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Abstract. Hyperspectral sensing, due to its intrinsic ability to capture the spec-
tral responses of depicted materials, provides unique capabilities towards object
detection and identification. In this paper, we tackle the problem of man-made
object detection from hyperspectral data through a deep learning classification
framework. By the effective exploitation of a Convolutional Neural Network we
encode pixels’ spectral and spatial information and employ a Multi-Layer Per-
ceptron to conduct the classification task. Experimental results and the performed
quantitative validation on widely used hyperspectral datasets demonstrating the
great potentials of the developed approach towards accurate and automated man-
made object detection.

1 Introduction

Automatic extraction of man-made objects, such as buildings, building blocks or roads,
is of major importance for supporting several government activities, such as urban plan-
ning, cadastre, monitoring of protected nature areas, environmental monitoring and var-
ious GIS applications like map generation and update [1–4]. To this end, the accurate
extraction and recognition of man-made objects from remote sensing data has been an
important topic in remote sensing, photogrammetry and computer vision for more than
two decades [5, 6]. Today, man-made object extraction is, still, an active research field,
with the focus shifting to object detailed representation, the use of data from multiple
sensors and the design of novel, generic, spatially accurate algorithms. Recent quanti-
tative results from the International Society for Photogrammetry and Remote Sensing
(Working Group III/4) benchmark on urban object detection and 3D building recon-
struction [7] indicated that, in 2D, buildings can be recognized and separated from the
other terrain objects, however, there is room for improvement towards the detection of
small building structures and the precise delineation of building boundaries.

Most research and development efforts do consider a classification approach at the
core of their man-made detection framework [3], while the detection is based mainly
on satellite multispectral datasets [8, 9]. For multi-temporal data their efficient regis-
tration is a prerequisite [10]. However, due to recent advances in photonics, optics and
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nanotechnology hyperspectral satellite and airborne data are becoming more (openly)
available and cost-effective while new object detection algorithms are introduced and
validated [11]. In particular, for remote sensing applications and the classification of hy-
perspectral data, deep learning algorithms have recently indicated their very promising
potentials with relative low classification errors in comparison with other state-of-the-
art methodologies [12, 13].

In contrast to the approaches that follow the conventional paradigm of pattern recog-
nition, which consists of the construction of complex handcrafted features from the raw
data input [14,15], deep learning models [16–18] are a class of machines that can learn
a hierarchy of features by building high-level features from low-level ones, thereby
automating the process of feature construction for the problem at hand. Furthermore,
human brains perform well in object recognition tasks because of its multiple stages
of information processing from retina to cortex [19]. Similarly, machine learning ar-
chitecture with multiple layers of information processing construct more abstract and
invariant representations of data, and thus are believed to have the ability of yielding
higher classification accuracy than swallow architectures [20]. Convolutional Neural
Networks (CNN), Stacked Auto-Encoders, Deep Belief Networks, etc. consist exam-
ples of deep learning models.

We tackle the problem of man-made object detection through a deep learning clas-
sification framework using on hyperspectral data. In particular, through the exploitation
of a CNN we encode pixels’ spectral and spatial information and a Multi-Layer Per-
ceptron (MLP) is employed to perform the classification task. Experimental results and
quantitative validation on widely used datasets showcasing the potential of the devel-
oped approach for accurate man-made object detection.

The rest of this paper is organized as follows; section 2 presents our approach
overview by describing the fundamentals of the deep learning architecture and its ap-
plication on hyperspectral data classification. Section 3 describes the architecture of the
proposed system, experimental results and comparisons are presented in section 4 and
section 5 concludes this work.

2 Approach overview

We consider the exploitation of a deep learning architecture for the detection of man-
made objects using hyperspectral data, i.e the classification of each pixel to man-made
or non man-made classes based on their spectral signatures and spatial properties. Spec-
tral signatures are associated with the reflectance properties at every pixel for every
spectral band, while spatial information is derived by taking into consideration its neigh-
bors. The exploitation of spatial information is justified by the fact that, due to the nature
of the problem, neighboring pixels is very probable to belong to the same class.

Towards this direction, high-level features that encode pixels’ spectral and spatial
information, are hierarchically constructed in an automated way using a CNN [16].
CNNs consist a type of deep models, which apply trainable filters and pooling opera-
tions on the raw input, resulting in a hierarchy of increasingly complex features.
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2.1 Convolutional neural networks fundamentals

A CNN consists of a number of convolutional and sub-sampling layers. The input to a
convolutional layer is a 3D tensor of dimensions h×w×c, where h, w and c correspond
to input’s height, width and channels respectively. The convolutional layer contains C
trainable filters of dimensions m ×m × q, where m is smaller than h and w and q is
usually equal to c. Each filter is small spatially, but it extends through all channels of the
input. By convolving each filter across the width and height of the input, 2D activation
maps (feature maps) of that filter are produced.

