
Integrating Multiple Soft Constraints for Planning Practical Paths

Jing Yang, Patrick Dymond and Michael Jenkin

Abstract— Sampling-based algorithms are a common ap-
proach to high-dimensional real-world path planning problems.
Unfortunately the solutions found using such planners are
often not practical in that they do not take into account soft
application-specific constraints. This paper formulates the prac-
ticality of paths based on the notion of soft constraints found
in the Planning Domain Definition Language 3 (PDDL3) [21]
and a range of optimization strategies are developed targeted
towards user-preferred qualities by integrating soft constraints
in the pre-processing, planning and post-processing phases of
the sampling-based path planners. An auction-based resource
allocation approach coordinates competing optimization strate-
gies. This approach uses an adaptive bidding strategy for
each optimizer and in each round the optimizer with the best
predicted performance is selected. This general coordination
system allows for flexibility in both the number and types of
the optimizers used. Experimental validation demonstrates the
effectiveness of the approach.

I. INTRODUCTION

Path planning is a fundamental problem for nearly all
the robotic systems. The basic robot path planning problem
involves finding a path for a robot to get from ‘here’ to ‘there’
while avoiding obstacles in a static environment. It has been
proven that the basic path planning problem is PSPACE-
complete in the dimensionality of the degrees of freedom
(DOFs) possessed by the robot [1]. Since it can be difficult
to plan a path for robots with many DOFs, early methods
for high DOF robots aimed at finding any solution to the
planning problem within a reasonable time. One shortcoming
of basic sampling-based planning approaches is that they
can obtain highly ‘non-optimal’ solutions since they rely
upon randomization to explore the search space. Although
basic sampling-based planning algorithms may find a valid
solution, that solution may not be practical in that it does not
meet soft constraints that exist within the problem domain.

The need to properly represent and use soft constraints
is particularly important for redundant DOF robots such as
tentacle devices (see Fig. 1). For these devices the high
number of DOFs provide the capability to deal with complex
environments and to produce solutions that are not only
correct but also optimize other requirements of the problem
space. The high number of DOF’s coupled with the stochastic
nature of the planning algorithm often leads to motion paths
that involve the robot “flailing about” as it gets from the
start to the goal state. One way of reducing these unwanted
motions and taking soft constraints into account is to use an
appropriate controller that takes the path identified by the
path planner as input and only integrates the soft constraints

J. Yang, P. Dymond and M. Jenkin are with Department of Electrical
Engineering and Computer Science, York University, Toronto, Canada
{jyang, dymond, jenkin}@cse.yorku.ca

while executing the path [2], [3]. There are many issues with
this approach. Perhaps most critically the paths produced
may be infeasible for a real robot. For example, following
the path produced may require that the robot move extremely
slowly in order to minimize the influence of dynamics and
other physical constraints. These controllers are also system
specific, and it can be very hard to develop a good ‘general’
controllers or to know which controller to use for a given
task.

Rather than incorporating soft constraints as a secondary
“refining” process a more general approach is to augment
sampling-based path planning with mechanisms that gener-
ate paths that are not only correct but that also optimize
the soft constraints. Such augmentation can take place at
different points in the path planning process, including the
pre-processing (i.e. sampling), planning, and post-processing
phases of the sampling-based path planners. Given a range
of optimization strategies it is difficult to determine which
optimizer is most suitable at a certain time for a certain
problem. This work describes an auction-based approach that
enables multiple optimizers to compete in a ‘market’ for
computational resources during randomized path planning.
The optimizer with the best predicted performance is selected
in each optimization round.

