduction 

 

 Chapter 3, “Development of a Speech Interface for Mobility” – This chapter 

presents a SR engine localization, speech application development in a mobility 

context and a study about spoken language interface for mobile devices. 

 Chapter 4, “Voice Command European Portuguese Localization” – This chapter 

contains all relevant aspects of the Voice Command localization for European 

Portuguese, including a usability evaluation study of the application 

 Chapter 5, “Conclusions and Future Work” - Finally, the last chapter is dedicated 

to conclusions and final remarks. Possible future work directions and lines of 

research are also discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Final Project Report                                                                                                         9 

Chapter 2  
 

Spoken Language Technology 
 

 

n this chapter it will be analyzed the current state of the art in spoken language 

technology, namely, the existent components/subsystems and their interaction with 

each other, in this type of system. Additionally, it will also be analyzed commercial 

speech applications for mobile devices.  

This chapter starts by broadly dissecting the two main modules of spoken language 

system - ASR and TTS. Then, it is explained how these modules are integrated into 

speech applications, along with other required components in the development of speech 

applications. 

2.1 Spoken language systems 

According to [Huang01], a spoken language system has at least one of the following three 

subsystems: 

 Automatic speech recognition – converts speech into words. 

 Text-to-speech – conveys spoken information. 

 Spoken language understanding (SLU) – aims at extracting meaning from 

natural language speech, by interpreting utterances in a context and carry out 

appropriate actions (SLU systems are not approached in this document). 

 

In the last decades spoken language systems have been based in data-driven statistical 

approaches with promising results [Huang01]. These approaches are based on modelling 

the speech signal using well-known statistical algorithms that extract information from 

the data.  

2.1.1 Automatic speech recognition 

According to [Rabiner93] there are three main approaches to ASR: 

I 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         10  
Spoken Language Technology 

 

 The acoustic-phonetic approach 

 The artificial intelligence approach 

 The pattern recognition approach 

2.1.1.1 Acoustic-phonetic  

The acoustic-phonetic approach starts by processing and performing an analysis of the 

speech signal to provide a proper representation of its characteristics, a step common to 

all approaches. This involves segmenting the speech signal into regions where the 

acoustic properties of the signal are representative of a phonetic unit and attaching 

phonetic labels to each region. The problem of this approach is to decode the phonetic 

units into word strings. In other words, decoding the phoneme lattice (which is the result 

of a segmentation and labelling process that represents a sequential set of phonemes that 

are likely matches to the spoken input speech – fig. 1) into a word string, such that every 

instant of time is included in one of the phonemes in the lattice and assuring that the 

result (word or set of words) is valid according with the language syntax, may become a 

hard task. The example from fig. 1 illustrates the difficulty in decoding phonetic units 

into word strings, where can be derived the phonetic string SIL-AO-L-AX-B-AW-T 

corresponding to the word string “all about”, with the L, AX, and B having been second 

or third choices in the lattice. 

 

 

Figure 1 -  Phoneme lattice [Rabiner93] 

2.1.1.2 Pattern recognition 

The pattern recognition approach can be divided in two steps: training of speech patterns 

and recognition via pattern comparison. The knowledge of speech is brought, through the 

training procedure, into the system.  The concept is to gather enough versions of a pattern 

to be recognized in order to adequately characterize  the acoustic properties of the 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         11  
Spoken Language Technology 

 

pattern. The objective is that the machine learns which acoustic properties of the speech 

class are reliable and repeatable across all training tokens of the pattern. 

 

Figure 2 - Basic architecture of a SR system based on pattern recognition 

 

 

Figure 2 can be divided in two distinct phases in which speech recognition systems 

based on pattern recognition are commonly separated: 

 The training phase – In this phase speech samples (Corpus) are used to build 

the models used in pattern comparison. 

 The testing phase – In this phase the system receives an unknown speech 

signal as input and determines its most probable pattern. 

 

Based on fig. 2, this approach can be divided in the following steps: 

 Feature measurement – a sequence of measures is applied to the entrance signal, 

in order to define a pattern. In speech signals the feature measurement is usually 

the output of some spectral analysis, such as mel-cepstrum analysis, linear 

predictive coding or discrete Fourier transform analysis. 

 Pattern or model training – in this step, pattern representations of the features 

are created. The patterns correspond to speech sounds of the same class. The 

result can be a template or a model that characterizes the statistics features of the 

pattern. 

 Pattern classification – in this step, speech patterns, which usually consist of a 

sequence of spectral vectors, are compared and the similarity between them is 

measured. To compare speech patterns it is used a local “spectral” distance 

measure and a global time alignment procedure (dynamic time warping algorithm 

[Sakoe78]) which compensates for different rates or time scales. 

 Decision Logic – decide which pattern best matches the unknown pattern input. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         12  
Spoken Language Technology 

 

 

The pattern recognition approach is the basis for the remainder of this work. This is 

the method of choice for three reasons [Rabiner93]: 

 Simplicity of use - The approach is widely spread and used. The method 

behind it is easy to understand, being rich in mathematical and communication 

theory. 

 Robustness and invariance to different speech vocabularies, users, feature sets, 

pattern comparison algorithms and decision rules - This property allows the 

technique to be used with any kind of speech units, word vocabularies and 

recording conditions. 

 Proven high performance - This characteristic is verified in platforms such as 

mobile. 

2.1.1.3 Artificial intelligence 

The artificial intelligence approach is a combination of the two techniques previously 

analysed, since it exploits concepts and ideas of both. The artificial intelligence approach 

tries to simulate the way a person applies its intelligence in visualizing, analysing, and 

finally making a decision on the measured acoustic features [Rabiner93]. The system 

tends to adapt and learn over time the relationships between phonetic events and all 

known inputs learning how to distinguish similar sound classes. This approach is not 

detailed or used in this work. 

2.1.2 Text-to-speech synthesis 

Speech synthesis is the artificial production of human speech. A computer system used 

for this purpose is called a speech synthesizer, and can be implemented in software or 

hardware. A text-to-speech system converts normal language text into speech. The TTS 

process can be divided in four parts which are illustrated in fig. 3. 

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Computer_hardware


Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         13  
Spoken Language Technology 

 

 
Figure 3 - Basic system architecture of a TTS system 

 

The text analysis component normalizes the text to the appropriate form so that it may 

be artificially uttered. The input can be either raw text or tagged. These tags are used to 

assist text, phonetic, and prosodic analysis. The phonetic analysis component converts the 

processed text into the corresponding phonetic sequence, which is followed by prosodic 

analysis to attach appropriate pitch and duration information to the phonetic sequence. 

Finally, the speech synthesis component takes the parameters from the fully tagged 

phonetic sequence to generate the corresponding speech waveform. In the following 

sections each module is analyzed in more detail. Some authors, such as [Black07] choose 

to include the Phonetic and Prosodic analysis in just one stage named “Linguistic 

Analysis” which has the objective to find pronunciations of the words and assign 

prosodic structure to them, such as phrasing, intonation and durations. In this document 

the student choose to split this stage in order to distinguish two distinct actions of a TTS 

system. 

2.1.2.1 Text analysis module 

The text analysis module (TAM) is responsible for indicating all knowledge about the 

text or message that is not specifically phonetic or prosodic in its nature. Depending on 

the complexity of the system the analysis can be different things, from converting non-

orthographic items, such as number to words, or attempting to analyze whitespaces and 

punctuations, to determine the document structure or perform sophisticated syntax and 

semantic analysis on sentences, to determine attributes that help the phonetic analysis to 

generate correct phonetic representation and prosodic generation to construct superior 

pitch contours. 

2.1.2.2 Phonetic analysis module 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         14  
Spoken Language Technology 

 

The phonetic analysis module is responsible for the conversion from an orthographic 

representation to a phonemic one, including the processing of diacritic information, such 

as stress placement. In this stage it is performed a grapheme-to-phoneme (G2P) 

conversion, since phonemes are the basic units of sound. The complexity of G2P 

conversion is language dependent, more concretely is dependent on the relation between 

orthography and phonology.  

In the specific case of EP the complexity is particularly high, mainly due to the Sandhi 

effects found in continuous speech [Barros06]. Sandhi effects are basically coarticulation 

phenomena and phonetic reductions of continuous speech [Braga03], [Amaral99]. When 

looking at continuous speech we find different phonetic transcriptions for the same word, 

according to the rhythm and context (if the next word is a vowel, or some consonant, if it 

is the end of a sentence, etc).  

2.1.2.3 Prosodic analysis module 

Prosody in linguistic is the study of the intonation and phonetic effects that are employed 

to express attitude or assumptions. Prosody determines how a sentence is spoken in terms 

of melody, phrasing, rhythm, accent locations and emotions. Prosody may even carry 

meaning (e.g. “I like the wine John” vs “I like the wine, John”) [Huang01], [Black07]. 

In this module the parsed text and the corresponding phoneme string are received as 

input.  The output – prosodic generations – is dependent on the speaking style and 

contain the prosodic parameters such as, duration of each phoneme, fundamental 

frequency contour, and intensity. 

2.1.2.4 Speech synthesis module 

This last module is the one responsible by the waveform generation. The speech synthesis 

systems can be classified into four types [Barros07a]: 

 Vocal Tract models based synthesis; 

 Concatenative synthesis; 

 HMM based synthesis; 

 Unit selection based synthesis. 

 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         15  
Spoken Language Technology 

 

The vocal tract based synthesis models the movements of articulators and acoustics of 

vocal tract. It does not use human speech samples at runtime. Instead, the synthesized 

speech output is created using an acoustic model. Parameters, such as fundamental 

frequency, voicing and noise levels are alternated over time to create a waveform of 

artificial speech.  

The concatenative synthesis uses using a data driven approach to generate the verbal 

content of the signal. It consists in the concatenation of recorded speech segments stored 

in a database, in order to assemble new utterances. 

The HMMs based synthesis use a set of HMMs in a statistical framework to generate 

the speech signal. This and the concatenative approach can both be described as data-

driven. In the concatenative approach we are effectively memorizing the data, whereas in 

the statistical approach we are attempting to learn the general properties of the data. The 

HMM based speech technology is recently gaining some relevance due to the good 

quality attained and to recent awarded systems [Blizzard]. They rely on a small database 

of speech models that resulted from an initial training and preparation based on specific 

voice features. The quality of the generated speech signal is already as good as unit 

selection speech systems according to [Blizzard]. The smaller database and the possibility 

of easily generate another voice using the same database can represent great advantages 

in some areas. 

Unit selection based synthesis operates by selecting units from a large speech database 

to how well they match a specification and how well they join together. This technique 

can be considered as a subtype of the concatenive synthesis that uses a richer variety of 

speech. This has the aim of capturing a more natural variation and relying less on signal 

processing. The idea is that for each basic linguistic type we have a number of units, 

whose features vary beyond pitch and timing (e.g. stress or phrasing). During the 

synthesis, an algorithm (e.g. Viterbi [Viterbi67]) selects one unit from the possible 

choices, in an attempt to find the best overall sequence of units which matches the 

specification. The TTS used in this work is based on a unit selection approach. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         16  
Spoken Language Technology 

 

2.2 Hidden Markov Models 

In this section the HMMs are explained and it is shown how this technique can be used in 

speech recognition.  

2.2.1 Definition of Hidden Markov Model 

A natural extension to the Markov chain (see Appendix A) it is the Hidden Markov 

Model, which introduces a non-deterministic process that generates output observation 

symbols in any given state, with the observation being a probabilistic function of the state 

[Rabiner89]. There is no longer a one-to-one correspondence between the observation 

sequence and the state sequence, invalidating the possibility of unanimously determine 

the state sequence for a given observation sequence (i.e. the state sequence is hidden).  

The HMM is viewed as a double-embedded stochastic process, where the first process 

can be seen as a discrete Markov chain of several states, where the states transitions 

represent statistical change. Associated with each state of the chain another process that 

describes the statistics related with the output observations of each state exists. 

An HMM is then defined by: 

 

S = {S1, S2, ..., SN}- A set of states representing the state space. Here St is denoted as 

the state at time t. 

 

O = {O1, O2, …, OM} - An output observation alphabet. The observation symbols 

correspond to the physical output of the system being modeled. 

 

A = {aij} - A transition probability matrix, where aij is the probability of taking 

a transition from state i to state j. 

 

B = {bi (k)} - An output probability matrix, where bi(k) is the probability of emitting 

symbol Ok when state i is entered. 

 

π = {πi} - A initial state distribution where, 

 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         17  
Spoken Language Technology 

 

πi = P(S0 = i)    1 ≤ i ≤ 𝑁                 (2.1) 

 

Since aij, bi(k), and πi are all probabilities, they must satisfy the following properties: 

 

aij ≥ 0, bi(k) ≥ 0, πi ≥ 0 ∀ all i,j,k                 (2.2) 

 𝑁𝑗=1 aij = 1                       (2.2) 

 𝑀𝑘=1 bi(k) = 1                      (2.3) 

 𝑁𝑗=1 πi = 1                        (2.4) 

 

The model can be specified through the compact notation 

           𝜆 = (A, B, π)             (2.5) 

to indicate the complete parameter set of the model. 

2.2.2 The three basic HMM problems 

To apply HMMs in real world problems, three basic problems of interest must be 

addressed. These problems are the following [Rabiner93]: 

1. The Evaluation Problem – Given a model 𝜆 and a sequence of observations O = 

{O1, O2, …, OM}, what is the probability P(O| 𝜆); i.e., the probability of the model 

to generate the observations? 

2. The Decoding Problem – Given a model 𝜆 and a sequence of observations O = 

{O1, O2, …, OM}, what is the most likely state sequence S = {S1, S2, ..., SN}in the 

model that produces the observations? 

3. The Learning Problem – How do we adjust model parameters 𝜆 = (A, B, π) to 

maximize P(O| 𝜆)? 

 

The evaluation problem – Given a model and a sequence of observations, how do we 

compute the probability that the observed sequence was produced by the model?  To use 

HMM for pattern recognition we need to solve the evaluation problem, which consists on 

finding a way of evaluating how well a given HMM matches a given observation 

sequence or choosing the model that best matches the observations. The solution for this 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         18  
Spoken Language Technology 

 

problem can be achieved through the forward-backward procedure [Rabiner86] or Viterbi 

algorithm [Viterbi67]. 

The solution for the decoding problem is an attempt to uncover the hidden part of the 

model. Unlike the evaluation problem, for which an exact solution can be found, there are 

several ways of solving the decoding problem. The difficulty lies in defining the optimal 

state sequence, where criteria can be used. The most widely used criterion is to find the 

best single path or state sequence through the Viterbi algorithm. The Viterbi algorithm 

can be regarded as the dynamic programming algorithm applied to the HMM or as a 

modified forward algorithm. Instead of summing up probabilities from different paths 

coming to the same destination state, the Viterbi algorithm picks and remembers the best 

path. 

The third problem consists in finding a method to adjust the model parameters to 

accurately describe the observation sequences. This is by far the most difficult of the 

three problems, because there is no known analytical method that maximizes the joint 

probability of the training data in a closed form. This problem can be solved using the 

iterative forward-backward algorithm. 

 

The following example show how these problems are applied in speech recognition. 

Consider a simple isolated-word speech recognizer [Rabiner93], where there is an N-state 

HMM for each word of a W word dictionary and that the speech signal of a given word is 

represented as a time sequence spectral vectors. For each word in the vocabulary we have 

a training sequence consisting of a number of repetitions of word representations. The 

first task is to build individual word models and estimate model parameters for each word 

(problem 3). However, we need to refine the model and improve its capability of 

modeling word sequences. With the solution for problem 2 we can segment each of the 

word training sequences into states and then study the properties of the spectral vectors 

that lead to the observations in each state or in another words, determine the 

correspondent sequence of states for a given sequence of observations.  

Having a set of HMMs designed and optimized, we can use the solution to the first 

problem to recognize an unknown word, by scoring each model based upon a given 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         19  
Spoken Language Technology 

 

observation sequence and select the word whose model score is highest (i.e. have the 

highest likelihood). 

2.2.3 Types of HMMS 

The types of HMMs can be divided according with the kind of output probability 

functions. Hidden Markov Models can be classified, depending on the type of probability 

function chosen for the output symbols, as discrete, continuous or semi-continuous. 

A HMM is discrete when the probability density function is defined in a finite space 

(i.e. there is a finite number of observations). In this case the observations are 

characterized as discrete symbols chosen from a finite alphabet. 

A HMM is continuous when the probability density function is continuous.  Usually 

the probability density function is modeled as multivariate Gaussian mixture.  

For a tied mixture or semi-continuous HMM the set of probability density functions is 

the same for all states and models, only changing the probability of a symbol emission in 

a determine state. 

2.2.4 Structure and topology 

A state transition in an HMM generates observation sequences. We can differentiate the 

kinds of models, regarding the topology, according to the characteristics between the 

states. An ergodic or fully connected model is defined with all the possible transition 

between states. This type of model has the main characteristic that every state can be 

reached by every other state of the model in a finite but aperiodic number of steps. 

For speech recognition usually it is used a “left-to-right” or Bakis model, illustrated in 

fig. 4. In this model the system of states proceed from left to right. As we advance a time 

unit, the state index increases or stay the same – that is, it is only possible to transact from 

Si to Si+1 or remain in the same state. These properties allow to readily modelling signals 

whose characteristics change over time in a successive manner, such as speech.  

 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         20  
Spoken Language Technology 

 

Figure 4 - Left-to-right model 

 

The fundamental property of left-right HMMs is that the state transition coefficients 

have the following property: 

0   i>jija                          (2.6) 

This indicates that no transitions are allowed to states whose indices are lower than 

that of the current state. Furthermore, the initial state properties have the property: 

i

1  i=1
=    

0  i 1





                       

(2.7) 

because the state sequence must begin in state 1. 

