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Abstract:  

Functional neuroimaging techniques using resting-state functional MRI (rs-fMRI) 

have accelerated progress in brain disorders and dysfunction studies. Since, there are 

the slight differences between healthy and disorder brains, investigation in the 

complex topology of human brain functional networks is difficult and complicated 

task with the growth of evaluation criteria. Recently, graph theory and deep learning 

applications have spread widely to understanding human cognitive functions that are 

linked to gene expression and related distributed spatial patterns. Irregular graph 

analysis has been widely applied in many brain recognition domains, these 

applications might involve both node-centric and graph-centric tasks. In this paper, 

we discuss about individual Variational Autoencoder and Graph Convolutional 

Network (GCN) for the region of interest identification areas of brain which do not 

have normal connection when apply certain tasks. Here, we identified a framework 

of Graph Auto-Encoder (GAE) with hyper sphere distributer for functional data 

analysis in brain imaging studies that is underlying non-Euclidean structure, in 

learning of strong rigid graphs among large scale data. In addition, we distinguish 

the possible mode correlations in abnormal brain connections. 
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Introduction: 

The human brain has a complex connection of various parts which dynamically shift 

during its operation. Therefore, the model and cost of each part can change according 
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to type of its operation in carried out or rest state. the fMRI data exhibits non-

stationary properties in the context of task-based studies [1, 2]. Therefore, the 

analysis of these sections are   outmost value and is able to predict the connection 

factors for each independent profile. Here in, we present a theoretical model based 

on VAE and graph theory to learn probability distributed of graph that can to extract 

the data model of tasks  from brain regions with a semi-unknown prior knowledge 

method. We used each tasks-base functional connectivity matrix that were collected 

in an rs-fMRI experiment, using rs-fMRI data from Alzheimer's Disease 

Neuroimaging Initiative (ADNI). Functional connectome analysis is able to reveal 

biomarkers of individual psychological or clinical traits and describes the pairwise 

statistical dependencies which exist between brain regions [3]. In this article, we 

present brain as a graph using functional connectome structures, which allow us to 

probing and inference about how dynamic changes progress of improvement degree 

of brain disorder or predict the disease as well as the term brain abnormalities. This 

paper propose to introduce a framework for feature extraction of the brain graphs 

which provide across many subjects, for prediction of ambiguous parts of brain. In 

this method a VAE is developed to make the graph and experiment a Bayesian Von 

Mises–Fisher (VMF) [4] mixture model as a latent distribution that can place mass 

on the surface of the unit hypersphere [5] and stable the VAE. Our experiments 

demonstrate that this method significantly outperform other methods and is a large 

step forward to inference brain structure. It is capable to handle both homogeneous 

and heterogeneous graph. Recent studies have shown, geometric deep learning 

methods have been successfully applied to data residing on graphs and manifolds in 

terms of various tasks[6,7], for example brain function prediction and its graph 

expression analysis address the multifaceted challenges arising in diagnosis of brain 

diseases. Here in, we present a novel method using a graph model in revealing of the 

relationship between the parts of brain and recover missing parts or no properly 

function parts. 

 

Related works: 

As our approach focuses on completing graph and prediction defective parts of graph 

with obtained feature of network embedding, we consider some of related fields.  In 

additional, we used a combination of graph convolution VAE to address both 

recovery and learning problems which can be performed in spectral [8, 9] or spatial 

domain [10]. D. Xu and et al in [11] construct a graph from a set of object proposals, 
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provide initial embedding to each node and edge while used message passing to 

obtain a consistent prediction. Simonovsky and Komodakis in [12] used a generative 

model to produces a probabilistic graph from a single opaque vector without 

specifying the number of nodes or the structure explicitly. Pan and et al in [13] 

proposed an adversarial training scheme to regularize and enforce the latent code to 

match a prior distribution with a graph convolutional Autoencoder. Makhzani in [14] 

showed an adversarial Autoencoder to learn the latent embedding by merging the 

adversarial mechanism into Autoencoder for general data but Dai and et al [15] 

applied the adversarial procedure for the graph embedding. Also in [12] used an 

encoder with edge condition convolution (ECC) [16] and condition both encoder and 

decoder which associated with each of the input graph, this method is useful only 

for generation small graphs.  