II. RELATED WORK
A. Sampling-based Path Planning

Sampling-based planners generate a number of discrete
sample points in configuration space and test motions be-
tween these points and the start and goal states. Such
planners usually represent motions as a graph as in the PRM
[4], or as a tree as in the RRT [5]. Early variants of sampling-
based planners provided no performance guarantee. More
recently Karaman and Frazzoli [6] proposed the sampling-
based algorithms PRM*, RRG and RRT*, which always
converge to an optimal solution that minimizes the length
of the path. PRM* is a variant of PRM with a variable
connection radius that scales as the number of samples,
while standard PRM uses a constant radius value to select
neighbors to connect. RRG and RRT* incrementally build
a connected roadmap, augmenting the RRT algorithm with
connections within a sphere scaling the radius with the num-
ber of samples. RRT* has been shown to return significantly
shorter paths than RRT given a specified number of samples
when planning.

Sampling-based path planners that address the problem of
path quality can be divided into three broad categories based
on where these issues are integrated within the algorithm:
pre-processing, post-processing, and customized learning.



(a) Tentacle robot in hotcell (b) c1 (c) c2 (d) c3 (e) c4

Fig. 1: (a) Tentacle robot in a hotcell in a mock environment ( c©OC Robotics and used with permission). (b-e) Four
configurations of the tentacle robot considered in the experiments reported here, labelled as c1, c2, c3 and c4.

a) Pre-processing approaches.: Pre-processing ap-
proaches consider the specific preferences of desired paths in
the pre-processing phase, i.e. during the roadmap construc-
tion phase before a query is made. Because of its proba-
bilistic nature, the PRM roadmap often contains nodes and
edges that lack practical usage or are redundant. Aiming at
finding shorter paths with higher clearance, Nieuwenhuisen
and Overmars [7] add nodes and edges to create “useful”
cycles, which provide short paths and alternative paths in
different homotopy classes. Based on this work, another
PRM variant by Geraerts [8] retracts nodes and edges to
the medial axis to generate high clearance paths.

b) Post-processing approaches.: Given a path found
by the sampling-based path planner, post-processing ap-
proaches modify the path in accordance with the required
practicality preference by adding new nodes, smoothing the
path, eliminating unnecessary loops or detours, etc. Path
pruning and shortcut heuristics are common post-processing
techniques for creating shorter and smoother paths [9], [8].
Retraction algorithms add clearance to a given path [10].
Post-processing algorithms may take multiple paths as input
rather than just a single one. For example, the path merging
algorithm described in [11] computes a path with improved
quality by hybridizing high-quality sub-paths. The algo-
rithm considers the generalized formulation of path quality
measures rather than specific requirements. Path refining
approaches, mentioned earlier, fall into the post-processing
category.

c) Customized learning.: Although post-processing al-
gorithms have shown some success in improving the path
quality and can be used by all the path planners, the final path
depends on the original paths, i.e. they cannot find alternative
routes that deviate considerably from the original ones.
To address this problem, customized learning algorithms
integrate the requirement for path quality in the learning
phase. For example, Kim et al. [12] use an augmented
version of Dijkstra’s algorithm to extract a path from a
roadmap on criteria other than path length. The approach
of initially finding an approximate solution is utilized by
the Fuzzy PRM [13], Lazy PRM [14], IRC (Iterative Re-
laxation of Constraints) [15] and C-PRM (Customizable
PRM) [16] algorithms where the roadmap nodes and edges
are not validated, or are only partially validated, during

roadmap construction. During the learning phase, the path is
searched by strengthening the constraints (obstacle collision,
path length or other specified preferences) iteratively. These
methods are designed to decrease the roadmap construction
costs, while only slightly increasing the query costs.

B. Soft Constraints

Many of the problems with planning practical paths are
related to having to deal with both hard and soft constraints
within a common framework. In path planning the hard
constraint is the need to obtain a collision free path and must
be satisfied by any solution to the problem. The associated
soft constraints include the desire to obtain paths with good
clearance, short length and the like. Soft constraints may be
violated by a solution but serve as guides to encourage or
influence the planner to find good solutions. The integration
of soft constraints in robot path planning is still limited. One
common way of taking soft constraints into account is to use
an appropriate controller that takes the path identified by the
path planner as input and while implementing the desired
path optimizes these other soft constraints (see [2], [3]).
In [17] cost functions used by the controller are formulated
by summing together the weighted soft constraints, which
address problems associated with singularities, joint velocity
demands, joint limits and collision with workspace obstacles.
To optimize the given soft constraints, the Gradient Projec-
tion Method (GPM) modifies the manipulator configuration
by controlling the amount of self-motion added to the joint
velocity vector.