2.2.5 HMMs in speech recognition 

With speech recognition based on HMMs, each entity of the recognizable vocabulary has 

a probabilistic model. The recognition is performed by determining the probability of an 

observed entity being generated by each one of the models [Meneses02]. 

To build a speech recognition system based on HMMs there should be a set of models, 

one for each sound class to recognize (phoneme, word, etc). After we had defined the set 

of sound classes that will match the number of models and chosen a model topology, we 

need to obtain for each class a reasonable amount of training data, usually named Corpus 

(section 2.3.1.1). Then, we can train the models using, for example, the forward-

backward procedure [Rabiner86]. 

In speech recognition, we begin by extracting an observation sequence (speech signal). 

Next, speech parameters are extracted and the probability of the observation sequence, 

given each model, is computed. The observation sequence will be associated with the 

model or sound class that has the higher probability. Figure 5 illustrates the basic 

structure of a recognizer with this kind of models, having N sound classes.  



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         21  
Spoken Language Technology 

 

 

Figure 5 - Block of an isolated entity recognizer 

 

2.3 Speech components for speech applications 

Speech applications require several background components to work, such as acoustic 

models, SR or TTS engines, etc. In fig. 6 the components or modules, used in this project, 

for speech applications development, focusing on the ASR modules are presented. Figure 

6 also shows how these components interact by presenting a flow between the modules 

that culminates on several types of speech applications. 

In the following sections each one of these components and stages will be described, 

from the acoustic models training procedure, to the several classes of speech applications. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         22  
Spoken Language Technology 

 

 
Figure 6 - Speech applications components 

  

2.3.1 Acoustic models training 

In this training phase, commonly used in pattern recognition approaches, the acoustic 

models are built. In order to train an acoustic model two basic inputs are required: 

 Corpus; 

 Phonetic Lexicon. 

2.3.1.1 Corpus 

The component represented as “Corpus” in fig. 6 can be defined as a set of speech data 

and respective transcription and annotation of that data. Taking on account that the 

recognition process is based on statistical/probabilistic methods, the amount of data is one 

of the most important characteristic of a Corpus (besides transcription and annotation 

quality). However, the process of acquiring large amounts of training data, is usually, a 

tough task because it requires the collaboration of numerous subjects with balanced (or 

not) characteristics (e.g. 50% male 50% female), poise word distribution, transcription 

and annotation tools, etc. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         23  
Spoken Language Technology 

 

The Corpus composition and its characteristics should also be targeted toward the 

intended domain i.e. it should be appropriated for the specific domain where it will be 

used in order to obtain better recognition. If the target audience and utterances in the 

grammar (described in section 2.3.4) of the application matches the data in the Corpus it 

will provide improved recognition rates (e.g. if the training data does not contain “yes” or 

“ok”, an application for command and control that requires several confirmations may 

present poor recognition results). Below, some characteristics that influence an 

application and should be taken under account when choosing a suitable corpus are 

presented: 

 Speaking-style - isolated-word or continuous-speech. 

 Speaker-variation - speaker-dependent or speaker-independent. 

 Vocabulary-size - small to medium to large vocabulary. 

 Recording environment – Office, Street, or others 

 

First and foremost the training data should contain recordings of speakers speaking in 

a mode which will match the target application. For example, applications may recognize 

isolated speech or continuous speech. Many phonetic effects occur when words are 

spoken in context that can only be modelled if the training data contains full utterances 

rather than isolated words. Utterance length should therefore be considered when 

choosing a corpus. The speech corpus should also contain a range of accents, ages and 

gender which corresponds to the target users of the system. Many corpora exist which are 

specifically designed for training speaker independent systems where the distribution of 

gender, age, accent, height and/or social status are accounted for. In some cases such data 

is not available, and the corpus may only consist of speakers from a particular region, for 

example Lisbon [Braga07a]. This would be a limiting factor of the resulting system if it 

was required to recognize speakers from all areas of Portugal. Background noise levels 

and the recording channel must be also taken into account, due to signal-to-noise ratio of 

speech and channel distortion. For example, digital ISDN lines and analogue lines or 

cellular phones will distort the speech in different ways. 

2.3.1.2 Lexicon 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         24  
Spoken Language Technology 

 

The lexicon is here referred has a phonetic dictionary that lists the phonetic transcription 

of the vocabulary (contains information about how the word is pronounced) in a given 

phonetic alphabet, such as IPA [IPAWeb] or SAMPA [SAMPAWeb]. A word can have 

more than one phonetic transcription in the lexicon. For words that are not in the 

dictionary a G2P conversion based on a set of rules is performed, trained from the 

existing lexicon. The G2P correspondence is relatively direct for some languages and can 

be highly unpredictable for others, like English and Portuguese [Bonardo05], [Barros06]. 

 The lexicon is used for acoustic models training but also in runtime during the 

recognition process [Jansche01]. 

2.3.1.3 Acoustic models 

The used acoustic models are based on statistical data-driven models of time-series – 

HMMs. Each HMM in a speech recognition system models the acoustic information of a 

specific speech segment within a language, being trained on speech recorded from the 

language and acoustic environment in question, for example European Portuguese 

telephony speech. These speech segments become representations of the speech units and 

can be of any size, e.g. whole sentences, whole words or sub-word phonetic units like 

syllables, triphones, diphones, phones, etc. 

The acoustic models are the basis for automatic speech recognition and their training 

involve mapping models to acoustic examples obtained from training data. Training data 

comes in the shape of transcribed speech (i.e. waveform data along with a word level 

transcription - Corpus) and the respective pronunciation dictionary from which acoustic 

parameters are extracted. However, in order to build a robust set of statistical models, 

there must be a sufficient number of examples of each of the speech units within the 

database. For this reason, the most common choice of speech units to model is sub-word 

phonetic units known as “phones”. The difference between the phone and phoneme is a 

slim one. A phone is considered part of a phoneme’s acoustic realization, what means 

that there’s only a finite set of phones for any given language. These phones can be 

modelled efficiently in different contexts and combined to form any word in the 

language.  



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         25  
Spoken Language Technology 

 

There are different kinds of phone models, context-independent and context-

dependent. Context-independent models are known as monophones. Each monophone is 

trained on all observations of the phone in the training set independent of the context in 

which it was observed. Context-dependent models are built with triphones, these are 

models of a single phone in the context of its two surrounding phones. Triphones are able 

to model contextual variation caused by effects such as assimilation and coarticulation of 

neighboring phones. 

2.3.2 Speech recognition engine 

It is in the speech recognition engine that all the recognition process takes place. In this 

section it is described the basic function of an engine based on Microsoft speech engine – 

Yakima. This was also the engine used during this project. Figure 7 illustrates the overall 

functionality of the engine. 

 

Figure 7 -  Engine runtime 

 

The application is responsible for loading the SR engine and for requesting 

actions/information from it. It communicates with the engine via a Speech API interface 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         26  
Spoken Language Technology 

 

(SAPI) [SpeechSDK]. The application will therefore request, via SAPI, that the engine is 

loaded.  The initial status of the engine is an inactive status.  It is loaded into memory 

together with the resources it needs, and waits for the application to tell SAPI to feed its 

input from the audio source – the desktop microphone, a wave file or a telephone.  

SAPI abstracts the developer from the low level details of the SR engine, nonetheless, 

it’s essential that the developer knows the potential, functionalities and work realized by 

the engine, in order to model and optimize the target application.  

2.3.2.1 Engine recognition procedure 

The speech recognition engine is split into Front-end and Decoder. The Front End 

converts the sound waves (utterances spoken by the user) into features vector and 

supplies these to the decoder coupled with a noise-probability. The Decoder recognizes 

the sounds as being a good match for the phonemes, which are the speech units used by 

the engine. Then these phonemes (which exist in the engine database) are put together to 

form words or phrases.  

The Front-end part of the engine analyses the sound waves and outputs to the decoder, 

a continual stream of probabilities that the sounds are speech rather than noise. The 

decoder receives two parallel streams, one with the analysed input sound and another one 

with the probability of the input sound being speech. This ensures that the engine will 

only try to recognise speech when someone is speaking. However, if the probability is too 

low then the decoder will consider the input to be noise and will not analyse the input 

from the Front End.  

The speech recognition process begins, in the Front-end, by extracting the features of 

the user spoken utterance. To extract the features of a sound wave it is calculated a time-

frequency based Fourier Transform – Short-time Fourier Transform (STFT) [Huang01]. 

The STFT is used to determine the sinusoidal frequency and phase content of local 

sections of a signal as it changes over time. Figure 8 shows the spectrogram resulting 

from the transformation.  

 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         27  
Spoken Language Technology 

 

 
Figure 8 - Speech signal before and after an STFT 

 

The spectrogram is then divided into frames of specific amount of time (e.g. 10 ms in 

Yakima’s case), thus obtaining a feature vector. After computing the frequency spectrum, 

the volume normalization of the input sounds takes place. 

In the following stage it is used the likelihood of a feature vector being generated by a 

particular sequence of states. Each state of an HMM consumes a frame of the feature 

vector. The sequence of states with the higher probability of matching the sequence of 

frames will correspond to the identified unit. 

2.3.2.2 Senones 

A senone is a sub-phonetic unit context-dependent equivalent to a HMM state of a 

triphone. A senone encodes information that shows of a combination of feature vectors 

that matches a certain sound. 

2.3.2.3 Confidence scoring 

To each recognition process it is given a confidence score based on the sequence of 

feature vectors that most likely match the sequence of states. Confidence scoring is 

necessary to allow dialog systems to alter the balance of False/Correct Accept/Rejects 

(table 1) and to allow Dialog Design Engineers (DDEs) to prevent irreversible actions 

being carried out due to misrecognition. The collection of prompts and grammars and the 

logic that links them is known as a dialog. 

 

Correctly accept 

(CA) 

When the recognition is correct and has a confidence score 

above confidence threshold. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         28  
Spoken Language Technology 

 

Falsely accept (FA) If the recognition is wrong but has a high confidence score. 

Correctly reject (CR) 
When the recognition has a low confidence score and is 

correctly rejected by the dialog system. 

Falsely reject (FR) 
When the recognition has a low confidence score and is falsely 

rejected by the dialog system. 
Table 1 - Recognition results 

 

Depending on how we want the system to behave, a threshold for the confidence 

scoring must be established. When minimizing the number of FA’s, then the number of 

FRs will rise. In this case the system is rejecting any recognition of which the engine is 

unsure.  Thus there is a trade-off between doing the wrong thing and risking user-

irritation at asking him/her to repeat what s/he just said. In critical situations such as the 

prompt asking if the user wants to delete an item, the worse possible outcome is that the 

system falsely claims to have recognized an utterance, when in fact it recognized the 

utterance wrongly and this causes an irreversible action to be invoked. 

2.3.3 Speech API 

A Speech API is an intermediate layer that provides a communication channel between 

the application and the engines. Although in this project it was used SAPI from 

Microsoft, there are other solutions in the market such as VSAPI from VoiceSignal 

[VoiceSignal07].  

Microsoft’s Speech API was developed by Microsoft Corporation and its function is to 

facilitate the developer’s task, by adding a level of indirection in the access to speech 

recognition and text-to-speech engines, as illustrated in fig. 9. The developer does not 

need to worry about low level details needed to control and manage real-time operations 

of the speech engines. SAPI provides a set of Component Object Model (COM) 

interfaces to control TTS and SR systems. The communication with the applications is 

done through events, using standard mechanisms, e.g. Windows Message, callback or 

Win32 event. SAPI applications are able to perform synchronization with real-time 

actions as they occur, e.g. phonemes [SAPISDK]. SAPI reduces the code overhead 

required for an application to use speech recognition and text-to-speech, making speech 

technology more accessible and robust for a wide range of applications. 

 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         29  
Spoken Language Technology 

 

 
Figure 9 -  SAPI overview 

2.3.4 Grammars 

Grammars contain the list of everything the user can say and consists in the vocabulary 

that can be recognized. A grammar is the engine’s model of allowed utterances.  A 

grammar is conceptually a tree of different phrases. The top of the tree corresponds to the 

entry point of the grammar and each branch going down represents a phrase that splits. 

The grammar may be of any size, have optional words (e.g. “please select Calendar” is 

the same as “Select Calendar”) and have semantic properties.   

Speech applications are often built to command and control. Command and control 

features are implemented through context-free grammars (CFGs). This kind of grammar 

defines a set of imbricated production rules. These rules are able to generate a set of 

words and combinations of these words that can be used to build all type of allowed 

sentences. The result of a grammar production can be seen as a list of valid 

words/sentences, which is passed on to the SR engine. A speech application uses a 

grammar to improve recognition accuracy by restricting and indicating to an engine 

which words/sentences should be expected. The valid sentences need to be carefully 

chosen, considering users profile and the application nature. However, other approaches 

to SR without using CFG do exist [Acero93][Stern96].  

The CFG format in SAPI 5 defines the structure of grammars and grammar rules using 

Extensible Markup Language (XML) [W3CXMLWeb]. The Grammar compiler 

transforms the XML tags defining the grammar elements into a binary format used by 

SAPI 5-compliant SR engines. This compiling process can be performed either before or 

during application run time.  



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         30  
Spoken Language Technology 

 

A speech application uses a grammar to accomplish the following: 

 Improve recognition accuracy by restricting and indicating to an engine what 

words it should expect.  

 Improve maintainability of textual grammars, by providing constructs for 

reusable text components (internal and external rule references), phrase lists, 

and string and numeric identifiers.  

 Improve translation of recognized speech into application actions. This is made 

easier by providing "semantic tags," (property name, and value associations) to 

words/phrases declared inside the grammar.  

 

SAPI also enables applications to create CFG structures programmatically using the 

ISpGrammarBuilder COM interface, which is inherited by ISpRecoGrammar. The 

application can use the ISpGrammarBuilder API to dynamically update an already loaded 

SAPI XML grammar, create an in-memory SAPI grammar, and/or save an in-memory 

SAPI grammar to a memory stream (e.g. saving grammars to the hard disk). 

Applications that do not need to modify a grammar at run time, or applications that 

want to increase performance of their CFG-based application should load the compiled 

binary form statically. 

2.3.4.1 Static and Dynamic Grammar Rules 

A Grammar Rule is the fundamental unit in a grammar. There are top-level rules, and 

all rules may contain sub-rules. 

The figure below shows a pseudo grammar that allows the user to know the weather in 

a determined day and place. The “?” symbol denotes an optional utterance and “TL” 

denotes top level rules. 

<Rule Weather TL> [Please]? [Tell me/What is](?) <Weather_Day> [in <Place>]? [Please] (?) 

 

<Rule Weather_Day> [Today’s weather] 

  [Tomorrow’s weather] 

  <Day_Of_Week> [’s weather] 

  [what the weather will be like] [on]? [tomorrow/<Day_Of_Week>/at the weekend] 

    

<Rule Day_Of_Week> [Monday / Tuesday / Wednesday / Thursday / Friday / Saturday / Sunday] 

 

<Rule Place> [Lisbon / Porto] 

Figure 10 - Pseudo grammar 

mk:@MSITStore:G:\sapi.chm::/ISpGrammarBuilder.htm
mk:@MSITStore:G:\sapi.chm::/ISpRecoGrammar.htm


Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         31  
Spoken Language Technology 

 

 

The above grammar is composed by Static Grammar rules. Though, there might be the 

need of having rules filled at runtime. These are called dynamic grammar rules because 

they can be updated dynamically. A dynamic rule is also useful to kept separate static 

grammars from lists, so that both can be easily managed. For example, instead of having 

a list with all the possible places inserted into the weather grammar above, the places are 

loaded in runtime from an external list (fig.11). 

 

<Dynamic Rule Place> [Place.txt] 

Figure 11 - Pseudo dynamic rule 

 

All these actions mentioned above take place in SAPI and are completely transparent 

to the engine. The SR engine is agnostic to whether it uses a totally static grammar or 

dynamic rules. 

2.3.5 Speech applications 

Speech applications can be divided in several classes depending on their interface. There 

are four broad classes of speech applications requiring different user interface design:  

 Desktop – Desktop speech applications include widely used computing 

environments, such as Microsoft Windows and Microsoft Office. 

 Telephony - Telephony applications require Server-side speech applications, 

such as Microsoft Speech Server and Microsoft Exchange. 

 Home - Home user interfaces are usually localized in the TV, living room or 

kitchen and introduce a great benefit since home appliances don’t have a 

keyboard or a mouse and the traditional graphical user interface application 

can’t be directly extended for this category. The traditional HCI set-up makes 

use of remote control devices, but these can be replaced by a speech interface. 

 Mobility - In the mobile case, cell phone, PDA and automotive are the most 

important mobile scenarios, due to the physical size and the hands-busy and 

eyes-busy constraints. 

2.3.5.1 Architecture 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         32  
Spoken Language Technology 

 

The typical speech application is commonly constituted by one or more engine that can 

be either a SR, a TTS or a SLU system and an application programming interface (API) 

used as a communication bridge between the engine and application, as illustrated in fig. 

12. There can be multiple applications interacting with a shared engine via the speech 

API. 

 

Figure 12 -  Components of speech applications 

2.4 Microsoft Voice Command 

In this section are described the objectives and features of Microsoft Voice Command 

(VC), which is the main application of this project. In chapter 4 is described all the work 

performed with VC. 

2.4.1 Definition 

Microsoft Voice Command is a product for Windows Mobile (WM) 2003, WM5.0 

(2005) and WM6 (2007) based Pocket PC, Pocket PC Phone Edition and Smartphone 

devices. This application allows the user to command and control the device using his/her 

voice without any previous user training. The application current version is 1.6 and is 

currently available in English-US, English-UK, German and French. 

