
7th International Conference on Computer and Knowledge Engineering (ICCKE 2017), October 26-27 2017, Ferdowsi University of Mashhad

978-1-5386-0804-3/17/$31.00 ©2017 IEEE

Pre-Training of an Artificial Neural Network for
Software Fault Prediction

Moein Owhadi-Kareshk1, Yasser Sedaghat2, Mohammad-R. Akbarzadeh-T.1*

1 Center of Excellence on Soft Computing and Intelligent Information Processing (SCIIP)
2 Dependable Distributed Embedded Systems (DDEmS) Laboratory

Department of Computer Engineering
Ferdowsi University of Mashhad (FUM), Mashhad, Iran

owhadi@mail.um.ac.ir, y_sedaghat@um.ac.ir, akbazar@um.ac.ir

Abstract— Software fault prediction is one of the significant stages
in the software testing process. At this stage, the probability of
fault occurrence is predicted based on the documented
information of the software systems that are already tested. Using
this prior knowledge, developers and testing teams can better
manage the testing process. There are many efforts in the field of
machine learning to solve this classification problem. We propose
to use a pre-training technique for a shallow, i.e. with fewer hidden
layers, Artificial Neural Network (ANN). While this method is
usually employed to prevent over-fitting in deep ANNs, our results
indicate that even in a shallow network, it improves the accuracy
by escaping from local minima. We compare the proposed method
with four SVM-based classifiers and a regular ANN without pre-
training on seven datasets from NASA codes in the PROMISE
repository. Results confirm that the pre-training improves
accuracy by achieving the best overall ranking of 1.43. Among
seven datasets, our method has higher accuracy in four of them,
while ANN and support vector machine are the best for two and
one datasets, respectively.

Keywords-component; Pre-Training; Shallow Artificial Neural
Network; Software Fault Prediction.

I. INTRODUCTION
Software systems play a key role in today’s life. There are

many software applications whose fault occurrence can lead to
critical problems. In these safety-critical applications, the
number of faults, errors, and failures should be minimized as
much as possible. One of the most effective stages to build a
fault-free software is predicting faults in under-developing
software systems. Employing this prediction, the testing teams
can manage their resources and focus on the software modules
with higher expected probability of faults. The software fault
prediction is based on the data of software systems that are
already developed and tested. The features of an under-testing
software are compared with the developed software systems;
and based on the faults of those systems, an estimation for the
number of faults in the under-testing software is calculated.

* Also currently with Department of EECS, University of California,
Berkeley, CA 94720-1776, USA.

From the statistics and machine learning viewpoints, if we
aim to predict the number of faults, the problem is a regression
problem; and if determining the faulty or fault-free status of a
module is important, the problem is a binary classification
problem. In this paper, we focus on the second case. There are
many efforts to predict the faults of a new code or software in
the literature. In the most basic studies, the logistic regression is
used [1] [2] [3]. More advanced learning algorithms such as
Support Vector Machines (SVMs) [4] [5], Decision Trees [6] [7]
[8] and Naïve Bayes [9] [10] [11] [12] [13] are also employed.
ANNs have also been successfully applied to the problem [14]
[15]. Recently, several machine learning techniques are
proposed for software fault prediction problem [16] [17] [18]
[19]. In one of the state-of-the-art research works [20], several
feature selection and data balancing methods are employed to
enhance the prediction. In continuation of using ANNs, we use
the idea of pre-training in a shallow network to improve the
accuracy. Pre-training in shallow networks is proved to be
beneficial previously in other problems as well [21].