 

Approach 

In spite of individual alteration, human brains performed common patterns among 

different subjects. Therefore, algorithms base on graph are essential tool to capture 

and model complicated relationship between functional connectivity.in this work, 

we used a model of graph embedding to convert graph data into a low dimensional 

and compaction continuous feature space that is able to detect abnormal parts of 

input graphs [17] which is involved with graph matching and partial graph 

completion problems. To develop this algorithms need to present a generative model 

that construct from a Graph Varational Autoencoder with hypersphere distribution 

[18,19,20]. Partial abnormality can be appear by features train in latent space, 

considering both first-order proximity, the local pairwise proximity between the 

vertices in the network, and second-order proximity. This refers to vertices sharing 

many connections to other vertices that are similar to each other. The work flow of 

the algorithm, in more details, is showed in figure 1.  

Brain network as a graph: As shown in figure 1, using rs-fMRI data of subjects 

acquired by preprocessing ADNI dataset to provide an adjacency matrix that 

encodes similarities between nodes and a feature matrix representing a node’s 

connectivity profile, to define the input data as an undirected, connected graph G = 

(V, E, W), which consists of a finite set of vertices V with |V| = n, a set of edges E, 

and a weighted adjacency matrix W. If there is an edge e = ( i, j) connecting vertices 

i and j, the entry Wij or aij  represents the weight of the edge aij>0 ,  otherwise aij = 0. 

For each of n subjects make a data matrix Xn ε R dn*dy , where dy is the dimensionally 
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of the node’s feature vector. This structure of fMRI data will be merge to the graph 

defined. We will show that graph base algorithm on brain connectivity is useful to 

analyze brain information processing. 

Graph Convolutional Neural Network (G-CNN): for apply convolution-like operators 

over irregular local supports, as graphs where nodes can have a varying number of 

neighbors which can be used as layers in deep networks, for node classification or 

recommendation, link prediction and etc. in this process we involved with three 

challenges, a) defining translation structure on graphs to allow parameters sharing, 

b) designing compactly supported filters on graphs, c) aggregating multi-scale 

information, the proposed strategies broadly fall into two domains, there is one 

spatial operation directly perform the convolution by aggregating the neighbor 

nodes’ information in a certain batch of the graph, where weights can be easily 

shared across different structures[21,22] and other one is  spectral operation relies 

on the Eigen-decomposition of the Laplacian matrix that apply  in whole graph at 

the same time [23,24,25,26], spectral-based decomposition is often unstable making 

the generalization across different graphs difficult[10], that cannot  preserve both the 

local and global network structures also require large memory and computation. On 

the other hand, local filtering approaches [27] rely on possibly suboptimal hard-

coded local pseudo-coordinates over graph to define filters. The third approach rely 

on point-cloud representation [28] that cannot leverage surface information encoded 

in meshes or need ad-hoc transformation of mesh data to map it to the unit sphere 

[29].overall, spectral approach has the limitation of graph structure being same for 

all samples i.e. homogeneous structure, this is a hard constraint, as most of sample 

graphs in the learning phase has same structures and size for different structures i.e. 

heterogeneous structures. Then here, we apply the spatial approach that is not 

obligatory homogeneous graph structure, in turn requires preprocessing of graph to 

enable learning on it. Therefore we used a method that propose a graph embed 

pooling. In [30] Graph convolution transforms only the vertex values whereas graph 

pooling transforms both the vertex values and adjacency matrix.  Convolution of 

vertices V with filter H only require matrix multiplication of the form, υout=Hυin 

where υin , υout ε RN*N. the filter H is defined as the k-th degree polynomial of the 

graph adjacency matrix A; 

H=h0I+h1A+h2A
2+…+hnA

k
 , H ε RN*N .           (1) 

We used the first two taps of H for any given filter. 
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Graph Autoencoder (GAE): GAE is inherently an unsupervised generative model, 

our model is closely base on framework of Varational Autoencoder by [20,31]. In 

follow we briefly describe GAE and introduce our method with objectives. For 

learning both encoder, decoder in the figure 1 to map between the space of graph 

and their continuous embedding Z ε RC, stochastic graph encoder qΦ(Z|G)  embed 

the graph into continuous representation Z. given a point in the latent space Z, the 

graph decoder pθ (G|Z) outputs a probabilistic fully-connected graph Ğ on 

predefined nodes, where Φ,θ are learned parameters. Reconstruction ability of GAE 

is facilitated by approximate graph matching for aligning G with Ğ, as well as a prior 

distribution P(Z) imposed on the latent code representation as a regularization and 

train GAE via optimization of the marginal likelihood, P(G)= ∫ 𝑃𝜃 (𝑍)𝑃(𝐺|𝑍) 𝑑𝑧, 

then the marginal log likelihood can be written;  

log pθ (G) =ƘĹ(qΦ(Z|G)  || pθ (Z|G)) + ₤(θ,Φ;G).      (2) 

