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ABSTRACT 

Several biometric modalities are currently being tested for identity verification, but amongst all 

the possible biometric modalities, the handwritten signature has been used for the longest period 

of time as a means of identification. It is commonly found in commerce and banking 

transactions, credit card payments, cheque authentication and, in general, all types of legal 

documents. Therefore, considering all the different biometric modalities, the signature is 

undoubtedly the most accepted for the majority of different scenarios. Advancing progress in 

identification applications has led to widespread demand for new generation ID documents, such 

as electronic passports and citizen cards, which contain additional biometric information required 

for more accurate user recognition. The image of the user’s handwritten signature is already 

incorporated into ID documents. However, current error rates in verifying signature images are 

not yet sufficient for massive deployment. This can be overcome by embedding dynamic features 

of signature along with the static features within the documentation. This problem and the 

increasing demand for standardized signature verifications systems have motivated the research 

work performed in present study. 

 Accuracy of the hand written signature verification system depends on how these dynamic 

features are extracted. In literature several methodologies have been given to extract these 

features and since this field of signature verification is still under development phase, many 

methodologies are yet to be explored. One such unexplored methodology based on Fractional 

Transform is presented in this study. Fractional Transforms are generalization of classical 

transforms with an additional parameter which gives us an added degree of freedom.   

There is a close relationship between the conventional Discrete Cosine Transform (DCT) and the 

Discrete Fractional Cosine Transform (DFrCT).The DFrCT share many useful properties of the 

regular cosine transform, and has a free parameter, its fraction. When the fraction is zero, we get 

the cosine modulated version of the input signal. When it is unity, we get the conventional DCT. 

As the fraction changes from 0 to 1 we get different forms of the signal which interpolate 

between the cosine modulated form of the signal and its DCT representation. Thus, DFrCT is a 

general form of DCT which has an additional free parameter, and with this free parameter it may 

find its place in many applications more efficiently as compare to where DCT is found to be 

useful.  
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 A new method for an online handwritten signature verification based on finite impulse response 

(FIR) system is proposed by utilizing discrete fractional cosine transformation (DFrCT) for 

feature extraction. Various characteristics of the hand-written signature are used to extract 

different features of the signature by optimizing the value of the fractional order. The system for 

the hand-written signature verification is realized by characterizing three FIR systems. The 

impulse responses of FIR systems are used to calculate Euclidean norm. The signature can be 

verified by evaluating the difference between the average of Euclidean norms of reference 

signatures and the Euclidean norm of signature to be verified. The equal error rate (EER) is 

calculated to compare the efficiency of the proposed method. It has been verified through 

simulation results that the DFrCT tool achieves much better results as compared to discrete 

cosine transform (DCT) for extracting the features. The signature verification experiment was 

performed on SVC2004 signature database. 
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Chapter 1 

Introduction 

1.1 Preamble 

The need to accurately and automatically verify claimed identities of users has become an 

important issue when considering new and upcoming techniques of performing electronic 

transactions. Unfortunately, such transactions have also increased the opportunities for 

fraudulent claims and ―identity theft‖. 

The security requirements of the today‘s society have placed biometrics at the center of a 

large debate, as it is becoming a key aspect in a multitude of applications. The term 

biometrics refers to individual recognition based on a person‘s distinguishing characteristics. 

While other techniques use the possession of a token (i.e., badge, ID card, etc.) or the 

knowledge of something (i.e., a password, key phase, etc.) to perform personal recognition, 

biometric techniques offer the potential to use the inherent characteristics of the person to be 

recognized to perform this task. Thus, biometric attributes do not suffer from the 

disadvantages of either the token-based approaches, whose attributes can be lost or stolen and 

knowledge-based approaches, whose attributes can be forgotten.  

The characteristics that are captured essentially need to be [1]: 

a) Universal: Every person must possess the characteristic. It must be one that is seldom 

lost to accident or disease. 

b) Invariant: It should be constant over long period of time. 

c) Singular: It must be unique to individual. 

d) Inimitable: It should be reproducible by other means. 

e) Reducible and comparable: It should be capable of being reduced to a format that is 

easy to handle and digitally comparable to others. 

f) Reliable and temper-resistant: It should be impractical to mask or manipulate. 

Depending on the personal traits considered, two types of biometrics can be defined: 

physiological or behavioral. [2] The former are based on the measurement of biological traits 
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of users, like, for instance, fingerprint, face, hand geometry, retina, and iris. The latter 

consider behavioral traits of users, such as voice or handwritten signature. 

Although a wide set of biometrics has been considered so far, it is worth noting that no trait 

is able to completely satisfy all the desirable characteristics required for a biometric system. 

Thus, the assessment of a biometric trait is strongly dependent on the specific application 

since it involves not only technical issues but also social and cultural aspects.[2] 

A biometric system can either use for verification or identification. 

1.1.1Verification Based on Biometrics 

During verification the user presents the biometric data to the system (data capture 

subsystem) and at the same time, his/her claimed identity. This biometric raw data captured 

is then processed (signal processing subsystems) while the biometric reference data, for the 

identity claimed, is retrieved from the data storage subsystem. Both elements, the features 

that represent the biometrics data presented by the user and the biometric reference data 

retrieved from the Data Storage, are compared (comparison subsystem) obtaining a similarity 

degree between them, generally referred to as ―comparison score‖. This score is taken by the 

decision subsystem which verifies, based on a predetermined threshold level, if the claim 

regarding the user‘s identity is positive. The verification decision outcome will be successful 

if a true claim is accepted and a false claim is rejected. The outcome will be considered 

erroneous if either a false claim is accepted or a true claim is rejected. 

1.1.2 Identification Based on Biometrics 

Alike the verification process, during identification the user also supplies his/her biometric 

data to the data capture subsystem, however, in this case the claimed identity is not provided. 

The biometric system processes the raw data coming from the sensor and extracts the 

features (signal processing subsystem) and compares it to all the biometric references stored 

in the data storage subsystems. The biometric system attempts to locate the identifier for the 

users, providing a candidate list of enrolled based on the comparison scores achieved. 

The outcome of this process is successful when the user is enrolled in the biometric system 

and his/her identity is included on the candidate list of enrolment records. Otherwise, the 

identification process outcome will be considered erroneous, i.e. when the user is not 
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enrolled and the candidate list is not empty, or the user identity is not included on the 

candidate list. 

1.1.3 Advantages of a Biometrics System 

 Increase security - Provide a convenient and low-cost additional tier of security.  

 Reduce fraud by employing hard-to-forge technologies and materials. For example 

minimizes the opportunity for ID fraud, buddy punching.  

 Eliminate problems caused by lost IDs or forgotten passwords by using physiological 

attributes. For example it prevents unauthorized use of lost, stolen or "borrowed" ID 

cards. 

  Reduce password administration costs. Replace hard-to-remember passwords which 

may be shared or observed.  

 Integrate a wide range of biometric solutions and technologies, customer applications 

and databases into a robust and scalable control solution for facility and network 

access. 

 Offer significant cost savings or increasing return of investment in areas such as Loss 

Prevention or Time & Attendance. 

  Unequivocally link an individual to a transaction or event. 

1.1.4 Disadvantages of a Biometrics System 

Biometric system also has some of disadvantages that can be given as:  

 The finger prints of those people, who working in Chemical industries are often 

affected. Therefore those companies should not use the finger print mode of 

authentication.  

 It is found that with age, the voice of a person changes. Also when the person has flu 

or throat infection the voice changes or if there are too much noise in the environment 

this method may not work correctly. Therefore this method of verification is not 

workable all situations.  

 For those people, who affected with diabetes, the eyes get affected resulting in 

differences.  
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Despite of these disadvantages, biometric system is employed to accomplish current 

verification requirements. This technology provides high levels of security and is both 

convenient and comfortable for the user. Biometrics has already been deployed in many 

different scenarios, where one of the most common applications is in new generation 

identification documents, such as citizen ID cards and electronic passports. 

1.2 Signature Verification 

Several biometric modalities are currently being tested for identity verification, but amongst 

all the possible biometric modalities, the handwritten signature has been used for the longest 

period of time as a means of identification. It is commonly found in commerce and banking 

transactions, credit card payments and, in general, all types of legal documents. Therefore, 

considering all the different biometric modalities, the signature is undoubtedly the most 

accepted for the majority of different scenarios. The image of the user‘s handwritten 

signature is already incorporated into ID documents. However, current error rates in 

verifying signature images are not yet sufficient for massive deployment. 

In a signature verification system, the individuals can be recognized by measuring the 

activity of signing, which includes information regarding the pressure applied by the pen or 

its speed, in addition to the visual aspect of the signatures. Being part of everyday life, 

signature based authentication is perceived as a non-invasive and non-threatening process by 

the majority of the users. Furthermore, the written signature has a high legal value. On the 

other hand, the signature can be influenced by physical and emotional conditions, and 

therefore exhibits a significant variability which must be taken into account in the 

authentication process. In such a system the objective is to detect three types of forgeries, 

which are related to intra and inter-personal variability.[3] The first type, called random 

forgery, is usually represented by a signature sample that belongs to a different writer of the 

signature model. The second one, called simple forgery, is represented by a signature sample 

with the same shape of the genuine writer‘s name the last type is the skilled forgery, 

represented by a suitable imitation of the genuine signature mode as shown in Figure 1.1.  
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Figure. 1.1 Type of forgeries: (a) genuine signature; (b) random forgery; (c) simulated simple 

forgery; (d) simulated skilled forgery [3] 

The possibility of incorporating dynamic features, which are unique characteristics of every 

user, during the act of signing, can provide additional verification mechanisms to be 

embedded into modern ID documents. By improving the error rates using these added 

characteristics, the handwritten signature will become a viable verification option for users of 

online processes such as e-banking and e-commerce.  

1.2.1 Modes of Verification 

Signature Verification Systems are generally split into two main groups: offline (commonly 

referred to as static) and online (referred to as dynamic). [4] The difference between these 

groups is based on the information acquired. 

1.2.1.1 Offline Mode of Verification 

In general, Offline signature verification is a challenging problem. In an offline signature 

verification system, a signature is acquired as an image. This image represents a personal 

style of human handwriting. Consequently, an offline verification system has to cope with a 

significant amount of errors and uncertainties in the recovered data. These difficulties are not 

present in the online case. [5] The problem of offline signature verification has been faced by 

taking into account three different types of forgeries: random forgeries, produced without 

knowing either the name of the signer nor the shape of his signature; simple forgeries, 

produced knowing the name of the signer but without having an example of his signature; 
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and skilled forgeries, produced by people who, looking at an original instance of the 

signature, attempt to imitate it as closely as possible [6] 

The common approaches to offline signature verification have been to exploit the static 

features of the handwriting, treating the complete signature as a single entity. These 

techniques involve the analysis and comparison of image projections, gradient features, 

geometric features shadow-code descriptors, transform features, and moment features etc. 

1.2.1.2 Online Mode of Verification 

Online signature verification uses special hardware, such as a digitizing tablet or a pressure 

sensitive pen, to record the pen movements during writing. In addition to shape, the 

dynamics of writing are also captured in online signatures, which is not present in the 2-D 

representation of the signature and hence it is difficult to forge. The online signature 

verification methods proposed in literature can be distinguished into three main categories, 

which differ in the information extracted from the available data [7]: 

 Global approaches, where a set of global parametric features (i.e. signature total 

duration, number of pen-ups, and so on) are extracted from the acquired signatures, 

and used to train a classifier. 

 Local function based approaches, where the time functions extracted from different 

signatures are directly matched by using elastic distance measures, such as Dynamic 

Time Warping (DTW), instead to be used as features for a classifier. 

 Regional function based approaches, where the acquired signatures are analyzed by 

estimating some regional properties, which are then employed to train a given 

classifier. The best regional approaches model online signatures with Hidden Markov 

Models (HMMs). Moreover, signatures are decomposed employing wavelet 

transforms, and the Discrete Cosine Transform (DCT) is applied to the resulting 

approximation coefficients. 

1.2.2 Advantages of Signature Verification 

In the point of view of adaption in the market place, signature verification presents three 

likely advantages over other biometrics techniques.  
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 It is a socially accepted verification method already in use in banks and credit card 

transaction.  

 It is useful for most of the new generation of portable computers and personal digital 

assistants (PDAs) use handwriting as the main input channel.  

 A signature may be changed by the user. Similarly to a password while it is not 

possible to change finger prints iris or retina patterns.  

 

Therefore, automatic signature verification has the unique possibility of becoming the 

method of choice for identification in many types of electronic transactions, not only 

electronics but also for other industries. 

1.2.3 Applications of Signature Verification 

Signature verification has been and is used in many applications ranging from governmental 

use to commercial level to forensic applications. A few of them are discussed below:  

 Security for Commercial Transactions: Nowadays signature verification used for 

commercial use. It can be used for authentication on ATMs, for package delivery 

companies. The internationally recognized courier service UPS has been using 

signature verification for many years now for personnel identification.  

 Secure computer system authentication: Logging on to PCs can be done with a 

combination of signature verification system and fingerprint identification system to 

achieve a higher level security in a sensitive area. We can also use a combination of 

password and signature verification system. This would allow the users to have a 

higher level of security and confidentiality for their clients and protection of their 

work.  

 Cheque Authentication: Signatures have been using for decades for cheque 

authentication in banking environment. But even experts on forgeries can make 

mistakes while identifying a signature. In general, offline signature verification can 

be used for cheque authentication in commercial environment.  

 Forensic Applications: Signature verification techniques have been used for cheque 

fraud and forensic applications. 
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1.3 General Model for Signature Verification 

The modules of signature verification system are shown in Figure 1.2. During enrollment of a 

new user, input to the system is a set of input signatures produced by that user. The input data 

is preprocessed and the features are extracted. This data is then saved in a database together 

with a unique identifier (ID) that is used to retrieve the signatures during matching. In 

addition, a threshold on the matching score is derived from the training data. For verification, 

a test signature along with the claimed writer identity is input to the system. The same 

preprocessing and feature extraction methods are applied. The signature is then compared to 

each of the reference (input) signatures which are retrieved from the database based on the 

writer identifier. The resulting difference values are combined and, based on the individual 

threshold for the writer; the signature is accepted as genuine or rejected as a forgery. 