Intuitively, the network learns filters that activate when they see some specific type
of feature at some spatial position in the input. Stacking these activation maps for all
filters along the depth dimension forms the full output volume, which is a 3D tensor of
dimensions h−m+1×w−m+1×C (convolution does not take into consideration
the border of the input). The final output of a convolutional layer incorporates non-
linearities, which are modeled through the application of non linear functions on the
full output volume (e.g. sigmoid, tanh) and the addition of a bias term.

The output of the convolutional layers is fed to a sub-sampling layer, where each
activation map is sub-sampled typically using the max polling operator over k× k con-
tiguous regions. The sub-sampling layer incorporates scale and translation invariance to
constructed activation maps. Again the output of the sub-sampling layer is a 3D tensor,
whose dimensions are h−m+1

k × w−m+1
k × C.

A deep learning architecture may consist of many convolutional and sub-sampling
layers. The last sub-sampling layer typically is sequentially connected with a fully-
connected MLP, which is responsible for conducting the classification or regression
task. The whole deep learning architecture is trained using the well known back propa-
gation algorithm.

2.2 Convolutional neural networks for hyperspectral data

A hyperspectral image is represented as a 3D tensor of dimensions h × w × c, where
h and w correspond to the height and width of the image and c to its channels (spectral
bands). As mentioned before, CNNs produce global image features. However, man-
made object detection can be seen a a pixel-based classification problem. In order to
be able to exploit CNNs for man-made object detection, we have to decompose the
captured hyperspectral image into patches, each one of which contains spectral and
spatial information for a specific pixel.

More specifically, in order to classify a pixel px,y at location (x, y) on image plane
and successfully fuse spectral and spatial information, we use a square patch of size
s × s centered at the same location. Let us denote as lx,y the class label of the pixel at
location (x, y) and as tx,y the patch centered at pixel px,y . Then, we can form a dataset
D = {(tx,y, lx,y)} for x = 1, 2, · · · , w and y = 1, 2, · · · , h. Patch tx,y is also a 3D
tensor with dimension s× s× c, which contains spectral and spatial information for the
pixel located at (x, y) on image plane.

Moreover, tensor tx,y is divided into c matrices of dimensions s × s which are
fed as input into a CNN, which hierarchically builds high-level features that encode
spectral and spatial characteristics of pixel px,y . These features are fed to a MLP, which
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Fig. 1. Overall system architecture.

is responsible for the classification task. At this point, it has to be mentioned that after
training the deep learning architecture is capable of classifying patches and not pixels.
We assume that the label of the patch centered at location (x, y) on image plane must
be the same with the pixel at the same location. Although, it is a strong assumption, for
this specific problem at hand, it is valid for the vast majority of the pixels.

3 System architecture

In this section the developed system architecture is described. Firstly, the proposed
approach for the dimensionality reduction of the input raw data is presented and then
the structures of CNN and MLP are given.

3.1 Raw input data dimensionality reduction

CNNs are capable of hierarchically constructing high-level features in an automated
way. Constructed features are the outcome of the convolution between the trainable fil-
ters and 2D network’s input, which takes place during the training process. In contrast
to RGB images that consist of three color channels, the hundreds of channels (network
inputs) along the spectral dimension of a hyperspectral image may increase the compu-
tational cost of training and prediction phases to non acceptable levels.

However, the spectral signature of a material is very specific. Thus, pixels that depict
the same material is expected to present very similar spectral responses [13]. Indeed,
through a simple statistical analysis of pixels’ spectral responses we observed two dif-
ferent things. Firstly, the variance of spectral responses of pixels that depict the same
material is very small, and secondly, pixels that depict different materials, either they
respond to different spectral bands or when they respond to the same spectral bands
the values of their responses is very divergent. These two observations suggest that
redundant information is present along the spectral dimension of the hyperspectral im-
age. Therefore, a dimensionality reduction technique can be employed to reduce the
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dimensionality of the raw input data in order to speed up the training and prediction
processes.