Where Kullback–Leibler (ƘĹ) and are a divergence term in loss function that 

encourages the Varational posterior and a Varational approximation to the posterior 

p (Z|G), respectively. Here, we used a hyperspherical latent structure for 

parameterization of both prior posterior, because one of important limitation using 

Gaussian mixture is that ƘĹ term may encourage the posterior distribution of the 

latent variable to collapse in prior or tends to pull the model toward the prior, during 

approximation the prior, whereas in the VMF case is not such pressure toward a 

single distribution convergence. Therefore a VMF [32,33] distribution is more 

suitable for capturing data[20], VMF distribution defines a probability density over 

points on a unit-sphere also  The consequences of ignoring the underlying spherical 

manifold are rarely analyzed in parts due to computational challenges imposed by 

directional statistics. 

 

Geometric deep learning: for graph generation, we employed  the GAE to graph G ε 

Rn*m under an unsupervised learning method, our goal is to learn an implicit 

generative mode that can predict abnormal sections in the graph, of course here we 

are not sure that close links have similar features to detect unseen deformable and 

hidden angle of graphs. Our method inspired by [34, 35], and combination from the 

GAE and generative adversarial network (GAN) that decoder of GAE and generator 

of GAN have been supportive role. Following the above mentioned items, we used 

the uniform distribution  VMF(0,Ҡ =0) for our prior and approximate pθ (Z | Ğ) with 

variational posterior qΦ(Z|G)  = VMF(Z; μ, Ҡ), where μ is mean parameter and Ҡ is 
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a constant, the variational distribution  is associated with a prior distribution over the 

latent variables, our GAE loss combines the graph reconstruction Ĺr=|| Ğ – G ||2 

encouraging concatenation both the encoder-decoder to be a nearly identity 

transformation, a regularization prior loss measured by the ƘĹ divergence, Ĺp=D 

ƘĹ(q(z|G)|| P(Z)) and a cross entropy loss Ĺ2D-GAN for GAN, Ĺ G-GAN=log D(G)+ log 

(1-D(G(z))), where D is discriminator as a confidence D(G) of the whether a input 

graph G is real or synthetic[24]. The total GAE+GAN loss is computed as Ĺ= Ĺr 

+λ1Ĺp+λ2ĹG-GAN where λ1 and λ2 are weights of ƘĹ divergence loss and 

reconstruction loss. As discussed in above, our desire to focus on graph completion 

for deformable object classes in brain connectome therefore we used dynamic 

weight of filtering in each convolutional layer. 

 

Partial graph completion: once our model GAE-GAN has been trained, the encoder 

the element of GAN  are discarded  away, so that the role of the decoder is only as a 

graph generator that a probabilistic latent space z act as a base for finding the target 

graphs the same  graph prior. At inference, for each space of the latent vector z may 

represent a few complete graph correspondence a latent vector, then partial graph or 

deformation graph in the input of system makes  a few complete graph in the output, 

the higher deformation rate in input, the more of graph is generated. Each partial 

graph represent with the partial adjacency matrix δ that apply it to any graph Ğ 

generated by our model and explore similarity between their , for finding best 

compatibility or a latent vector z* which can minimize differences between input 

and output graph, to provide more geometric insight on the problem. Process to 

measure similarities among elements of graphs with probing combination of 

dependences similar unary, pairwise or high-order [36, 37, 38] as well as there are 

Potentials between reference graph and their counterparts similar to [39,40] That 

follow a function is used for finding dissimilarity or deformation with a convex 

optimization problem over the set of doubly stochastic matrices. 