 

Figure. 1.2 General Model for Signature Verification [8] 

1.3.1 Database Management  

This module handles the process of data acquisition and maintenance of signature images and 

other parameters for each user. It handles the various aspects of database management like 

creation, modification and deletion for a signature instance. Data acquisition of static features 

is carried out using high resolution scanners. And the dynamic features are acquired using 



9 
 

special devices called digitizers. The information regarding a particular signature is stored in 

database as a feature vector where the entire static features are stored against each user‘s ID.  

1.3.2 Noise Removal and Preprocessing 

In the preprocessing phase, the enhancement of the input data is generally based on 

techniques originating from standard signal processing algorithms. When offline signatures 

are considered, typical preprocessing algorithms concern signature extraction noise removal 

by median filters and morphological operators signature size normalization binarization 

thinning and smearing.  

Typical preprocessing algorithms for online signature verification involve filtering, noise 

reduction, and smoothing. For this purpose, Fourier transform, mathematical morphology, 

and Gaussian functions have been used. Signature normalization procedures using global 

reference systems (center of mass and principal axes of inertia) and Fourier transform have 

been considered to standardize signatures in the domain of position, size, orientation, and 

time duration [4]. 

1.3.3 Feature Extraction 

Two types of features can be used for signature verification: functions or parameters [9]. 

When function features are used, the signature is usually characterized in terms of a time 

function whose values constitute the feature set. When Parameter features are used, the 

signature is characterized as a vector of elements, each one representative of the value of a 

feature. In general, function features allow better performance than parameters, but they 

usually require time-consuming procedures for matching. Furthermore, parameters are 

generally classified into two main categories: global and local. Global parameters concern 

the whole signature; typical global parameters are total time duration of a signature, number 

of pen lifts, number of components, global orientation of the signature, coefficients obtained 

by mathematical transforms, etc. Local parameters concern features extracted from specific 

parts of the signature. Depending on the level of detail considered, local parameters can be 

divided into component-oriented parameters, which are extracted at the level of each 

component (i.e., height to width ratio of the stroke, relative positions of the strokes, stroke 

orientation, etc.), and pixel-oriented parameters, which are extracted at pixel level (i.e., grid-

based information, pixel density, gray-level intensity, texture, etc.) 
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1.3.4 Learning 

This module uses the extracted features to calculate various defined parameters such as 

mean, standard deviation etc for each feature. These values are placed as a vector and stored 

in the database against the entered identification number. The higher the number of learning 

samples the higher would be the accuracy. 

1.3.5 Verification 

This module compares the different features obtained from the test signature given to 

signature verification system with the features stored in the database against the given 

identification number. Based on this comparison, it either accepts the signature instance as 

being genuine or rejects it. 

1.4 Fractional transform 

The Fourier transform is the most important tool used in signal processing and image 

processing. The fractional Fourier transform is representation of time and frequency domain.  

The FrFT, which is a generalization of the ordinary Fourier transform (FT), was introduced 

75 years ago, but only in the last two decade it has been actively applied in signal processing, 

optics and quantum mechanics. The Fourier Transform (FT) is undoubtedly one of the most 

valuable and frequently used tools in signal processing and analysis. Little need be said of the 

importance and ubiquity of the ordinary Fourier transform in many areas of science and 

engineering. A generalization of Fourier Transform, the Fractional Fourier Transform 

(commonly referred as FrFT in available literature) was introduced in 1980 by Victor Namias 

[10] and it was established in the same year that the other transforms could also be 

fractionalized [11]. McBride and Keer explored the refinement and mathematical definition 

in 1987 [12]. In a very short span of time, FrFT has established itself as a powerful tool for 

the analysis of time varying signals [13]. Furthermore, a general definition of FrFT for all 

classes of signals (one-dimensional & multidimensional, continuous & discrete and periodic 

& non-periodic) was given by Cariolario et al. in. But when FrFT is analyzed in discrete 

domain there are many definitions of Discrete Fractional Fourier Transform [14], [19], [37]. 

It is also established that none of these definitions satisfies all the properties of continuous 

FrFT. Santhanam and McClellan first reported the work on DFrFT in 1995.  
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Also the cosine transform can be generalized into fractional cosine transform (FrCT). The 

one-sided FrCT is much more efficient when dealing with the even functions. Since it can be 

substituted for the FRFT under many conditions, it is believed that it will also become a 

useful signal processing tool in the future. By far, there have been several definitions of 

FRCT and discrete algorithms correspondingly. Lohmann [59] et al. derived FRCT by taking 

the real part of the kernel of FRFT. In 2001, S. C Pei [55] proposed the fractional versions of 

DCT by generalizing the eigenvalues into fractional order. The kernel matrix was constructed 

using even eigenvectors of DFT Hermite matrix, and this computation would take order 

O(N2 ) complexity.   

1.5 Organization of Dissertation 

This dissertation consists of 6 chapters which are organized as below: 

Chapter 1: Introduction, in this chapter concept of biometrics along with signature 

verification has been introduced. Modes of signature verification and general model for 

verification have also been discussed in this chapter.  

 

Chapter 2: Literature review, in this chapter study the work which has been done regarding 

for designing various methods for online/offline signature verification. Along with it work 

related to fractional transform is also discussed in this chapter. 

 

Chapter 3: Automatic signature verification, discusses the steps involved in signature 

verification. Various methods for steps involved in verification have been discussed. 

 

Chapter 4: Fractional transforms, this chapter describes the fractional transforms i.e. 

fractional Fourier and fractional Cosine transform and their applications. 

 

Chapter 5: Signature verification System using discrete fractional cosine transform is 

proposed and is compared with the one using DCT in this chapter. 

 

Chapter 6: Conclusion, in this chapter whole work has been concluded, on the basis of 

observations and also future scope has been discussed 
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Chapter 2 

Literature Survey 

2.1 Introduction 

This chapter overviews the work which has been done regarding Online/Offline signature 

verification system and Fractional transform along with their various design methods from 

time to time. On the basis of literature survey various areas of work which are still to be 

explored are discussed and finally the objective for dissertation has been given at the end of 

this chapter. 

2.2 Offline Signature Verification 

The contribution to signature verification considering different forgery types in an HMM 

framework has been reported by E. J. R. Justino et al.[3]. The work comprised of three main 

processes: pre-processing, segmentation and feature extraction. During the preprocessing, 

they proposed the horizontal segmentation to divide the written area into three zones: upper 

zone (ascenders), medium zone (main body) and lower zone (descends), then followed by 

vertical segmentation which involving the use of scales with square cells, which presented a 

learning process based on HMM for the segmentation. An automatic derivation process of 

the decision threshold was used in the matching process. 

 

B. Fang et al.[15] explained, two methods  to track the variations in a signature. Given the 

set of training signature samples, the first method measures the positional variations of the 

one-dimensional projection profiles of the signature patterns; and the second method 

determines the variations in relative stroke positions in the two-dimension signature patterns. 

The statistics on these variations are determined from the training set. Given a signature to be 

verified, the positional displacements are determined and the authenticity is decided based on 

the statistics of the training samples. For the purpose of comparison, two existing methods 

proposed by other researchers were implemented and tested on the same database. 
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An offline signature verification and recognition system using the global, directional and grid 

features of signatures has been presented by M. E. Karslıgil et al.[16]. Support Vector 

Machine (SVM) was used to verify and classify the signatures and a classification ratio of 

0.95 was obtained. As the recognition of signatures represents a multiclass problem SVM's 

one-against-all method was used. We also compare our methods performance with Artificial 

Neural Network‘s (ANN) back propagation method. 

 

A model-based method has been proposed by K. Huang et al.[5]. In this method, statistical 

models are constructed for both pixel distribution and structural layout description. In 

addition to simple geometric handwriting features, it is proposed to use the directional 

frontier feature as a structural descriptor of the signature. The statistical verification 

algorithm based on the geometric handwriting feature is used to accept signatures which 

closely resemble the reference samples, and to reject random and less skilled forgeries. For 

the questionable signatures for which the pixel feature judgment is inconclusive, the 

structural feature verification algorithm is invoked. This algorithm compares the detailed 

structural correlation between the input and reference signatures in an attempt to detect 

skilled forgeries. 

 

I. S. I. Abuhaiba et al.[6] discusses  a signature verification method based on the raw binary 

pixel intensities is presented. The method looks at the signature verification problem as a 

graph matching problem. The method is tested using genuine and forgery signatures 

produced by five subjects. A positive property of our algorithm is that the false acceptance 

rate of random forgeries vanishes at the point of equal false rejection and skilled forgery false 

acceptance rates. Keeping the normalization size at 32 × 64 pixels makes the verification 

time in the two seconds range. 

 

Displacement extraction method in which a questionable signature is compared with a 

corresponding authentic one has been proposed by Y. Mizukami et al.[17]. The optimum 

displacement function for any pair of signatures is extracted using minimization of a 

functional defined as the weighted sum of the squared Euclidean distance between two 

signatures and a penalty term requiring smoothness of the displacement function. A coarse-
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to-fine search methods applied to avoid stopping at a local minimum, i.e. the two signatures 

are first transformed into coarse images by Gaussian filtering. The optimum displacement 

function is incorporated such that the system measures the dissimilarity between a 

questionable signature and the corresponding authentic one. The questionable signature is 

accepted as genuine only if the observed dissimilarity is below a threshold determined using 

the dissimilarity between two authentic signatures multiplied by a threshold coefficient.  

 

The method proposed by I. Guler et al.[18]  relies on global features that summarize 

different aspects of signature shape and dynamics of signature production. For designing the 

algorithm, it has been tried to detect the signature without paying any attention to the 

thickness and size of it. The results have shown that the correctness of our algorithm 

detecting the signature is more acceptable. In this method, first the signature is pre-processed 

and the noise of sample signature is removed. Then, the signature is analyzed and 

specification of it is extracted and saved in a string for the comparison. At the end, using 

adapted version of the dynamic time warping algorithm, signature is classified as an original 

or a forgery one. 

 

In this paper an offline signature verification and recognition system based on a combination 

of features extracted such as global features, mask features and grid feature is being 

discussed by B. Schafer et al.[20] . The system is trained using a database of signatures. For 

each person, a centroid feature vector is obtained from a set of his/her genuine samples using 

the features that were extracted. The centroid signature is then used as a template which is 

used to verify a claimed signature. To obtain a satisfactory measure of similarity between 

template signature and the claimed signature, the Euclidean distance was used in the feature 

space.  

 

2.3 Online Signature Verification 

An online signature authentication system based on an ensemble of local, regional, and 

global matchers has been presented by L. Nanni et al.[7]. Specifically, the following 

matching approaches are taken into account: the fusion of two local methods employing 

Dynamic Time Warping, a Hidden Markov Model based approach where each signature is 
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described by means of its regional properties, and a Linear Programming Descriptor 

classifier trained by global features. 

 

A method for online handwritten signature verification where  signatures are acquired using a 

digitizing tablet which captures both dynamic and spatial information of the writing was 

proposed by A. K. Jain et al.[8]. After preprocessing the signature, several features are 

extracted. The authenticity of a writer is determined by comparing an input signature to a 

stored reference set (template) consisting of three signatures. The similarity between an input 

signature and the reference set is computed using string matching and the similarity value is 

compared to a threshold.  

 

T. Matsuura et al.[21]  discussed FIR filter design method  for signature verification. The 

impulse response of the FIR filter can be determined by finding the autocorrelation functions 

of the handwriting velocities in the horizontal and vertical directions are respectively 

regarded as the input and output sequences of the FIR filter and the impulse response of the 

FIR filter is determined from the input and output sequences The resulting impulse response 

can fully describe the dynamics of a given signature. 

  

A novel method of online signature verification that analyzes both the shape of the signature 

and the dynamic of the writing process by have been presented by C. Schmidt et al.[22]. 

This approach automatically determines characteristic features of the writing image and 

combines these shape features with features from the writing dynamic. For establishing a 

writing characteristic template for one signer the signature is separated into characteristic 

segments. The segmentation algorithm extracts writing points which would give a forgery the 

appearance of the original. For these significant points local extreme values, which identify 

writing segments are calculated. Subsequently, dynamic features are computed for the 

segments. The developed system needs three signatures of one person for the establishment 

of a personalized template. 

An online signature verification scheme based on similarity measurement of logarithmic 

spectrum has been discussed by Q. Z. Wu et al.[23]. The principal components of the 

logarithmic spectrum of each signature are extracted. The similarity of logarithmic spectrum 
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between input signature and the reference template were computed. By comparing the 

similarity of logarithmic spectrum with the verification threshold, the authenticity of the 

input signature was determined.  

 

A. Zimmer et al.[24] proposes a new hybrid handwritten signature verification system where 

the online reference data acquired through a digitizing tablet serves as the basis for the 

segmentation process of the corresponding scanned offline data. Local foci of attention over 

the image are determined through a self-adjustable learning process in order to pinpoint the 

feature extraction process. Both local and global primitives are processed and the decision 

about the authenticity of the specimen is defined through similarity measurements. The 

global performance of the system is measured using two different classifiers. 

 

There are two common methodologies to verify signatures: the functional approach and the 

parametric approach. H. Feng et al.[25] proposes a new warping technique for the functional 

approach in signature verification. The commonly used warping technique is dynamic time 

warping (DTW). It was originally used in speech recognition and has been applied in the 

field of signature verification with some success since two decades ago. The new warping 

technique we propose is named as extreme points warping (EPW). It proves to be more 

adaptive in the field of signature verification than DTW, given the presence of the forgeries. 