In this paper, we propose using a pre-trained ANN to solve
the software fault prediction as a binary classification problem.
Pre-training is conventionally employed for preventing
overtraining in the deep neural networks [22] [23] [24], but we
use this technique for a shallow ANN and show that it practically
improves the classification accuracy. In the pre-training
technique, an unsupervised neural network determines an
estimation of the weights and bias before training the ANN using
the labels. For this purpose, a 2-layer unsupervised neural
network, such as Autoencoders (AEs) [23] and Restricted
Boltzmann Machines (RBMs) [22] [23] are used. These shallow
ANNs are stacked on each other by greedy layer-wise algorithm
[25] and create a multi-layer unsupervised ANN. In this
algorithm, a 2-layer neural network is trained first and then, its
weights and bias are fixed. After that, the output of this neural
network is employed to train another subsequent 2-layer neural
network. This procedure is continued until the final ANN with
an appropriate number of layers is created. After that, an output
layer is added to this ANN. Lastly, the network is trained and
the weights and bias of the other layers are fine-tuned using
labels in a supervised fashion. The initial point of searching for

223

the parameters is assigned randomly in the last layer. For the
other layers, the initial point is set to the parameters of the pre-
trained network, which is generated by the greedy layer-wise
algorithm.

To create an unsupervised ANN using the greedy layer-wise
algorithm, two types of 2-layer ANN can be employed, RBMs
and AEs. RBMs are a special version of Boltzmann Machines,
which there is no connection between the neurons of each layer.
Using this restriction, these models can be trained by Contrastive
Divergence (CD) [26], Persistent CD (PCD) [27], fast PCD [28]
and parallel tempering [29]. An energy function is defined for
RBMs, training of an RBM means finding the weights and bias
such that the energy function is minimized. AEs are trained by
stochastic gradient descent [30]. These networks aim to create a
new representation of data and then, using this representation,
reconstruct the original input. Minimizing the difference
between the reconstruction and the original input is the target of
AEs. If the size of the new representation is bigger than the input
(i.e. have more neurons) the AE is so-called over-complete and
otherwise, the model is under-complete.

 A regular AE usually cannot extract meaningful features to
create a good representation. In the over-complete AEs, the
model can simply copy the original input to the new
representation. Also, an under-complete AE does not necessarily
extract a suitable representation. For solving this problem, an
extra constraint is considered for the training of the AEs. One of
the popular methods is sparsity regularization [31] that aims to
force the neurons of the hidden layer to be zero [32] [33]. The
Contractive AEs (CAEs) [34] aim to minimize the derivatives of
the hidden layer and in the other words, minimize the sensitivity
of the model to its input. Denoising AE (DAE) [35] [36] is
among the most effective ways to regularize AEs. In this variant,
an artificial noise in mounted on the data and it is expected that
the model can reconstruct the original input from this noisy
version of the data. Therefore, the model cannot minimize the
reconstruction error by memorizing the input and it should learn
the overall structure (manifold) of the data. We use a DAE to
pre-train a shallow ANN for predicting the faults of software
systems. Moreover, our method has only six neurons in its
hidden layer and therefore, the computational cost is low.

We study our method with seven datasets from PROMISE
[37] data repository of NASA [38]. The results show that the
idea of pre-training improves the accuracy in comparison with
the traditional ANN and SVM with different feature extraction
methods. According to the definition of our problem, the
execution time is not a critical measure and hence, it is not
reported here. In the next section, the metrics for extracting data

from code are explained. In Section 3, we introduce the pre-
training technique for shallow networks. Section 4 consists of
the results and their analysis. Finally, in Section 5, we have a
conclusion and introduce some suggestions to improve the
results of this paper.

II. SOFTWARE FAULT PREDICTION AND METRICS
In the process of developing a software system, unit testing

is applied when a module is created. In this phase, a testing team
or the developers aim to find the faults of the modules and
document these faults and their properties. The idea behind the
software fault prediction is that we can use these documents to
have more effective software testing for under-developing
modules. Employing the data of previous tests, the existence or
even the number of faults of an under-developing module can be
estimated. Using this estimation, the testing team can divide the
resources based on the expected number of faults. To have a
suitable prediction, several appropriate features should be
extracted from the code, which have direct and meaningful
effects on the occurrence of faults. Several feature sets are
proposed, but the McCabe [39] and Halstead [40] are among the
most well-known ones.