Many formalisms for describing soft constraints have
been proposed in the literature (e.g., [18], [19], [20], [21]).
The PDDL3 formalism is a commonly used representation
because of its simplicity and generality. In [22] PDDL3 was
applied to the representation of soft constraints within a
motion planning framework. Using PDDL3, soft constraints
are encoded into a cost function which the planner tries to
minimize as it plans. This formalism is capable of repre-
senting complex preferences over planning trajectories and
therefore can be applied to a broad class of problems.

C. Resource allocation

In sampling-based path planning, the problem of optimiz-
ing soft constraints involves optimizing over a collection of
possible constraints at various stages in the computation.



Given a set of optimization methods associated with different
optimization costs, it is necessary to determine how to
distribute a constrained optimization budget among them.

Automated resource allocation is a key problem in the area
of multiagent systems, in which participating agents interact
in both allocating the resources each agent’s activities require
and in evaluating the results from these activities [23].
Because each agent has limited competence and awareness of
the decisions produced by others, some sort of coordination
is required to maximize the performance of the overall
system. One common solution to resource allocation among
multiple agents is to apply well known results and insights
from auction theory (e.g., [24], [25]) to represent the task
and its solution. In an auction, a set of items is offered by
an auctioneer in an announcement phase, and the participants
can make an offer for these items by submitting bids to
the auctioneer. Once all bids are received or a prespecified
deadline has passed, the auction is then cleared in the winner
determination phase by the auctioneer who decides which
items to award and to whom. In practical applications, the
items for sale are typically tasks, roles, or resources. The
bid prices reflect each agent’s costs or utilities associated
with completing a task, satisfying a role, or utilizing a
resource [26].

III. PATH PLANNING WITH SOFT CONSTRAINTS

Informally speaking, given a robot with a description of
its kinematics and dynamics, a description of the environ-
ment, an initial state, and a goal state, a solution to the
path planning with soft constraints problem seeks to find
a sequence of control inputs so as to drive the robot from its
initial state to a goal state while obeying the hard constraints,
e.g. not colliding with the surrounding obstacles and staying
within joint limits, while optimizing the soft constraints,
e.g. maintaining appropriate distance from the obstacles,
minimizing rotations of joints, minimizing the path length
and so on. This more general version of the problem is
formalized below, building upon the traditional definition of
path planning and PDDL3 to represent the soft constraints.
See [22] for more details on the approach.

Following PDDL3 [21], the syntax for soft constraints in-
cludes two parts: (i) the identification of the soft constraints;
and (ii) a description of how the satisfaction or level of
satisfaction affects the quality of the resulting path. Each soft
constraint is associated with a violation penalty weight such
that paths that satisfy different subsets of soft constraints can
be compared.

The core of sampling-based path planners involves search-
ing for a path by sampling and testing motions connecting the
samples. Thus a path is comprised of a sequence of nodes
connected using local planners. It is appropriate to define
soft constraint cost functions that operate on this underlying
representation, such that they can be easily integrated within
different stages in the sampling-based path planning. At the
node generation (sampling) level, the sampled configurations
have associated soft constraints. At the edge generation (node
connection for roadmap-based planners or tree extension

for tree-based planners) level, the local planner associates
a soft-constraint with the transition between nodes. During
the graph search and post-processing phase soft constraints
can also be specified so that among several paths solutions
some will be favored among others. Therefore, based on
where they are applied in sampling-based planners potential
soft constraints are divided into three categories: node-
level, edge-level, and global-path-level soft constraints. This
structure is used to characterize different soft constraints.