Instead of warping the whole signal as DTW does, EPW warps a set of selected important 

points.  

 

The re-evaluatation of algorithm using the database SVC2004 and the effectiveness of pen 

pressure, azimuth and altitude has been discussed by D. Muramatsu et al.[26]. Experimental 

results show that even though these features are not so effective when they are used by 

themselves, they improved the performance when used in combination with other features.  

 

An approach to identify the authenticity of signatures based on the variance was reported by 

L. Liu et al. [27]. They combine the variance and Dynamic Time Warping algorithm to 

calculate the intra-class distance (between real signatures) and inter-class distance (between 

real-forged signatures).The results show that the former is far less than the later, so a  
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conclusion was drawn that the deviation between real signatures is smaller than the real-

forged ones when people signature. The method in this paper is simple and efficient; it also 

has strong stability and good recognition rate. 

 

A camera-based online signature verification system has been proposed by D. Muramatsu et 

al.[28]. One web camera is used for data acquisition, and a sequential Monte Carlo method is 

used for tracking a pen tip. Several distances are computed from an online signature, and a 

fusion model combines the distances and computes a final score. Preliminary experiments 

were performed by using a private database.  

 

Finite impulse response (FIR) system characterizing velocity and direction change of 

barycenter trajectory for signature verification has been reported by T.Matsuura et al.[29]. 

First, the discrete cosine transforms (DCTs) of the characteristics are used to reduce 

fluctuation and extract the feature of handwriting in signing process. Then the signature 

verification system is realized by the three FIR subsystems. The obtained impulse responses 

of the three FIR subsystems are used as the individual feature for signature verification. 

Signature can be verified by evaluating the difference between the impulse responses of the 

FIR subsystems for a reference signature and the signature to be verified. 

 

S. Emerich et al.[30] discusses, a new online signature verification system. Firstly, the pen-

position parameters of the online signature are decomposed into multi-scale signals by using 

the wavelet transform technique. A TESPAR DZ based method is employed to code the 

approximation and details coefficients, in which the waveform is divided into periods 

determined by successive passes through zero of the signal, thus maintaining the time 

information combined with a simple approximation of the waveform in-between two 

successive passes through zero. Thus, for each analyzed time function, a fixed dimension 

feature vector is obtained. The models were trained and tested with the Support Vector 

Machine classifier. 

 

S. Shirato et al.[31]  Uses a camera-based online signature verification system. Time-series 

images are obtained from a camera while a signature is being written. Then, online signature 
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data are obtained by tracking the pen tip from these images with a particle filter (sequential 

Monte Carlo). The proposed system has an advantage that special devices such as an 

electronic tablet are not necessary. In this system, the signature shape obtained by tracking 

pen tip changes depending on the camera position because the pen tip position in the image is 

used. Thus, different camera positions might have an effect on verification accuracy. 

 

 A method in which the use of  trajectories in isolation by first decomposing the pressure and 

velocity profiles into two partitions and then extracting the underlying horizontal and vertical 

trajectories has been reported by M. T. Ibrahim et al.[32]. So the overall process can be 

thought as the process which exploits the inter-feature dependencies by decomposing 

signature trajectories depending upon pressure and velocity information and performs 

verification on each partition separately. As a result, it is possible to extract eight 

discriminating features and among them the most stable discriminating feature is used in 

verification process. Further Principal Component Analysis (PCA) has been proposed to 

make the signatures rotation invariant. Experimental results demonstrate superiority of our 

approach in online signature verification in comparison with other techniques. 

 

The algorithm for signature verification system using dynamic parameters of the signature: 

pen pressure, velocity and position has been discussed by C. T. Yuen et al.[33]. The system 

is proposed to read, analyze and verify the signatures from the SUSig online database. 

Firstly, the testing and reference samples will have to be normalized, re-sampled and 

smoothed through pre-processing stage. In verification stage, the difference between 

reference and testing signatures will be calculated based on the proposed threshold standard 

deviation method. A probabilistic acceptance model has been designed to enhance the 

performance of the verification system.  

2.4 Fractional Transform  

V. Namias [10] Introduced the concept of Fourier transforms of fractional order, the ordinary 

Fourier transform being a transform of order 1. The integral representation of this transform 

can be used to construct a table of fractional order Fourier transforms. A generalized 

operational calculus is developed, paralleling the familiar one for the ordinary transform. Its 
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application provides convenient technique for solving the certain class of ordinary and partial 

differential equations which arise in quantum mechanics from classical quadratic 

Hamiltonians. The method of solution is first illustration its application to the free and to the 

force quantum mechanical harmonics oscillator. The corresponding Green‘s functions are 

obtained in closed form. The new techniques are extended for 3-dimensional problems and 

applied to the quantum mechanical description of motion of electrons in a constant magnetic 

field. The stationary states, energy level and evolution of initial wave are packet is obtained 

by systematic application rules of generalized operational calculus.  

 

S. C. Pei et al.[14] explored the continuous fractional Fourier transform (FrFT) represents a 

rotation of signal in time-frequency plane, and it becomes an important tool for signal 

analysis. A discrete version of fractional Fourier transform has been developed but its results 

do not match those of continuous case. In this paper, authors propose a new version of 

discrete fractional Fourier transform (DFrFT). This new DFrFT will provide similar 

transforms as those of continuous fractional Fourier transform and also hold the rotation 

properties. This DFrFT provide a method for implementing DFrFT in digital electronic 

system. 

 

Introduction to FrFT and number of its properties and some new results: interpretation as the 

rotation in time frequency plane and the FrFT‘s relationship with the time-frequency 

representation such as the Wigner distribution, ambiguity function, the short time Fourier 

transform and its spectrogram has been discussed by L. B. Almeida [34]. The relationship 

has very simple and natural form and supports the FrFT‘s interpretation as rotation operation. 

In this paper some examples of FrFT of simple signals are given. And also explain the 

example of its applications, showing how the use of FrFT allows a treatment of swept-

frequency filters that is very similar to classical treatment of shift-invariant filter with the 

Fourier transform. The author presented the extension of Fourier transform which is 

designated as fractional Fourier transform. The linear transform depends upon the parameter 

alpha and can be interpreted as a rotation by angle alpha in time frequency plane. 
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A consolidate a definition of the discrete fractional Fourier transform that generalizes the 

discrete Fourier transform (DFT) in the same sense that the continuous fractional Fourier 

transform generalizes the continuous ordinary Fourier transform was given by C. Candan et 

al.[35]. This definition is based on a particular set of eigenvectors of the DFT matrix, which 

constitutes the discrete counterpart of the set of Hermite–Gaussian functions. The definition 

is exactly unitary, index additive, and reduces to the DFT for unit order. One of the most 

interesting avenues for future research is the establishment of the relationship of the discrete 

fractional Fourier transform with the discrete Wigner distribution. It might expect the study 

of the relationship of the Wigner distribution with the fractional Fourier transform to 

contribute to the establishment of a definitive definition of the discrete Wigner distribution, 

leading to a consolidation of the theory of discrete time-frequency analysis.  

 

J. J. Ding et al. [36] Introduced a new type of DFrFT, which are unitary, reversible, and 

flexible; in addition, the closed-form analytic expression can be obtained. The discrete 

fractional Fourier transform (DFrFT) is the generalization of discrete Fourier transform. 

Many types of DFrFT have been derived and are useful for signal processing applications. It 

works in performance similar to the continuous fractional Fourier transform (FrFT) and can 

be efficiently calculated by FFT. Since the continuous FrFT can be generalized into the 

continuous affine Fourier transform (AFT) so-called canonical transform, they also extend 

the DFRCT into the discrete affine Fourier transform (DAFT). They will derive two types of 

the DFrFT and DAFT. Type 1 will be similar to the continuous FRFT and AFT and can be 

used for computing the continuous FrFT and AFT. Type 2 is the improved form of type 1 and 

can be used for other applications of digital signal processing. Meanwhile, many important 

properties continuous FrFT and AFT are kept in closed-form DFrFT and DAFT, and some 

applications, such as the filter design and pattern recognition, will also be discussed. 

 

Fractional cosine and sine transforms that are additive on the index and preserve the similar 

relationships with the FrFT as the ordinary cosine and sine transforms (CT, ST) have with the 

FT was stated by T.Alieva et al.[54]. They derive the main properties of the fractional cosine 

transform (FrCT) and fractional sine transforms (FrST) and show, as examples, the FrCT and 

FrST of some selected signals. Although there are different ways for the fractionalization of 
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cyclic transforms like the FT, the CT, and the ST, in this paper they consider the fractional 

CT and ST in relation to the fractional FT, which is more useful for signal analysis because 

the fractional FT corresponds to a rotation of the Wigner distribution and the ambiguity 

function. 

 

S.C Pei et al.[55] Defines the discrete fractional cosine transform (DFrCT) and the discrete 

fractional sine transform (DFrST). The definitions of DFrCT and DFrST are based on the 

Eigen decomposition of DCT and DST kernels. This is the same idea as that of the discrete 

fractional Fourier transform (DFrFT); the Eigen value and eigenvector relationships between 

the DFrCT, DFrST, and DFrFT can be established. The computations of DFrFT for even or 

odd signals can be planted into the half-size DFrCT and DFrST calculations.  

2.5 Comparison Table 

 
Table 2.1: Comparison Table of Literature Review 

 

 

Year Researchers Technique Method 

1996 T. Matsuura et.al. Online FIR filter design 

1997 C. Schmidt et al. Online Establishment of Personalized Templates 

1998 Q.Z.Wu et.al. Online Based on logarithmic spectrum 

2000 E.J. R.Justino et.al. Offline Hidden Markov Model 

2001 Y. Mizukami et.al. Off line Extracted Displacement Function 

2002 A. K. Jain et el. Online String Matching 

2002 K. Huang et al. Offline Statistical model 

2003 A. Zimmer et al. Offline/Online Segmentation of signature 

2003 B. Fang et al. Offline Tracking of feature and stroke positions 

2003 H.Feng et al. Online Extreme points warping technique 

2005 M. E.Karslıgil et al. 

 

Offline 

 

Support vector machine 

2007 D.Muramatsu et al. Online Effectiveness of Pen Pressure, 

Azimuth, and Altitude Features 
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2007 I.S. I. Abuhaiba Offline Graph matching 

2008 I.Guler et al. Offline dynamic time warping 

2009 L. Liu et al. Online Combined variance with dynamic 

time warping 

2009 B.Schafer et al. Offline Euclidean distance 

2009 D.Muramatsu et al. Online Sequential Monte Carlo 

2010 T.Matsuura et al. Online Based on DCT 

2010 S.Emerich et al. Online Wavelet transforms technique. 

2010 S.Shirato et al. Online Sequential Monte Carlo 

2010 L.Nanni et al. Online Dynamic Time Warping, a Hidden 

Markov Model 

2010 M.T. Ibrahim et al. Online Velocity and pressure-based partitions of 

horizontal and vertical trajectories 

2011 C.T. Yuen et al. Online Probabilistic Model 

 

2.6 Gaps in Study 

Many design methodologies for hand written signature verification system have been 

developed till date, whether they are online verification schemes such as Sequential Monte 

Carlo, extreme points warping technique, Wavelet transforms technique etc. Or offline 

verification schemes such as Hidden Markov Model, Euclidean distance, Graph matching 

etc. since this field of signature verification is still under development phase, many 

methodologies are yet to be explored. One such unexplored methodology is Discrete 

Fractional Cosine Transform with an additional parameter which gives us an added degree of 

freedom; it may find its place in signature verification system more efficiently as compare to 

various methods. 

2.7 Objective  

On the basis of literature review of existing Hand Written Signature Verification system and 

gaps identified, following are the objectives of this study: 

I. To study the existing online signature verification technique. 
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II. To develop a technique based on DFrCT 

III. To compare the technique based on DCT with that of DFrCT. 
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Chapter 3  

Automatic Signature Verification 

3.1 Introduction 

Handwritten signatures occupy a very special place in this wide set of biometric traits. This is 

mainly due to the fact that handwritten signatures have long been established as the most 

widespread means of personal verification. Signatures are generally recognized as a legal 

means of verifying an individual‘s identity by administrative and financial institutions. 

Moreover, verification by signature analysis requires no invasive measurements and people 

are familiar with the use of signatures in their daily life. Unfortunately, a handwritten 

signature is the result of a complex process depending on the psychophysical state of the 

signer and the conditions under which the signature apposition process occurs. Therefore, 

although complex theories have been proposed to model the psychophysical mechanisms 

underlying handwriting and the ink-depository processes, signature verification still remains 

an open challenge since a signature is judged to be genuine or a forgery only on the basis of a 

few reference specimens. [4]  

There are three main phases of automatic signature verification: data acquisition and 

preprocessing, feature extraction, and classification. During enrolment phase, the input 

signatures are processed and their personal features are extracted and stored into the 

knowledge base. During the classification phase, personal features extracted from an inputted 

signature are compared against the information in the knowledge base, in order to judge the 

authenticity of the inputted signature. Automatic signature verification involves aspects from 

disciplines ranging from human anatomy to engineering, from neuroscience to computer 

science and system science [38]. Because of this fact, in recent years, studies on signature 

verification have attracted researchers from different fields, working for universities and 

companies, which are interested in not only the scientific challenges but also the valuable 

applications this field offers. In conjunction with the recent and extraordinary growth of the 

Internet, automatic signature verification is being considered with new interest. The creation 

of specific laws and regulations, which have been approved in many countries, and the 

attention that several national associations and international institutes have given to the 
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standardization of signature data interchange formats are evidence of the renewed attention in 

this field. The aim of these efforts is to facilitate the integration of signature verification 

technologies into other standard equipment to form complete solutions for a wide range of 

commercial applications such as banking, insurance, health care, ID security, document 

management, e-commerce, and retail point-of-sale (POS).  