For dimensionality reduction, Randomized Principal Component Analysis (R-PCA)
[21] is introduced along the spectral dimension to condense the whole image. Principal
Component Analysis projects data to a lower dimensional space that preserves most of
the variance by dropping components associated with lower eigenvalues. R-PCA limits
the computation to an approximate estimate of principal components to perform data
transformation. Thus, it is much more computationally efficient than PCA and suitable
for large scale datasets, like hyperspectral images.

It should be noted that this step does cast away spectral information, but since R-
PCA is applied along the spectral dimension, the spatial information remains intact.
The number of principal components that are retained after the application of R-PCA,
is appropriately set, in order to keep at least 99.9% of initial information. This is very
important, since dimensionality reduction is conducted by taking into consideration the
maximum allowed information loss and not a fixed number of principal components.

During the experimentation process on widely used hyperspectral datasets, 99.9%
of initial information is preserved by using the first 10 to 20 principal components,
reducing this way up to 20 times the dimensionality of the raw input.

3.2 Detection structure

After dimensionality reduction, each patch is a 3D tensor of dimensions s × s × cr.
Parameter cr corresponds to the number of principal components that preserve at least
99.9% of initial information, while the parameter s determines the number of neigh-
bors of each pixel that will be taken into consideration during classification task. The
neighbors of a pixels are utilized to represent its spatial information.

During experimentation process we set the parameter s to be equal to 5, in order to
take into consideration the closest 24 neighbors of each pixel. By increasing the value
of s, the number of neighbors that are taken into consideration is increased and thus the
computational cost of classification is increased, also. However, setting the parameter s
to a value larger than 5, no further improvement on classification accuracy was reported
in all experiments. On the contrary, increasing the value of s over 13, deteriorates classi-
fication accuracy. This is justified by the fact that our previous assumption, which states
that the label of the patch centered at location (x, y) on image plane must be the same
with the label of the pixel at the same location, is not valid for large s.

Having estimate the values of the parameters s and cr, we can proceed with the
CNN structure design. The first layer of the proposed CNN is a convolutional layer
with C1 = 3×cr trainable filters of dimension 3×3. This layer delivers C1 matrices of
dimensions 3×3 (during convolution we don’t take into consideration the border of the
patch). In contrast to conventional CNNs, we do not use a sub-sampling layer after the
convolution layer, since we don’t take into account any translation and scale invariance.
For this reason the first convolutional layer is followed by a second convolutional layer
with C2 = 3× C1 trainable filters. Again, the filters are 3× 3 matrices.

The second convolutional layer delivers a vector with C2 elements, which is fed
as input to the MLP classifier. The number of MLP hidden units is smaller than the
dimensionality of its input. In particular, we set the number of hidden units to equal
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Fig. 2. Pavia University (left) and Pavia Centre (right) datasets along with their ground
truths and labels of depicted materials (figures taken from [22]).

6 × cr. For training the deep learning architecture the standard back propagation algo-
rithm was employed, in order to learn the optimal model parameters, i.e. minimize the
negative log-likelihood of the data sets under the model parameterized by MLP weights
and filters elements. The overall system architecture is presented in Fig.1.

4 Experimental results and validation

In this section we present the experimentation framework. Specifically, we present the
dataset description, comparisons with other techniques and prediction capabilities of
the proposed method.

4.1 Datasets for validating the proposed method

In our study we experimented and validated the developed framework with widely
known and publicly available ROSIS hyperspectral datasets. In particular, we utilized
i) the Pavia Centre and ii) Pavia University datasets, whose number of spectral bands
are 102 and 103 respectively. Pavia Centre is a 1096 × 1096 pixels image, and Pavia
University is 610×610 pixels. Some of the samples in both images contain no informa-
tion and discarded before the analysis. The geometric resolution is 1.3 meters. Ground
truths for both images contain 9 classes. Pixels of ground truth images that are depicted
in white color are not annotated. Both datasets along with their ground truths and the
labels of depicted materials are presented in Fig.2.

In this paper we focus on the detection of man-made objects. Thus, we grouped
together pixels that depict man-made objects and discriminated them than the rest of the
pixels. Pixels that are not annotated were not taken into consideration for classification
purposes. For the Pavia University dataset, pixels that depict man-made objects are
labeled as asphalt, metal sheets, bricks and bitumen, while for the Pavia Centre dataset
pixels that depict man-made objects are labeled as asphalt, tiles, bricks and bitumen.
Pixels that are labeled as shadows were not taken into consideration for classification
purposes because it is doubtful whether they represent man-made objects.