2.4.2 Application objective and features 

Voice Command has the objective of changing the way people interact and think about 

mobile devices. Voice Command eliminates the large amount of button pushes normally 

associated with looking up information, dialling a number or doing any number of other 

tasks on a mobile phone. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         33  
Spoken Language Technology 

 

The application provides a spoken language interface that allows the user to: 

 Place phone calls (through dial or contact numbers) 

 Look up contacts. 

 Change profiles. 

 Check missed calls. 

 Change ringer volume. 

 Get current date/hour. 

 Get battery level. 

 Get signal strength. 

 Get calendar information. 

 Play music. 

 Get device status. 

 Start programs. 

 Check calendar appointments. 

 Announce emails and SMS. 

 Supports Bluetooth earphones 

 

In the functionalities provided by VC there is a set of options, available in the control 

panel that allow the user to personalize the application. The user can, for example, choose 

if he wants VC to announce incoming calls, emails or reminders, enable call and dial 

confirmations, or just disable the application. A detailed description of VC features and 

options is available in [VCUserGuide]. 

2.4.3 How does it work 

On Pocket PC, the application can be associated with an “Application Launch Button” on 

the device and the button will be enabled for “Push to Talk” (PTT). This can be 

configured in “Start > Settings > Buttons”. On SmartPhone there is the possibility of 

configuring an application option to use the “Record button” or the “App buttons” (this 

does not work on all Smartphone devices). Once the application has been activated, the 

user can input a voice command. When the user doesn’t know what to say or doesn’t 

remember the voice commands, he/she can just say “help” or “what can I say” and the 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         34  
Spoken Language Technology 

 

application will instruct him. In version 1.6 the user can already use a Bluetooth device 

for voice input. 

2.4.4  Target audience 

The application is designed for people on the move. According to [VoiceCommandWeb] 

eighteen percent of mobile time matches the “busy hands, busy eyes” scenario. The car is 

only one example of this situation. When we are driving our eyes are focused on the road 

and our hands on the wheel, so a spoken language interface can be an alternative to 

interact with our mobile device. Based on the results analysis of Chapter 4 it can be 

concluded that Voice Command is useful for those who have a large contact database.  

2.4.5 Competitors  

In comparison with other competitor applications, Voice Command has better recognition 

accuracy as it is shown in the graph below (fig. 13).  

 

 
Figure 13 - Comparison between VC and the best competitor (2004) 

 

 

When the number of contacts is increased, the number of utterances to be recognized 

is also increased, since we need to add the contact name to the grammar. A larger 

grammar represents less accuracy, but in comparison with other similar applications 

Voice Command presents a smaller decrease of accuracy. 

2.4.6 Long term key objectives 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         35  
Spoken Language Technology 

 

For future versions of Voice Command it is expected that the application includes 

improvements in size, speed and memory usage. Currently the application occupies a 

relatively large amount of memory (3MB ROM + 5MB RAM) for the EN-US version 

and (10MB ROM + 5MB RAM) for the PT-PT beta version. This amount scales linearly 

with contacts or media files.  

There is also a set of functionalities that can improve user experience: 

 Full email triage – delete, file, reply and forward 

 Dictation of messages (emails, sms) 

 Search capability – Find contacts, music, messages, etc. 

 Supported full suite of languages  

 Expansion of the supported scenarios 

 Etc 

2.5 Other commercial solutions 

In this section several existent commercial speech solutions for mobile devices are 

described. It is presented two concurrent solutions to VC and other solutions that show 

which kind of speech solutions also exist in real world. 

2.5.1 Cyberon Voice Commander 

Voice commander [Cyberon07] is a product similar to Voice Command that appeared in 

the market, by the hand of Cyberon Corporation, when Microsoft VC was still in version 

1.5. The key features provided by the application are:  

 Speaker-independent voice recognition.  

 Mandarin and English bilingual recognition.  

 Natural Voice Dialling with support for more than 1500 contacts (according to 

the specifications) 

 Supports Bluetooth earphones.  

 Voice query contact.  

 Voice Shortcuts.  

 Voice Digit Dialling.  

 Voice control of Media Player.  



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         36  
Spoken Language Technology 

 

 Voice controlled SMS reader.  

 Voice controlled Calendar reader. 

2.5.2 Cyberon Java Talking Dictionary 

Another speech solution presented by Cyberon is the Java Talking Dictionary. The 

objective is to turn a mobile phone into a full-featured electronic dictionary that through a 

natural human-like voice gives the user a correct learning of the word’s pronunciation. It 

has a vocabulary of 44,000 English words and 16,000 Chinese words, enough for general 

purpose learning. Pronunciation is available for every word (including Chinese). The 

application has smart text input (allows the user to enter text by pressing only one key per 

letter) and history tracking (saves the most recently used words). Figure 14 illustrates the 

graphical interface application. 

 

Figure 14 -  Java Talking Dictionary screenshots 

 

2.5.3 Vsuite 

Vsuite is a speech application, from Voice Signal, similar to MS Voice Command and 

Cyberon Voice Commander, except that it provides a smaller set of features 

[VoiceSignal07]. VSuite is a voice dialing and command and control platform that does 

not require any training. VSuite allows the user to lookup contact information, dial any 

name or number in the contact list, address text messages and pictures, digit dial any 

number and access features on the phone or carrier services in a single command. 

2.5.4 VSearch 

VSearch provides access to vast search capabilities of the web from a mobile phone. 

VSearch is an advertiser-supported service that gives mobile phone users access to 

http://www.voicesignal.com/solutions/vsuite.php


Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         37  
Spoken Language Technology 

 

directory assistance, ringtones, music, games, weather forecasts, sports scores, the latest 

stock quotes, maps and even special offers from advertisers. 

VSearch system sends the processed audio information to the VSearch server via the 

mobile data network where the user’s query is converted into text through a speech 

recognition engine. 

2.5.5 VoiceMode 

VoiceMode is a dictation application that runs on a mobile phone and allows users to 

dictate messages into their mobile device, rather than being forced to create messages 

using the small constricted keypad on most mobile devices. VoiceMode provides a fast, 

easy and more natural alternative to multi-tap, T-9 [NuanceT9] or other text creation 

input methods. 

2.5.6 VSpeak  

VSpeak is an intelligible text-to-speech application, capable of running within the 

resource constraints of a mobile device. VSpeak can read text messages, web pages or 

any other text on a VSpeak enabled handset. By making it possible for people to easily 

and safely receive text messages on a mobile phone, even when their hands and/or eyes 

are otherwise occupied, VSpeak enhances an individual’s ability to use a mobile phone 

regardless of where they are or what they are doing. VSpeak allows that the visually 

impaired will be able to receive text messages and use operator services on their mobile 

phones, which would otherwise be unavailable to them. 

2.5.7 Comparison and analysis 

When analysing the speech applications for mobile devices here presented, one can find a 

large set of common features between them. These features all share the same objective: 

facilitate the usage of the device.  

Voice Signal has presented more specialized solutions (having a larger set of 

applications), while Microsoft and Cyberon focused all features in one solution. When 

comparing the amount of features, MS Voice Command takes the lead, followed by 

Cyberon. However, Voice Signal ships applications with features inexistent in the other 

http://www.voicesignal.com/solutions/vspeak.php


Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         38  
Spoken Language Technology 

 

presented solutions, such as the dictation feature. Table 2 provides a comparison between 

these applications. 

Product 
Higher number 

of Features 

Largest 

language 

portfolio 

Speaker 

independent 

Visual 

feedback 

Storage 

size 

Runtime 

memory 

Microsoft Voice 

Command 
X  X Not always 3 Mb 5 Mb 

Cyberon Voice 

Commander 
  X Yes 2.46 Mb 470 Kb 

Voice Signal 

VSuite 
 X X Yes n.a. n.a. 

Table 2 - Application comparison 

 

The major problems of Voice Command, in comparison with his direct opponents, are 

the memory it occupies, which is considerable for a mobile device application, and poor 

visual feedback, which can be a problem or not depending on the type of user. In a “busy 

eyes” scenario the visual feedback is disregarded, so from that point of view it’s useless. 

However, with a specific type of users, such as those with limited experience with speech 

interfaces users, the visual feedback becomes a requirement.  

2.6 Conclusion 

In this chapter an analysis of the spoken language technologies used in this work was 

done. The spoken language world is composed by an immense background theory.  

Therefore the student chose only to describe technology that is used along the project. 

This chapter can be divided in two distinct parts, one where it is described the used 

technology that allows the development of speech applications and another where are 

several speech applications for mobile devices are presented, including Microsoft Voice 

Command. In the first part of this chapter the main components used in the course of this 

work are described. This includes ASR and TTS systems, HMMs and speech applications 

components. In the second part of this chapter, Voice Command and other available 

similar commercial applications are described and compared. The applications here 

presented allow the reader to have a view of how speech can be applied in mobile 

devices, as well as the advantages of speech interfaces in mobile devices. From the 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         39  
Spoken Language Technology 

 

comparison result it can be concluded that Voice Command has the disadvantage of 

occupying more memory but has the advantage of providing a larger set of features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Final Project Report                                                                                                         40 

Chapter 3  
 

Development of a Speech 
Interface for Mobility 
 

 

 

iven the background theory on Spoken Language Technologies in the previous 

chapter, the procedures and solutions that constitute this project will now be 

described. First it will be described how the EP SR engine for mobile devices was 

localized and compiled, followed by an explanation about the methodologies in the 

development of speech applications for mobile devices. Finally, some experimental 

results are presented. 

3.1 Speech engine localization 

Localizing a speech engine in order that it understands a new language is a daunting 

task. To accomplish this task it is used a specialized tool named Autotrain. This tool 

can be described as a set of tools designed to help developers localizing a SR engine. 

AutoTrain facilitates this task by providing a framework which developers and 

linguists can use. The localized engine can be used on MS Speech Server, Windows 

XP, and Windows CE. 

3.1.1 Training overview 

For the speech engine localization one needs to train acoustic models, so that 

automatic speech recognition can be conducted. Acoustic model training involves 

mapping models to acoustic examples obtained from training data (corpus). 

3.1.1.1 Corpus specifications 

The corpus data is the base of acoustic models and subsequently influence speech 

recognition error rates. In this section, the characteristics of the used corpus – 

SpeeCon EP are presented. 

G 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         41  
Development of a Speech Interface for Mobility 

 

The Corpus database, used in the acoustic models training was collected in the 

framework of the SpeeCon project [SpeeCon99]. The database contains speech data in 

European Portuguese, recorded at 16 KHz with 553 different adult speakers, 48% 

male and 52% female. The speakers present accents from three different regions of 

the Portuguese mainland – southern, central and northern, as shown in table 3. The 

subject’s ages are shown in table 4. 

 

Region Male Speakers % Female Speakers % 

Southern 138 25.0% 152 27.5% 

Central 65 11.8% 65 11.8% 

Northern 63 11.4% 70 12.7% 

Total 266 48.0% 287 52% 

Table 3 - Speakers distribution of over regions 

 

Age interval Male Speakers Female Speakers % 

15-30 127 143 48.8% 

31-45 91 102 34.9% 

46+ 48 42 16.3% 

Total 266 287 100% 
Table 4 - Speaker distribution over age groups and sexes 

 

The recordings took place on four different environments: 

 Office   

 Entertainment 

 Public Place  

 Car 

 

The office environment recordings were made in offices with a background noise 

between 30 to 60dB. The recordings include telephone calls and other typical office 

environment sounds but do not include meetings and/or discussions. 

The entertainment environment recordings were made in common living rooms 

with soft furnishings and domestic audio-visual equipment. Half of the recordings 

have the audio equipment in operation positioned behind the speaker, generating 

approximately 50dB (measured at the speaker position).  

Regarding the public place recordings they include common street noises such as, 

clock-tower bells, fountains and garbage collection. The noise range limitations of 45 

to 90 dB were met. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         42  
Development of a Speech Interface for Mobility 

 

The car recordings were carried out with the speaker seated in the front passenger 

seat and the recording operator in the back seat, under five different recording 

conditions: 

 Vehicle stationary, engine switched off; 

 Vehicle stationary, engine running; 

 Vehicle being driven in city conditions (average speed of between 30 and 

70 km/h); 

 vehicle being driven in main roads, but not freeways, with an expected 

average speed of between 60 and 100 km/h; 

 vehicle being driven under highway conditions, with an expected average 

speed of between 90 and 130 km/h. 

 

Table 5 shows the speakers distribution over the recording environments. 

Environment Male Speakers Female Speakers Total 

Office 93 110 203 

Entertainment 31 44 75 

Public 94 106 200 

Car 48 27 75 
Table 5 - Distribution of speakers over main environments 

 

SpeeCon contains about 77 hours of recordings of the following types: 

 Noise and silence. 

 Elicited spontaneous items such as dates, times, proper names, city names, 

letter sequences, answers to questions, telephone numbers and languages. 

 Read speech composed by phonetically rich sentences/words.  

 Core words, which can be divided in application specific words/phrases 

such as messaging, internet browsing,  editing, output control, automotive, 

routing, etc,  and general words/phrases such as , isolated digits sequence, 

natural numbers, analogue and digital dates/time, etc. 

 

In the training procedure, the available corpora was used and there was no  

selection regarding the type of target application, due to the small amount of specific 

data and project deadline.  

3.1.1.2 Data pre-processing 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         43  
Development of a Speech Interface for Mobility 

 

At this stage of the training procedure we convert speech waveform files to MS 

waveform format and place all word level transcriptions into a MS transcription file 

(HYP). The HYP contains information about each acoustic data file to be used in 

model training. It respects a pre-determined format where each transcription is 

associated to the respective .wav file, the session/speaker identifier and gender.  The 

HYP also contains annotation information, which is composed by written tags that 

mark or describe the speech sounds, e.g. prompt echo, background noise or speech, 

misspelled words, etc. 

The HYP file generation is based on Corpus metadata, referred here as MS Tables. 

More concretely, the generation of first HYP version, usually called raw HYP, is 

obtained from two relevant MS Tables – UtteranceInformationTable and 

SpeakerInformationTable - these two tables contain all the relevant corpus 

information about each recorded utterance, speaker identification, microphone, 

recording environment, dialect, gender, transcription. The next step is to normalize the 

training transcriptions. The normalization consists in selecting and preparing the raw 

HYP file information to train.. These steps are executed using Autotrain batch scripts 

and configured in a XML file, as depicted in fig.15. 

 

<HypStep name="GenRawTrainHyp" run="true" /> 

Figure 15 - Line responsible for the HYP generation in Autotrain configuration file 

 

Figure 16 illustrates the procedures described above. The Lexicon generation 

procedure is described in the following section. 

 

Figure 16 - Data pre-processing flow 

3.1.1.3 Lexicon generation 

A pronunciation lexicon needs to be produced which includes all the words found in 

the HYP file. A pronunciation lexicon lists the phonetic transcriptions of the 

vocabulary. In this stage the annotation tags are mapped to the corresponding sounds. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         44  
Development of a Speech Interface for Mobility 

 

The transcribed words that aren’t found in the phonetic dictionary are generated by 

G2P and hand checked by a linguistic. 

3.1.1.4 Training 

In this section it is presented a description of the training process and the basic model 

topology used. The training with Autotrain can be divided in several stages. Once a 

model prototype is defined, the speech parameters coding takes place. At this phase 

the “.mfc” files are produced, given the set of “.wav” files. These files contain speech 

signal parameters called Mel-Frequency Cepstrum Coefficients (MFCC) [Mermel76]. 

An MFCC is a speech parameter defined as the real cepstrum of a windowed short-

time signal derived from the FFT of that signal, where a nonlinear frequency scale, 

approximated to the behavior of the auditory system, the Mel scale is used. The figure 

below illustrates the feature extraction process by taking a speech signal and split the 

waveform into 10ms frames. Each frame encodes speech information in a form of a 

feature vector. 

 

 

Figure 17 - Feature extraction process 

 

In the following stage a set of HMMs is initialized from the scratch, given a set of 

word level transcriptions, lexicon, MFCCs and a phone set.  

The kind of phone models trained are context-dependent, more exactly triphones. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         45  
Development of a Speech Interface for Mobility 

 

The HMMs are composed by three emitting states and two non-emitting states. The 

emitting states have continuous density multivariate output distributions, as illustrated 

in fig. 18. 

  

Figure 18 - Used HMM model topology 

 

Each emitting state consumes at least one frame of speech, in this case 10ms. 

Gaussian probability density functions are associated with each emitting state, 

representing the speech distribution for that state. The two non-emitting states do not 

consume any frame of speech. They are used to provide entry/exit to/from an HMM. 

The transitions in this model are either right to left, linking one state to the next, or 

self-transitions (allows the states to be occupied for several time frames). The output 

distribution of the models built is represented by several Gaussians. A single Gaussian 

is a very rough approximation to the true distribution of speech sounds. To model the 

speech variation more closely, the state-parameters are represented by weighted 

multiple Gaussian-mixture components where the weights of all the mixture 

components of a single state sum to one. Total models size is dependent on the 

number of mixtures and the number of senones used. Considering the used amount of 

data and internal Microsoft guidelines, it was defined that the system would have a 

total of 2000 senones and 8 final mixtures. 

3.1.1.5 Compilation 

After the training is completed the models are compiled and registered by changing 

the following options represented in fig. 19 which is correspondent to the Autotrain 

configuration file. 

<Stage name="Training" run="false" /> 
<Stage name="Compilation" run="true" href="Fra.CompileRegister.xml" path="InputsDir" /> 
<Stage name="Registration" run="true" href="Fra.CompileRegister.xml" path="InputsDir" /> 

Figure 19 - Changed options for model compilation (Autotrain configuration file) 

 

 The compilation stage builds the files described in table 6. 