This chapter presents the main aspects related to data acquisition and preprocessing, 

discusses the feature extraction phase and describes activities concerning the classification 

phase. 

3.2 Data Acquisition and Management   

On the basis of the data acquisition method, two categories of systems for handwritten 

signature verification can be identified: offline systems and online systems as shown in 

Figure 3.1. In offline system acquisition devices perform data acquisition after the writing 

process has been completed. In this case, the signature is represented as a gray level image 

 𝑆(𝑥, 𝑦) 0≤x≤X ,0≤y≤Y  where 𝑆(𝑥, 𝑦) denotes the gray level at the position  𝑥, 𝑦  of the image. 

Instead, dynamic systems use online acquisition devices that generate electronic signals 

representative of the signature during the writing process. In this case, the signature is 

represented as a sequence  𝑆 𝑛  𝑛=0,1,…..𝑁  , where 𝑆 𝑛  is the signal value sampled at time 

𝑛∆𝑡 of the signing process, ∆𝑡 being the sampling period.   

 

 

Figure 3.1 (a) Offline Signature. (b) Online Signature [4] 

(“∗”: pen-down; “•”: pen-up) 
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The most traditional online acquisition devices are digitizing tablets. In Figure 3.2 and Figure 

3.3 some examples of digital tablets are shown. 

 

   

      Figure 3.2: Genius Tablet [58]            Figure 3.3: Wacom Tablets [58] 

In general, digital tablets are connected to a computer via the USB interface. The tablet has a 

sensitive surface, which captures the movements from the stylus and transmits them to the 

computer. Tablets transmit temporal series vectors such as x and y position, pressure and, the 

more sophisticated tablets include inclination and azimuth. The space resolution commonly 

referred to as dots per inch (dpi), range from 1000 to 5000 dpi. The pressure, if present, 

typically ranges from 256 to 2048 levels. The inclination and azimuth angles have a 

resolution of approximately +/- 0.5º. These signals are sampled at frequencies ranging from 

50Hz to 200Hz. 

In Figure 3.4 a graphical description of the different signals captured by a digital tablet used 

as a signature input device is presented. 

      

Figure 3.4: Signals Acquired by Digital Tablets [58] 
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As an example, the tablet used for capturing the SVC2004 database was a Wacom Intuos 2 

A6, where the following signals were captured:  

 X axis position  

 Y axis position  

 Time stamp 

 Button status 

 Pressure   

 Azimuth angle  

 Altitude  

The use of these devices in industry as signature input devices is constantly growing, where 

their new manufacturing process follows designs which suit online signature verification 

specifications. These devices are widely accepted by users, and several offer interactive 

information for the user on the built-in screen. But in the last couple of years, new touch-

screen devices have become a reality. These devices have become very popular, reaching a 

massive portion of the technology market. These products are: smart phones, tablets-pc and 

tablets as shown in Figure. 3.5. All they incorporate touch-sensitive screen. 

 

 

                (a) Smart-Phone              (b) Tablet PC            (c) Tablet  

 

Figure 3.5: Touch-sensitive screen devices than can be used for signature acquisition 

 

These new devices, due to their remarkable widespread coverage, are expected to play an 

important role in the near future of signature verification systems. Even though digital tablets 

are still the most used signature input device, there have been some attempts at developing a 
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stylus capable of capturing signature dynamics without the requirement for any additional 

equipment.  

For example, the Biometric Smart Pen (BiSP) [39] describes a stylus composed of optical 

sensors for recording the x and y movements, pressure sensors that record the pressure in 3 

directions and also tilt sensors to measure angles [Figure.3.6]. Another stylus input device 

composed of accelerometers, a pressure transducer and orientations by sensing gravitational 

acceleration is shown in Figure 3.7. 

 

 

              Figure 3.6: Biometric Smart Pen [39]                 Figure 3.7: Accelerometer Pen [39] 

Once the features corresponding to a signature are acquired, the information regarding a 

particular signature is stored in database as a feature vector where the entire static features 

are stored against each user‘s ID.    

3.3 Noise Removal and Preprocessing 

A crucial preprocessing step, that strongly influences all the successive phases of signature 

verification, is segmentation. Signature segmentation is a complex task since different 

signatures produced by the same writer can differ from each other due to local stretching, 

compression, omission or additional parts. In general, some segmentation techniques derive 

from specific characteristics of handwritten signatures and reflect specific handwriting 

models [41]. Other techniques provide segmentation results well suited for particular 

techniques used for signature verification. Table 3.1 [4] reports some of the most relevant 

techniques for signature segmentation.  
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Table 3.1: Segmentation Techniques 

Technique Category 

Segmentation by Pen-down/Pen-up Signals Online 

Segmentation by Velocity Signal Analysis Online 

Segmentation by Perceptually Relevant points Online 

Segmentation by Dynamic Time Warping Online 

Segmentation by Connected Components Offline 

Segmentation by Tree Structure Analysis Offline 

Segmentation by Statistics of Directional Data Offline 

 

The simplest segmentation approaches for offline signatures derive from structural 

descriptions. Some approaches perform structural analysis through the identification of 

connected components obtained by contour-following algorithms.  Figure 3.8(a) shows the 

signature in Figure. 3.1(a) segmented into connected components. Other approaches describe 

a signature by a tree structure, obtained through the analysis of horizontal and vertical 

projection histograms, which identifies fundamental segments in the static image. Offline 

signature segmentation by statistics of directional data has also been considered. This 

approach permits the extraction of textured regions that are characterized by local uniformity 

in the orientation of the gradient, evaluated with the Sobel operator.  

 

 

Figure 3.8: Examples of signature segmentation. (a) Offline signature segmentation 

by connected components. (b) Online signature segmentation by 

components (“∗” : pen-down; “•” : pen-up) [4] 
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Concerning online signatures, some segmentation techniques have been derived directly from 

the acquired signals representative of the input signature. A widespread segmentation 

technique that uses pressure information is based on the consideration that the signature can 

be regarded as a sequence of writing units, delimited by abrupt interruptions; writing units 

are the regular parts of the signature, while interruptions are the singularities of the signature. 

Thus, pen-up/pen-down signals are used to segment a signature into components, where each 

component is a piece of the written trace between a pen-down and a pen-up movement. 

Furthermore, only a finite set of components can be generated by each writer, as 

demonstrated by the experimental evidence that singularities can occur only in definite 

positions in the signature of an individual. Figure 3.8(b) shows the signature of Figure 3.1(b) 

segmented into components [42]. Other approaches exclusively use pen-up strokes for 

signature verification, since pen-up strokes can be memorized by the computer but are 

invisible to humans. Hence, possibility of imitating these strokes deliberately is low. 

 Other segmentation techniques use curvilinear and angular velocity signals. In other cases, 

signature segmentation is performed by the analysis of the velocity signals, also using static 

features, when necessary. 

 A different segmentation technique is based on the detection of perceptually important 

points of a signature [44]. The importance of a point depends on the change of the writing 

angle between the selected point and the neighbor. A modified version of this technique 

considers the end points of pen- down strokes as significant splitting points. Other 

approaches use perceptually important points for segmenting signatures while consider the 

evolutionary-distance measure, based on arc length distance, for segment association.  

In order to allow the segmentation of two or more signatures into the same number of 

perfectly corresponding segments, dynamic time warping (DTW) has been widely used for 

signature segmentation [41]. After the splitting of a first signature, according to uniform 

spatial criteria or the position of geometric extremes, DTW is applied to determine the 

corresponding set of points on other specimens. A model-guided segmentation technique has 

also been proposed. This uses DTW to segment an input signature according to its 

correspondence with the reference model. 
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3.4 Feature Extraction 

As shown in Figure 3.9 features used for signature verification are of two types: functions or 

parameters [44]. While using function features, the signature is usually characterized in terms 

of a time function whose values constitute the feature set. When parameter features are used, 

the signature is characterized as a vector of elements, each one representative of the value of 

a feature. Parameters are generally classified into two main categories: global and local. 

Global parameters concern the whole signature; typical global parameters are total time 

duration of a signature, number of pen lifts, number of components, global orientation of the 

signature, coefficients obtained by mathematical transforms, etc. Local parameters concern 

features extracted from specific parts of the signature.[4] Depending on the level of detail 

considered, local parameters can be divided into component-oriented parameters, which are 

extracted at the level of each component (i.e., height to width ratio of the stroke, relative 

positions of the strokes, stroke orientation, etc.), and pixel-oriented parameters, which are 

extracted at pixel level (i.e., grid-based information, pixel density, gray-level intensity, 

texture, etc.). It is worth noting that some parameters, which are generally considered to be 

global features, can also be applied locally, and vice versa. For instance, contour-based 

features can be extracted at global level or at local level  

 

 

Figure 3.9: features categories for signature verification [4] 
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Table 3.2 [4] presents some of the most common function features being used. Position, 

velocity, and acceleration functions are widely used for online signature verification. Position 

function is conveyed directly by the acquisition device whereas velocity and acceleration 

functions can be provided by both the acquisition device and numerically derived from 

position. In recent years, pressure and force functions have been used frequently and specific 

devices have been developed to capture these functions directly during the signing process. 

In particular, pressure information, which can be registered with respect to various velocity 

bands, has been exploited for signature verification in order to take advantage of inter-feature 

dependencies. Furthermore, direction of pen movement and pen inclination have also been 

successfully considered to improve the performance in online signature verification, whereas 

pen trajectory functions have been extracted from offline signatures, in order to exploit the 

potential of dynamic information for offline signature verification as well. Recent studies 

also demonstrate that signature verification can be successfully performed by means of 

―motif‖ series, which are characteristic subsequences extracted from function features.  

Table 3.2: Function Features 

Functions Category 

Position Online/Offline 

Velocity Online 

Acceleration Online 

Pressure Online 

Force Online 

Direction of pen movement Online 

Pen inclination Online 

 

In general, position, velocity, and pen inclination functions are considered among the most 

consistent features in online signature verification, when a distance-based consistency model 

is applied. This model starts from the consideration that the characteristics of a feature must 

also be estimated by using the distance measure associated to the feature itself.  

Table 3.3 shows some parameter features that have been widely considered for automatic 

signature verification [4]. Some parameters are specifically devoted to online signature 

verification. This is the case of some global parameters that describe the signature apposition 

process, as the total signature time duration , the pen-down time ratio  and the number of pen 

lifts (pen-down, pen-up). Other parameters are numerically derived from time functions 

representative of a signature, like, for instance, the average (AVE), the root mean square 
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(rms), and the maximum (MAX) and minimum (MIN) values of position, displacement, 

speed, and acceleration . In other cases, the parameters-that have been used for both offline 

and online signature verification are determined as coefficients obtained from mathematical 

tools as Fourier, Hadamard, cosine, wavelet and Radom transforms. 

Table 3.3: Parameter features [4] 

Parameters Category 

Total signature time duration Online 

Pen-down time ratio Online 

Number of pen Ups/Pen Down Online/Offline 

AVE/RMS/MAX/MIN of position, 

displacement, speed ,acceleration 

Online 

Time duration of positive/negative position, 

displacement, speed ,acceleration 

Online 

X-Y correlation of position ,  

displacement, speed ,acceleration 

Online 

Fourier Transform Online/Offline 

Hadamard Transform Online 

Cosine Transform Online 

Wavelet Transform Online/Offline 

Random Transform Offline 

Fractal Transform Offline 

Direction-based Online/Offline 

Geometric-based Offline 

Curvature-based Online/Offline 

Structure-based Offline 

Graphometric-based Offline 

Peripheral-based Offline 

Projection-based Offline 

Slant-based Offline 

Orientation-based Offline 

Contour-based Offline 

Grid-based Offline 

Moment based Online/Offline 

Texture-based Offline 

Shape Matrices Offline 

Gray-level intensity-based Offline 

Shadow code-based Offline 

Smoothing- based Offline 

Pattern spectrum Offline 

 

Other parameters in Table 3.3 are more widely used for offline signature verification, when 

dynamic information is not available. For example, typical local features extracted from a 
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signature at the component level are geometric-based parameters, such as signature image 

area, signature height and width, length to width ratio, middle zone width to signature width 

radio, number of characteristic points (end points, cross-points, cusps, loops, etc.), and so on. 

Other well-known parameters based on slant orientation, contour, direction, and curvature 

have also been considered. Conversely, typical parameters extracted at pixel level are grid-

based features. When grid-based parameters are used, the signature image is divided into 

rectangular regions and well-defined image characteristics, such as ink-distribution or 

normalized vector angle, are evaluated in each region. Grid features and global geometric 

features are used to build multi-scale verification functions. Texture features have also been 

extracted based on the co-occurrence matrices of the signature image, shape matrices, and 

gray-level intensity features that provide useful pressure information.  

The extended shadow code has been considered as a feature vector to incorporate both local 

and global information into the verification decision. A morphological shape descriptor used 

in signature verification is the pecstrum, which is computed by measuring the result of 

successive morphological openings of the image, as the size of the structuring element 

increases. The sequences of openings so obtained are called granulometries. A smoothness 

index has been used for detecting skilled forgeries in offline signature verification. This 

technique was inspired by expert examiners who observed that well-forged signatures are 

generally less smooth on a detailed scale than the genuine ones. According to an expert 

forensic approach, Graphometric-based parameters have also been considered, including 

static features (caliber, proportionality, etc.) and pseudo-dynamic features (apparent pressure, 

stroke, curvature, and regularity). For instance, starting from an offline signature image, 

pseudo-dynamic features can be used to extract information on the dynamics of the 

underlying signing process. This is considered by forensic experts to be a fundamental aspect 

concerning the authorship of the sample in question.  

In general, although not every feature analyzed by a forensic examiner can easily be 

represented as a parameter feature extracted by a computer program—and vice versa, it is 

quite easy to find close relationships between many parameter features and some of the main 

features used by forensic experts.  

