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Wright (1977) shows that a debate is developing between those who strongly advo-
cate use of the Rasch model and those who have certain reservations about the extent 
to which the model meets some traditional concerns in trait measurement. In an earlier 
article, Whitely and Dawis (1974) presented the Rasch model in the context of least 
squares estimation, and noted some features that may limit the utility of the model in 
test development. Wright (1977) questions several of the specific interpretations and 
conclusions that were given in the earlier article. The current article is a response to 
those questions. 

Although two areas of disagreement between Wright's (1977) and Whitely and 
Dawis' (1974) articles could be termed "pseudo-issues" (equivalent forms and tech-
nological sophistication), several areas represent real issues. The current article shows 
that 1) in practice, using least squares estimators as a first step in parameter estimations 
is neither awkward nor unnecessary; 2) correct interpretations and expressions for least 
squares standard errors were given in the Whitely and Dawis (1974) article, except for a 
minor typographical error; 3) large sample sizes are required for successful application 
of the model; and 4) some advantages of the model may be nullified in the process of 
meeting traditional goals in testing—namely validity and score interpretability. 

Estimation 

Several of Wright's (1977) criticisms are related to Whitely and Dawis' (1974) presen-
tation of the Rasch model in the context of least squares estimation. Whitely and Dawis 
(1974) used the least squares approach (in contrast to the maximum likelihood method) 
for three reasons: 1) the sample-invariance of the parameters is more readily apparent 
in the least squares context; 2) the least squares procedure is easier to relate to the basic 
data matrix (presented by Whitely and Dawis, 1974, p. 165) so that the requirements 
of the data for the model may be highlighted; and 3) JEM readers may be more famil-
iar with least squares estimation. In contrast, the disadvantage of the least squares 
presentation is that the reader may be led to favor least squares estimation, although 
maximum likelihood estimation should be more efficient. 

Given this perspective, Wright (1977) and Whitely and Dawis (1974) appear to dis-
agree on several estimation issues and these will be discussed. 

Estimation procedures. Wright's (1977) conclusion what Whitely and Dawis' (1974) 
statements about the need for large sample sizes was prompted by their recommenda-
tion of an awkward and unnecessary two-step estimation procedure is inaccurate or 
misleading on several counts. First, as will be shown below, Whitely and Dawis' (1974) 
stress on large sample sizes stemmed from concerns other than estimation procedures. 

'The author would like to thank Rene V. Dawis, Isaac J. Bejar, Kenneth 0. Doyle and David L. Pass-
more for their comments on an earlier draft of this manuscript and David Thissen for his consultation 
on some of the technical issues. Although the viewpoints expressed in this manuscript are not necessarily 
those of these individuals, their assistance was invaluable. 
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Second, a two-step estimation procedure is neither awkward nor unnecessary. Maxi-
mum likelihood estimation is, in this application, an iterative procedure which requires 
the user to supply starting values for some parameters. Although any arbitrary set of 
values can be specified, some values, such as initial least squares estimates, are prefer-
able in terms of computational efficiency and to avoid the possibility of terminating 
parameter estimation at a set of sub-optimal values (the problem of local minima or 
maxima). Third, in Wright and Panchapakesan (1969, pp. 36-37) maximum likelihood 
estimation is, in fact, presented as a two-step estimation procedure in which the least 
squares estimates for items "are then used as the initial values for the iterative proce-
dure described in MAX," the maximum likelihood subroutine. 

It should be noted, however, that Whitely and Dawis (1974) may be misread to mean 
that both initial item and person values are required to start maximum likelihood itera-
tions. In fact, either set of estimates can be used efficiently to start the procedure. 