Files Functionality 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         46  
Development of a Speech Interface for Mobility 

 

L2070.phn Phone set 

L2070.smp Senone map.  Maps triphones to SSIDs to senone ids. 

L2070.cw Cross word models map 

L2070.ww Whole word models (not used) 

Lsr2070.lxa G2P rules 

AI032070.am Acoustic model.  Contains coded means, variances, and weights for 

each senone. 

L2070.ini Plaintext-format runtime-switchable settings 

Table 6 - Compiled files 

 

In order to obtain Compact Edition (CE) models the compression option was 

activated in Autotrain configuration, during the compilation stage. 

3.1.1.6 Registration 

At this stage the engine registration is performed, being divided in the following 

actions: 

1. Registering the engine dlls; 

2. Registering the Phone Converters; 

3. Setting up the engine Token in the registry with the correct attributes for 

the platform; 

4. Setting up the Engine Token to point to the compiled data files.  

 

The engine token is registered under 

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Speech\Recognizers\Tokens\M

S-2070-70-WINCE, as illustrated in fig. 20. 

 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         47  
Development of a Speech Interface for Mobility 

 

 

Figure 20 - Engine registry 

 

Autotrain provides the means to register the engine. However, the user can define 

the desired registry template. In this case is the student defined the:  

 Language – PTG (European Portuguese) - and the correspondent code – 

2070 (816 in hexadecimal);  

 Platform – CE; 

 Path that points to the files. 

3.2 Speech application development 

In this section the methodologies and concerns towards the development of speech 

applications for mobile devices are presented. This section allows understanding the 

implications and conditions of developing applications for a CE platform. 

The CE platform commonly implies the deployment of the application on a mobile 

device. The characteristics associated with a mobile device, from a speech developer 

point of view, are usually, in comparison with a desktop platform, less memory and 

performance, background noise variation (depending on the place or environment), 

device positioning towards the user, device model details (e.g. buttons), etc. 

To approach the theme of speech applications for mobile devices an example 

application was developed - Pocket Reco. 

3.2.1 Pocket Reco 

In this section the stages of development of a speech application that allows a user to 

place a phone call to a contact, using a Pocket PC device, are described. The intention 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         48  
Development of a Speech Interface for Mobility 

 

is to present the architecture and the relevant architectural decisions, considering the 

language, mobile environment and speech recognition procedure.  

The example application is referenced as “Pocket Reco” and it is a C++ application 

developed for Pocket PC devices, interacting with the user through a spoken language 

interface in EP and influenced by applications such as Microsoft Voice Command 

[VoiceCommandWeb], Cyberon Voice Commander [CyberonWeb] and Voice Signal 

[VoiceSignalWeb].  

The application allows the user to place phone calls to any contact in the MS 

Windows contact list and to consult his/her agenda. It was developed using Microsoft 

Visual Studio 2005 [VisualStudioWeb] and MS Windows Mobile 5.0 Pocket PC SDK 

[MobileSDK]. The application is localized for EP. 

The number of speech recognition applications in EP is very restricted due to the 

lack of linguistic resources (the ones that exist are expensive [ELRA]). The amount of 

existing applications with spoken language interfaces in EP in the market is reduced. 

If we consider only mobile devices applications, that number decreases even more. 

It’s important that Portuguese users have the possibility to use speech recognition and 

speech synthesis applications in European Portuguese, especially those with special 

requirements that depend on this type of applications to use a mobile device. 

3.2.2 System description 

A Pocket PC or a Smartphone device provides innumerous features but placing a 

phone call is commonly the primary and most used function of a mobile device. 

When the user initiates the application, by pressing a button (associated with 

Pocket Reco) or by running the executable file, the speech recognition and text-to-

speech modules are initiated. To notify the user, an icon is loaded to the notifications 

tray and a spoken message is synthesized. At this point the application expects the 

user to input a voice command. If no expected command is recognized there is a 

predefined timeout. Once the voice command is recognized, a set of actions 

associated with the command are executed. When these actions are finished the 

application ends, unloading all the resources. The user can input commands to make 

phone calls or check the calendar. When the user chooses to make a phone call by 

saying the respective command followed by the contact name, it is probable that the 

contact has more than one phone number (mobile, home, work, etc). In this situation 

the user is notified to choose between the available numbers by saying the respective 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         49  
Development of a Speech Interface for Mobility 

 

command. The activity diagram below (fig. 21) describes the flow for making a call to 

contacts’ phone number. 

User Pocket Reco

Button 

pressed

Wait for voice 

command

[phone call]

Speak 

command

[recognized]

[unrecognized]

[calendar]Choose mobile 

or home phone
Speak 

appointments

Interpret 

command

Load 

application icon

Speak 

“Mobile”

Make call to 

mobile phone

 

Figure 21 - Activity diagram for the application features 

 

On Pocket PC devices powered by Windows Mobile (WM) there is the possibility 

to associate a button to an application. i.e., when the button is pressed the associated 

application is launched. The process to do this is simple. When installing the 

application we just need to place a shortcut (that obviously points to the desired 

application) on \Windows\StartUp and the application will be available in the button 

association menu. 

3.2.3 Architecture 

The application architecture was based on the one presented in fig. 9 and on the 

integration necessity of an SR and TTS engine. 

Pocket Reco contains a SR and a TTS module, which communicate with the 

respective engines through SAPI. The SR module uses SAPI API for speech 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         50  
Development of a Speech Interface for Mobility 

 

recognition and TTS module uses SAPI API for speech synthesis. SAPI 

communicates with the engines through a device driver interface [SpeechSDK]. Both 

SR and TTS engines contain a SAPI interface layer, allowing using the SAPI runtime. 

Figure 22 illustrates the interaction of the application with the engines, through SAPI. 

 

Figure 22 - Diagram of the speech architecture 

 

The integration of the SR and TTS engines in the application required the 

installation on the device of the following products: 

 YAKIMA Speech Recognition Engine for Windows CE 

o Located in European Portuguese, in the scope of this work 

 ScanSoft RealSpeak Solo SDK for Windows CE 

o Portuguese Voice – Madalena, provided by Nuance 

 

Usually, speech recognition engines for mobile devices present lower performance 

comparing with desktop engines. Optimizations, like fixed point calculations, lead to 

less recognition accuracy. Due to this, applications should perform a compensating 

effort in terms of recognition, e.g. minimize the number of grammar items, take in 

consideration the speech corpus used to train the acoustic models and model the 

application flow to avoid errors. 

A performance improvement could also pass by modifying the moment when the 

initiation process is made. In the current implementation the application is initiated, as 

well as the required modules, when the user wishes to use it. Another possible 

approach would be to perform all the possible initialization work when the operating 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         51  
Development of a Speech Interface for Mobility 

 

system of the device starts. When the device is turned on, the application is initiated 

and waits for the user notification to use it. This way the processing time between 

pressing a button and the notification to enter a command is diminished about 50 to 

80%. The main disadvantage however resides in the occupied resources. 

3.2.4 Implementation 

SAPI provides a set of COM interfaces that allow communicating with the engines. 

For this reason, when using managed languages such as C# or Java, a wrapper is 

required in order to perform the connection between the unmanaged and the managed 

world. With C# the interoperability is provided by COM interop wrapper classes. 

Whenever a client calls a COM object method the runtime creates a runtime callable 

wrapper (RCW) [COMWrap]. RCWs abstract the differences between managed and 

unmanaged reference mechanisms. It also provides adequate marshaling for calls that 

cross the boundary between COM and the .NET Framework. In Java we can use Java 

Native Interface (JNI) [JNISpec] to interoperate with applications and libraries written 

in other programming languages, such as C, C++, and assembly. 

These wrappers facilitate the access to the unmanaged world provided by SAPI, 

but there is a price in terms of performance that comes in the form of parameter 

marshaling, object wrapper creation, etc. Since we are dealing with a limited platform 

in terms of performance and memory using managed languages can have an impact on 

the application performance. One of the advantages of using the managed 

environment, besides the obvious object memory management, resides on new APIs 

(e.g. Direct3D Mobile, DirectDraw, Global Positioning System, ActiveSync 

Interaction, etc) and existing operating system features that are now exposed as 

managed APIs (e.g. Telephony, Outlook Mobile, Messaging, etc). 

For the reasons stated on the previous paragraphs and because most of Voice 

Command source is written in C++, this example application was developed in C++. 

The objective of this application was not “to reinvent the wheel” but to understand the 

mechanisms that “makes the wheel turn”. 

The application implementation is divided into the following modules: 

 PocketRecoApp – Main application module. 

 SR  - Provides interaction with the SR engine. 

 TTS - Provides interaction with the TTS engine. 

 MobileDevice – Provides all the features associated with the device. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         52  
Development of a Speech Interface for Mobility 

 

 

+initApp()

+deinitApp()

+startRecognition()

+recognizeAction()

-sr : SR

-tts : TTS

-phone : MobileDevice

PocketRecoApp

+initEngine(in engine : CString)

+deinitEngine()

+loadGrammar(in filename : CString)

+startSR()

+getRecognition()

-m_cpEngine : ISpRecognizer

-m_cpRecoCtxt : ISpRecoContext

-m_cpCmdGrammar : ISpRecoGrammar

SR

+initVoice(in voiceName : CString)

+deinitVoice()

+speak(in text : CString, in aSync : bool)

-cpVoice : ISpVoice

TTS

+getFolder(in f : OlDefaultFolders, in pFolder : IFolder**)

+addContact(in contact : IContact*, in fullname : CString)

+makePhoneCall(in contact : IContact*)

+initPoom()

+deinitPoom()

-outlook : IPOutlookApp

MobileDevice

 
Figure 23 -  UML diagram of the implementation 

 

 

Figure 23 represents, through an UML diagram, the modules that compose the 

application. PocketRecoApp is the main module where all the feature/business logic is 

written, being also responsible by initiating/terminating other modules, such as TTS 

and SR. The SR module provides services related with SR engine, using SAPI. This 

includes loading or building grammars, initiating/terminating the recognition engine 

and return semantic information about the recognition. The TTS module interacts with 

the TTS engine also through SAPI and is responsible for initiating or terminating the 

engine and providing the service that allows synthesizing written text. The 

MobileDevice module provides services related with the device, such as initiating 

Pocket Outlook Object Model, obtaining Contacts folder or executing the actions 

associated to each command, like making a phone call. 

3.2.4.1 API for Text-to-Speech 

Applications can control the TTS engine using the ISpVoice Component Object 

Model (COM) interface. Once an application has created an ISpVoice object it only 

needs to call ISpVoice::Speak to generate speech output from some text data. In 

addition, the IspVoice interface also provides several methods for changing voice and 

synthesis properties such as speaking rate, output volume and changing the current 

speaking voice. The IspVoice::Speak method, can operate either synchronously 

(return only when completely finished speaking) or asynchronously (return 

immediately and speak as a background process). When speaking asynchronously 

mk:@MSITStore:G:\sapi.chm::/ISpVoice.htm
mk:@MSITStore:G:\sapi.chm::/ISpVoice_Speak.htm


Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         53  
Development of a Speech Interface for Mobility 

 

(SPF_ASYNC), real-time status information such as speaking state and current text 

location can be polled. Also while speaking asynchronously, new text can be spoken 

by either immediately interrupting the current output 

(SPF_PURGEBEFORESPEAK), or by automatically append the new text to the end 

of the current output.  

This interface also allows flow control, such as pausing, resuming or skipping 

speech synthesis. An example where flow control is important is when one  wants to 

stop the TTS once a command is recognized. This allows the user to realize that 

his/her spoken command has reached the application. 

3.2.4.2 API for Speech Recognition 

The interface ISpRecognizer enables applications to create different functional views 

or contexts of the SR engine. Each recognizer object is connected to one or more 

recognition contexts - ISpRecoContext. Through the contexts, the recognizer can 

control the recognition grammars to be used, start and stop recognition, receive events 

and recognition results/information.  

Similarly to ISpVoice which is the main interface for speech synthesis, 

ISpRecoContext is the main interface for speech recognition. Like the ISpVoice, there 

is the ISpEventSource, which is the speech application's vehicle for receiving 

notifications for the requested speech recognition events. This interface enables 

applications to control aspects of an SR engine and its audio input. Each object 

implementing this interface represents a recognizer for a single engine.  

A speech application must also create, load, and activate an ISpRecoGrammar, 

which essentially indicates what type of utterances to recognize, i.e., dictation or a 

command and control grammar. 

3.2.4.3 Events  

SAPI communicates with applications by sending events using standard callback 

mechanisms (Window Message, callback procedure or Win32 Event). For TTS, 

events are mostly used by applications to sync to real-time actions as they occur such 

as word boundaries, phoneme or visage (mouth animation) boundaries. 

Pocket Reco uses Win32 events, in speech recognition. When a word from the 

grammar is recognized, SAPI sends a notification to the application. 

ms-help://MS.MSDNQTR.v80.en/MS.MSDN.v80/MS.WINCE.v50.en/wceappservices5/html/wce50lrfisprecocontext.htm
mk:@MSITStore:G:\sapi.chm::/isprecocontext.htm
mk:@MSITStore:G:\sapi.chm::/isprecogrammar.htm


Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         54  
Development of a Speech Interface for Mobility 

 

3.2.5 Grammar 

The application uses a CFG grammar to parse the recognizer output. The grammar is 

composed by dynamic and static rules. The dynamic rules are empty when the 

application starts and their content it’s updated in runtime. The separation between 

static and dynamic rule contents allows that the application starts and loads the static 

content, without loading the SAPI grammar compiler to prevent the delay in the start 

up sequence. When the application loads the dynamic content it forces SAPI to 

initialize the back-end grammar compiler [Microsoft Speech SDK]. 

In Pocket Reco there is a distinction between static rule content and dynamic rule 

content, in order to develop a well-designed grammar and to improve initial SAPI 

grammar compiler performance. The dynamic content is, in this case, the set of 

contacts names because they can only be accessed at runtime. The static rules of the 

grammar that need the contacts names contain a reference to the rule with the 

dynamic content. 

3.2.5.1 Semantic-based recognitions 

Speech recognition engines use CFGs to constrain the user's words to words that it 

will recognize. If the CFG is augmented with semantic information (property names 

and property values), a SAPI component converts the recognized word string into a 

name/value-meaning representation. The application then uses the meaning 

representation to control its part of the conversation with the user. 

For CFG recognitions it is more important to recognize the semantics of what has 

been said than the actual words in the utterance. For example, recognizing “Please call 

John Doe” or recognizing “Call John Doe” has the same semantic value. The 

semantically significant parts of an utterance are denoted by assigning a semantic tag 

to a particular grammar rule. 

There are a number of scenarios where semantic tags can be useful for an 

application such as Pocket Reco. One possibility is to use these tags to increase the 

robustness to failures. When a false recognition occurs, the application can detect the 

last semantic property returned and display an error message relevant to the attempted 

voice command. Another possibility can be increasing the application response time. 

When we have long voice commands the ambiguity can be broken before the voice 

command is complete, using the first unambiguous semantic property to be received. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         55  
Development of a Speech Interface for Mobility 

 

Semantics-based recognition also facilitates the localization of speech applications. 

This technique supplies application independence towards the grammar, this is, the 

utterances to be recognized aren’t “hard coded”, and instead can be dealt with has 

resources. 

3.2.6 Name matching algorithm 

A spoken language interface with command and control modality, like Pocket Reco, 

should supply intuitive voice commands, from the user’s point of view. This way, the 

user will not need to memorize the commands and the required words will be spoken 

naturally. The speech command responsible for placing a phone call to a contact in the 

contact list is composed by a static part, such as “Chama” (“Call”), that resides in the 

grammar file, and a dynamic part composed by the contact name. If we consider a 

user with a large contact list, he/she might not remember the exactly contact’s name. 

In another scenario, we can consider the case of persons with many names (six and 

seven names occur frequently for the case of Portuguese native speakers), which 

might be called by their first, their last, their middle or any combinations of these 

names and more. For example, if we download a contact list from an Exchange server 

with a contact named João Paulo de Oliveira Esperança Gonçalves, he might be 

known as “João Paulo” by user “A” and “João Esperança” by user “B”. Considering 

the functionality provided by Pocket Reco to make a phone call to a contact in the 

contact list, the correspondent command is dependent on the contact name. The 

developed name matching algorithm allows the user to say the contact name in any 

form he/she is used to. Instead of residing in the grammar only the first and last name 

of each contact, all different names from the contact list are placed into the CFG 

grammar in separate phrases, without repetitions. This will allow the recognizer to 

accept any combination of names, e.g. “Chama João Paulo Gonçalves”, “Chama João 

Gonçalves”, etc. After the recognition stage, the spoken contact name must be 

analysed. The application will access the contact list, which is, in this particular case, 

residing in memory (loaded when the application starts), and search, through this list, 

the contact that has the highest number of matches with the spoken name. With the 

proposed algorithm there is the chance of name ambiguities. When this happens, the 

algorithm either chooses the first name occurrence or gives to the user the chance of 

breaking the ambiguity, which is the most correct approach. This can be achieved by 

giving to the user the contacts possibilities and respective full names (through TTS), 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         56  
Development of a Speech Interface for Mobility 

 

asking him to choose the desired contact. The disadvantage of providing flexibility to 

the user’s interface with this algorithm is the increase of the number of items in the 

grammar, leading to an increase of the word error rate in the recognition process. 

There must be a compromise between application flexibility and recognition accuracy, 

depending of the application user’s group and the recognition engine. 