Node-level soft constraint costvs . Node-level soft con-
straints capture the practicality of a configuration of the
robot. Such constraints can help in selecting “good” nodes
or eliminating “bad” ones in the roadmap or tree. The
cost function costvs may take on any value in [0, 1] with
0 corresponding to a state that meets fully the corresponding
soft constraint and 1 corresponding to a state that fully
violates the corresponding soft constraint.

Edge-level soft constraint. Edge-level soft constraints cap-
ture the practicality of a transition from one configuration
to another, i.e. an edge connecting local edges between
nodes in the roadmap or tree. These soft constraints are
used to determine which pairs are preferable when building
the roadmap or tree. Sampling-based path planners usually
attempt to connect pairs of nodes that are close to each other
because the probability that two neighbor configurations can
be connected is relatively high. However, short and correct
edges may not be practical for the robot to execute. Consider
an edge connecting two close feasible configurations (c, c′)
and an edge-level soft constraint s, the cost of the edge
costes : Cfree×Cfree → [0, 1], i.e. costes(c, c

′) ∈ [0, 1] needs
to be computed for each pair of configurations.

Global-path-level soft constraint. Global-path-level soft
constraints are defined over the global path from the initial
to the goal configuration rather than just the partial elements
(nodes, edges) of the path. These constraints are used to
select the practical one among a set of paths, typically
in a post-processing phase. Such constraints are typically
used to measure consumption of critical resources and other
parameters, such as energy consumption and path length.
Given a global-path-level soft constraint s, the cost function
of the path costps : P→ [0, 1].

Costs related to the transition through a particular node.
Although edge related costs are well captured by the edge
cost above, such costs do not capture a cost of the transition
between two edges that share a node. For instance, it may
not be desirable for a robot to make significant changes
in trajectory as it passes through a node from one edge to
another.

The soft constraint cost of the path is the combination of
these and possibly other categories of soft constraints. Vari-
ous combination mechanisms for the various soft constraints
are possible. For example, a max norm would be useful if
the soft cost is dependent upon the worst soft cost of the
path. A simple sum of the constraints along the path may
not be ideal as the stochastic nature of the sampling and
edge linking process will produce non-uniform sampling in
either configuration or Cartesian space. In the work described



Algorithm 1 Dynamic optimization

1: for t = 1, ..., T do
2: for all Oi ∈ O do
3: Ui ← Oi.P redictUtility
4: end for
5: Ow ← Oi with highest utility Ui

6: Ow.Optimize
7: Ow.CorrectUtility
8: end for

here we choose a distance averaged sum of node/edge costs
so to not bias the soft constraint cost due to the underlying
sampling. Each soft cost has an associated importance weight
(see [21]).
Path planning with soft constraints. Given a path planning
problem with robot A, workspaceW , an initial configuration
cinit, a goal configuration cgoal, a set of soft constraints SC
with corresponding importance weights and a cost function
cost, generate a feasible path P such that cost(P) is mini-
mized. Report failure if no feasible path can be found.

Each of the categories of soft constraints have a cor-
responding optimization within the PRM algorithm. Soft
constraints defined at the vertex level can be optimized
during the node generation phase. Soft constraints defined
at the edge level can be optimized during the edge linking
phase, while optimizations defined at the path level can be
optimized at the post processing phase. Optimization strate-
gies in each of these phases are well understood (see [27],
[22] for examples). Given a set of weighted soft constraint
penalty terms and a group of corresponding optimization
strategies, they key question becomes which optimizations
should be performed and in what order?