 

Graph recovery plan: As mentioned above, our goal is the optimal choice a latent 

vector z* so that minimize dissimilarity of between the partial graph related to a 

disease brain, G, and the generated graph, Ğ =dec(z);min (Ğ, ζG)  

Where ζ denote a rigid transformation, this procedure is performed over z, non-rigid 

deformation and ζ crosswise. Similar to [39] minimizing the following function is 

our goal as an objective function; 
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min j(p, ζ) = ∑ 𝑝𝑖𝑗 𝑖,𝑗 ||𝑣Ğ − ζ(𝑣𝐺 )||^2 + γ(ζ)      (3) 

Where γ is a regularization term of geometric transformation ζ: Ğ    G, p is a map 

for measuring the difference of graph attributes in similarity transformation domain, 

in each step of optimization a weight matrix measure the degree of deformation on 

the radial basis function method [39], graph recovery is ill-posed problem that has 

multiple plausible solution while in this paper we limit the prediction space to only 

several structures of the graphs.  
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Fig. 1. The data flow of the proposed network architecture 

 

Materials and Discussion 

In the present study, we employed an rs-FMRI data to construct graphs via adjacency 

matrix and feed the graphs into our model to exploring functional brain network 

alteration in patients with Alzheimer’s disease (AD).GAE was used to extracts 

salience alteration of brain connection of AD in diagnosis as well as in order in order 

to detect changes in the abnormal convergence of brain which might occur in brain 

disorders, we generate structure-correlated attributes on graphs.  

Our model architecture is comprising of multiple layer graph-CNN networks as 

cascades of spatial graph convolution       bath normalization      Relu for both 

encoder-decoder and the discriminator block. We directly trained this model on 96 

subjects from preprocess ADNI dataset, including 48 AD and 48 normal control 

(NC), which describe above and used ADAM [41] optimizer with learning rate set 

to 10-4, momentum of  0.09 during update, mini-batch size of 200 sample that train 

for 3*1015 iterations. 
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To verify our model, we get two datasets, a real rs-FMRI data from the benchmark 

ADNI and the other synthetic dataset to develop the illusion correlation matrices to 

prediction abnormal segmentations.  

The synthetic dataset made to further investigation and predict possible construction. 

This dataset is generated by sampling the Wishart distribution [42] over the average 

of all ADNI subjects matrices [43] of two AD and NC groups by computing the 

measure in term of log-likelihood from the classes estimated by the Wishart 

distribution to show that our model can distinguishes salient nodes or different 

connection between AD and NC groups, as well as by the synthetic dataset, we 

detected abnormal area and identified possible state for each defective of brain 

regions. 

Figure 2 depicts the generated graphs by the decoder that fed with given partial graph 

in the input and several possible solutions on the output. Possible modes of 

significant correlation between different regions brain from an incomplete graph is 

produced via synthetic AD dataset. One of the advantages of our approach is to find 

close convergence between brain regions and predict fitting connections or 

reconstructing where only partial functional connectivity data is available. 

Eventually, during a competition to minimize the equation 3, the most appropriate 

graph is chosen. 
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Fig. 2. Possible solutions to complete the input partial graph that are revealed by the model. Abbreviation: L,left & R,right;PreCG, 

Precentral gyrus; SFGmed, Super frontal gyrus, medial;PCUN, Precuneus; CUN, Cuneus; CAL, Calcarine; LING, Lingual gyrus; 

IOG, Inferior occipital gyrus; MTG, middle temporal gryus; MOG, middle occipital gyrus; ROL, Rolandic opercular; SMA, 

Supplementary motor area; PoCG, Postcentral gyrus; PHG, Parahippocampal gyrus; SPG, Super parietal gyrus; SFGdor, 

Dorsolateral of the superior the frontal gyrus; ORBsup, orbital part of the superior frontal gyrus ;OLF, Olfactory cortex;SOG, 

Superior occipital gyrus; TPOmid, Temporal pole, middle part; PAL, lenticular nucleus, pallidum;PUT, lenticular nucleus, 

putamen; MFG, Middle frontal gyrus, orbital.  

To mitigate the excessive cost involved in computing and converging faster, into 

significate connection of the AD group, we consider larger weights for unusual 

connection to highlight correlation of these relationships. However, the use of 

synthetic dataset will cause the results in the open-world assumption drive, while it 

is desirable here for unexpected prediction on the partial connections. 
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In our future study, based on the analysis above and focus on these topological 

attributes to extend this work, we will extract important information on the higher-

order functional of brain network via semantic functional rich-club organization. 
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