3.2.7 Experimental results 

In this section it is presented a subjective usability experiment that compares the 

accomplishment of a task through the use of a graphical interface and a speech 

interface. This set of subjective usability tests compares the usage of a graphical 

interface with the usage of a speech interface in performing a normal task in mobile 

devices. The tests were applied to a universe of 30 unpaid adult persons, 16 male and 

14 female (fig. 24), from the Portuguese academia. Two groups, each with 15 persons, 

were considered: one group had prior experience with speech interfaces in mobility; 

the other group presented no previous experience with speech interfaces and the 

experience with mobile devices is resumed to cell phones. Both groups covered all the 

considered ranges of ages as shown in the table 7. Each person performed two tasks: 

calling to a predefined contact number that resided in a contact list with 20 contacts, 

through the graphical HCI and the same task through the speech HCI, e.g. “Call to 

Pedro Silva mobile phone”. The usability experiment collected the time duration of 

the task as a metric that relates to its difficulty. Each user received an explanation 

with clear instructions and a demonstration on how to perform both tasks. The tasks 

were executed by each user in a random order, under the same conditions, with Pocket 

Reco running on a Pocket PC (HTC P3600- described in table 13), in the following 

environments: Office, Home, Party (Crowded room) and Car. Both groups presented 

similar average value of recognition accuracy - around 84% - with an advantage of 

0,5% for the users with previous experience on speech applications in mobile devices. 

Table 8 shows the average time (in seconds) taken to accomplish the proposed tasks 

with a voice user interface (VUI) and a graphical user interface (GUI). 

 

Age 
Users 

With experience Without experience 

< 24 4 4 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         57  
Development of a Speech Interface for Mobility 

 

24 - 29 6 2 

30 - 35 3 3 

> 36 2 6 

Total 15 15 

Table 7 - User distribution 

 

 

Figure 24 - Gender distribution 

 

Users GUI (seconds) VUI (seconds) 

With experience 15 12,2 

Without experience 26,5 14,9 

Total 20,8 13,6 

Table 8 - Time taken to perform the tasks 

 

 

Figure 25 - HCI comparison 

 

In the presented results there is a clear advantage, in the time metric - 34,6% lower 

- for the actions executed with the speech interface, as shown in fig. 25. Nonetheless, 

some of the users (especially those with no experience) had to execute more than one 

attempt, due to recognition errors, to accomplish the task using the speech interface. 

The recognition errors happened due to background noise and the way users interact 

53%
47%

Male

Female



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         58  
Development of a Speech Interface for Mobility 

 

with the speech interface, such as bad positioning of the device, microphone covering, 

directing the voice not towards the microphone and pronouncing the words in an 

unclear way, often recurring to the use of abbreviations. 

The time difference between the two types of interfaces decreases drastically 

according to the level of the user expertise with speech applications in mobile devices, 

as shown in fig. 26. 

 

 

Figure 26 - Time difference between HCIs  

3.3 Experiment analysis 

The disadvantage of speech HCI, including in mobility, is that speech recognition is 

not 100% accurate. This fact may lead to recognition errors on which the application 

must expect and try to resolve, for example, ask for confirmation on a given voice 

command. In some cases, with noise environments or less experienced users, several 

attempts are needed to successfully accomplish the task. In speech recognition for 

mobility, the optimizations performed over the models and SR engine often decrease 

the components performance and the application implementation can compensate this 

decrease in quality. The grammar is an application component that the developer can 

use to optimize the recognition.  

A set of optimizations to improve recognition accuracy and user interaction 

experience, in the framework of a spoken language interface in a mobile device has 

been described. In order to conclude about the approach, it was developed an example 

application that places a phone call to a contact, through a spoken language interface. 

The application interacts with the SR engine through SAPI and implements a name 

match algorithm to improve user experience. It was also presented some results of 

0

5

10

15

20

25

30

GUI VUI

Ti
m

e 
(S

)

HCI

with experience

no experience



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         59  
Development of a Speech Interface for Mobility 

 

experimental tests, based on user’s experiment, to demonstrate the advantage of using 

a speech HCI versus a graphical HCI. In this work, we have shown that the set of 

words chosen to be recognized influence the application performance. This choice 

should be influenced by the acoustic models, the quality of the speech recognition 

engine and language specifications. The developer has the responsibility to balance 

the application according to its usage scenario and also needs to adapt the application 

to the user group. In this paper we presented an application that takes into account all 

these considerations, discussing the advantages and drawbacks of the various design 

choices. The name matching algorithm here presented is an example which trades 

recognition accuracy for a more intuitive and natural interface. Nonetheless the 

conducted tests show that we can manipulate the grammar to improve the 

performance of the algorithm. The conducted subjective usability tests demonstrated 

that users with no experience in speech applications and mobile devices can easily 

learn how to execute a simple call action in the device, through a spoken language 

interface. The presented results show that the time to accomplish a simple task, like 

placing a phone call, is 34,6% lower when using a speech interface as a replacement 

for a graphical interface. The time difference between the two types of interfaces 

decreases drastically according to the level of the user expertise with speech 

applications in mobile devices. 

 

 

 

 

 

 

 

 

 

 

 



Final Project Report                                                                                                         60 

Chapter 4  
 

Voice Command European 
Portuguese Localization 

 

 

oice Command is a fully developed speech application (already described on 

section 2.4) that was initially localized to English-UK, English-US, French and 

German. The “Voice Command in European Portuguese” is a MLDC project 

[VCProject] that has the objective of releasing a beta version of the product localized 

to European Portuguese. This section describes the proceedings and techniques used 

in the application’s localization to EP.  

4.1 Behavior Localization  

Voice Command has a behaviour that is tailored for an US English target audience.  

The behaviour needs to be reviewed for cultural issues, target audience and 

appropriateness when localizing for other languages. This potentially affects all files. 

If the direct translation is not compliant with the specification, multiple changes 

throughout the product are needed. This stage has the goal of enabling a safe, natural 

speech user interface for existing device features on Pocket PC and Smartphone. 

4.2 Initial status and resources 

A study of the application was made before the starting the localization process. This 

consisted in acquiring all available knowledge (objective, features, limitations, etc) 

about Voice Command. Section 2.4 shows the relevant information (for this work) 

gathered in that analysis. 

 The amount of available information about Voice Command is very limited. Most 

of the gathered documents contain only commercial and marketing facts/data. There is 

no accessible exposition of the application architecture, modules, development 

techniques or any kind of technical advice. 

V 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         61  
Voice Command European Portuguese Localization 

 

 All the facts presented in the following sections were deduced from the code tree, 

which is composed by more than 24000 files and 1800 folders. 

4.3 Architecture 

Voice Command can be decomposed in several modules, each one associated to a 

feature group. Figure 27 illustrates this separation presenting a simple view of the 

application, organized by features. 

 

Figure 27 -  Features architecture 

 

The Shell module represents all the logic responsible for the interaction with the 

user such as the PPT button, options frame, microphone and speaker and therefore it 

is placed on top of all the modules. When the user wants to use the features he/she 

must pass encapsulated logic by the Shell. 

The name of the modules is easily related with their function, though only a short 

description for each one will be presented as follows: 

 Phone – contains all the logic for placing and announcing a phone call. It 

also interacts with the contact’s manager. 

 Media – contains a media manager, which represents the entire collection 

of media present in the device, an mp3 and wma parser, and a handler for 

media related events. 

 Calendar – provides services such as listening to calendar and announcing 

reminders. 

 Status – responsible for announcing device status (battery, signal strength, 

etc)  

 Launcher – allows launching applications resident in the device 

 Email – announces not only emails but also SMS messages. It also 

interacts with an email manager. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         62  
Voice Command European Portuguese Localization 

 

 

All modules contain event handlers (for the different event types) and a list with 

the semantic properties (names and identifiers) of the correspondent grammars, acting 

as a bridge between the grammars and the code. 

Figure 28 presents another view of the application, less feature oriented (when 

compared with the above figure). In this figure, the “Shell” layer also represents the 

interaction with the user and all the application logic resides in the layer referred as 

“Main”. It can be seen as a business layer. The resources gather all text definition 

associated with the application, e.g. text for speech synthesis, graphical labels, 

installation instructions (on the device), being an obvious target for localization. The 

set of word normalizers and grammars is here referred as skins. The foundation 

classes represent all lower level services such as: 

 Grammar manipulation - loading grammars from file or resources, load 

back-end compiler, add/remove items, etc. 

 Speech services - initiating SR and TTS engines, recognition, etc.  

 Interaction with the device - announcements, information retrieval, etc. 

 Recording audio 

 Etc... 

 

 

Figure 28 - Application deconstruction 

 

Voice Command interacts with the engine through SAPI in a similar form as 

described in 3.2.3, being required for the engines to be SAPI compliant. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         63  
Voice Command European Portuguese Localization 

 

4.4 Development environment 

4.4.1 CoreXT Development Environment 

Voice Command uses the CoreXT Development Environment. CoreXT is a layer of 

rules, processes, features and enhancements on top of the NT build environment. It is 

an alternative infrastructure for developers, testers, builders and labs alike.  This 

environment is completely generic and decoupled from the applications being built 

and provides large extensibility, consistent organization, tools and processes. Unlike 

the core NT build environment which is dedicated solely to satisfy the requirements of 

the Windows NT group, CoreXT is a community effort aiming at providing a 

functional build system for all development groups at Microsoft. 

 

Through CoreXT, the depot administrator has created a branch with source access 

to the VC 1.6 tree, for the localization process. The access to the product’s code has 

been supplied through an enlistment. An enlistment is a source-depot (see next 

section) client view on all or part of the product's code, the build tools and the support 

infrastructure.  

The application tree, which was deployed in the branch, has the following 

structure: 

 

build 

The build directory contains the necessary infrastructure to 

overwrite includes, options and processes. 

sources.all 

Overwrite CoreXT/NT build environment compile-

time defaults; this file should be included by all 

sources files. 

paths.all 

Overwrite CoreXT/NT build environment path 

defaults; this file should be included by all sources 

files. 

makefile.inc 

Add specific makefiles to build dummy targets, the 

CoreXT distribution uses a makefile.inc to define the 

way targets are built. 

placefile Defines target directories for placing built targets. 

preenv.cmd 
Defines custom actions to run when a new build 

environment session is opened. 
 

private 
All source code goes into this directory. Usually, a new directory is 

created under private for each new component or set of components. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         64  
Voice Command European Portuguese Localization 

 

private/A_mode Contains the source code and represents the project directory. 

public Directory for publics, components being distributed and externals. 

public/ext 
Contains all external dependencies and tools, including ntpublic, 

tools, perl, sdepot, etc. 

public/ext/bin 
The compiler, linker, resource compiler, nmake and other tools 

required for producing builds. 

tools General depot and CoreXT tools. 

tools/coretools Minimal files required for an enlistment. 

tools/build 
Default placefile, makefiles and localization files. This directory 

contains the default sources.all and paths.all. To overwrite those 

defaults we use the build directory at the top level. 

tools/build/automation 

The automation directory contains the extensions for daily builds 

and for the current environment. It allows the extension of the daily 

build process with actions such as copying of produced bits to a 

release share or sending mail once a build has completed. 

tools/path1st 
The first path for scripts and executables. It also contains the default 

myenv.cmd that defines several variables values relevant in the 

build process, such as source depot configurations. 

Table 9 - Code tree structure 

 

This table resumes the code tree. In the localization process only the private 

directory, tools directory and some components of the public branch were used.  

4.4.2 Source Depot 

Source Depot is command line-based and provides file revision control, source 

control, file sharing, branching, merging, integration and labelling for groups of files. 

The provided code tree, mentioned in the previous sections, is a mapping of the VC 

code tree.  A Source Depot Mapping is a selected set or subset of all the directories 

and subdirectories stored in the depot. A mapping is a correspondence of the 

directories stored on the Source Depot server with the directories created on the client. 

A mapping tells the server where to synchronize the files stored on the client.  

Source Depot exhibits similar functions to Microsoft Team System 

[TeamSystemWeb] when considering source control. Nonetheless Team System, due 

to being more recent, has a much more user friendly interface (graphical instead of 

command prompt) and a larger set of features. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         65  
Voice Command European Portuguese Localization 

 

To use Source Depot one needs firstly to setup a Source Depot Environment, by 

copying the program file sd.exe to the VC path and setup the client. To setup the 

client it is needed to set the server and port number in the configuration file. Next, we 

map the client view, which requires some knowledge of how the project is organized 

and involves mapping the entire depot into the client workspace. To map a client view 

it is required to establish the folders in the depot and to which folder (in the client 

machine) they are mapped into. Finally, the code tree can be synchronized and basic 

commands from Source Depot, such as add, edit, delete and submit, can be used. 

4.4.3 Build 

Voice Command team uses the Build Utility to execute builds of the product. The 

Build Utility, build.exe, was created by Steve Wood to build Windows NT 

[BuildUtilWeb]. The Build Utility provides a structured way of building things and it 

is the default build process for Windows NT. The Build Utility has been successfully 

used by other groups, such as Exchange [ExchangeWeb], Media Foundation 

[MediaFoundationWeb], and MSN [MSNWeb]. 

The great benefit of using this Build Utility, rather than creating your own make or 

nmake files, is: 

 The Build Utility isolates all target-dependent information in a centralized 

location (including header and library include paths, compiler names and 

switches). 

 Products can be built for multiple hardware platforms without specifying 

any target-specific information. 

 

The files used by the Build tool are:  

 sources - lists the rules and macros needed to build a specific component 

subdirectory. 

 dirs - contains macros called DIRS and OPTIONAL_DIRS that specify the 

directories to open recursively and the order in which they should be 

opened.  

 

The tool looks into the dirs file looking for the macros DIRS and 

OPTIONAL_DIRS. It then accesses each listed directory where it might find another 

dirs file indicating more directories to access or a sources file indicating that 

file:///C:\VoiceCommand\private\docs\build\html\steve_wood.htm
file:///C:\VoiceCommand\private\docs\build\html\sources_file.htm
file:///C:\VoiceCommand\private\docs\build\html\dirs_file.htm


Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         66  
Voice Command European Portuguese Localization 

 

something needs to be built. In the source files it looks for the macros SOURCES, 

INCLUDES, TARGETNAME, and TARGETPATH. These are parsed to determine 

the dependencies, the list of files to build, and the end result. Depending on the 

options passed to build, it does the appropriate action and then calls a make program 

to build the component. There are files (makefile and makefile.inc) that the build will 

recognize in special circumstances (e.g., only on a clean build or only when the 

NTTARGETFILES flag is specified in the source file). When the entire directory tree 

is built, the build terminates.  

 

The build tree is structured to allow Pocket PC and Smartphone binaries to be built 

in one pass (per processor, currently only ARMV4). Pocket PC specific binaries have 

a _PPC suffix and Smartphone specific binaries have a _SP suffix. 

 

To perform a build it is required to define several environment variables. The 

developer must define _NTDEVELOPER - alias of the developer, INETROOT - path 

of the code tree and add to the system variable path the directory containing the 

source code and the path for scripts and executables (“tools/path1st”). 

 

For each build it is advisable to clean the build environment using 

BldCleanPrepare.cmd script available at tools/build/environment. This batch file will 

clean the code tree of all changes that weren’t submitted in the branch and prepare the 

environment to perform a build. Next, we can call BldStart.cmd and the build 

specified in the setup variant builder configuration file (BuildSetupVariants.ini) will 

be created. 

4.4.4 Setup variant builder 

The setup variant builder – defined in BuildSetupVariants.ini - allows configuring the 

possible builds of Voice Command. This configuration file is interpreted by a pearl 

script - BuildSetupVariants.pl. Both files reside in the tools/build/setup directory. 

BuildSetupVariants.ini allows controlling the generated builds. This file needed to 

be changed in order to support a EP build. 

In order to describe this component the student has divided it into pseudo-sections 

as follows. 

4.4.4.1 Main section 

file:///C:\VoiceCommand\private\docs\build\html\makefile.inc.htm


Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         67  
Voice Command European Portuguese Localization 

 

In the “main” section of the file we can define which variant we want to build. Among 

the available build types the ones used in the project were:   

 Ship - Selected when the product is ready for shipment. 

 Debug – Access to all kind of debug information during installation and 

runtime. 

 Trialship – Trial version of the product ready for shipment. 

 Trialdbg – Trial version of the product with access to debug information. 

For each build type we can select the setup types which are divided in two groups: 

Pocket PC and Smartphone. For each kind of device we have setup types that allow 

updating the product from previous versions (e.g. PPC_v1_5_v1_6_updater), sign (or 

not) the CAB file and trial setups. 

In the variant builder we also need to specify the products GUID for all different 

combinations build/setup of the product. To achieve that, it was verified which keys 

were common and which were unique in each of the several languages (note that this 

file is common for all languages). For the ones that were unique guidgen.exe 

(available for example in the Visual Studio package) was used to generate them, while 

the others were copied from the other languages. 

4.4.4.2 Localization section 

In the localization section the languages to be built are defined. Here the “PT-PT” 

symbol is added. For each language it is needed to: 

 Define variables for language identification (e.g. language code). 

 List all language specific files such as the ones that compose the TTS and 

SR modules. 

 Define the respective skus (business identifier that defines the product). 

4.5 European Portuguese Engines Integration 

4.5.1 Speech Recognition engine 

The used SR engine was developed by the Microsoft Speech Components Group 

(SGC) and its training and compilation is described in section 3.1. This model only 

supports command and control and has no dictation capabilities. At a physical level, 

the correspondent 2070 SR branch is created and the files described in table 6 (that 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         68  
Voice Command European Portuguese Localization 

 

contain the acoustic models, senone map, etc), Yakima core (spsreng.dll) and SAPI 

dynamic link library are added. 