The McCabe metrics consist of four subsets as Table I. The
essential concept in these metrics is the flow graph. The nodes
in this directed graph are the code statements and the arcs are the
flow control between the statements. A D-structured prime also
indicates the sub-graphs of the flow graph which has only one
input and one output. The Halstead metrics are also introduced
to measure the complexity of the code and do not consider the
platforms. Its parameters can be divided into two main groups,
basic and derived metrics. Table II illustrates these metrics. The
first four cases are the basic metrics and the rest of the table
consists of the derived ones.

Table II. HALSTEAD COMPLEXITY MEASURES

Item Feature ଵܰ The total number of operators (ଵܰ) ଶܰ The total number of operands (ଶܰ) ߟଵ The number of distinct operators (ߟଵ) ߟଶ The number of distinct operands (ߟଶ) ܰ Program length (ܰ = ଵܰ + ଶܰ) ߟ Program vocabulary (ߟ = ଵߟ + ܸ) ଶ) ܸ Volumeߟ = ܰ ∗ logଶ ܦ) Difficulty ܦ (ߟ = ఎభଶ ∗ ேమఎమ) ܧ Effort (ܧ = ܦ ∗ ܸ) ෡ܰ Calculated program length (෡ܰ = ଵߟ logଶ ଵߟ + ଶߟ logଶ ܶ) ଶ) ܶ Time required to programߟ = ாଵ଼) ܤ Number of delivered bugs (ܤ = ௏ଷ଴଴଴)

Table I. MCCABE COMPLEXITY METRICS

No. Sub- Metrics Description

1 Cyclomatic complexity This metric is calculated by ݒ(݃) = ݁ − ݊ + 2
Where, ܩ is the flow graph of the code, ݁ is the number of arcs and ݊ is the number of nodes.

2 Essential complexity The equation ݁ݒ(݃) = (݃)ݒ − ݉ is employed for calculating this metric where, ݉ is the number of D-structured
primes

3 Design complexity The flow graph is reduced to eliminate the chunks that have not influence on the interrelationship between the code
segments. This metric is indicated by ݁ݒ(݃′), where ݃ᇱ is the reduced graph.

4 Lines of Code The number of lines regarding to McCabe metrics

224

III. PRE-TRAINING OF ANNS WITH DAES
In this section, we introduce the pre-training technique

which we use for software fault prediction. The pre-training
technique is employed for initialization of an ANN. Therefore,
instead of starting the gradient descent from a random point, a
data-driven starting point is calculated in an unsupervised
fashion. In this paper, we employ DAEs that are a variation of
AEs that mount artificial noise on data as a regularization
approach. These mathematical models can extract meaningful
information from raw data. Firstly, a DAE is trained by gradient
descent. After the training phase, this network can create a new
transformation from its input data. Afterwards, the weights and
bias of this network can be considered as a good unsupervised
estimation for the weights and bias of the network in the
supervised fashion. Therefore, the searching procedure of the
parameters in the supervised neural network is started from the
weights and bias of DAE. After that, an output layer is added to
the network. In the last step, the learning process is starting again
for fine-tuning the weights and bias of the hidden layer together
with calculating the weights and bias of the last layer.
Traditionally, the pre-training method is employed for deep
neural networks, but we employ it in a shallow network with just
one hidden layer and show that this method improves the results
in comparison with randomly standard ANNs and several SVM-
based classifiers.

AE is a 2-layer unsupervised ANN. As Fig. 1, this network
receives the input data x and the latent variable y is created using
the transformation f(x). This procedure is so-called encoding and
layer y is often called a new representation or code. After that,
the network aims to reconstruct its input by transformation g(y)
and creates the reconstruction layer z, which is called the
decoding process.

As in (1), a nonlinear function s followed by an affine
function (with weight w and bias b) are applied on x for creating
a new representation of data. ݕ = (ݔ)݂ = ݔ்ݓ)ݏ + ܾ) (1)

After that, by using a nonlinear function g, weights w' and
bias d, the input is reconstructed as shown in (2). The tied
weights, w'=wT, is used in (2). We use the Sigmoid function as
s and g for both encoding and decoding phases.