IV. COORDINATING MULTIPLE OPTIMIZERS: AN
AUCTION-BASED APPROACH

Given a specific set of soft constraints, there typically
exists more than one optimization method that can be applied
at a given time. Given a constrained optimization budget,
how should the various optimization methods be applied
to the problem? Among a set of optimizers, only one can
be applied to a given solution at a time. Once an opti-
mizer is applied, the solution may change and thus so does
the problem that is to be optimized in the next iteration.
This optimization process can be viewed as a multi-agent
sequential decision-making problem [28], where the global
objective is to maximize benefit (soft constraint path cost
reduction) accumulated over time while minimizing resource
consumption (computational effort). Addressing this resource
allocation issue can be decomposed into two main issues:
which optimizer should be given the resources to run at a
given time; and how to ensure that the system can adapt to
deal with uncertainties related to the relative performance of
a given optimizer.

A. Multiple-round sequential optimizations

It is clearly intractable to try all possible optimizers in
all possible sequences. Nor is it practical to “try” each
optimizer at a given state in the optimization sequence and
then accept in a greedy manner the locally best optimization
strategy. Instead, let us assume that each potential optimizer
has an associated utility oracle, that scores the expected
enhancement – measured in terms of the soft cost function
– of applying this optimization to the current state of the
optimization process. Assuming that this oracle is accurate
and has negligible computational cost, then a straightforward
greedy algorithm can be used to schedule the sequencing of
optimizers.

A dynamic optimization algorithm that coordinates multi-
ple optimizers along these lines is outlined in Algorithm 1.
Auctions take place among the set of optimizers O =
{O1, O2, ..., On} for T rounds. In each round, optimizers
submit their predicted utility for a unit of optimization and
the optimizer with the highest expected utility is declared
the winner. After the winner Ow performs its unit-cost
optimization on the current solution, the optimizers correct
their expected utility Ui based on the new information ac-
quired. The key problem of course is estimating the expected
utility of each optimizer, given the current system state, and
properly recalibrating these utility estimates throughout the
path finding process. The modularity of this approach allows
for flexibility in both the number and types of the optimizers
available, including the pre-processing, post-processing and
customized-learning techniques.

B. Auction mechanism

Because the auction acts to minimize the practical path
cost within budget, the utility function must closely corre-
spond to actual progress toward this goal. There are many
ways to define the utility function. One way to measure
the utility of an optimizer is to measure the path soft cost
improvement the optimizer achieves. It is desirable that this
measure be a selective measure as we can expect substantial
changes in scale of the absolute cost and improvement during
the optimization process. In this work, a utility function that
is equal to the percentage of the path cost reduction from
the old path to the new path obtained by the optimizer, i.e.
U = (cost(Pold) − cost(Pnew))/cost(Pold) is used. The
oracle does not have access to this utility function, of course,
but rather produces an inexpensive “best guess” as to how
the investment of a unit of optimization effort is expected to
improve the solution.

The process of optimizing and updating the utility func-
tions must be efficient. The n optimizers that partici-
pate in the auction at time t places a bid. Let Û(t) =
(Û1(t), Û2(t), ..., Ûn(t))

′ be the n× 1 vector containing the
estimated utility of the true utility U(t) of the optimizers.
Suppose an optimizer Ow wins the auction and is chosen
to execute, its utility distribution Uw(t) is partly revealed
via the observed cost of the new path, whereas the true
utility of all other optimizers remain hidden because they did
not execute at time t. We now have Uw(t) for the winning
optimizer Ow and Ûi for all of the optimizers. How should



(a) c1 → c2 (b) c2 → c3 (c) c3 → c4

Fig. 2: Soft constraint cost comparison between basic PRM path planning and auction-based path optimization with soft
constraints for the poses shown in Fig 1. The plot shows the average solution soft constraints costs with standard deviations.
All values are taken over 20 independent runs.

we estimate Ûi at t+1 efficiently? We seek a straightforward
way of estimating Ûi(t+1) given the sequence of measured
utility values Uwt

(t) the winning optimizers. Let us make the
strong assumption that the error between Ûwi

(t) and Uwi
(t)

is N(0, σi) and that we can treat the optimization of Û(t) as
a recursive least squares estimation process. Following the
notation of a Kalman filters [29] we define the state vector
by U which evolves following a linear plant model.