Whatever feature set is considered, the evidence that an individual‘s signature is unique has 

led many researchers to devote specific attention to the selection of the most suitable features 
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for a signer. Indeed, signatures from different writers generally contain very few common 

characteristics, and thus, the use of a universally applied feature set is not effective. Feature 

selection in the domain of signature verification is also required because system efficiency, 

processing cost, and memory requirement are strictly dependent on the cardinality of the 

feature set. Therefore, the smaller the feature vector, the greater the number of individuals 

that can be enrolled in the system and the faster speeds that can be achieved in the 

verification process. In recent years, several techniques have been proposed for feature 

selection based on principal component analysis (PCA) and self-organizing feature map, 

sequential forward search/sequential backward search (SFS/SBS), inter–intra class distance 

radios (ICDRs), and analysis of feature variability. Forgery based feature analysis has also 

been proposed to select feature sets well suited for random and skilled forgery, respectively. 

This approach has been motivated by evidence that some features are best suited for 

distinguishing skilled forgeries from genuine signatures whereas other features are better at 

distinguishing random forgeries [45].  

Other approaches use the same features set for each person and face the problem of 

personalized feature selection by assigning a different weight to each feature. Neural 

networks (NNs) and genetic algorithms (GAs) have been widely used for determining 

genetically optimized weighted parameters, as well as for selecting optimal functions, 

personalized parameters, or signature strokes to be used for verification [46].  

3.5 Verification  

In the verification process, the authenticity of the test signature is evaluated by matching its 

features against those stored in the knowledge base developed during the enrolment stage. 

This process produces a single response (Boolean value) that states the authenticity of the test 

signature. The verification process involves many critical aspects that ranges from the 

technique for signature matching to the strategy used for the development of the knowledge 

base. 
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Figure 3.10 Signature verification techniques [4] 

 

Figure.3.10 shows some of the most relevant approaches to signature verification, although 

blended solutions can be adopted in several cases [4]. When template matching techniques 

are considered, a questioned sample is matched against templates of authentic/forgery 

signatures. In this case, the most common approaches use DTW for signature matching. 

When statistical approaches are used, distance-based classifiers can be considered. NNs have 

also been widely used for signature verification, due to their capabilities in learning and 

generalizing. More recently, special attention has been devoted to the use of hidden Markov 

models (HMMs) for both offline and online signature verification.  

The classification techniques most commonly used are reported in Table 3.4 [4]. When 

functions are considered, the matching problem can be complicated by random variations, 

due to the writer‘s pauses or hesitations.  

DTW allows the compression or expansion of the time axis of two time sequences 

representative of the signatures to obtain the minimum of a given distance value. More 

precisely, let 𝑇 ∶ (𝑇1,𝑇2,𝑇3, … . , 𝑇𝑁𝑇
) and 𝑅 ∶ (𝑅1,𝑅2,𝑅3, … . , 𝑅𝑁𝑅

) be two online signatures, the 

DTW is used to determine the optimal warping function 𝑊∗(𝑇, 𝑅) minimizing a well-defined 

dissimilarity measure 𝐷𝑊 𝑇,𝑅 =  𝑑 𝑐𝑘 ,𝐾
𝑘=1  where 𝑐𝑘 =  𝑖𝑘 , 𝑗𝑘 , (1 ≤ 𝑖𝑘 ≤ 𝑁𝑇 , 1 ≤ 𝑗𝑘 ≤

𝑁𝑅) and 𝑑 𝑐𝑘 = 𝑑(𝑇𝑖𝑘
, 𝑇𝑗𝑘

) is a distance measure between the samples of T and R.  
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Table 3.4 Comparison Techniques [4] 

Technique Category 

Euclidean distance Online/Offline 

Mahalanobis Distance Offline 

Pattern Matching Offline 

Membership Function Online 

Distance Statistics Offline 

Dynamic Similarity Measure Online 

 

 

 

 

Dynamic time Warping (DTW) 

 

Continuous Online 

Parallel Online 

GA-based Online 

PCA-based Online 

MCA-based Online 

LR-based Online 

PA-based Online 

EP-based Online 

Random-based Online 

asymmetric Online 

Dynamic Programming Online/Offline 

Correlation Online 

Relaxation Matching Offline 

Bayesian Approach Offline 

Split and Merge Online 

String/Graph/Tree Matching Online/Offline 

Structural Description Graph Online/Offline 

Displacement Function Offline 

Support Vector Machine (SVM) Online/Offline 

 

 

 

Neural Network(NN) 

Bayesian Online/Offline 

Multi-Layer Perceptions (MLP) Online/Offline 

Time-Delay Online/Offline 

ARTMAP Online/Offline 

Back propagation Network (BPN) Online/Offline 

Self-Organizing Map Online/Offline 

Fuzzy Nets Online/Offline 

Radial Basis Functions (RBF) Online/Offline 

 

Hidden Markov Models (HMM) 

Left-to-Right Topology Online/Offline 

Ergodic Topology Online/Offline 

Ring Topology Offline 
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In the field of automatic signature verification, although the superiority of DTW has not been 

proven with respect to other comparison techniques, such as regional correlation and skeletal 

tree matching, DTW has been extensively used and continuous and parallel implementations 

have been investigated. In addition, several techniques for signature data reduction based on, 

Minor Component Analysis (MCA), Linear Regression (LR), Polygonal Approximation 

(PA), Extreme Points (EPs), and random selection have been considered. Stroke-based DTW 

has also been investigated. This process starts from the consideration that a comparison 

between the complete time sequences will not only result in higher computational load but 

also lead to a loss of the information related to the structural organization of the signatures. 

In order to avoid deformation of reference signatures when matched against test specimens, a 

well-suited form of asymmetric DTW was defined [47]. Other template matching approaches 

can use well-defined distortion measures, similarity measures, displacement functions, 

relaxation matching, accumulated position and velocity distances based on split-and-merge 

mechanisms fuzzy logic and pattern matching. 

When parameters are used as features, statistical-based techniques are generally chosen. The 

most common approaches use Mahalanobis and Euclidean distances: Mahalanobis distance is 

used when the full covariance matrix is available for each signature class; Euclidean distance 

is considered when only the mean vector of the class is known. Membership functions and 

other distance statistics have also been used [48]. 

NNs have been widely used for automatic signature verification for a long time, as 

demonstrates. Table 3.4 shows some of the NN models that have been used recently: 

Bayesian NNs, multilayer perceptrons (MLPs), time-delay NNs, ARTMAP NNs, back 

propagation neural networks (BPNs), self-organizing maps, and radial basis functions 

(RBFs). Fuzzy NN, which combine the advantages of both NNs and fuzzy rule-based 

systems, has also been considered [49]. A transform can reproduce a time-series pattern 

assuming a constant linear velocity to model the temporal characteristics of the signing 

process; another transform can map the signal onto a horizontal versus vertical velocity 

plane, where the variation of the velocities over time is represented as a visible shape. 

Instead, other approaches first modify the test signature to the template signature by dynamic 

programming (DP) matching, and then, use an NN to compare dynamic information along 

the matched points of the signatures. Although NNs have demonstrated good capabilities in 
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generalization, they require large amounts of learning data that are not always available. 

Recently, intensive research has been devoted to HMMs [50]. These models have found to be 

well suited for signature modeling since they are highly adaptable to personal variability. 

Strictly speaking, a HMM is a double stochastic approach in which one underlying yet 

unobservable Process may be estimated through a set of processes that produce a sequence of 

observations. Concerning the field of signature verification, various HMM topologies have 

been considered so far, as Figure 3.11 shows. Most approaches use the left-to-right HMM 

topology, since it is considered well suited for signature modeling. Ergodic topology has also 

been considered for both online and offline signatures verification. Furthermore, in order to 

guarantee invariance to signature rotation, ring topology has been adopted, which is 

equivalent to left-to-right topology and a transition from the last state to the first state is 

allowed. However, independent of the topology used, HMM [50] seem to be superior to other 

signature modeling techniques based on structural descriptions  and fuzzy approaches. Some 

results have also demonstrated that HMM-based systems for offline signature verification 

can outperform human verifiers.  

 

Figure 3.11: HMM topologies. (a) left-to right. (b) Ergodic. (c) Ring [4] 

Furthermore, recent approaches use HMM in combination with autoregressive models while 

the signature is decomposed into pseudo-stationary segments and represented by a one-

dimension spatial stochastic sequence. The effect of interpersonal and intrapersonal 

variability on HMM has also been investigated, as well as the possibility of automatically 

and dynamically deriving various author-dependent parameters by cross-validation.  

Support vector machines (SVMs) are another promising statistical approach to signature 

verification [51]. An SVM is a new classification technique in the field of statistical learning 
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theory and it has been successfully applied in many pattern recognition applications. An 

SVM can map input vectors to a higher dimensional space in which clusters may be 

determined by a maximal separating hyper plane. SVMs have been used successfully in both 

offline and online signature verification. 

Structural approaches [52] mainly concern string, graph, and tree matching techniques and 

are generally used in combination with other techniques. For instance, string matching is 

used not only for signature verification but also for signature identification purposes, via 

advanced local associative indexing. In other cases, the structural description graph is used to 

verify the structural organization of a questioned signature, as Figure. 3.12 illustrates. 

 

 

 Figure 3.12 Structural description of signatures. (a) Description of authentic signatures by 

components. (b) Structural description graph [4] 

Furthermore, the verification at stroke level can be performed by DTW, also considering 

multiple function features for stroke representation  (like position, velocity, and acceleration) 

in order to verify both the shape and dynamics of each part of the signature.  
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Along with the matching techniques, attention has been given to knowledge-base 

development also in relation to learning strategies and signature modeling techniques. In 

particular, special attention has been given to writer-dependent learning strategies using only 

genuine specimens. In this case, a first approach uses a single prototype of genuine signatures 

for each writer, and several techniques have been proposed for the development of the 

optimal average prototype for a signer, including shape and dynamic feature combination, 

time- and position-based averaging, or selecting the genuine specimen with the smallest 

average difference, when compared to the other true signatures available. After the prototype 

has been determined, the decision threshold is generally defined on the basis of the difference 

values that can be determined from the genuine signatures. A second approach uses a set of 

genuine signatures for reference. In this case, a crucial problem concerns the selection of the 

optimal subset of reference signatures, among the specimens available. When offline 

signature verification is considered, the validity of the reference model has been evaluated 

according to specific quality criteria, as for instance, intra-class variability that should be as 

low as possible. In Online signature verification, the selection of the best subset of reference 

signatures has been performed on the basis of the analysis of variance within samples or by 

considering the stability regions in the signatures, determined by a well-defined analysis of 

local stability. The selection of the best subset of reference signatures can be avoided at the 

cost of using multiple models for signature verification. Furthermore, knowledge-base 

development involves the problem of having a lack of sufficient reference data to 

characterize a given signature class, as is generally the case of many practical applications. 

Thus, specific research has been devoted to feature modeling, also using regularization 

techniques that estimate the statistical significance of small-size training sets. Other 

approaches propose the generation of additional training samples from the existing ones by 

convolutions, elastic matching and perturbations [4].  
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  Chapter 4 

Fractional Transforms 

4.1 Introduction  

In recent years, the concept of fractional operator and measure has been investigated 

extensively in many engineering applications and science. Four typical examples are 

described as follows. The first is that the fractional derivative and integral are defined by 

many mathematicians and applied to solve some physical problems. The second is that the 

fractional Fourier transform has been studied in the optical community and signal processing 

area. The third is that the fractional dimension is used to measure some real-world data such 

as coastline, clouds, dust in the air, and networks of neurons in the body. The fractional 

dimension has been applied widely to pattern recognition and classification. The last is that 

the fractional lower order moment has been used to analyze non-Gaussian signals, which is 

more realistic than the Gaussian model in signal processing applications.  

The fractional Fourier transform (FrFT) is a generalized Fourier transform, in addition, the 

FrFT is a special case of the more general linear canonical transform, and it provides a tool to 

compute the mixed time and frequency components of signals. The interpretation of the FrFT 

is a rotation of signals in the time–frequency plane. The FrFT is a generalization of the 

ordinary Fourier transform with an order parameter ‗a‘ and is identical to the ordinary 

Fourier transform when this order α is equal to π/2 [34]. Since the ordinary Fourier transform 

and related techniques are of importance in various different areas like communications, 

signal processing and control systems, it is natural to expect the FrFT to find many 

applications in these fields as well. The FrFT belongs to the class of time–frequency 

representations that have been extensively used by the signal processing community. In all 

the time–frequency representations, one normally uses a plane with two orthogonal axes 

corresponding to time and frequency. If we consider a signal x(t) to be represented along the 

time axis and its ordinary Fourier transform X(f) to be represented along the frequency axis, 

then the Fourier transform operator (denoted by F) can be visualized as a change in 

representation of the signal corresponding to a counter clockwise rotation of the axis by an 

angle π/2 [11].  
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This is consistent with some of the observed properties of the Fourier transform (FT). For 

example, two successive rotations of the signal through π/2 will result in an inversion of the 

time axis. Moreover, four successive rotations will leave the signal unaltered since a rotation 

through 2π of the signal should leave the signal unaltered. The FrFT is a linear operator that 

corresponds to the rotation of the signal through an angle which is not a multiple of π/2, i.e. it  

is the representation of the signal along the axis u making an angle α with the time axis. 