ݖ = (ݕ)݃ = ݕᇱ்ݓ)݃ + ݀) (2)

If representation y consists of meaningful information about
the input x, it is expected that x and its reconstruction z are close
as much as possible. Hence, the cost function of AE is the
difference between the input and its reconstruction. Equation (3)
is employed for this purpose. ݈(ݔ, (ݖ = ݖ‖ − ଶ (3)‖ݔ

A regular AE without any extra constraints usually cannot
extract meaningful and robust features and therefore, several
approaches for its regularizing are proposed. In this paper, we
use DAE as one of the most effective approaches that mounts an
artificial noise on the input data by function q. A robust model
should be capable of denoising, i.e. removing the artificial noise,
by learning the main structure (manifold) of the data. If the
model tries to just memorize its input, it cannot reconstruct it
after mounting the artificial noise. This noise can be Masking,
Salt & Pepper (for images), Additive white Gaussian noise
(AWGN), etc. In this paper, the masking noise is employed. Fig.
2 illustrates a DAE. It is important to note that adding noise to
the data is only applied in the training phase and after that, in the
testing phase, the clean data are fed to the network.

Using a DAE, we estimate the weights and bias of the final
supervised ANN in an unsupervised fashion. The pre-training
technique prevents the over-fitting in ANNs. In this technique,
the network actually learns the distribution of data and can
distinguish between the actual input data and random input. The
reconstruction error is low for the data on the manifold of the
training dataset. In the subsequent fine-tuning phase, the weights
and bias of the first layer are improved and the weights and bias
of the second supervised layer are learned. The error back-
propagation is much effective in the last layer and the learning
is slower for the first layers. It is because the derivatives are
becoming close to zero in these layers. Hence, the pre-training
is a good option for the first layers.

Figure 1. Regular AutoEncoder [41]

Figure 2. Denoising AutoEncoder [41]

225

IV. EXPERIMENTS
In this section, we bring the results of the implementation of

the pre-trained ANN for software fault prediction. The
configuration and conditions of experiments are described in
Subsection A. In Subsection B, we present the results and
analyze them. Finally, the sensitivity of the proposed method to
its main hyper-parameter is investigated in Subsection C.

A. Configuration of Experiments
There are two main groups of employed datasets for software

fault prediction, private and public. Although several private
datasets are available for us, we prefer to use public datasets
because comparing different methods are easier on these types
of datasets. We employ seven datasets of PROMISE repository
[37] that are introduced in Table III. These datasets are created
by NASA [38] and consist of McCabe [39], Halstead [40] and
some other basic features. Since the labels are just set to False
and True values, this is a binary classification problem.

 The proposed method is implemented in MATLAB [42] and
to have a trusted comparison with SVM, LibSVM [43], as a
well-known library is used. A system with Quad-Core Core i-7
4.00 GHz CPU, 8GB of RAM and 100GB SSD hard disk is
employed to execute the code. The results are compared with the
percentage of accuracy as (4).

Accuracy = 100 ∗ (4) ܽݐܽܦ ݈݈ܣ #ܽݐܽܦ ݂݀݁݅݅ݏݏ݈ܽܿ ݕ݈ݐܿ݁ݎݎ݋ܥ #

The proposed method is compared with the following
methods:

 SVM: The Support Vector Machine (SVM) algorithm
with Radial Basis Function (RBF) kernel.

 PCA-SVM: Extracting features by Principal Component
Analysis (PCA) and then, classifying with kernel SVM.

 KPCA-SVM: Extracting features by Kernel PCA
(KPCA) and then, using SVM for classification.

 AE-SVM: Extracting features by AE and then, using
SVM for classification.

 ANN: A regular ANN without pre-training.