Û(t) = F (t)Û(t− 1) +B(t)d(t− 1) + w(t) (1)

where F (t) is the transition model (here F (t) = I), B(t) is
the control input model which is applied to the control vector
d(t− 1). In our case we assume that B(t) = I and that d(t)
is a term to capture the expected reduction in utility as the
optimization process proceeds. Specifically d(t) represents
the drift rate that is expected to be negative, which can be
constant or time-varying. w(t) is the process noise which is
assumed to be drawn from a zero mean multivariate normal
distribution with covariance Q(t).

At time t an observation is made of the true utility of the
winning optimizer according to

z(t) = H(t)x(t) + v(t) (2)

Here H(t) is a matrix with one non-zero diagonal element
corresponding to the chosen optimizer. v(t) is the observation
noise. v(t) is assumed to be zero mean Gaussian with
covariance R(t). Theoretically R(t) is zero, but here is
implemented as a small non-zero value to model numeri-
cal errors. Under this assumption we can follow standard
recursive least-squares mechanisms (e.g., a Kalman [29] or
Particle [30] filter) to implement the optimization process.
Here we choose to utilize a Kalman updating process.

In practice it is likely that F (t) = I , which provides
considerable computationally efficiencies in terms of the
computation of the state covariance matrix – it may prove
to be diagonal under reasonable assumptions – allowing the
Kalman filter to be separated for each optimizer.

V. EXPERIMENTAL VALIDATION
This section applies the theoretical framework for planning

practical paths within an optimization budget on a tenta-
cle robots designed and built by OC Robotics, shown in
Fig. 1. The robot has a mobile base that translates in one
dimension and seven joints, each consisting of two DOFs
- pitch and yaw. The robot has 15 DOFs in total. The
environment is based on a hot cell mock-up constructed by
OC Robotics, representing a dry processing cell containing
pipework and vessels [31]. It is a representative of confined-
space challenges found in contaminated environments. The
algorithms were implemented within LaValle’s Motion Strat-
egy Library [32], and were run on a Mac running OS X with
3.06 GHz Intel Core 2 Duo processor and 2 GB memory.

There are a number of different properties the tentacle
robot should exhibit for this hot cell task, but safety is
perhaps the most important issue. First, we choose two node-
level soft constraints that are commonly associated with
tentacle robots, including clearance maximization costvclmax

and joint limit avoidance costvjla. The robot is typically
required to carry a tool by its end-effector, so it is desired
that the robot’s end-effector moves along a short path. We
define a global-path-level soft constraint cost for shortening
the distance travelled by the end-effector costplenee. In this
example, as safety is the most important concern for nu-
clear tasks we assign the weights as wclmax = 5, wjla =
1, wlenee = 1. Both node-level and global-path-level soft
constraints are involved in this experiments, so optimization
strategies designed for these two types of soft constraints
are suitable here. We optimize costvclmax and costvjla in
the sampling phase of PRM*, and costplenee in the post-
processing phase. These two optimizers are combined in the
auction framework.

Figure 2 shows the soft constraint cost of the paths
computed by the basic PRM algorithm and the auction-based
optimization. The optimization strategy reduced the cost of
the total soft constraint cost by at least 50%. Furthermore,
the optimization strategy reduced the cost of each individual
soft constraint by at least 50%, although the improvement
for each soft constraint varies in the different scenarios.



(a) c1 → c2 (b) c2 → c3 (c) c3 → c4

Fig. 3: Performance of the auction-based path optimization. Upper and lower bounds are shown. The plot shows the average
solution soft constraints costs with standard deviation.

(a) c1 → c2 (b) c2 → c3 (c) c3 → c4

Fig. 4: Effects of the auction-based path optimization with respect to time budget. The plot shows the individual soft
constraints costs averages with standard deviation. All values are taken over 20 independent runs.