4.2 Fractional Fourier Transform 

The FrFT 𝐹𝛼(𝜇) of a function 𝑓(𝑥) is defined as [34]  

 

                                    𝐹𝛼 𝑢 = 𝑅𝐹
𝛼  𝑓 𝑥  (𝑢)                                                             (4.1)                                     

                                    𝐹𝛼 𝜇 =
1

2
 𝑘𝛼 𝑥, 𝑢 𝑓 𝑥 𝑒𝑥𝑝  −

𝑗𝑢𝑥

𝑠𝑖𝑛 𝛼
 𝑑𝑥,

∞

−∞
                            (4.2) 

where 𝛼 is the rotation angle, 𝑘𝛼 𝑥, 𝑢  is the kernel and is given by 

                                   𝑘𝛼 𝑥, 𝑢 =
𝑒𝑥𝑝 (𝑗

1

2
𝛼)

 𝑗 𝑠𝑖𝑛 𝛼
𝑒𝑥𝑝  

1

2
𝑗 𝑥2 + 𝑢2 𝑐𝑜𝑡 𝛼                                 (4.3) 

Note that for 𝛼 =
1

2
𝜋, for which 𝑘𝜋

2

 𝑥, 𝑢 = 1. We have the normal FT. while for 𝛼 = 0 we 

have the identity transformation: 𝐹0 𝑥 = 𝑓 𝑥 .  Moreover note that for 𝑘𝛼+𝜋 𝑥, 𝑢 =

𝑘𝛼 𝑥, 𝑢 , and hence 𝐹𝛼+𝜋 𝑢 = 𝐹𝛼 −𝑢 ,  and that 𝑘−𝛼 𝑥, 𝑢 = 𝑘𝛼
∗ (𝑥, 𝑢), and that 

𝑘𝛼 𝑥, 𝑢 = 𝑘𝛼 𝑢, 𝑥 . and that 𝑘𝛼 ±𝑥, 𝑢 = 𝑘𝛼 𝑥, 𝑢 = 𝑘𝛼(𝑥, ±𝑢). 

From the linearity of the FrFT and the reversion property [54] 

                                 𝑅𝐹
𝛼  𝑓 −𝑥   𝑢 = 𝑅𝐹

𝛼  𝑓 𝑥   −𝑢 = 𝐹𝛼 𝑢 .                                    (4.4) 

We have 

                                   𝑅𝐹
𝛼  𝑓 𝑥 ± 𝑓 −𝑥   𝑢 = 𝐹𝛼 𝑢 ± 𝐹𝛼 −𝑢 ,                                 (4.5) 

And it is concluded that the FrFT of an even function is even. While the FrFT of an odd 

function is odd. 

4.3 Fractional Cosine Transform 

 

We now restrict ourselves to a one-sided function 𝑓(𝑥), with 𝑓 𝑥 = 0 for 𝑥 < 0, and define 

the FrCT as [54] 

                                  𝐹𝑐
𝛼 𝑢 = 𝑅𝑐

𝛼  𝑓 𝑥  (𝑢)                                                                    (4.6) 
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                       𝐹𝑐
𝛼 𝑢 = 𝑅𝐹

𝛼  𝑓 𝑥 + 𝑓(𝑥) (𝑢)                                                       (4.7) 

                       𝐹𝑐
𝛼 𝑢 = 𝐹𝛼 𝑢 + 𝐹𝛼 −𝑢                 (𝑢 ≥ 0)                                 (4.8) 
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Which reduces to normal CT for 𝛼 =
1

2
𝜋. To express in a different way, the relationship 

between the FrFT of a causal, one-sided function and the FrCT of this function, we can write 

the kernels of the fractional transform 𝑅𝛼  
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We can say that 𝑅𝑐
𝛼  is related to the even part of 𝑅𝐹

𝛼 . In general to determine the FrCT of a 

causal, one-sided function 𝑓 𝑥 , one can determine the FrFT of evenly extended two-sided 

function 𝑓 𝑥 + 𝑓(−𝑥). 

4.4 Eigen Functions and Eigen Values 

With 𝜓𝑛 𝑥  the Hermite-Gauss functions [54] 
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Where 𝐻𝑛 (𝑥) are the Hermite polynomials, we have  
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 2𝜋
 𝑘𝛼 𝑥, 𝑢 𝑒𝑥𝑝  −

𝑗𝑢𝑥

𝑠𝑖𝑛 𝛼
 ,                                                (4.13)         

                                   𝑅𝐹
𝛼 =

𝑒𝑥𝑝  𝑗
1

2
𝛼 

 𝑗 𝑠𝑖𝑛 𝛼
𝑒𝑥𝑝  

1

2
𝑗 𝑥2 + 𝑢2 𝑐𝑜𝑡 𝛼 𝑒𝑥𝑝  −

𝑗𝑢𝑥

𝑠𝑖𝑛 𝛼
 ,                   (4.14)     

                                  𝑅𝐹
𝛼 =  𝜓𝑛

∗(𝑥)∞
𝑛=0 𝜓𝑛 𝑢 𝑒𝑥𝑝 −𝑗𝑛𝛼 ,                                             (4.15) 

Thus 

                                   𝑅𝑐
𝛼 =  

2

 2𝜋
 𝑘𝛼 𝑥, 𝑢 𝑐𝑜𝑠  

𝑢𝑥

𝑠𝑖𝑛 𝛼
 ,                                                     (4.16) 

                                  𝑅𝑐
𝛼  =  

1

 2𝜋
 𝑘𝛼 𝑥, 𝑢   𝑒𝑥𝑝  −

𝑗𝑢𝑥

𝑠𝑖𝑛 𝛼
 + 𝑒𝑥𝑝  

𝑗𝑢𝑥

𝑠𝑖𝑛 𝛼
  ,                      (4.17) 

                                  𝑅𝑐
𝛼  =  

1

 2𝜋
 [𝑘𝛼 𝑥, 𝑢  + 𝑘𝛼 𝑥, −𝑢  𝑒𝑥𝑝(−𝑗(−𝑢)𝑢𝑥/ 𝑠𝑖𝑛 𝛼)],     (4.18) 

                     𝑅𝑐
𝛼 =  𝜓𝑛

∗ 𝑥 ∞
𝑛=0 𝜓𝑛 𝑢 𝑒𝑥𝑝 −𝑗𝑛𝛼 +  𝜓𝑛

∗(𝑥)∞
𝑛=0 𝜓𝑛 −𝑢 𝑒𝑥𝑝 −𝑗𝑛𝛼 ,(4.19)  

                                       𝑅𝑐
𝛼 =  𝜓𝑛

∗ 𝑥  𝜓𝑛 𝑢 + 𝜓𝑛 −𝑢  𝑒𝑥𝑝 −𝑗𝑛𝛼 ,∞
𝑛=0                           (4.20) 

                                   𝑅𝑐
𝛼 = 2  𝜓2𝑛

∗ (𝑥)∞
𝑛=0 𝜓2𝑛  𝑢 𝑒𝑥𝑝 −𝑗2𝑛𝛼 ,                                         (4.21)        
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Thus it is concluded that, while Hermite-Gauss functions 𝜓𝑛 𝑥  are the Eigen functions of 

the FrFT with Eigen values 𝑒𝑥𝑝(−𝑗𝑛𝛼), the even-order Hermite-Gauss functions  

 2𝜓2𝑛 𝑥  are the Eigen functions of the FrCT. The FrCT Eigen functions  2𝜓2𝑛 𝑥  are 

orthonormal on the half range, 

                                    2  𝜓2𝑛  𝑥 𝜓2𝑚  𝑥 
∞

0
𝑑𝑥 = 𝛿𝑛 ,𝑚                                                            (4.22) 

4.5 Basic Properties 

From the general observations made in the previous section, we conclude that many 

properties [54] of the FrFT immediately translate to the FrCT. In particular, for all fractional 

transforms the additive property for the angle 𝛼 holds,  

                                    𝑅𝛼1 𝑅𝛼2  𝑓 𝑥   𝑢 =  𝑅𝛼1+𝛼2  𝑓 𝑥   𝑢 ,                                        (4.23) 

from which we conclude that the inverse of any fractional transform corresponds to the 

transform with the negative angle. 

With 𝑡𝑎𝑛 𝛽 = 𝜆2 𝑡𝑎𝑛 𝛼 (and with the additional condition 𝜆 > 0 in the case of fractional CT) 

And with 𝐶 defined as  

                                           𝐶 =  𝑐𝑜𝑠𝛽/ 𝑐𝑜𝑠𝛼 
𝑒𝑥𝑝  

𝑗𝛼

2
 

𝑒𝑥𝑝  
𝑗𝛽

2
 
𝑒𝑥𝑝  

𝑗 𝑢2

2
𝑐𝑜𝑡 𝛼  1 −

𝑐𝑜𝑠 2𝛽

𝑐𝑜𝑠 2𝛼
  ,                                (4.24) 

Scaling property for FrCT is as that for FrFT  

                           𝑅𝑐
𝛼  𝑓 𝜆𝑥   𝑢 = 𝐶𝑅𝑐

𝛽  𝑓 𝑥   
𝑢𝑠𝑖𝑛𝛽

𝜆𝑠𝑖𝑛𝛼
 ,                                                     (4.25) 

If we shift a causal, one sided function 𝑓(𝑥) away from the origin 𝑓 𝑥 → 𝑓(𝑥 − 𝑥𝑜) we 

have the same shifting property for the FrCT 

       𝑅𝛼  𝑓 𝑥 − 𝑥𝑜   𝑢 = 𝑒𝑥𝑝  −𝑗𝑥𝑜𝑠𝑖𝑛𝛼  𝑢 −
1

2
𝑥𝑜𝑐𝑜𝑠𝛼  × 𝑅𝛼  𝑓 𝑥   𝑢 − 𝑥𝑜𝑐𝑜𝑠𝛼 , (4.26)  

As far as modulation or shifting in the 𝑢 domain is concerned for the FrFT we have 

𝑅𝐹
𝛼  𝑓 𝑥   𝑢 − 𝑢𝑜𝑠𝑖𝑛𝛼 = 𝑒𝑥𝑝  −𝑗𝑢𝑜𝑐𝑜𝑠𝛼  𝑢 −

1

2
𝑢𝑜𝑠𝑖𝑛𝛼  × 𝑅𝐹

𝛼  𝑓 𝑥 𝑒𝑥𝑝 𝑗𝑢𝑜𝑥   𝑢 ,  

        (4.27) 

For the FrCT we have 

𝑅𝑐
𝛼  𝑓 𝑥   𝑢 − 𝑢𝑜𝑠𝑖𝑛𝛼 = 𝑒𝑥𝑝  −𝑗𝑢𝑜𝑐𝑜𝑠𝛼  𝑢 −

1

2
𝑢𝑜𝑠𝑖𝑛𝛼  × 𝑅𝑐

𝛼  𝑓 𝑥 𝑐𝑜𝑠 𝑢𝑜𝑥   𝑢 ,(4.28) 

Fractional transforms satisfy the symmetry relation i.e. 

               𝑅−𝛼 𝑓 𝑥   𝑢 = {𝑅𝛼 [𝑓∗(𝑥)](𝑢)}∗                                                                     (4.29)          
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And while the FrFT is periodic in 𝛼 with period 2𝜋 and satisfies the half-period relation 

                               𝑅𝐹
𝛼+𝜋 𝑓 𝑥   𝑢 = 𝑅𝐹

𝛼  𝑓 𝑥   −𝑢                                                       (4.30) 

The FrCT is periodic with period 𝜋: 

                               𝑅𝑐
𝛼+𝜋 𝑓 𝑥   𝑢 = 𝑅𝑐

𝛼  𝑓 𝑥   𝑢 ,                                                        (4.31) 

4.6 Applications of Fractional Transform 

 FrFT has many applications in optics, especially in wave and beam propagation, wave 

field reconstruction, phase-space tomography. 

 It has also been used for study of time- or space – frequency distributions. 

 Its application in biometrics for iris verification is also reported. 

 In signal processing applications this transform is basically used for filtering, signal 

recovery, signal reconstruction, signal synthesis, beam forming, signal detectors, 

correlators, image recovery, pattern recognition and matched filtering. 

 It can also be used for multistage and multi channel filtering, multiplexing in 

fractional Fourier domains  and adaptive windowed FrFT 

In general, the FrFT is likely to have something to offer in every area in which FT and 

related concepts are used.  

 

 

 

 

 

 

 

 

 

 



47 
 

Chapter 5 

Signature Verification System using DFrCT 

 

5.1 Implemented Technique 

In this dissertation, an online signature verification method based on DFrCT is proposed. A 

previously implemented technique based on DCT [29] has been taken as reference to develop 

the proposed signature verification system. In place of DCT in the block diagram DFrCT is 

employed to extract the features as shown in Figure 5.1. The method is based on three FIR 

systems. In first of the above three mentioned FIR systems, Discrete fractional cosine 

transformation (DFrCT) [55] of barycenter trajectory in the horizontal and vertical direction 

are used as the input and the output of the system. In the second FIR system, the DFrCTs of 

the direction change and the magnitude of velocity of the barycenter trajectory are used as 

the input and the output of the system. Lastly, in the third FIR system, the DFrCTs of the 

areal velocity and the displacement are used as the input and the output of the system, 

respectively. The impulse responses of FIR systems are used as features in order to verify a 

signature. 

5.2 Overview of the System  

System purposed for online hand written signature verification system shown in Figure 5.1 

consists of following steps: 

 Input signature: Here a standard database SVC2004 [56] is used for 

experimentation. Corresponding to each user, 40 signatures are provided, out of 

which 20 signatures are genuine and 20 signatures are forgery. 

 Preprocessing process: In order to remove the fluctuations, signature is firstly being 

preprocessed by normalizing the size, location and trajectory of barycenter of a given 

signature 

  Features extraction: After preprocessing of a given signature, of many described 

features six features namely horizontal pen point movement, vertical pen point 

movement, areal velocity, displacement from trajectory of barycenter, magnitude of 
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velocity, change of  angle trajectory of barycenter have been extracted. DFrCT of 

these features are used to define three FIR systems to characterize a given signature. 

 Signature verification: To verify a given signature, impulse responses of FIR 

systems are used. All impulse response are combined together to form a feature 

vector. Euclidean norm of this vector is used to set the threshold level for a given 

signature. To verify a given signature threshold level of the signature is compared to 

the reference signature, if difference of reference signature and given signature is less 

than the threshold, the given signature is genuine else it is a forgery. 