The Pre-ANN is our proposed method, which is an ANN
with pre-training by DAE. In the above methods, the number of
latent variables is considered as same as the proposed method
that has six neurons in its hidden layer. We use 5-fold cross-
validation to ensure the robustness of the results.

B. Results
Table IV presents the results of the experiments. As the table

indicates, our proposed method has higher accuracy on four
datasets (including the biggest one) and for the other three
datasets; it stands in the second rank. The SVM is ranked first
only on the pc1 dataset that the proposed method and the regular
neural network are in the second place. The Mean of Ranking
for our proposed method is 1.43.
C. Sensitivity to the Hyper-Parameter

If an algorithm is too sensitive to its hyper-parameters,
finding the appropriate values become a challenge. Therefore,
analyzing of the hyper-parameters is important. The main hyper-
parameter of our proposed method is the number of neurons in
the hidden layer or equivalently, the number of latent variables
in the DAE. Based on the illustrated results in the Fig. 3, most
datasets are not sensitive to the number of hidden neurons.
However, the sensitivity is high for kc2 and kc3.

Table III. THE DATASETS FROM PROMISE REPOSITORY

No. Datasets No. of Instances No. of Features
1 pc1 705 37
2 pc2 745 36
3 pc3 1077 37
4 pc4 1458 37
5 kc2 522 21
6 kc3 194 39
7 jm1 7782 21

Table IV . THE ACCURACY (RANK) OF OUR PROPOSED METHOD AND PREVIOUS METHODS

Datasets SVM PCA-SVM KPCA-SVM AE-SVM ANN Pre-ANN
pc1 92.62±2.2 (1) 78.72±2.2 (4) 80.57±5.3 (3) 77.45±2.5 (5) 91.06±3.1 (2) 91.06±1.6 (2)
pc2 97.58±1.5 (3) 92.62±0.9 (4) 91.14±0.8 (5) 86.31±5.4 (6) 97.72±1.0 (2) 97.82±1.1 (1)
pc3 86.35±1.8 (2) 75.20±3.0 (6) 77.44±2.5 (4) 75.40±4.0 (5) 86.07±3.0 (3) 87.88±0.4 (1)
pc4 87.38±1.6 (3) 78.05±6.7 (6) 78.25±6.6 (5) 78.53±7.7 (4) 89.17±2.3 (1) 87.66±3.6 (2)
kc2 77.77±3.7 (6) 79.32±5.0 (3) 77.96±3.2 (5) 78.14±4.9 (4) 83.51±3.2 (1) 81.06±5.3 (2)
kc3 80.94±4.6 (2) 68.03±7.0 (5) 64.97±5.8 (6) 68.54±3.9 (4) 79.38±8.7 (3) 81.46±6.1 (1)
jm1 70.78±0.9 (3) 70.08±1.6 (4) 69.74±0.9 (5) 68.93±1.6 (6) 78.56±1.6 (2) 78.82±0.7 (1)

Mean of Ranking 2.86 4.57 4.71 4.86 2 1.43

226

Figure 3. The Sensitivity of the proposed method to the number of neurons

in the hidden layer

V. CONCLUSION AND FUTURE WORKS
In this paper, we aim to deal with the problem of software

fault prediction. In this challenge, the status of faults of under-
developing software systems is predicted based on the
information of the software systems that are developed and
tested already. This estimation increases the performance of the
testing teams since they can focus on the modules that are
expected to be faulty. There are several efforts to solve this
problem in the field of machine learning. Two main lines of the
previous works are the statistical machine learning (e.g. linear
regression, logistic regression, SVM, etc.) and soft computing
(e.g. ANNs, etc.). The ANNs usually can describe a more
complex model and are suitable for today’s complicated
problems.