For example, to move the robot from c2 to c3 (shown in
Figure 2(b)) the optimization is able to discover a path with
relatively larger clearance, resulting costvclmax to decrease
by about 70%. To move the robot from c1 to c2 and from
c3 to c4 (shown in Figure 2(a) and (c)), the optimization is
able to reduce costvjla by about 75%.

Figure 3 compares the performance of the auction-based
approach with the best case and the worst case in each round
of the optimization. The total combined soft constraint costs
of the paths are compared. The best/worst case in each round
is computed by trying all the participating optimizers before
choosing the one that improve the path cost the most/least.
This increased the computation time to 2T , but provides an
idea of how well our auction-based approach performs. These
charts plot the average path cost with standard deviations in
each round of the optimization.

Although the auction-based optimization aims at reducing
the combined soft costs of the solution, it is interesting
to investigate its effects on each individual soft constraint.
Figure 4 plots the solution cost of each soft constraint
achieved by the auction-based optimization given a specific
planing budget. Note that it is not the case that each soft
constraint cost is monotonically decreasing. This is due to
the conflict between different soft constraints. For example,
in Figure 4(b) at some time during the optimization costjla
and costlenee increased while costclmax decreased. This is

a consequence of the safe clearance soft constraint having
a higher importance weight than joint limit avoidance and
length of the end-effector, i.e. wclmax > wjla and wclmax >
wlenee.

VI. SUMMARY

Path planning is an important but difficult problem in
robot planning with high numbers of DOFs. Sampling-based
path planning algorithms are successful in solving high-
dimensional problems. However, their ability to find paths
that meet certain soft constraints is still limited. This paper
presents a framework within which plans can be developed
for high DOF robotic systems within a time budget that meet
the hard constraints of path feasibility and at the same time
seek to reduce the cost of a collection of domain-specific
soft constraints. This framework is intended to be robot
independent, but in this paper the approach is grounded in
the capabilities and tasks associated with tentacle robots.

ACKNOWLEDGEMENT

This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) through the NSERC
Canadian Field Robotics Network (NCFRN).

REFERENCES

[1] J. F. Canny, The Complexity of Robot Motion Planning. Cambridge,
MA, USA: MIT Press, 1988.



[2] J. Bruce and M. Veloso, “Real-Time Multi-Robot Motion Planning
with Safe Dynamics,” in Multi-Robot Systems: From Swarms to
Intelligent Automata, vol. 3, 2005.

[3] M. Kobilarov and G. S. Sukhatme, “Near time-optimal constrained
trajectory planning on outdoor terrain,” in Proceedings IEEE Interna-
tional Conference on Robotics & Automation (ICRA), April 2005, pp.
1833–1840.

[4] L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan, “Ran-
domized query processing in robot path planning,” Journal of Com-
puter and System Sciences, vol. 57, no. 1, pp. 50–60, 1998.

[5] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” in Proceedings International Workshop on
Algorithmic Foundations of Robotics (WAFR), 2000.

[6] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[7] D. Nieuwenhuisen and M. H. Overmars, “Useful cycles in probabilistic
roadmap graphs,” in Proceedings IEEE International Conference on
Robotics & Automation (ICRA), vol. 1, April-May 2004, pp. 446–452.

[8] R. Geraerts, “Sampling-based motion planning: Analysis and path
quality,” Ph.D. dissertation, Utrecht University, 2006.

[9] D. Hsu, “Randomized single-query motion planning in expansive
spaces,” Ph.D. dissertation, Stanford University, May 2000.

[10] R. Geraerts and M. Overmars, “On improving the clearance for robots
in high-dimensional configuration spaces,” in Proceedings IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
August 2005, pp. 679–684.

