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Abstract 
 
Motivation: Dimension reduction techniques are widely used to interpret high-dimensional 
biological data. Features learned from these methods are used to discover both technical 
artifacts and novel biological phenomena. Such feature discovery is critically import to large 
single-cell datasets, where lack of a ground truth limits validation and interpretation. Transfer 
learning (TL) can be used to relate the features learned from one source dataset to a new target 
dataset to perform biologically-driven validation by evaluating their use in or association with 
additional sample annotations in that independent target dataset.  
Results: We developed an R/Bioconductor package, projectR, to perform TL for analyses of 
genomics data via TL of clustering, correlation, and factorization methods. We then demonstrate 
the utility TL for integrated data analysis with an example for spatial single-cell analysis.  
Availability: projectR is available on Bioconductor and at 
https://github.com/genesofeve/projectR. 
Contact: gsteinobrien@jhmi.edu; ejfertig@jhmi.edu  
 
Introduction 
 
Dimension reduction methods play a key role in biological discovery from high-dimensional 
genomics datasets. The lower-dimensional spaces learned represent both biological information 
and technical artifacts. Thus, it is crucial to interpret and validate these spaces. Independent 
datasets from related but varied biological contexts, such as different data modalities of 
equivalent samples or data from the same tissue in related organisms, can be used for 
interpretation and validation as only the biological effects, and not the technical effects, will be 
shared. Thus, we can use transfer learning (TL), a sub-domain of machine learning, for in silico 
validation, interpretation, and exploration of these spaces using independent but related 
datasets (Stein-O’Brien et al., 2019; Taroni et al., 2019). Furthermore, once the robustness of 
biological signal is established, these TL approaches can be used for multimodal data 
integration (Stuart et al., 2019). Here, we develop the projectR package to perform TL for 
dimension reduction techniques for genomics analysis. 
 
Methods 
 
The projectR package performs TL from the outputs of PCA (Principal Component Analysis), 
NMF (Non-negative Matrix Factorization), regression, K-means, hierarchical clustering, and 
correlation via the main function of the package--projectR. The inputs to projectR are target 
data--data--and learned gene features--loadings. To match genes between the datasets, the 
software contains a function, geneMatchR, which returns the two input datasets separately or 
jointly, if merge is true, with only common genes. Utilizing an S4 generic, projectR’s  loadings 
argument corresponds to features for classes prcomp, LinearEmbeddingMatrix, matrix, kmeans, 
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hclust, and correlateR (defined in the projectR package) for spaces learned by PCA, NMF, 
regression, K-means and hierarchical clustering, and correlation respectively (Meng et al., 
2016). projectR returns a matrix with sample weights for each input basis in the loadings matrix 
with the option to include p-values (Wald-test) for each value in the projection matrix 
(Supplemental File 1).  
 
To facilitate TL further, additional functions are provided to operate on the output of projectR. 
Example uses include identifying the patterns that are predictive of sample annotations such as 
cell type or transferring annotations using previous associated patterns. The aucMat function 
identifies the patterns predictive of given sample annotations using the performance and 
prediction function from the ROCR package. The alluvialMat function generates an alluvial plot 
given projection matrix from projectR and annotations as input. 
 
To demonstrate the application of projectR in spatial single-cell analysis we selected high-
quality expression data of 1297 cells and 8097 genes from development stage 6 Drosophila 
embryo as source data generated by (Karaiskos et al., 2017) available at https://shiny.mdc-
berlin.de/DVEX/. The position of almost all of the fly embryo cells can be specified using the 
binarized expression from in situ imaging of 84 marker genes identified by Berkeley Drosophila 
Transcription Network Project (Karaiskos et al., 2017; Fowlkes et al., 2008).  The code for this 
analysis is available at https://github.com/fertigLab/projectRSpatialExample. We validated the 
patterns by comparing them to spatial patterns given with vISH (virtual in-situ hybridization) 
(https://shiny.mdc-berlin.de/DVEX/) computed by DistMap (Karaiskos et al., 2017). 
 
Results 
 
ProjectR perform TL on gene signatures from clustering, PCA, NMF,  and correlation. It is 
computationally fast taking 8.09 ± 0.51 s on a 16 GB, Intel Core i7-8750H based 64-bit Windows 
10 computer for projecting a 20000x1000 target dataset on 20000x100 latent space. Previously, 
we demonstrated the ability of this approach to relate molecular signatures associated with 
retinal development with our Bayesian NMF algorithm CoGAPS (Fertig et al., 2010)  across data 
platforms, tissues, and species (Stein-O’Brien et al., 2019). To further demonstrate the utility of 
this approach we apply projectR for multi-modal data integration to enable spatial single-cell 
analysis. After analysis with CoGAPS (Fertig et al., 2010) on scRNAseq from Drosophila 
embryo, we input these patterns as the loadings and the binarized gene-marker by position 
matrix from the in situ imaging as the data (see methods). Figure 1 demonstrates that this 
analysis can transfer the full molecular states from the non-spatially resolved single-cell data 
onto the spatially resolved imaging data. In addition to their spatial resolution, we find that the 
top five genes that distinguish developmental gradients from the TL are also drivers of 
developmental gradients in the Drosophila. For example, we found the top genes associated 
with the ventral pattern (Fig 1(b)) were: Ilp4, twi, Cyp310a1, ventrally-expressed-protein-D, and 
CG4500 and all of them were predominantly ventrally expressed as confirmed by vISH 
(Karaiskos et al., 2017; Fowlkes et al., 2008). 
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Discussion 
 
We developed projectR as a software package to enable TL dimension reduction of genomics 
data. We previously showed that application of this technique to patterns learned from NMF 
relates datasets from different species, data modalities, tissues, and measurement platforms 
(Stein-O’Brien et al., 2019). In this paper, we demonstrate its further utility to integrate imaging 
and single-cell data for spatial transcriptional analysis and expansion to dimension reduction 
techniques beyond NMF. While similar to Slide-seq, we note projectR generalizes beyond a 
NMF-based regression framework to implement high spatial resolution of transcriptional data 
(Rodriques et al., 2019). The software is developed generally to enable pattern validation, 
discovery, and annotation transfer across datasets with a wide range of unsupervised learning 
techniques. 
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Fig 1. Spatial gene expression patterns identified in Drosophila stage 6 embryo using 
projectR and CoGAPS. (a) Anterior-posterior gene expression pattern characteristic 
of fly development. (b) A pattern shown by predominantly ventrally expressed genes. 
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