We propose to use the pre-training technique to improve the
performance of the shallow ANN for software fault predicting.
In this method, instead of starting the training procedure from a
random vector of weights and bias, the weights and bias of a
trained DAE are employed which is learned without labels. The
idea of unsupervised pre-training and subsequent supervised
fine-tuning can increase the accuracy as the main measure of the
software fault prediction. Because of the importance of the
accuracy measure in this problem, the execution time is usually
not considered. However, although this technique increases the
execution time, growing the execution time is not a dilemma
since the software fault prediction is not a real time problem. We
compare our proposed method with SVM, SVM on the extracted
features and ANNs without pre-training. To ensure the
robustness of experiments, we use 5-fold cross-validation. The
results show that the SVM is the best algorithm only on one
dataset and ANN has the highest accuracy for two datasets. Our
proposed method is the most effective technique for other four
datasets. In the continuation of this work, we suggest improving
the accuracy by using deep learning models. Using ensemble
learning (e.g. Bagging and Boosting) can also improve the
performance.

VI. REFERENCES

[1] T. Khoshgoftaar, “An application of zero-inflated Poisson regression for

software fault prediction,” in: Proc. 12th Intl. Symp. Software Reliability
Eng., November, 2001.

[2] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, “Benchmarking
classification models for software defect prediction: a proposed
framework and novel findings,” IEEE Trans. Softw. Eng. 34, 2008.

[3] N. Nagappan, T. Ball, “Static analysis tools as early indicators of pre-
release defect density,” in: Proc. Intl. Conf. Software Eng., 2005.

[4] B. Twala, “Software faults prediction using multiple classifiers,” in: 2011
3rd Int. Conf. Comput. Res. Dev., 4, 2011.

[5] L. Yu, “An evolutionary programming based asymmetric weighted least
squares support vector machine ensemble learning methodology for
software repository mining,” Inf. Sci. 191, 2012.

[6] L. Guo, Y. Ma, B. Cukic, H.S.H. Singh, “Robust prediction of fault-
proneness by random forests,” in: 15th Int. Symp. Softw. Reliab. Eng.,
2004.

[7] A. Kaur, R. Malhotra, “Application of random forest for predicting fault
prone classes,” in: International Conference on Advanced Computer
Theory and Engineering, Thailand, December 20–22, 2008.

[8] T. Khoshgoftaar, E. Allen, “Model software quality with classification
trees,” Recent Adv. Reliab. Qual. Eng., 2001.

[9] A. Bener, B. Turhan, “Analysis of Naive Bayes’ assumptions on software
fault data: an empirical study,” Data Knowl. Eng. 68, 2009.

[10] K. Dejaeger, T. Verbraken, B. Baesens, “Prediction Models Using
Bayesian Network Classifiers,” 39, 2013.

[11] B. Diri, C. Catal, U. Sevim, “Practical development of an Eclipse-based
software fault prediction tool using Naive Bayes algorithm,” Expert Syst.
Appl. 38, 2011.

[12] A. Okutan, O.T. Yıldız, “Software defect prediction using Bayesian
networks,” Empirical Softw. Eng., 2012.

[13] Q. Song, Z. Jia, M. Shepperd, S. Ying, J. Liu, “A general software defect-
proneness prediction framework,” IEEE Trans. Softw. Eng. 37, 2011.

[14] T. Khoshgaftaar, E.D. Allen, J.P. Hudepohl, S.J. Aud, “Application of
neural networks to software quality modeling of a very large
telecommunications system,” IEEE Trans. Neural Netw. 8 (4), 1997.

[15] A.T. Mısırlı, A.B. Bener, B. Turhan, “An industrial case study of classifier
ensembles for locating software defects,” Softw. Qual. J. 19, 2011.

[16] W. Li, Z. Huang, and Q. Li, “Three-way decisions based software defect
prediction,” Knowledge-Based Systems, 91: 263–274, 2016.

[17] H. B. Yadav,and D. K. Yadav, “A fuzzy logic based approach for phase-
wise software defects prediction using software metrics,” Information and
Software Technology, 63: 44-57, 2015.

[18] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on software
defect prediction with a simplified metric set,” Information and Software
Technology, 59: 170-190, 2015.