[11] B. Raveh, A. Enosh, and D. Halperin, “A little more, a lot
better: Improving path quality by a path merging algorithm,” IEEE
Transactions on Robotics, vol. 27, no. 2, pp. 365–371, 2011. [Online].
Available: http://arxiv.org/abs/1001.2391

[12] J. Kim, R. A. Pearce, and N. M. Amato, “Extracting optimal paths
from roadmaps for motion planning,” in Proceedings IEEE Interna-
tional Conference on Robotics & Automation (ICRA), vol. 2, Septem-
ber 2003, pp. 2424–2429.

[13] C. Nielsen and L. E. Kavraki, “A two-level fuzzy PRM for manipula-
tion planning,” in Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), vol. 3. IEEE Press, November
2000, inproceedings, pp. 1716–1722.

[14] R. Bohlin and L. E. Kavraki, “Path planning using Lazy PRM,” in
Proceedings IEEE International Conference on Robotics & Automa-
tion (ICRA), vol. 1, IEEE Press. San Fransisco, CA, USA: IEEE
Press, April 2000, inproceedings, pp. 521–528.

[15] O. B. Bayazit, “Solving motion planning problems by iterative relax-
ation of constraints,” Ph.D. dissertation, Texas A&M University, 2003.

[16] G. Song, S. Miller, and N. M. Amato, “Customizing PRM roadmaps
at query time,” in Proceedings IEEE International Conference on
Robotics & Automation (ICRA), 2001, pp. 1500–1505.

[17] R. V. Dubey, S. McGhee, and T. F. Chan, “Probability-based weight-
ing of performance criteria for redundant manipulators,” Journal of
Intelligent and Robotic Systems, vol. 19, pp. 89–103, 1997.

[18] S. Bistarelli, U. Montanari, and F. Rossi, “Semiring-based constraint
satisfaction and optimization,” Journal of the ACM, vol. 44, no. 2, pp.
201–236, 1997.

[19] E. C. Kerrigan and J. M. Maciejowski, “Soft constraints and exact
penalty functions in model predictive control,” in Proceedings UKACC
International Conference (Control 2000), 2000.

[20] M. Garber and M. C. Lin, “Constraint-based motion planning using
Voronoi diagrams,” in Proceedings International Workshop on Algo-
rithmic Foundations of Robotics (WAFR), 2002.

[21] A. Gerevini and D. Long, “Plan constraints and preferences in PDDL3
- the language of the fifth international planning competition,” Uni-
versity of Brescia, Tech. Rep., 2005.

[22] J. Yang, R. Codd-Downey, P. Dymond, J. Xu, and M. Jenkin, “Plan-
ning practical paths for tentacle robots,” in Proceedings 6th Inter-
national Conference on Agents and Artificial Intelligence (ICAART),
2013.

[23] L. Hurwicz, “The design of mechanisms for resource allocation,” The
American Economic Review, vol. 63, no. 2, pp. 1–30, 1973.

[24] R. Cassady, Auctions and Auctioneering. California University Press,
Berkeley, 1967.

[25] R. McAfee and J. McMillan, “Auctions and bidding,” Journal of
Economic Literature, no. 25, pp. 699–738, 1987.

[26] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot

coordination: A survey and analysis,” in Proceedings of the IEEE,
vol. 94, 2006, pp. 1257–1270.

[27] J. Yang, P. Dymond, and M. Jenkin, “Practicality-based probabilistic
roadmaps method,” in Proceedings Canadian Conference on Computer
and Robot Vision (CRV), 2011, pp. 102–108.

[28] R. Cavallo, “Social welfare maximization in dynamic strategic deci-
sion problems,” Ph.D. dissertation, Harvard University, 2008.

[29] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
pp. 35–45, 1960.

[30] A. Doucet, N. Freitas, and N. Gordon, Sequential Monte Carlo
Methods in Practice. Springer-Verlag, 2001.

[31] “Nuclear decommissioning case study: Sellafield,” 2014.
[Online]. Available: http://www.ocrobotics.com/applications–
solutions/nuclear/nuclear-case-study–sellafield/

[32] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu.