 
                                                

                                                 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                        

 

 

 

 

 

 

Figure 5.1: Overview of the system  
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5.3 Database: SVC2004 

The SVC2004 database was released in 2003 to assist participants develop and test 

algorithms for the first signature verification contest (SVC2004). The capture device was a 

Wacom Intuos 2 A6 tablet, acquiring x and y position, pressure and 2 angles (inclination and 

azimuth) from each user. Every user contributed 20 genuine signatures during 2 different 

sessions. For privacy reasons, the signers were advised not to use their real signatures. 

Instead, they were recommended to design a new signature specifically for the database. 

Another 20 forgery signatures were provided by at least four other users. In order to forge the 

signatures, forgers had the opportunity to see the genuine signatures to be copied using a 

software application. This software application allowed forgers to replay the writing 

sequence of a signature. Forgers were advised to practice skilled forgeries until they were 

confident of their reproduction.  

This database contains signatures from Chinese users, who could choose to sign in either 

Latin characters or Chinese characters. 

5.4 Preprocessing Process 

It is known that a graphical tablet has been used to collect the horizontal and vertical 

components, 𝑥(𝑡𝑛 ) and𝑦(𝑡𝑛 ), of pen point movement at a time 𝑡𝑛 . Since the signatures 

signed by same person can never be precisely the same so it is considered as fluctuations of 

handwriting in signing process. Such fluctuations can be reduced as follows [29]: 

5.4.1 Normalization of Size 

By making a standard size of signatures will reduce the fluctuations related to the size of the 

signature as:   

 

                                         â 𝑡𝑛 =
𝑎 𝑡𝑛  −𝑎𝑚𝑖𝑛

𝑎𝑚𝑎𝑥 −𝑎𝑚𝑖𝑛
,                                                                 (5.1) 

Where,𝑎 = 𝑥, 𝑦, 𝑎𝑚𝑖𝑛 = 𝑚𝑖𝑛 𝑎(𝑡𝑛 ), 𝑎𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑎(𝑡𝑛 ) 

5.4.2 Normalization of Location 

Fluctuations related to location of signature can be reduced by shifting the coordinates of 

center point of signature to the origin as follows:  
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                                                             𝑐𝑎 =
1

𝑁
 â 𝑡𝑛 ,𝑁−1

𝑛=0                                                                 (5.2) 

ã =  â(𝑡𝑛 ) − 𝑐𝑎  ,   (𝑛 = 0,1,2,3 … …𝑁 − 1), 

Where, 𝑐𝑎  is the center point of signature and 𝑁 is the total number of sampled points of pen 

point movement.  

5.4.3 Trajectory of Barycenter 

Trajectory of barycenter is used to reduce the fluctuation of pen-point movement. It is 

determined from the center point of signature and two adjacent pen-point positions with 

respect to time. Trajectory of barycenter of a signature is calculated as: 

 

                                             𝑠𝑎(𝑡𝑛 ) =
ã 𝑡𝑛  +ã 𝑡𝑛 +1 

3
                                                        (5.3) 

5.5 Feature Extraction 

Dataset Out of many features possessed by an online signature, following six features have 

been considered for verification process [29]. 

 Horizontal component of pen-point movement. 

 Vertical component of pen point movement. 

 Areal velocity 𝐴𝑣(𝑡𝑛 ) along the trajectory of signature. 

 

                                         𝐴𝑣(𝑡𝑛 ) =
1

2
 
𝑠𝑥 𝑡𝑛−1 𝑠𝑦 𝑡𝑛−1 

𝑠𝑥 𝑡𝑛 𝑠𝑦 𝑡𝑛 
                                              (5.4) 

 Displacement 𝑑(𝑡𝑛 ) which is the from the center of signature to barycenter trajectory 

at time 𝑡𝑛      

                                    𝑑(𝑡𝑛 ) =  𝑠𝑥(𝑡𝑛 )2 + 𝑠𝑦(𝑡𝑛 )2                                               (5.5) 

 Velocity 𝑣(𝑡𝑛 ) of barycenter trajectory at time 𝑡𝑛    

 

                                  𝑣(𝑡𝑛 ) =  𝑢𝑥(𝑡𝑛 )2 + 𝑢𝑦(𝑡𝑛 )2                                               (5.6) 

where  

𝑢𝑥 𝑡𝑛 = 𝑠𝑥 𝑡𝑛+1 − 𝑠𝑥(𝑡𝑛 ) 

𝑢𝑦 𝑡𝑛 = 𝑠𝑦  𝑡𝑛+1 − 𝑠𝑦(𝑡𝑛 ) 
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 The direction change 𝜃(𝑡𝑛 ) of barycenter trajectory. 

 

                                   𝜃(𝑡𝑛 ) = 𝑡𝑎𝑛−1 𝑠𝑦  𝑡𝑛 +1 −𝑠𝑦 (𝑡𝑛 )

𝑠𝑥  𝑡𝑛 +1 −𝑠𝑥 (𝑡𝑛 )
                                                     (5.7) 

 

Furthermore, in order to extract individual features, discrete fractional cosine transform 

(DFrCT) 𝐺𝑥(𝑚), 𝐺𝑦 𝑚 , 𝐺𝑑 𝑚 , 𝐺𝐴𝑣 𝑚 ,  𝐺𝑣 𝑚 , and 𝐺𝜃(𝑚) of the 𝑠𝑥 𝑡𝑛 , 𝑠𝑦 𝑡𝑛 ,

𝑑 𝑡𝑛 ,  𝐴𝑣 𝑡𝑛 , 𝑣(𝑡𝑛 ) and 𝜃(𝑡𝑛 ) respectively is calculated [57] as 

 
                                              𝐺𝛼 𝑚 = 𝐴𝛼  𝐾𝑝

𝑁−1
𝑛=0  𝑚, 𝑛 𝑔(𝑛)                                                (5.8)              

                                                                                            
(𝑛 = 0,1,2,3 … … 𝑁 − 1) 
 

where, 𝑔(𝑛) is individual characteristics of the signature, 𝛼 is the rotation angle, the 

parameter 𝐴𝛼  and the kernel 𝐾𝑝(𝑚, 𝑛) are given as follows: 

 

 𝐾𝑝(𝑚, 𝑛) = 𝑒𝑥𝑝(
𝑖(𝑚 2+𝑛2)𝜋𝑐𝑜𝑠𝛼

𝑁
) cos(

2𝜋𝑚𝑛

𝑁
) 

 
 (𝑚, 𝑛 = 0,1,2,3 … … 𝑁 − 1)  
 

𝐴𝛼 =  
2 − 𝑖2cotα

π
 

2πsinα

N
 

 
Signature verification system consisting of three FIR systems [29] is introduced in order to 

characterize the individual features of signature. In first system in order to characterize the 

relation between the horizontal and vertical components of barycenter trajectory, the DFrCTs 

𝐺𝑥(𝑚) and 𝐺𝑦(𝑚) are used as the input and the output of the FIR system as 

 

                                               𝐺𝑦(𝑚) =  1 𝑚 𝐺𝑥(𝑘 − 𝑚)𝑀
𝑚=0                                         (5.9) 

 

In second system in order to characterize the relation between direction change and velocity, 

the DFrCTs 𝐺𝜃(𝑚) and 𝐺𝑣(𝑚) are used as the input and the output of the FIR system as 

 

                                     𝐺𝑣(𝑚) =  2 𝑚 𝐺𝜃(𝑘 − 𝑚)𝑀
𝑚 =0                                    (5.10) 
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In third system in order to characterize the relation between areal velocity and displacement, 

the DFrCTs 𝐺𝐴𝑣(𝑚) and𝐺𝑑(𝑚) are used as the input and the output of the FIR system as 

 

                                        𝐺𝑑(𝑚) =  3 𝑚 𝐺𝐴𝑣(𝑘 − 𝑚)𝑀
𝑚=0                                (5.11)      

 

Where 1 𝑚 , 2 𝑚 , 3(𝑚) are the impulse responses of the corresponding FIR systems, 

𝑀 is the order of system, Ĝ𝑦(𝑘), Ĝ𝑣(𝑘), and Ĝ𝑑 (𝑘) are approximations of 𝐺𝑦(𝑚), 𝐺𝑣(𝑚) 

and 𝐺𝑑(𝑚)  respectively. By minimizing the least-square error at 𝑀 the impulse responses 

1 𝑚 , 2 𝑚 , 3(𝑚) can be obtained as follows: 

 

                                    𝐸1 =   𝐺𝑦(𝑘) −  Ĝ𝑦(𝑘) 
2𝑀−1

𝑘=0                                            (5.12) 

                                    𝐸2 =   𝐺𝑣(𝑘) −  Ĝ𝑣(𝑘) 
2𝑀−1

𝑘=0                                            (5.13) 

                                                𝐸3 =   𝐺𝑑(𝑘) −  Ĝ𝑑 (𝑘) 
2𝑀−1

𝑘=0                                           (5.14) 

 

5.6 Signature Verification 

The impulse responses so far obtained are used to verify the signature and the algorithm [29] 

for the same is given below: 

Step 1: Feature vectors of the signatures from the impulse responses of FIR systems are 

defined as 

 

                                   1
′ = [1 0 ,2 0 ,3 0 ,… … . . 1 𝑚 ]                           (5.15) 

                                   2
′ = [1 0 ,2 0 ,3 0 , …… . . 1 𝑚 ]                           (5.16) 

                                    3
′ = [1 0 , 2 0 , 3 0 , … … . . 1 𝑚 ]                         (5.17) 

 

Step 2: Combine the feature vectors to form a single feature vector corresponding to a 

signature as 

 

                                    ′ = [1
′  2

′  3
′ ]                                                   (5.18) 
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Step 3: The Euclidean norm of feature vector of signature to be verified is compared with the 

Euclidean norm of the reference signature. If this difference is less then threshold of a 

particular signature then the signature is consider to be genuine otherwise it is a forge 

signature i.e. 

If   𝑟𝑒𝑓 −   > 𝜂  true 

Otherwise,   false 

where   .   is Euclidean norm and 𝜂 is a threshold value for a particular signature. 

5.7 Simulation Results 

Few examples of the simulated results are discussed in this section. Various extracted 

features and characteristics corresponding to a given signature are shown graphically over 

here. 

Original and Normalized Signatures 

Figure 5.2 shows the original signatures of two users, it can be seen from the Figure that all 

signatures from same user are different, i.e. the fluctuations due to size and location can be 

seen. 

 

 

 
(a)  Original signatures of user 1 
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(b)  Original signatures of user 2 

 

Figure 5.2: original signatures 

 

To reduce the fluctuations due to size and location normalization of signatures is done. 

Figure 5.3 show the signatures two users after normalization of size and Figure 5.4 show the 

signatures after location normalization. 

 

 

(a)  Signatures of user 1 after size normalization 

 

(b). Signatures of user 2 after size normalization 

Figure 5.3: Signatures after size normalization 
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(a) Signatures of user 1 location normalization 

 

(b)  Signatures of user 2 location normalization 

Figure 5.4: Signatures after location normalization 

 Trajectory of Barycenter 

To reduce the fluctuations due to pen-point movement trajectory of barycenter is calculated 

and is show in Figure 5.5 

 

(a) Trajectory of barycenter of signature of user 1 
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(b) Trajectory of barycenter of signature of user 2 

Figure 5.5: Trajectories of pen-point position and barycenter of signature 

 Features of Signatures 

Various features extracted out of given signatures are shown in Figure 5.6 & Figure 5.7 

corresponding to user 1 and user 2 respectively. A comparison between features of genuine 

and forgery signatures are shown here.  

 

 Features of signatures of user 1 

Genuine signature Forgery signature 
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Figure 5.6: Feature of signatures of user 1(contd.)  
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Figure 5.6: Feature of signatures of user 1(contd.) 
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Figure 5.6: Feature of signatures of user 1 
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 Features of signature of user 2 
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Figure 5.7: Feature of signatures of user 2 (contd.) 
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Figure 5.7: Feature of signatures of user 2  
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DFrCT of Features of Signatures 

Figure 5.8 & Figure 5.9 shows the DFrCT‘s of various extracted features corresponding to 

the signatures of user 1 and user 2. Graphically it can be visualized the difference in profile 

of genuine and forge signature.  
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Figure 5.8: DFrCT of features of signatures of user 1 with „α‟=.76 (contd.) 
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Figure 5.8: DFrCT of features of signatures of user 1 with „α‟=.76 (contd.) 
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Figure 5.8: DFrCT of features of signatures of user 1 with „α‟=.76 

 

 

 

 

 DFrCT of Features of signature of user 2 
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Figure 5.9: DFrCT of features of signatures of user 2 with „α‟=.92 (contd.) 

 



64 
 

D
F

rC
T

 o
f 

V
er

ti
ca

l 
co

m
p

o
n

en
t 

 

 

 
(c) 

 

 
(d) 

D
F

rC
T

 o
f 

D
is

p
la

ce
m

en
t 

 

 
(e) 

 

 
(f) 

D
F

rC
T

 o
f 

A
re

a
l 

V
el

o
ci

ty
 

 

 
(g) 

 

 
(h) 

 

Figure 5.9: DFrCT of features of signatures of user 2 with „α‟=.92 (contd.) 
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Figure 5.9: DFrCT of features of signatures of user 2 with „α‟=.92 

 

5.8 Experimental Results of Verification system  

The performance of signature verification systems is typically described on terms; the false 

accept rate (FAR) and a corresponding false reject rate (FRR). A false acceptance occurs 

when the system allows a forger‘s sign is accepted. A false reject ratio represents a valid user 

is rejected from gaining access to the system. These two errors are directly correlated, where 

a change in one of the rates will inversely affect the other. A common alternative to describe 

the performance of system is to calculate the equal error rate (EER). EER corresponds to the 

point where the false accept and false reject rates are equal. In order to visually comment the 



66 
 

performance of a signature verification system, receiver operating characteristic (ROC) 

curves are drawn.  