Information on how to install the engine, such as registry settings, is provided and 

VC setup is configured to consider this directory, through makefile manipulation.  

4.5.2 Text-to-speech engine 

The EP TTS engine that was integrated in the code tree is an evaluation version from 

Nuance. The evaluation package brings several versions of the EP TTS for Windows 

CE.  

The chosen version of the TTS to integrate in VC is Scansoft 

Madalena_DRI20_11kHz and occupies 76kB of static RAM and 7.67MB of ROM 

(the smallest in the package). The several modules of the TTS are divided into 

language independent (table 10) and dependent (table 11) components. The language 

dependent components differ from language to language. 

 

Language independent components ROM RAM  

RS Solo API, TTS engine and common resource modules 488 KB 44 KB 

11 kHz synthesizer 108 KB 4 KB 

SAPI5 interface layer 76 KB 12 KB 

Table 10 - Size of the language independent modules 

 

Language dependent components ROM RAM 

Madalena voice 98 KB 4 KB 

Speechbase for DRI20, 11 kHz 5.28 MB --- 

Table 11 - Size of the language dependent modules  

 

As in the SR engine integration, the respective TTS files and installation/registry 

information is added to the 2070 branch. Registry information regarding the TTS was 

obtained through introspection of the .inf files residing in the evaluation package 

supplied by Nuance. 

4.5.2.1 Broker Mechanism 

One relevant concept used in the TTS module is the broker mechanism that enables 

the discovery of all modules and data files at runtime. The broker collects information 

of all available components and loads those data files or modules at runtime. To run 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         69  
Voice Command European Portuguese Localization 

 

the broker mechanism, the broker header files (e.g. sapi5_conv_ptp.hdr) must be 

under the mandatory directory “Speech”. The developer can choose any directory for 

the installation but the “speech” directory is required under the installation directory. 

So, if we want to install the TTS under the directory, “\mydirectory”, then we need to 

create the “speech” directory under “\mydirectory”. The second mandatory directory 

is the product directory, “rssolo”. This directory should be created under “speech” 

directory and all broker files must be placed here. This was taken into account in the 

installation script. 

Each runtime module is linked to a broker header and this header file contains the 

information of the component, interface and its location. Every runtime component 

should have the broker file except some modules that are dynamically linked when the 

application starts, such as combrk.dll and comrsrc.dll. 

There are also extra header files, which are not linked to any runtime component, 

(e.g. Realspeaksolo.hdr, Rssolo_ptp.hdr) that contains information about the product 

version and language (e.g. language code, manufacture, etc).  

4.5.2.2 Modules to be linked to the Application module 

Some of the runtime modules are linked to any broker file and must be dynamically 

linked to the application when the application starts. These files must be installed in 

the same directory as the application or the location, where those modules are 

installed and must be registered as an application path. The use of SAPI5 interface 

requires the additional link of some extra modules such as, rs_sapi5_solo.dll. 

4.6 Features Localization 

In the Features branch resides the source code related with the different features 

provided by VC such as Calendar, Email, Phone, Media, etc. Among the subdivisions 

one can find resource and grammar files that need to be localized.  

The localization of a product such as VC requires that grammars and User 

Experience (UX) design to be   adapted. This process can be divided in the following 

stages: 

 Cultural Research 

 Digit Dial Design 

 Localization of Voice Commands and Voice Prompts 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         70  
Voice Command European Portuguese Localization 

 

 Translation - Translate Help, Setup Strings, Readme, etc 

4.6.1 Cultural Research 

Cultural Research is the notion of understanding the locale specific issues relative to 

Voice Command. All localizable files (skins, help, etc) are affected by this type of 

issues. Considering VC nature, the following aspects relevant to the localization 

process can be identified: 

 Digit Dialing patterns and conventions – The US English product currently 

support dialling 7 or 10 digit numbers.  In some other places this will not be 

enough and need to be modified. In the EP product version there is support for 

the most common dial patterns with 9 and 12 digit numbers (see next section). 

 Number Confusion – If there are numbers that are not distinctly recognized 

from each other when spoken. 

 Verb synonyms – Identifying the best translation of the English verbs and the 

appropriate localized verbs and synonyms.  

 Identifying naming algorithms – Checking what is the common way of 

placing a call. In other words, check if it is common for users to say “Call 

John Henry at Work” or “Make a phone call to John Henry at home” etc. 

 Identifying relevant names – For the names, emphasis should be put on 

international popular artists and local specific artists as well as artist with 

abbreviated, numeric, intentionally misspelled, or special characters in the 

names (e.g. Blink-182, T.A.T.U). 

 Identifying Calendar titles – Creating a list of calendar/appointment names 

with emphasis on abbreviations and local specific behaviour (e.g.  Go to Dr. 

appt.  ASAP).  

4.6.2 Digit Dial Design 

Another important issue is the Digit Dial Design. It is needed to determine the proper 

support for dialling numbers in a localized product. This issue concerns with the 

resource and grammar phone feature files. A good digit dial must consider: 

 How many are the minimum numbers of digits that can be dialled. 

 How many are the maximum numbers of digits to be dialled. 

 How do area codes affect number dialling. 

 How does calling a neighbouring country affect dialling patterns. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         71  
Voice Command European Portuguese Localization 

 

 What special characters are spoken when dialling (e.g. +, =, *, #). 

 What special numbers are spoken (1-800, One Eight Hundred or in the EP 

case 112, “Cento e Doze”). 

 

For the localization to EP, a minimum number of 4 digits and a maximum of 14 are 

considered (or 12 digit number previewed with a plus “+” optional symbol). The 12 

digit number is composed by the country code, area code and the respective phone 

numbers. Special numbers such as the emergency number (112) and the information 

number (118) were also taken into account. 

4.6.3 Localization of Voice Commands, Voice Prompts and GUI 

Once the proper cultural research has been performed, the various files that create the 

Voice Command UI can be localized. The resource components contain two types of 

items that need to be localized: Voice Prompts and GUI Labels/Text.  Most of the 

Voice Prompts are defined to receive parameters only known at runtime and the 

identifier does not always allow understanding the scenario where the prompt is used. 

We need to place the prompt in the application flow, based on the source code,  so 

that the localization result doesn’t come out of context. The figure below is a simple 

example of an ambiguous voice prompt, where the context where it is used must be 

known, as well as its parameters. 

IDS_CONTACT_THIS_CONTACT                                                       "%1 o contacto, %2 ? " 

Figure 29 - Excerpt of a resource file containing voice prompts 

 

The most important part of this entire procedure is the grammar localization. The 

grammars will determine the behaviour of the application interface and need to 

carefully build. Voice Command uses SAPI grammars, but they are encapsulated in a 

“waml” format. A “.waml” file is basically a XML file that besides encapsulating the 

grammar it also contains relevant information associated with the skin. For example, 

it can contain configuration information about help prompts, if interruptions are 

allowed or application constants. 

These files are compiled using the Windows Automotive Binary Skin Compiler 

(Wabsc) that generates a “.wabs” file. The wabsc compiles the skin files but does not 

report structural grammar errors. This fact may lead the developer to believe that the 

grammar is valid. This kind of errors will only appear during runtime when the 

grammar is loaded. The error message that reaches the user/tester is quite ambiguous 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         72  
Voice Command European Portuguese Localization 

 

and leads to wrong assumptions of exactly where the error occurred. To avoid this 

issue a grammar compiler was used over the altered grammar (that is inside the skin 

file) to verify its integrity.    

4.6.4 Translation – Translate Help, Setup Strings, Readme, etc. 

Non-functional strings need to be translated into the target language for the 

localization process to be complete. The translation process is applied to help files, 

user guide and installation strings. Some of the files that require translation are very 

similar, for example a user guide for Pocket PC and a user guide for Smartphone have 

several common phrases and words. To take advantage of these similarities, all these 

files are generated based on a single HTML [HTMLWeb] file, except desktop 

installation strings. 

The above files contain strings that are not related to the speech user experience 

and can be translated as written.  A review of these translations will need to occur 

later, in a joint collaboration between a linguistic and the localization engineer. 

A style guide that describes the formatting and indenting rules for VC 

documentation must also be followed. 

4.7 Product Setup  

The setup branch is divided in several sections:  

 Setup library - source code for setup procedures 

 Static files – files copied to VC directory during installation  

 Installation Shield (IS) – tool used to produce the final setup file. 

 CAB – installation package for mobile device 

 Tools – tools used in this branch for creating cabs, signing cabs, certificates, 

etc. 

 

The Setup library contains all the code referent to the installation in the device. To 

localize the Setup library we need to modify it in order to access the EP (2070) 

components and also localize all associated resources for Pocket PC and Smartphone. 

The resources contain all the possible messages that can be outputted during the 

product installation (in the device). 

 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         73  
Voice Command European Portuguese Localization 

 

To build the product and generate a setup file, it is necessary to have IS installed in 

the desktop computer where the compilation is made. InstallShield 8 [InstallShield] 

was used. In the project referent to the desktop installation, information about SAPI, 

SR and TTS registry was added. Here, the strings used during the VC installation 

process were also defined. 

 
Cabinet or CAB files are installation files for Pocket PC and Smartphone devices 

that are going to be copied and installed in the target devices. CAB is the Microsoft 

Windows native compressed archive format. It supports compression and digital 

signing, and it is used in a variety of Microsoft installation engines. To generate a 

“cab” file the cabwiz.exe tool is used. Cabwiz receives an installation file (.inf) file as 

input and outputs a “.cab” file. The figure bellow illustrates the creation of a cab file 

for Pocket PC. 

cabwiz "Microsoft Voice Command PT PPC 1.60 for M2M.inf" /cpu PPC420_StrongARM 

Figure 30 - Using cabwiz tool to generate a Pocket PC CAB file 

 
The INF file provides installation instructions and it is where all the steps and 

information about the installation in the device resides. The INF file was based on 

[INFFileWeb], [INFFileWeba] and Voice Command installations results in French, 

German and English. 

This file architecture is divided into several sections, which obey to a determined 

format where the application name, version, destination directories, shortcuts, install 

directories, platform, processor, files and all registry information (e.g. TTS and SR 

installation, SAPI registration and Voice Command definitions) is defined. 

Visual Studio is an alternative to generate installation packages for mobile devices 

but has some limitations in terms of features and does not allow configuring all the 

desired parameters required in the VC EP CAB file. 

 

In the Destination Directories section, the directories that will contain the files of 

the application in the device were established. For the Smartphone platform there is 

the need to place shortcuts (to start and configure the application) in the start menu 

due to the inexistence of a settings menu, like in a Pocket PC. This will provide an 

easier user access to the application executable or shortcut, considering the 

impossibility or difficulty in defining a PTT button on some devices. 

 

http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Microsoft


Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         74  
Voice Command European Portuguese Localization 

 

The application total size is 10.520Kb, mostly due to the TTS size which is 

extremely large to ship in this kind of application. Based on the TTS modules from 

the other languages, an acceptable size for the TTS engine would be about 3MB. 

4.8 VC Localization Issues 

4.8.1 Cosmetic bugs 

Mobile devices screen can come in several shapes and sizes depending on the model 

and manufacturer. When localizing GUI sentences or words, the student tried to find 

the most suitable translation for the EP users. However, this may lead to cosmetic 

bugs. This term is used when the resource localization results in hidden sentences due 

to screen or GUI components size, such as dialog boxes and buttons. 

Figure 31 and fig. 32 are examples of cosmetic bugs resulting from the localization 

process. In the figure in the right we can see that the options label is incomplete, 

missing the word “voz” (voice). In the figure in the left, the dialog box of the third 

sentence is too small. 

 

  
Figure 31 - Incomplete options label 

 
Figure 32 -  Imperceptible option in definitions 

menu 

 

There are two solutions for this kind of issues: rewriting the phrases or change 

components size. The second is not always possible, due to screen limitations. 

Even being aware of this issue it isn’t always visible or perceptible in a resource 

file, which contains GUI components size, which sentences will fit properly or if we 

can change the component size without changing the product. We must also take into 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         75  
Voice Command European Portuguese Localization 

 

account that usually this work is performed by a third party (linguist) and this entity 

only has access to the sentences, not to the full resource file. 

 

In the Voice Command localization to EP the translation was performed by the 

localization engineer, with the advice of a linguist on obtaining shorter sentences with 

the same meaning as the result of the direct translation. 

4.8.2 Debug 

During the localization process there were several bugs/errors that needed to be 

solved. Without access to a proper debug environment it becomes difficult to identify 

and solve upcoming problems. To overcome this issue three possible forms of 

debugging were identified and studied: 

1. Change the application source code and write an output message to the 

repository. 

2. Use platform builder kernel debugger. 

3. Use CoreXT build system to produce debug binaries and use Visual Studio 

debug. 

 
Writing a message to standard output or to a repository (file) it’s maybe the most 

primitive way, but effective, in some cases, of debugging. However, due to, source 

code size, compilation time (a full compilation takes between 2 to 3 hours depending 

on the host machine) and facing several multithread scenarios made this form of bug 

tracking difficult. 

Another option to debug the application was to use Microsoft Platform Builder for 

Windows CE. This is an integrated development environment (IDE) for building 

customized embedded operating system designs based on the Microsoft Windows CE 

operating system. Platform Builder comes with all development tools necessary to 

design, create, build, test, and debug a Windows CE–based operating system design. 

The IDE also provides a single integrated workspace that can work on both OS 

designs and projects. To use Platform Builder, a pre-compiled system image with VC 

installed is required. The image is then downloaded to the device after the 

configuration of the remote services. However this solution has some drawbacks: the 

main drawback is obtaining a pre-compiled system image of Windows Mobile, which 

was not available during the work of this project. Second, using Platform Builder is 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         76  
Voice Command European Portuguese Localization 

 

not a trivial task, so the developer would need to learn how to use it (which obviously 

takes time). Finally, using a Kernel Debugger to resolve a localization issue takes the 

debugging into an even lower level, which involves major additional work.  

The chosen solution to solve the localization errors was to create a debug build of 

the application, in order to obtain debug binaries, and use Visual Studio 2005 

Debugger to run the application and have access to debug messages, such as module 

loading/unloading. This kind of procedure is also used when in the migration of 

solutions from Embedded Visual C++ to Visual Studio 2005 and can be described in 

the following steps: 

1. Create a Debug Build of the Application 

a. Create a Smart Device Visual C++ STANDARDSDK_500 

[StandardSDK] Console Application dummy project using Visual 

Studio 2005 

b. Remove everything from Selected SDKs list and move 

STANDARDSDK_ 500 from Installed SDKs to Selected SDKs. 

2. Connect to Windows CE Device (development machine) 

a. Setup Project properties of the Dummy project to launch the application 

b. Configure binary files location, source directory, remote executable, etc 

3. Specify symbol path 

a. Configure Visual Studio to search a specific location for Symbol files 

(.pdb) 

b. Ready for debugging. 

 
This technique allowed solving the problems resulting from the application 

localization, using a known development environment. It allowed the student to 

understand in which modules or procedures the error was and consequently isolate it 

and solve it. For example, the Locale Handler library is different for each language 

and this was hardcoded in source code. This form of debugging allowed to understand 

that EP was not amongst the contemplated languages in the application source code.  

4.9 Basic Verification Tests 

To verify the build stability, a Basic Verification Test (BVT) of Voice Command was 

performed. BVT requires the execution of a combination or automated and manual 

tests that will cover from the setup to the removal of Voice Command. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         77  
Voice Command European Portuguese Localization 

 

 

The BVT tests have several objectives: 

 Prove that the build is stable by executing the BVT; 

 Verify that Voice Command is installed correctly; 

 Verify that Voice Command can be removed from the device without errors; 

 Verify interoperability with other applications within the device’s operating 

system. 

 

The verified features are presented in table 12 

# Feature Area 

1 Verify Setup of Voice Command Setup 

2 Verify Removal of Voice Command Setup 

3 Verify Main App Main App 

4 Verify Dial Phone 

5 Verify Call Phone 

6 Verify Show Contact Contacts 

7 Verify Calendar Calendar 

8 Verify Launcher Launcher 

9 Verify Media Media 
Table 12 - Features list of the BVT 

 

To perform the BVT tests a HTC P3600 Pocket PC device with Magneto 

(Windows Mobile 5.0) was used. This Pocket PC has the specifications described in 

table 13. 

Specifications 

Processor Samsung® SC32442A 400 MHz 

Platform Microsoft® Windows Mobile® 5.0 

Memory ROM: 128 MB 

RAM: 64 MB SDRAM 

Cellular Radio 

Module 

Tri-band HSPDA/UMTS: 850, 1900, 2100 

Quad-band GSM/GPRS/EDGE: 850, 900, 1800, 1900 

Connectivity Infrared IrDA SIR 

Bluetooth® 2.0 

Wi-Fi®: IEEE 802.11 b/g 

HTC ExtUSB™ (11-pin mini-USB and audio jack in one) 

Audio Built-in dual (microphone and speaker) 

Headphone: AMR/AAC/WAV/WMA/MP3 codec 

Expansion Slot miniSD™ memory card 

Table 13 - Test Pocket PC characteristics 

 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         78  
Voice Command European Portuguese Localization 

 

To complete the testing activities a localized list of contact cards, calendar 

appointments, digit dial examples, program names and media (stock data) were set in 

the device. These are described on table 14.  

 

Stock Data Amount 

Contacts 325 

Song names 57 

Appointments  25 
Table 14 - Stock data information 

 

The table bellow describes the performed verification tests. 

Pre-

requisites 
Action Say… TTS Say… Expected 

Pass

/Fail 

Active Sync 

Install 

Voice 

Command 

   

Start 

>>Program >> 

File 

Explorer>> 

Program Files 

-> Voice 

Command -> 

check on VC 

files, Speech 

Engine Files 

and Text To 

Speech Files. 