[19] R. Malhotra, “A systematic review of machine learning techniques for
software fault prediction,” Applied Soft Computing, 27: 504-518, 2015.

[20] Yohannese, Chubato Wondaferaw, and Tianrui Li, “A Combined-
Learning Based Framework for Improved Software Fault Prediction,”
International Journal Of Computational Intelligence Systems 10.1, 2017.

[21] M. Souzanchi-K, M. Owhadi-Kareshk and M. R. Akbarzadeh -T.,
“Control of elastic joint robot based on electromyogram signal by pre-
trained Multi-Layer Perceptron,” International Joint Conference on
Neural Networks (IJCNN), 2016.

[22] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. “A fast
learning algorithm for deep belief nets,” Neural computation 18, no. 7,
2006.

[23] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” Science 313, no. 5786,
2006.

[24] Bengio, Yoshua, “Learning deep architectures for AI,” Foundations and
trends in Machine Learning 2, no. 1, 2009.

227

[25] Bengio, Yoshua, Pascal Lamblin, Dan Popovici, and Hugo Larochelle,
“Greedy layer-wise training of deep networks,” Advances in neural
information processing systems 19, 2007.

[26] Hinton, Geoffrey E, Training products of experts by minimizing
contrastive divergence,” Neural computation 14, no. 8, 2002.

[27] Tieleman, Tijmen, “Training restricted Boltzmann machines using
approximations to the likelihood gradient,” In Proceedings of the 25th
international conference on Machine learning, ACM, 2008.

[28] Tieleman, Tijmen, and Geoffrey Hinton, “Using fast weights to improve
persistent contrastive divergence,” In Proceedings of the 26th Annual
International Conference on Machine Learning, ACM, 2009.

[29] Cho, KyungHyun, Tapani Raiko, and Alexander Ilin, “Parallel tempering
is efficient for learning restricted Boltzmann machines,” In IJCNN, 2010.

[30] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams,
“Learning internal representations by error propagation,” No. ICS-8506.
California Univ San Diego La Jolla Inst For Cognitive Science, 1985.

[31] Poultney, Christopher, Sumit Chopra, and Yann L. Cun, “Efficient
learning of sparse representations with an energy-based model,” In
Advances in neural information processing systems, 2006.

[32] Boureau, Y-lan, and Yann L. Cun, “Sparse feature learning for deep belief
networks,” In Advances in neural information processing systems, 2008.

[33] Zou, Will Y., Andrew Y. Ng, and Kai Yu, “Unsupervised learning of
visual invariance with temporal coherence,” In NIPS 2011 Workshop on
Deep Learning and Unsupervised Feature Learning. 2011.

[34] Rifai, Salah, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua
Bengio, “Contractive auto-encoders: Explicit invariance during feature
extraction,” In Proceedings of the 28th International Conference on
Machine Learning, 2011.

[35] Vincent, Pascal, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol, “Extracting and composing robust features with denoising
autoencoders,” In Proceedings of the 25th international conference on
Machine learning, ACM, 2008.

[36] Vincent, Pascal, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and
Pierre-Antoine Manzagol, “Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising criterion,”
The Journal of Machine Learning Research 11, 2010.

[37] http://openscience.us/repo/defect/
[38] http://nasa.gov
[39] T.A. McCabe, “Complexity measure,” IEEE Trans. Softw. Eng. 2 (4)

(1976) 308–320.
[40] M. Halstead, “Elements of Software Science,” Elsevier, 1977.
[41] M. Owhadi-K., M.-R. Akbarzadeh-T, “Representation Learning by

Denoising Autoencoders for Clustering-based Classification,” In
Computer and Knowledge Engineering (ICCKE), 5th International
eConference on, 2015.

[42] MATLAB 2014, The MathWorks, Inc.
[43] C.-C. Chang and C.-J. Lin. “LIBSVM : a library for support vector

machines,” ACM Transactions on Intelligent Systems and Technology,
2011.

228