Supervised training was conducted using pixels that depict man-made and not man-
made objects. In particular, we split the tagged parts of the aforementioned datasets
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Table 1. Quantitative evaluation results for Pavia University dataset. Split ratio ranges
from 5% to 75% of the size of the whole dataset and corresponds to the size of the
training set.

Pavia University - misclassification error (%)
Split ratio 5% 10% 20% 30% 50% 75%

Our approach 2.5773 2.1455 1.3203 0.7729 0.2645 0.1861
RBF-SVM 3.6213 3.2620 3.0960 2.8825 2.7685 2.6976

Linear SVM 4.4065 4.1332 3.9775 3.9693 3.9339 3.9166

Table 2. Quantitative evaluation results for Pavia Centre dataset. Split ratio ranges from
5% to 75% of the size of the whole dataset and corresponds to the size of the training
set.

Pavia Centre - misclassification error (%)
Split ratio 5% 10% 20% 30% 50% 75%

Our approach 0.2281 0.1223 0.0759 0.0663 0.0329 0.0086
RBF-SVM 0.6598 0.5553 0.4730 0.4057 0.3876 0.3578

Linear SVM 1.1418 1.0988 1.0323 1.0810 1.1004 1.0563

into three sets, i.e. training, validation and testing data. During experimental validation
we tested different split ratios in order to evaluate the classification accuracy of the
proposed system when different amounts of data are available. For quantifying the clas-
sification accuracy of the proposed system we used the percentage of misclassification
on testing set. Finally, validation set is used to enable early stopping criteria during the
training process.

4.2 Quantitative evaluation

Our method was compared against Support Vector Machines (SVM) approaches that
use Radial Basis Function (RBF) and linear kernels. In order to conduct a fair com-
parison SVM should be able to exploit pixels spectral and spatial information during
training. For this reason each pixel was represented by its own spectral responses as
well as the responses of its (s × s) − 1 closest neighbors. In other words, a pixels at
location (x, y) on image plane was represented by the spectral responses of a patch cen-
tered at the same location. Although this representation is a 3D tensor, it was flattened
to form a 1D vector, in order to be utilized for training the SVM.

We conducted the experiments separately for each one of the datasets. During the
experiments we formed six varying size training datasets, whose size ranges from 5% to
75% of the size of the whole dataset. Due to the fact that training, validation and testing
set were formed by randomly selecting samples according to a pre-specified splitting
ratio, we replicated each one of the experiments 25 times. Therefore, misclassification
error corresponds to average error and classification accuracy to average accuracy.

Table 1 and Table 2 present the quantitative evaluation of our proposed method
against SVM-based approaches. Our method outperforms SVM-based methods in both
datasets and for all training set sizes. It is capable of achieving high classification accu-
racy scores for very small training datasets, while at the same time it avoids over-fitting
when larger training datasets are used. Fig.3 visualizes the outcomes of the evaluation
in terms of classification accuracy.
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Fig. 3. Methods evaluation and comparison in terms of classification accuracy for both
datasets.

4.3 Prediction capabilities

Furthermore, we examine the classification accuracy from a visual perspective using all
the pixels of each image. In other words, pixels, corresponding to annotated and not-
annotated regions, for each one of the hyperspectral images where classified using our
deep learning approach. The classification results were obtained by setting the splitting
ration equal to 5% and 75%.

The classification results after the application of the developed framework are pre-
sented in Fig.4. The resulted classification maps along with the ground truths are shown
for both datasets. Green and red colored pixels correspond to man-made objects and non
man-made object, respectively. Blue colored pixels in ground truth images correspond
to non annotated pixels. As we can see, by fusing spectral and spatial information for
each pixel, classification process results to the formation of compact areas, avoiding the
presence of noisy scatter points, while at the same time it retains the shape and details
of the depicted objects. Finally, the compactness of the areas is getting stronger as the
size of the training set is increased.

5 Conclusions

In this paper, we propose a deep learning based approach for man-made object detection
using hyperspectral data. Through the deep learning paradigm, our approach hierarchi-
cally constructs high-level features that encode pixels spectral and spatial information.
Experimental validation of the proposed method and comparisons against SVM based
methods showcase the high potential of the developed man-made objects detection sys-
tem. Finally, among the future perspectives is the application of the developed frame-
work for the detection of human behavior from hyperspectral video sequences.
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Fig. 4. Classification accuracy of the proposed method using annotated and non-
annotated pixels of each hyperspectral image. (a) and (d) Ground truth images for Pavia
University and Pavia Centre datasets, (b) and (e) classification results when splitting
ratio equals 5% and (c) and (f) classification results when splitting ratio equals 75%.
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