Pass 

Active Sync 

Install 

Voice 

Command 

   

Help file 

displays at the 

end of the 

installation 

(desktop and 

device) 

Pass 

Active Sync 

Install 

Voice 

Command 

   

Help file 

displays on 

device when 

search.  Start 

>>Help>> 

Voice 

Command. 

Pass 

Install Voice 

Command 

Remove 

Voice 

Command 

   

Voice 

Command 

Files are 

removed from 

\Program 

Files\Microsof

t Voice 

Command 

Pass 

Install Voice 

Command 

Remove 

Voice 

Command 

   

Voice 

Command 

Directory is 

Removed 

Pass 

Install Voice 

Command 

Remove 

Voice 

Command 

   

Voice 

Command 

Button 

Pass 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         79  
Voice Command European Portuguese Localization 

 

Reverts to 

default and no 

longer is 

mapped to 

voicecmd.exe 

Install Voice 

Command 

Remove 

Voice 

Command 

   
Help Files are 

removed 
Pass 

Install Voice 

Command 

Remove 

Voice 

Command 

from 

Desktop. 

Control 

Panel>>A

dd or 

Remove 

Program 

   

Voice 

Command 

Files are 

removed from 

the Add or 

Remove 

Program 

Pass 

Install Voice 

Command. 

Make sure 

device is still 

syncing with 

desktop 

Remove 

Voice 

Command 

   

Voice 

Command 

Files are 

removed on 

device 

Pass 

Install Voice 

Command 

Go to the 

Device 

Settings\Pe

rsonal 

   

Voice 

Command 

Control Panel 

Applet 

displayed in 

the Personal 

Setting Tab 

Pass 

Install Voice 

Command 

Go to the 

Device 

Settings\Pe

rsonal and 

click on 

the Voice 

Command 

Icon 

   

That the Voice 

Command 

applet opens 

up after a 

single click 

Pass 

Install Voice 

Command 

Go to the 

Device 

Settings\Pe

rsonal and 

click on 

the Voice 

Command 

Icon 

   

Voice 

Command 

Applet 

displays 

appropriate 

extensions 

(Calendar, 

Contacts, 

Media, Phone, 

Start Menu) 

Pass 

Install Voice 

Command 

Press the 

Push to 

Talk 

Button 

   

Voice 

Command 

Button is 

properly 

assigned 

Pass 

Install Voice 

Command 
PTT 

Dial 

<Minimum 

Length 

Number 

Supported> 

Dial <Number> 

Correct? 
Cancel 

Voice 

Command 

will Cancel 

Pass 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         80  
Voice Command European Portuguese Localization 

 

Install Voice 

Command 
PTT 

Dial 

<Maximum 

Length 

Number 

Supported> 

Dial <Number> 

Correct? 
Cancel 

Voice 

Command 

will Cancel 

Pass 

Create at least 

100 Contacts 

(Last,Middle,Fi

rst with home, 

home2, work, 

work2, radio, 

mobile, 

assistant) 

PTT 
Call 

<Contact> 

Call <Contact> 

Correct? 
Cancel 

Voice 

Command 

Respond with 

cancel tone 

Pass 

Contact with 

Duplicate 

Entries 

(Last,Middle,Fi

rst with home, 

home2, work, 

work2, radio, 

mobile, 

assistant) 

PTT 
Call 

<Contact> 

This <Contact> 

Correct? 
Next 

Voice 

Command 

will go to the 

next duplicate 

contact 

Pass 

Contact 

(Last,Middle,Fi

rst with home, 

home2, work, 

work2, radio, 

mobile, 

assistant) 

PTT 
Show 

<Contact> 
  

Voice 

Command 

Displays the 

correct contact 

card 

Pass 

Contact 

(Company 

name only) 

PTT 
Show 

<Contact> 
  

Voice 

Command 

Displays the 

correct contact 

card 

Pass 

Contact with 

Duplicate 

Entries 

(Last,Middle,Fi

rst with home, 

home2, work, 

work2, radio, 

mobile, 

assistant) 

PTT 
Show 

<Contact> 

This <Contact> 

Correct? 
Next 

Voice 

Command 

will go to the 

next duplicate 

contact. 

Contact cards 

are displayed. 

Pass 

Create several 

appointments 

for today and 

tomorrow 

PTT 

What’s my 

next 

appointment

? 

  

VC will TTS 

the next 

appointment 

Pass 

Create several 

appointments 

for today and 

tomorrow 

PTT 

What’s my 

schedule for 

today? 

  

VC will TTS 

today’s 

appointments 

Pass 

Create several 

appointments 

for today and 

tomorrow 

PTT 

What’s my 

schedule for 

tomorrow? 

  

VC will TTS 

tomorrow’s 

appointments 

Pass 

Copy Media 

Songs to the 

Storage card 

PTT 
Play 

Everything 
“Everything”  

Voice 

Command 

will open 

Media Player 

Pass 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         81  
Voice Command European Portuguese Localization 

 

Table 15 - BVT tests 
 

The build has passed all verification tests, so it can be concluded that is stable and 

is working as expected. 

 

This build was also tested with success in the following devices: HTC S710, HTC 

Touch, i-mate JAQ4, Samsung i600, GSmart i600 and HTC S620. 

4.10 Usability evaluation 

To determine the usability of the system, an evaluation methodology was adopted and 

a usability test was developed to assess the usefulness of the EP version of Voice 

Command in comparison with the mobile device GUI provided by Windows Mobile. 

The device used was the same HTC P3600 that was used in the previous tests and it is 

described in table 13. The tests were conducted in home and office environments. In 

the home environment the tests took place under a common living room scenario 

(television on, though relatively quiet). In the office environment the tests took place 

in a room with an average 4 to 5 people talking/working.  

and will begin 

playing all of 

your songs 

Copy Media 

Songs to the 

Storage card 

PTT Play Artist “Which Artist?” Cancel 

Voice 

Command 

will list the 

artist name in 

your device. 

Pass 

Copy Media 

Songs to the 

Storage card 

and Play any 

song 

PTT Next Track “Next Track”  

Voice 

Command 

will go to the 

next track in 

your play list 

Pass 

Copy Media 

Songs to the 

Storage card 

and Play any 

song 

PTT Stop “Stop”  

Voice 

Command 

stop playing 

music 

Pass 

Copy Media 

Songs to the 

Storage card 

and Play any 

song 

PTT 
What song is 

this? 
…  

Voice 

Command tell 

the song 

information 

Pass 

Copy Media 

Songs to the 

Storage card 

and Play any 

song 

PTT 
Play 

Everything 
“Everything”  

Verify that the 

Voice 

Command 

Skin displays 

(Only for 

Media Player 

8.0) 

Pass 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         82  
Voice Command European Portuguese Localization 

 

4.10.1 Objective 

This usability evaluation was conducted with the following objectives: 

 To validate the level of acceptance of speech recognition technologies 

combining the local language and mobility. 

 Improve VC VUI based on the analysis of the most common recognition errors 

and the feedback supplied by the subjects. 

 Detect and identify which are the “local” needs in this area. 

 Allow the users to really have a “Hands on Lab” experience and hear their 

opinions. 

 Advertise the localized product and influence its adoption. 

4.10.2 Usability evaluation methodology 

The usability testing experiment was designed to assess the usefulness of VUI 

interaction compared to traditional GUI interaction. For this, the time taken and 

efficiency of the subjects when accomplishing two groups of tasks commonly 

available in a mobile device (Smartphone or Pocket PC) is evaluated. The tasks are 

described in table 16 and the script is available in Appendix B, page 8.  

Nowadays, there are numerous actions and services provided by a Pocket PC or a 

Smartphone; so we selected a first group of tasks that are the primary reason or 

essential when using a device and consequently more common amongst users. A 

second group tasks was also selected and represents actions that are not so popular, 

but depending on the user they can be more or less used. This second group was 

harder to select. The student based the selection of this second group on the Original 

Equipment Manufacturers (OEMs) preference (the features that they advertisement) 

and the tasks were designed with the intent of being the most global and 

representative of a group of services.  

 

Common tasks Other tasks 

1. Placing a phone call 5. Lookup contact information 

2. Checking calendar 6. Open an application 

3. Verifying device status 7. Play media 

4. Change profile or sound options 8. Manipulate media 

Table 16 - Tasks performed in the usability evaluation test. 
 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         83  
Voice Command European Portuguese Localization 

 

The tasks are described in detail as follows: 

 Task number 1 – Placing a phone call – The user is required to place a phone 

call to the mobile phone of the contact named “João Freitas”. In the contact list 

there were 300 contacts with several (5 to be more precise) “João” in the list, 

but only one “João Freitas”. There were no repeated contacts. 

 

 Task number 2 – Checking the calendar –The subject is required to 

understand what commitments are scheduled for the next day. In the device 

there are several appointments registered for the current and two commitments 

for the next day. 

 

 Task number 3 – Verify the device status - In this task the subject should 

obtain the battery percentage level. 

 

 Task number 4 – Change profile or sound options – In this task the subject is 

asked to reduce the volume to the minimum or enable the device’s silent 

mode. 

 

 Task number 5 – Lookup contact information – The subject is  asked to 

consult the available numbers of the contact named “João Freitas”. This task 

may be similar to the first task when using the graphical interface, depending 

on the user methodology to perform the tasks. 

 

 Task number 6 – Use of an application installed in the device – The subject is 

asked to open Internet Explorer. 

 

 Task number 7 – Play media –The subject is asked  to play a set of songs of a 

local artist, e.g. “Ornatos Violeta”. All the multimedia is located in a memory 

card and it is shown to the subject the audio location and how to access it. 

 

 Task number 8 – Manipulate media – The subject is required to move on to 

the next song. The device should be  set in a state that allows the execution of 

this task. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         84  
Voice Command European Portuguese Localization 

 

 

These sets of tasks are performed using both interfaces alternately (e.g. the subject 

performs the tasks with the VUI and then performs the same tasks using the GUI; the 

next subject first performs the tasks with GUI and then performs the same tasks with 

the VUI). By alternating the interface order independence is gained, breaking any 

kind of relation between the interfaces that may affect test results. 

The tests, regarding each interface, are preceded by a four minutes session for 

interface adaptation.  The adaptation is divided in a two minute explanation and 

followed by a two minute training session, so that the subject is able toadapt 

himself/herself to the device. Each subject also receives a two page user guide and a 

half page quick user guide, about each interface, explaining how to use the device. 

The tutorial about the user interfaces include the tasks mentioned in table 16. The 

tutorials are as clear and equivalent as possible and shown in Appendix B, page 2-7. 

Each testing session took about 15-25 minutes, depending on the user feedback. 

4.10.3 Subject profiles 

The usability experiment was run on 35 unpaid users with ages between 23 and 65. 

There were 26 male and 9 female subjects with a variety of business occupations (IT 

engineers, Senior Consultants, Retired, Students, etc). In order to obtain a reference 

profile the subjects were asked to fill a questionnaire about their previous experience 

on speech interfaces, use of stylus (on mobile devices) and mobile devices in general. 

The results reveal that the majority of the subjects had low experience with speech 

interfaces and in a scale of 0 to 3 (0 – None, 1 – Low, 2 – Medium, 3 - High) 

presented an 1, 2 average value; a medium experience in the use of the stylus, with an 

1,8 average on the same scale and high experience with mobile devices, presenting an 

2,7 average (same scale of 0 to 3). These results are presented on the graphic of fig. 

33 below and were gathered through a questionnaire filled before executing the tasks. 

This questionnaire can be found in Appendix B. 

 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         85  
Voice Command European Portuguese Localization 

 

 

Figure 33 - User experience profile 

4.10.4 Evaluation results and analysis 

All the subjects were successful in completing the experiments with both interfaces, 

showing different degrees of efficiency and taking different durations to fulfil the 

tasks. During the experiments the student has became aware of some problems that 

rose while using the system and received many comments and suggestions from the 

test subjects which will be described in the following section of this document. An 

analysis was also performed on: 

 The time that the subjects spent to perform the experiment. 

 The number of attempts when performing a task. 

 Why subjects failed to use the VUI. 

 Questionnaires filled after the usability test. 

 

When analysing the times taken in the several tasks there is a clear advantage of 

the VUI  placing a call to a determined contact, checking a contact card and playing a 

group of songs (fig. 34). VUI’s advantage in such tasks is explained by the task 

complexity. All of these tasks have in common the fact that they require a set of 

actions, such as menu navigation, scrolling, etc, to be executed with success. The VUI 

gives a way of accessing all of these services through a single action, as simple as 

issuing a voice command. The inverse situation can be noticed when checking 

tomorrow’s appointments or passing to the next song. To execute these tasks both 

interfaces only need a single action, so it is natural to have a balance in terms of time 

0

5

10

15

20

25

30

None Low Medium High

U
se

rs

Experience level

Spoken language interface

Stylus use

Mobile devices



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         86  
Voice Command European Portuguese Localization 

 

when executing them. Despite the time a task takes to accomplish we will see that the 

subject not always prefer the fastest way to perform the task. 

 
Figure 34 -  Time taken in accomplishing the tasks (VUI and GUI) 

 

When using the VUI it is normal to occur recognition errors, especially considering 

that the majority of the subjects present a low experience level with speech interfaces. 

The main reasons for recognition errors in these tests were: 

1. The spoken command is not included in the grammar. 

2. The command sentence was spoken in an incorrect order (e.g. in the grammar 

is available the command sentence “Que horas são?” and the user says “São 

que horas?”). 

3. Covering the microphone, with the hand that holds the device, when entering 

the voice command. 

4. Bad interaction with the PTT button, such as saying the command without 

pushing the button. 

5. Taking more time than usual to input the command (after pressing the PTT 

button). 

6. Push the PTT button and not wait for the noise or visual signal from the 

application to input the voice command. 

7. Talking before introducing the voice command (when the application is 

waiting for a command). 

 

In the graphic analysis of fig. 35 and fig. 36 the number of attempts taken to 

accomplish a task, are presented. Notice that the number of attempts decreases during 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8

Ti
m

e 
(s

)

Task

VUI

GUI



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         87  
Voice Command European Portuguese Localization 

 

the test execution, except in task number five. The decrease in the number of attempts 

can be justified by the quick adaptation of the subjects to the VUI, since the tasks 

where independent. This was also visible during the tests. The exception verified in 

task number five is due to the lack of synonyms in the application grammar to 

perform this particular action. 

 

 

Figure 35 - Average number of attempts for each task 

 

Figure 36 - Number of attempts for each task 

4.10.5 Subject comments 

The subjects provided valuable feedback during and after the experiment, mostly 

regarding the VUI interface. Right after the testing session, the subjects were asked to 

fill a short questionnaire (Appendix B, page 9) that allowed to extract opinions and 

preferences of the subjects, when asked to compare both interfaces and about the VUI. 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5 6 7 8

A
ve

ra
ge

 a
tt

e
m

p
ts

Task

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8

N
u

m
b

e
r 

o
f 

Su
b

je
ct

s

Task

One attempt

Two attempts

Three or more  
attempts



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         88  
Voice Command European Portuguese Localization 

 

From section 4.10.3 one can conclude that the subjects are more familiar with the 

GUI, as opposed to VUI. Ideally the subjects had equal familiarity with both 

modalities so that we could make a more precise comparison based on the users. In 

spite of that, there are still some interesting conclusions that one can extract. 

Figure 37 shows the questionnaire results. When analyzing the information 

provided by the users a clear user preference for the VUI in accomplishing the tasks is 

observed, despite the time taken to accomplish the task.  The tasks one and seven 

reveal that interaction via VUI is overwhelming, when compared to the GUI.. This is 

justified by the fact that, when using the GUI, inherent actions such as finding a 

contact to place a call, or having to go to the music repository to play a group of songs 

requires additional attention, time, visual interaction and manual interaction with the 

device. On the other hand, the VUI only requires a single voice command to index a 

contact number or an album artist. 

 

 
Figure 37 - Questionnaire results 

 

In the final question the subjects were asked to  present ideas for new 

functionalities that are, or not, already available on their devices with the GUI and 

would like to see implemented with a VUI. The most demanded functionalities 

involve dictation and interaction with external servers, more precisely:  

 Dictating email or SMS. 

 Email triage - archive, delete, reply, etc. 

 Dictating appointments – introduce new appointments in the agenda 

through speech. 

0

5

10

15

20

25

30

Su
b

je
ct

s VUI

GUI

Both



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         89  
Voice Command European Portuguese Localization 

 

 Editing agenda – move, delete appointments. 

 Defining alarms. 

 The possibility of defining macros - defining a voice command that 

performs a set of actions. 

 Interaction with Exchange server, GPS or other web servers. 

 Active Sync with speech 

 

During the testing period the subjects gave their opinion on the application, 

presenting a set of suggestions that include having a more stronger component of 

visual feedback when stimulated with a voice command, e.g. when asked for available 

albums the application gives a list of the available albums in the device (on which we 

can navigate with speech). This could be implemented has an option. 

 

To conclude the analysis about the subject’s feedback, 88,6% of the subjects prefer 

the VUI interface when asked to choose between the two interfaces, and only 11,4% 

prefer the GUI interface. Nonetheless, 21% of the users mentioned that his option on 

which interface to use depends on the situation and location. These subjects 

commonly choose the GUI interface for public places such as shopping malls, and the 

VUI for “busy hands, busy eyes” scenarios such as, automotive and sports. 

4.11 Result analysis 

This chapter described all the proceedings and techniques used in the localization of 

VC for EP. This includes code tree analysis, features localization, resources and 

grammar localization, engines (SR and TTS) integration, installation procedures, 

testing the product and a usability evaluation study. 