The SVC2004 database was used in the experiment. Corresponding to each user there are 20 

genuine signatures and 20 forgery signatures. In the experiment, 5 users were selected from 

the database. Thus, there were 200 signatures in total for this experiment. 

Signature verification system generates Euclidean norm corresponding to each test signature. 

Difference between the reference Euclidean norm and that of test signature is used for 

verification. This difference is compared with the threshold to make a decision of rejecting or 

accepting the user. The threshold value can be changed in order to obtain various FAR and 

FRR combinations. 

The signature verification system is trained by 5 genuine signatures corresponding to each 

user. Euclidean norm of each signature is calculated and mean of their Euclidean norms is 

treated as reference norm. In this study a performance comparison has been made in between 

results obtained by the method using DFrCT for feature extraction to that of one using DCT 

for feature extractions for signature verification. The evaluation criteria opted here is Equal 

Error Rate (EER). 

While using DFrCT, the optimum value of α can be achieved by varying its value in between 

0 to 1 and repeating the algorithm until a minimum EER corresponding to the user is 

achieved. Although this is more time consuming as compare to DCT but due to this 

flexibility we get different forms of the signal which interpolate between the cosine 

modulated form of the signal and its DCT representation resulting in better system 

performance. 

Figure 5.10 show some examples of the plots of Euclidean norm of genuine signatures and 

forge signatures using DCT for feature extraction. Figure 5.11 show some examples of the 

plots of Euclidean norm of genuine signature and forge signatures using DFrCT for its 

optimum values of α. Red points in the plot refer to the forge signatures and blue points 

correspond to the genuine signatures. More is the separation between the points lesser will be 

the error rate. 
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(a) 

 
(b) 

 

Figure 5.10: The plot of Euclidean distances obtained for Genuine signatures 

and Forgeries Using DCT 
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(a) α=0.445 

       
(b) α=0.195 

 
Figure 5.11: The plot of Euclidean Distances Obtained for Genuine Signatures 

and Forgeries Using DFrCT  
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5.8.1 Analysis of System Using DCT Method 

Table 5.1 shows the difference between the Euclidean norm of test signature and the 

Euclidean norm of the reference signature. Table 5.2 shows number of false accepted and 

false rejected signatures corresponding to various threshold levels. Table 5.3 shows the FAR 

and FRR corresponding to various threshold levels. Figure 5.12 shows a plot of FAR versus 

FRR. 

 

Table 5.1: Difference of Euclidean Norm of Reference and Test Signature Using DCT 

  

Sign 

User 1 User 2 User 3 User  4 User 5 

Forge Genuine Forge Genuine Forge Genuine Forge Genuine Forge Genuine 

1 0.6047 0.019 -2.2117 0.8238 0.9718 2.8576 0.0274 0.4373 -0.4002 0.5248 

2 0.6053 -1.016 -1.6526 5.0974 -3.5617 2.7861 -0.4797 0.4231 -6.8166 0.5077 

3 0.5843 0.5415 0.066 5.0441 2.905 2.5756 0.3814 0.3004 -3.1902 0.3605 

4 -0.9555 0.6173 -0.672 4.6703 2.5065 2.9502 -1.8012 -0.7587 0.4253 -0.9104 

5 -0.1471 0.4871 0.2756 4.4976 2.2535 2.9487 -1.1262 0.1195 -2.3699 0.1434 

6 0.3031 0.5452 0.3926 -27.4459 0.6871 1.9684 -102.177 0.4261 -0.1952 0.5113 

7 0.5276 0.6128 -0.8809 0.0403 1.6983 2.7848 0.3479 0.4163 -3.0046 0.4996 

8 -1.7708 0.617 -2.9482 5.5688 -7.1916 1.8212 -0.3947 -0.7899 0.2125 -0.9479 

9 0.3145 0.6006 -0.8287 -2.3356 2.0235 2.951 0.4231 0.3022 -13.2149 0.3626 

10 0.6215 0.6176 0.4785 3.4612 -1.0346 0.7073 -5.7972 0.4454 -0.2656 0.5344 

11 -2.6113 0.6125 -2.3493 5.6123 -20.351 0.3821 -3.7626 -3.5686 - 3.057 -4.2823 

12 -0.5446 0.6157 0.3623 4.0133 2.4784 2.8059 -0.3621 0.3324 0.3622 0.3989 

13 -2.7983 0.582 -8.4009 -7.0403 2.7909 1.9258 -3.1458 0.1121 -1.977 0.1345 

14 -0.2433 0.5668 -0.7506 5.3482 1.9852 2.8233 0.0453 -0.8074 0.3701 -0.9689 

15 -0.4261 0.0571 -0.8319 4.0995 1.2786 2.8994 -10.4594 0.3965 -3.043 0.4758 

16 0.2706 0.5735 -23.1969 -12.1047 2.5641 2.5393 -10.5868 0.462 -1.0599 0.5545 

17 -0.1449 -4.8909 0.4876 2.8142 2.9396 1.9671 0.2173 0.456 -0.3864 0.5472 

18 -2.0542 -0.0433 -9.7607 5.3378 -0.5137 2.8715 -0.605 0.4634 -0.9467 0.5561 

19 -2.5989 -0.0975 -13.1987 -3.9201 2.9467 0.6706 -62.7096 0.4309 -2.0509 0.517 

20 -0.2959 -1.6181 -0.7999 -3.5821 2.6233 -0.0775 0.4063 0.4009 -7.7041 0.4811 
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Table 5.2: Number of False Accepted (FA) and False Rejected (FR) Signatures corresponding to Each 

User for Various Threshold (THD) Levels Using DCT 

  

User 1 User 2 User 3 User 4 User 5 Total 

THD FA FR THD FA FR THD FA FR THD FA FR THD FA FR FA FR 

.5415 4 8 0.8238 0 7 2.7848 4 7 0.3965 2 9 0.3989 1 8 11 39 

.4871 5 7 0.0403 6 6 2.5756 5 9 0.3004 4 6   0.3626 2 7 22 28 

-.0975 8 3 -0.6720 7 6 2.5393 6 8 0.1121 5 4 0.3605 3 6 26 27 

-1.6181 15 1 -7.0403 16 2 1.9258 11 5 -0.8074 11 1 -0.9689 9 1 55 10 

 

Table 5.3: False Accept Rate and False Reject Rate using DCT 

 

Threshold level False Accept Rate (FAR)% False Reject Rate (FRR)%  

1 5.5 19.5 

2 11 14 

3 13 13.5 

4 27.5 5 

 

 

 
Figure 5.12: FAR versus FRR Using DCT 
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5.8.2 Analysis of System Using DFrCT Method 

Table 5.4 shows the difference between the Euclidean norm of test signature and the 

Euclidean norm of the reference signature corresponding to optimal values of α, which is 

achieved by varying this factor in between 0 and 1 and repeating the algorithm until a 

minimum EER is achieved. Table 5.5 shows number of false accepted and false rejected 

signatures corresponding to various threshold levels. Table 5.6 shows the FAR and FRR 

corresponding to various threshold levels. Figure 5.13 shows a plot of FAR versus FRR. 

 

 
Table 5.4: Difference of Euclidean Norm of Reference and Test Signature Using DFrCT 

 
  

Sign 

User 1  

(optimum α=0.76) 

User 2  

(optimum α=0.61) 

User 3 

(optimum α=0.445) 

User  4 

(optimum α=0.195) 

User 5 

(optimum α=0.6) 

Forge Genuine Forge Genuine Forge Genuine Forge Genuine Forge Genuine 

1 0.3405 -6.4839 0.0453 0.1053 -8.925 -1.0419 -9.1799 0.4531 0.1905 0.1955 

2 -0.5854 0.4116 -2.3341 0.1148 -24.0868 0.197 -14.308 -1.1339 0.1905 0.1929 

3 -2.3235 0.4236 -0.0658 -1.1786 -11.6916 0.1702 -16.961 0.6221 -1.947 0.1705 

4 -1.8158 0.3418 -0.064 0.0913 -15.8328 0.1963 -11.5024 0.7202 -6.302 0.1022 

5 -5.1189 0.3412 0.1049 0.0997 -27.6109 0.1888 -5.7588 0.5518 -2.4324 0.0413 

6 -4.8678 -0.7057 -0.066 0.1143 -4.9626 -0.8192 -20.0481 0.616 -5.1425 -0.2466 

7 -1.7452 0.4373 0.0246 0.1126 -34.1937 -1.0246 -10.6765 0.7395 -21.4591 0.0445 

8 -0.42 0.4545 0.0841 0.0656 -5.588 0.1972 -17.5722 0.7443 -7.9945 0.1745 

9 -1.4163 0.3829 0.0985 0.0673 -4.0789 0.1974 -7.3223 0.7334 -2.1727 0.0845 

10 0.3948 0.3948 0.0535 0.0926 -12.5172 0.1954 -64.1874 -3.8534 -15.5746 0.1018 

11 -3.9684 0.2752 0.0289 0.0991 -24.0454 0.1955 -22.0044 0.7178 -17.2141 0.1917 

12 -2.0277 0.4366 -0.1395 0.1079 -1.6014 0.1973 -26.8906 0.6659 -9.5119 0.1228 

13 -3.222 0.4541 0.0645 0.1057 -1.5869 0.1963 -28.5301 0.6834 -5.5129 -1.8134 

14 -1.6865 0.4523 -0.0822 -0.6175 -7.0599 0.1957 -8.8903 -0.1182 -2.4035 0.1567 

15 -5.4898 0.3552 0.0549 0.107 -9.6345 0.0857 -14.7167 0.6465 -14.505 0.1942 

16 -0.4331 0.4505 0.0527 0.1071 -5.3474 0.1945 -50.8478 0.3727 -1.4667 0.1557 

17 -0.736 0.4539 0.0621 0.0908 -1.3396 0.1974 -3.3252 0.7539 -1.2801 -0.2477 

18 -1.4079 0.3999 -0.2132 0.0975 0.1154 0.0843 -15.9247 -3.6592 -5.8708 0.1887 

19 -1.1168 0.3536 0.0689 0.1092 -1.8787 0.1966 -11.8127 -0.256 -3.1843 0.1903 

20 -5.2555 0.3706 0.0825 0.1085 -0.1044 0.1936 -7.836 0.5786 0.0252 0.1438 
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Table 5.5: Number of False Accepted and Rejected Signatures Corresponding to Each User   

for Various Threshold Levels Using DFrCT 

 
User 1 

 (optimum α=.76) 

User 2 

(optimum α=.61) 

User 3 

(optimum α=.445) 

User 4 

(optimum α=0.195) 

User 5 

(optimum α=.6) 

Total 

THD FA FR THD FA FR THD FA FR THD FA FR THD FA FR FA FR 

0.3418 1 4 0.0926 1 8 0.0843 1 3 -1.1339 0 3 0.0445 2 4 5 18 

0.3412 1 3 0.0913 2 5 -0.8192 2 2 -0.2560 0 2 0.0413 2 3 7 12 

0.2752 2 2 0.0908 2 4 -1.0246 2 1 -3.6592 1 1 0.2477 3 1 10 9 

-0.7057 5 1 0.0656 5 2 -1.0419 2 0 -3.8534 1 0 -1.8134 5 0 13 3 

 

 
Table 5.6: False Accept Rate and False Reject Rate using DFrCT 

 
Threshold level False Accept Rate (FAR)% False Reject Rate (FRR)%  

1 2.5 9 

2 3.5 6 

3 5 4.5 

4 6.5 1.5 

 

 

 

 
Figure 5.13: FAR versus FRR Using DFrCT 
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A graphical comparison of performance of DFrCT based system and DCT based system is 

shown in Figure 5.14, it can be easily seen that both FAR and FRR in case of proposed 

method is far less as compare to the one based on DCT. A minimum FAR of 2.5 % is 

attained as compare to 5.5% and maximum FAR is limited to 6.5% as compare to 27.5% 

with the proposed methodology.   

 
Figure 5.14: Comparison of DFrCT based System with DCT based System  

 

Also from the above results and analysis it is observed that an EER of 5% was achieved with 

the use of DFrCT as compare to EER of 13.5% when DCT was used for feature extraction. 

Hence we can say that DFrCT with is free parameter α provides a better option for features 

extraction for signature verification system as compare to the one extracted by using DCT. 
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Chapter 6  

Conclusion and Future Scope 

 
6.1 Conclusion 

Signatures can be categorized as offline signature where only the image of signature is given 

and online signature where certain dynamic parameters which cannot be seen by eyes such as 

velocity of signature, acceleration, movement with respect to time, altitude, pressure, azimuth 

etc. are also recorded. 

Now a day‘s with developing progress in identification applications has increase the   

demand for new generation ID documents, which contain additional biometric information 

required for more accurate user recognition. The image of the user‘s handwritten signature is 

already incorporated into ID documents. Hence the trend is shifting towards online 

handwritten signatures incorporating along with other information. Challenging part is to 

standardize the method of features extraction worldwide in order to be in synchronism. 

Various methods have been purposed for features extraction and being at developing stage 

many more methodologies are expected to be purposed. One such effort has been put up in 

this study to extract features for a given signature. Use of DFrCT which according to 

literature was yet to be explored has been discussed in this study.  

DFrCT is a powerful tool of signal processing with a free parameter, its fraction. With 

optimization of this parameter for feature extraction has given far better results when 

compare with one of the existing methodology in literature based on DCT. An EER of only 

5% was achieved as compare to the EER of 13.5% when DCT was used.  Difference in result 

clearly proves the superiority of DFrCT over DCT. 

 

6.2 Future Scope 

In this study single value of α was optimized for all the features, in future to improve the 

performance of the system different values of α can be optimized for different parameters to 

further increase the efficiency of the system. 
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