Estimation formulas. A draft version of Wright (1977, pp. 222-223) contains a cor-
rection of Whitely and Dawis' rendering of the Wright and Panchapakesan formulas 
for the errors of the maximum likelihood parameter estimates. In fact, neither Wright 
(1976) nor Whitely and Dawis (1974) present formulas which could be correctly ren-
dered from Wright and Panchapakesan's (1969) Formula 29. First, consistent with their 
least squares presentation of the Rasch model, the Whitely and Dawis' formulas for 
standard errors were correctly obtained from Wright and Panchapakesan's formulas 
12 and 13 2  for least squares error, not maximum likelihood, and were mislabeled only 
due to the printer's inadvertent omission of the square root notation that was given on 
the galley proof. The Whitely and Dawis interpretations of the computational proce-
dures for the Rasch parameter error terms correctly apply to the least squares formulas 
given in the article. Furthermore, although Wright's (1977) Formula 2 is correct for the 
standard error of the maximum likelihood item estimates, Formula 1 is incomplete. 
The standard error of maximum likelihood ability estimates (from Wright and Pancha-
pakesan's Formula 29) contains a second term which increases the error for impreci-
sion in item calibrations. Omission of this term is no small matter, for the formula is 
formally incorrect and the missing term can account for as much as 20% of the error 
variance.' 

SAMPLE SIZE 

Whitely and Dawis (1974, p. 169) stated the following conclusion about the sample 
size required to apply the Rasch model: "although the P, j 's from the extremes can be 
estimated from the model, the need for very large N's in test development should be 
obvious." Although this statement shows that the possibility of some empty score levels 

2 lncidentally, the Wright and Panchapakesan (1969) Formula 13, the variance of ability estimates, is 
also mislabeled as a standard error. 

3The complete formula for the standard error of the Wright and Panchapakesan (1969) maximum 
likelihood ability estimates is as follows: 

Se(b r ) — 
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is not at issue, Wright's (1977, p. 219) statement that "the Rasch model can be and has 
been productively applied to sets of data as small as 100 persons" shows that sample 
size is a real issue. The key to understanding the difference between Wright's and 
Whitely and Dawis' account of sample size is the differing importance attached to a 
powerful test of fit of the data to the Rasch model, prior to having useful estimates of 
the parameters. 

Importance of testing fit. A major advantage of a successful application of the Rasch 
model is being able to specify that the observed test response data arises from the inter-
action of a person's ability on the latent trait being measured, and the item's easiness; 
that is, the data fit the Rasch model. Additionally, the major features of the Rasch 
model-1) the independence of person measurement from the particular items used and 
2) the independence of item calibrations from the particular persons sampled—for-
mally depend upon the test data fitting the model. With respect to estimating param-
eters for existing tests, the several studies which apply a reasonably stringent test of 
fit are notable for the frequency with which the model is found to be inappropriate (i.e., 
Birnbaum, 1968; Brooks, 1965; Kearney, 1966). Thus, it is not reasonable to assume 
a priori that all or most test data fit the model. 

Although a model may still be useful when its assumptions are not strictly met, few 
guidelines are available in the published literature about how various types and degrees 
of departures from the Rasch model's assumptions influence the usefulness of the pa-
rameter calibrations. Initial results on person calibrations (Whitely & Dawis, 1974; 
Wright, 1968) have indicated robustness for moderate departures from unidimen-
sionality and equivalent slopes. Probably more serious, however, are departures from 
local independence of items [obtained from difficulty-ordering and position effects 
(i.e., Sax & Karr, 1962) and test context effects (Whitely & Dawis, 1976)], but it ap-
pears that no published research has examined this problem. For person-free item 
calibrations, little robustness would be expected for departures from unidimen-
sionality and equivalent slopes when calibrating samples differ widely in ability. 
Again, unfortunately, no published results appear to address this issue directly, and 
neither Wright's (1968) data on person-free test calibration nor Anderson, Kearney 
and Everett's (1968) item comparisons are adequate substitutes. Wright's (1968) 
paper concerns the likelihood ratios associated with the various total scores, rather 
than the equivalence of item parameter estimates, while the ability distributions in 
Anderson et al's (1968) two populations probably did not vary greatly, if at all. 

Thus, at least some major advantages of the Rasch model depend, either directly or 
indirectly, on fit of the data to the model, and the test developer cannot wisely assume 
hir data meet the requirements without administering proper tests of fit. 