Voice Command uses a set of MS internal tools for developing, source control and 

builds generation, such as CoreXT, Source Depot, and the Build Utility. These were 

unknown for the student and consequently an obstacle that was overcame. This also 

applies to the application architecture, which due to the lack of accessible 

documentation, had to be deduced from the complex code tree. Once the localization 

targets were identified, the adaptation of the application to the EP culture and 

language took place at every level. Along the localization process it became clear that 

the application wasn’t predicted to exist in EP. The localization process had a strong 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         90  
Voice Command European Portuguese Localization 

 

reverse engineering component with basis on existing versions of the application, 

such as French and German. 

 In order to validate the conducted work basic verification tests were executed. The 

BVT tests allowed verifying that the build was correct in every aspect that goes from 

the installation in the desktop to the removal of the device.  

An usability evaluation study was also conducted, which allowed testing the build, 

divulgate the product, understand some of the reasons why speech recognition fails, 

perform a comparison between the GUI and the VUI, this time including several other 

actions/tasks, verify the usefulness of the VC in EP and improving the product final 

beta version. The conclusions from that study show that complex tasks, such as 

playing a group of songs, are easier to accomplish with a VUI. In scenarios such as 

sports or automotive, users tend to prefer the VUI. A quick adaptation by the users to 

the spoken language interface, during the conducted tests, was also verified, resulting 

in lesser attempts to accomplish a task. This study also allowed the student to improve 

the grammars, by realizing what were the most common verbs to describe an action, 

and consequently improving the product command and control interface for EP users. 

At the end of the tests the subjects were asked to give ideas about features and 

improvements which could be implemented, in order to improve user experience with 

mobile devices. The most demanded features were related to dictation, external 

server’s interaction and more visual feedback. 

A specific Voice Command corpora acquisition was performed during the usability 

evaluation study, recording all the commands issued by the several subjects. 

However, no transcription/annotation or any kind of work over this data was 

performed until the current date. 

Currently, we have 10 persons constantly using the product located for EP, 

providing a constant feedback. None of these users required using a manual to 

identify the voice commands and the build is working flawlessly. From the given 

feedback extremely positive reactions to the product were obtained, such as “This is 

much better than the English version”. 

As future work, the localized resources should be reviewed by a linguist expert in 

parallel with a localization engineer (due to strings contextualization) and approved 

by the product’s development team. A bigger set of BVT tests should also be 

considered with a larger amount of stock data.  

 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         91  
Voice Command European Portuguese Localization 

 

 

 

 

 

 

 

 

 

 

 

 



Final Project Report                                                                                                         92 

Chapter 5  
 

Conclusions and Future work 
 

 

his chapter will be dedicated to an analysis of the proposed project goals and 

what has been actually achieved. The student also documents the intentions for 

future work and possible directions of research in the area of this project. 

5.1 Summary of accomplishments 

As it was described in the introduction chapter, the goal stated for this project is the 

localization for VC to EP, preceded by the development of a spoken language 

interface in a mobility context analysis. 

In order to achieve these objectives, a classical methodology was followed. The 

student started by analyzing existent spoken  language technologies, focusing on 

speech applications for mobile devices, similar to Voice Command, identifying 

methodologies and best practises. In this chapter, it was also described the used 

spoken language system architecture, the used ASR system, based on a pattern 

recognition approach, more concretely, HMMs and the common architecture of a TTS 

system. Voice Command features are also described, as well as other similar 

applications in order to understand the inherent advantages and weaknesses of the 

application, when compared with the current state of the art. We conclude that Voice 

Command is significantly larger, in terms of memory, in comparison with other 

existent commercial applications, but also presents a higher set of embedded features. 

The analysis of these applications also shows how spoken language interfaces can be 

applied in mobile devices. 

 

The third chapter focus on the development of spoken language applications for 

mobile devices. It starts by analysing the localization of the SR engine, an essential 

component for the speech applications used in this work. To accomplish this task 

internal MS tool - Autotrain – was used. This tools provides a recipe with all the 

required steps to generate a fully compiled EP SR engine. In this chapter an analysis 

T 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         93  
Conclusions and Future work 

 

in the framework of a spoken language interface for a mobile device was also 

presented. In this analysis a set of optimizations to improve speech recognition 

accuracy and user interaction experience was shown. To support this study, an 

example application that places a phone call to a contact, through a spoken language 

interface, was developed. The application interacts with the developed SR engine 

through SAPI and implements a name match algorithm to improve user experience. 

This represents a practical exercise that precedes the localization of Voice Command. 

The development of this demonstrative application implied learning basic concepts, 

such as the integration of the SR and TTS modules, which are also applied in the 

localization process. 

Results of conducted usability tests, based on user’s experiment, to, were also 

presented. These experiments showed that spoken language interfaces can provide 

easier and more efficient use of the device when performing a task, like placing a 

phone call, especially with users less experienced on handling mobile devices. 

 

The fourth chapter describes the VC localization process to EP, which includes 

exposing the application’s architecture, application adaptation to EP, the SR engine 

integration and a testing stage, posterior to the localization. Here, the encountered 

problems during localization as well as their respective solutions were presented. 

Some of the key problems found were unknown MS internal development procedures, 

application setup localization and features localization. These problems motivated a 

longer analysis of the code tree and techniques involved in the product build. This was 

overcome through reverse engineering techniques, based on other VC versions. To 

confirm the built stability the product is currently in beta testing and was subjected to 

several a set of generic BVTs. The conducted usability evaluation study over VC 

allowed the improvement of the application interface (grammar tuning) for EP, 

providing a more natural VUI,  and understand why and where speech recognition 

fails.  This evaluation also shown that complex tasks, such as playing a group of 

songs, are easier to accomplish with a VUI and that users prefer the VUI, especially in 

“busy hands, busy eyes” scenarios. Users also present a quick adaptation to the VUI 

based on number of attempts to accomplish a common task. 



Spoken Language Interface for Mobile Devices 

Final Project Report                                                                                                         94  
Conclusions and Future work 

 

5.2 Future work 

We believe that there are several possible future directions of research raised by the 

work presented in this project. 

Voice Command development is currently stopped, however there are several 

aspects which could be improved such as, application personalization, integration of a 

dictation module, interaction with Exchange server, etc. 

Relatively to the built version of VC in EP and in order to ship the product in EP 

we need to integrate our own TTS, due to the license price and size of the current 

integrated TTS. It is also scheduled to rearrange the grammar with the commands that 

lead the subjects to fail, so that users in general find the interface natural and familiar 

not needing to memorize voice commands. The objective is that the first two 

appointed reasons (section 4.10.4) for the applications to fail become absolute. This 

leads to the need of evaluating what is the impact of increasing command synonyms, 

in recognition accuracy, so that it stays acceptable. User experience will benefit with 

the addition of options, in terms of voice commands, however recognition accuracy 

will decrease due to the increased number of grammar items. The BVTs should be 

performed with larger amount of stock data and specifically to each feature, exploring 

every possible situation. There is also the need of a linguist correction of the current 

translation and a product approval of the VC Team. 

 

For last, but not least, the student desires to accomplish a vision shared with the 

Voice Command development team: 

 

“Change the way people interact with and think about Mobile Devices” 

 

 



 

 

 

 

REFERENCES 

 

[Acero06] A. Acero, “Building Voice User Interfaces”, in MSDN 

Magazine. Feb. 2006. 

[Amaral99] R. Amaral, P. Carvalho, D. Caseiro, I. Trancoso, L. 

Oliveira, “Anotação fonética automática de corpora de fala 

transcritos ortograficamente”, PROPOR'99 - IV Encontro 

para o Processamento Computacional da Língua Portuguesa 

Escrita e Falada, Evora, Portugal, September 1999. 

[Barros06] M. Barros, C. J. Weiss, “Maximum Entropy motivated 

Grapheme-to-Phoneme, Stress and Syllable Boundary 

Prediction for Portuguese Text-to-Speech", Technologia del 

Habla, November 2006. 

[Black07] A. W. Black, K. A. Lenzo, “Building Synthetic Voices”,  

Language Technologies Institute, Carnagie Mellon 

University, January 21, 2007 

[Blizzard] The Blizzard Challenge, 

http://festvox.org/blizzard/index.html,  last visited on 15-09-

2007 

[Bonardo05] D. Bonardo, P. Baggia, “SSML 1.0: an XML-based language 

to improve TTS rendering”, January 19, 2005. 

[Braga03] D. Braga, D. Freitas, H. Ferreira,  “Processamento 

Linguístico Aplicado à Síntese da Fala”. 3º Congresso 

Luso-Moçambicano de Engenharia, Maputo, Mozambique. 

August 2003. 

[Braga07a] Private conversation held with Daniela Braga about dialectal 

regions. 

[BuildUtilWeb]  

 

MSDN, Build Utility Reference, 

http://msdn2.microsoft.com/en-us/library/ms792380.aspx, 

last visited on 15-09-2007 

[CIAWeb] Central Intelligence Agency World Factbook 2007, 

https://www.cia.gov/library/publications/the-world-factbook , 

last visited on 15-09-2007 

[COMWrap] MSDN, COM Wrappers, http://msdn2.microsoft.com/en-

us/library/5dxz80y2.aspx, last visited on 15-09-2007 

[CyberonWeb] Cyberon Corporation, http://www.cyberon.com.tw/, last 

visited on 15-09-2007 

http://msdn.microsoft.com/msdnmag/issues/06/02/EndBracket/default.aspx
http://festvox.org/blizzard/index.html
http://msdn2.microsoft.com/en-us/library/ms792380.aspx
http://msdn2.microsoft.com/en-us/library/5dxz80y2.aspx
http://msdn2.microsoft.com/en-us/library/5dxz80y2.aspx
http://www.cyberon.com.tw/


 

 

 

 

[ELRA] European Language Resources Association, 

http://catalog.elra.info/, last visited on 15-09-2007 

[ExchangeWeb] Microsoft Exchange Server, 

http://www.microsoft.com/portugal/exchange/default.mspx, 

last visited on 15-09-2007 

[Freitas07] J. Freitas, M. J. Barros, A. Calado, M. S. Dias , “Spoken 

Language Interface for Mobile Devices”, in the Proceedings 

of 3rd Language & Technology Conference, Poland, October,  

2007 

[GovWeb] Portal do Governo, 

http://www.portugal.gov.pt/Portal/PT/Portugal, last visited on 

15-09-2007 

[HTMLWeb] W3C, HTML Working Group, http://www.w3.org/html/wg/, 

last visited on 15-09-2007 

[Huang01] X. Huang, A. Acero and H. Hon, Spoken Language 

Processing: a guide to theory, algorithm, and system 

development, Prentice Hall, 2001. 

[INFFileWeb]  

 

MSDN, About INF File Architecture, 

http://msdn2.microsoft.com/en-us/library/aa741215.aspx, last 

visited on 15-09-2007 

[INFFileWeba]  

 

MSDN, Using INF Files, http://msdn2.microsoft.com/en-

us/library/aa741213.aspx, last visited on 15-09-2007 

[InstallShield] Macrovision, InstallShield, http://msdn2.microsoft.com/en-

us/library/ms696274.aspx, last visited on 15-09-2007 

[IPAWeb] The Internacional Phonetic Association, 

http://www2.arts.gla.ac.uk/IPA/ipa.html, last visited on 15-

09-2007 

[Jansche01] M. Jansche, “Re-Engineering Letter-to-Sound Rules”, 

NAACL 2001. 

[JNISpec] 

 

Java Native Interface Specification, 

http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.ht

ml, last visited on 15-09-2007 

[MediaFoundation

Web] 

Microsoft Media Foundation SDK, 

http://msdn2.microsoft.com/en-us/library/ms696274.aspx, 

last visited on 15-09-2007 

[Meneses02] ISEL, Processamento Digital de Fala, Sebenta de Apoio, 

Carlos Meneses, 2002 

[Mermel76] P. Mermelstein, “Distance measures for speech recognition, 

http://catalog.elra.info/
http://www.microsoft.com/portugal/exchange/default.mspx
http://www.portugal.gov.pt/Portal/PT/Portugal
http://www.w3.org/html/wg/
http://msdn2.microsoft.com/en-us/library/aa741215.aspx
http://msdn2.microsoft.com/en-us/library/aa741213.aspx
http://msdn2.microsoft.com/en-us/library/aa741213.aspx
http://msdn2.microsoft.com/en-us/library/ms696274.aspx
http://msdn2.microsoft.com/en-us/library/ms696274.aspx
http://www2.arts.gla.ac.uk/IPA/ipa.html
http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/jni/spec/jniTOC.html
http://msdn2.microsoft.com/en-us/library/ms696274.aspx
http://www.deetc.isel.ipl.pt/comunicacoesep/disciplinas/pdf/sebenta/pdf/pdf.pdf
http://www.deetc.isel.ipl.pt/comunicacoesep/disciplinas/pdf/sebenta/pdf/pdf.pdf
http://www.deetc.isel.ipl.pt/comunicacoesep/disciplinas/pdf/sebenta/pdf/pdf.pdf


 

 

 

 

psychological and instrumental, in Pattern Recognition and 

Artificial Intelligence, C. H. Chen, Ed., pp. 374-388, 

Academic, New York, 1976 

[MLDCWeb] Microsoft Language Development Center, 

www.microsoft.com/portugal/mldc, last visited on 15-09-

2007 

[MobileSDK] Windows Mobile Developers, 

http://www.microsoft.com/uk/windowsmobile/developers/def

ault.mspx, last visited on 15-09-2007 

[MSNWeb]  Microsoft Network, http://www.msn.com/defaultO.aspx, last 

visited on 15-09-2007 

[NuanceT9] Nuance T9 Solutions, http://www.nuance.com/t9/, last visited 

on 15-09-2007 

[SAMPAWeb] UCL, Speech Assessment methods phonetic alphabet, 

http://www.phon.ucl.ac.uk/home/sampa/index.html, last 

visited on 15-09-2007 

[Sakoe78] H. Sakoe and S. Chiba, “Dynamic Programming Algorithm 

Optimization for Spoken Word Recognition”, IEEE Trans. 

Acoustics, Speech, Signal Proc., ASSP-26 (1): 43-49, 

February 1978 

[SpeechSDK] Microsoft Speech Technologies, 

http://www.microsoft.com/speech/speech2007/default.mspx, 

last visited on 15-09-2007 

[Speecon99] Corpus Design, 

http://www.speechdat.org/speecon/index.html, last visited on 

15-09-2007 

[StandartSDK] The STANDARDSDK_500 can be found in 

http://www.microsoft.com/downloads/details.aspx?FamilyID

=FA1A3D66-3F61-4DDC-9510-

AE450E2318C3&displaylang=en, last visited on 15-09-2007 

[Rabiner86] Rabiner, L. R. and Juang, B. H., “An introduction to Hidden 

Markov Models, IEEE ASSP Maganize, 4-15, January, 1986 

[Rabiner89] L. R. Rabiner. “A tutorial on hidden Markov models and 

selected applications in speech recognition”. Proceedings of 

the IEEE 77(2):257–286, February 1989.  

[Rabiner93] L. Rabiner e B. Juang, Fundamentals of Speech Recognition, 

Prentice Hall Signal Processing Series, 1993. 

[TeamSystemWeb]  

 

Microsoft Visual Studio Team System, 

http://msdn2.microsoft.com/pt-br/teamsystem/default.aspx, 

http://www.microsoft.com/portugal/mldc
http://www.microsoft.com/uk/windowsmobile/developers/default.mspx
http://www.microsoft.com/uk/windowsmobile/developers/default.mspx
http://www.msn.com/defaultO.aspx
http://www.nuance.com/t9/
http://www.microsoft.com/speech/speech2007/default.mspx
http://www.speechdat.org/speecon/index.html
http://www.microsoft.com/downloads/details.aspx?FamilyID=FA1A3D66-3F61-4DDC-9510-AE450E2318C3&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=FA1A3D66-3F61-4DDC-9510-AE450E2318C3&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=FA1A3D66-3F61-4DDC-9510-AE450E2318C3&displaylang=en
http://msdn2.microsoft.com/pt-br/teamsystem/default.aspx


 

 

 

 

last visited on 15-09-2007 

[Teixeira97] C. Teixeira, I. Trancoso, and A. Serralheiro:  Recognition of 

Non-Native Accents. in Proc. European Conference on 

Speech Communication and Technology (Eurospeech), vol. 

5, pp. 2375–2378, 1997 

 

[VCProject]  

 

MLDC, Voice Command Project, 

http://www.microsoft.com/portugal/mldc/projects/voicecom

mand.mspx, last visited on 15-09-2007 

[VCUserGuide] Voice Command User Guide 

[VisualStudioWeb] Microsoft Visual Studio, http://msdn2.microsoft.com/pt-

br/vstudio/default.aspx, last visited on 15-09-2007 

[Viterbi67] Viterbi, A.J., "Error Bounds for Convolutional Codes and an 

Asymptotically Optimum Decoding Algorithm," IEEE Trans. 

on Information Theory, 13(2), pp. 260-269, 1967 

[VoiceSignalWeb] Voice Signal Technologies 2007, 

http://www.voicesignal.com/solutions/index.php, last visited 

on 15-09-2007 

[W3CXMLWeb] World Wide Web Consortium (W3C), “Extensible Markup 

Language”, Architecture domain, http://www.w3.org/XML/, 

last visited on 15-09-2007 

 

http://www.microsoft.com/portugal/mldc/projects/voicecommand.mspx
http://www.microsoft.com/portugal/mldc/projects/voicecommand.mspx
http://www.w3.org/XML/