Testing fit.  Wright (1977) explores the problem of sample size by examining the 
effect of N on the log likelihood standard errors of item calibration differences, using a 
two-group comparison of the maximum likelihood item estimates. This method must 
be questioned for two reasons. First, the method is not really an adequate test of the 
requirements of the data. Two-group comparisons are more appropriate for checking 
the appropriateness of the model in different populations. Items which fit the Rasch 
model should have comparable likelihood estimates obtained from each score level. By 
using only two effective score levels in the two-group comparison, one may sum over 
some significant departures, particularly at the extremes of the distribution. Second, 
reporting standard errors on the scale of item easiness, rather than for logarithms, 
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Figure 1 Power of the Two-Group Test for Item Calibration Differences 

for Several Sample Sizes. 

d„ would give a somewhat different impression of the size of the error (i.e., it would 
seem larger). Third, and most important, the two-group comparison has little power to 
detect sizable degrees of departure from the model for the sample sizes indicated by 
Wright. 

Figure 1 presents the power of Wright's two group test (presumably a t-test) of item 
differences for various sample sizes, under maximum likelihood estimation. The ab-
scissa represents some hypothetical true differences in item parameters between two 
groups. Each value represents the ratio, E„ /E 12 , of the simple likelihood ratios for 
solving item i, where E 1 , and E12 are obtained separately from Group 1 and Group 2. 
The ratio Ei  /E, 2  is the antilog of the difference between the log likelihoods 
(InE,, — 1nE, 2 ) in Wright's two-group comparison. The standard errors for item dif-
ferences (log scale) were computed from the formula used by Wright (1977) to 
examine sample size, as follows: 

SED = Aff v'6 	/(N/2) 

where N denotes examinee sample size for each group. It was assumed that item differ- 
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ences were distributed around the hypothetical true values as a non-central t, with the 
standard error given above. However, the power calculations were actually obtained 
from the standard normal distribution, as it is an adequate approximation to the non-
central t for the sample sizes presented here. The power calculations are for a two-tail 
test at a = .05. 

From Figure 1, it can be seen that for an N of 100, the test has little power to detect 
differences even when the likelihood ratio of solving an item in Group 1 is only .33 that 
of Group 2. Even with an N of 250, the power to detect moderate item differences is 
low, e.g., power is about .28 when the item likelihood ratio from Group 1 is .66 of the 
likelihood ratio in Group 2. In fact, the power for a likelihood ratio of .66 does not 
reach the .90's until an N of about 800 is obtained. 

Thus, it is clear that the two-group test of fit needs large N's if a moderate degree of 
departure of the data from the Rasch model is to be detected. Since this test is not 
really adequate for the reasons cited above, a better test, with more effective score 
groups, will probably require even larger N's. 

Conclusion. Given the importance of testing fit, and the need for a reasonably power-
ful statistical test, successful application of the Rasch model requires large sample sizes 
at some phase in the test development process. Since the power of a test of fit is depen-
dent on N, the choice of sample size should be guided by the degree of departure from 
the model that the test developer wishes to detect. At the extremes, a sample of several 
thousand can detect trivial departures, while a small N (less than 800) fails to detect 
sizeable differences. 

OBJECTIVE MEASUREMENT REVISITED 

Whitely and Dawis were concerned about the properties of objective measurement 
which were gained by using the Rasch model, and stressed that the Rasch model's ob-
jectivity would not be realized unless it was inherent in the test data. Wright (1977, 
p. 220) agrees with this, but also states that lack of fit to the model may imply that the 
data are not suited for any kind of measurement "if the measurement sought is to be 
objective, in the sense ordinarily meant when scientists `measure'." This issue needs 
further elaboration for, carried to its extreme, the need for "objectivity" could imply 
not only that fit to the Rasch model should become a standard in test development, and 
that tests which do not fit the model are not "scientific." Since it was stated above that 
many otherwise reputable tests do not fit the model, this requirement would be no small 
matter. 

Unfortunately, the term "objectivity" has many associated meanings in addition to 
that implied by successful calibration with the Rasch model. Use of the term in yet 
another way may perpetuate some misconceptions about the nature of the calibrated 
measure. This problem, in part, is what prompted Whitely and Dawis' (1974) warning 
of "superficial objectivity" in Rasch-calibrated data. Wright (1968, p. 87) clarifies his 
use of the term "objectivity," as achieved with the Rasch model, by defining two neces-
sary conditions: 

First, the calibration of measuring instruments must be independent of those objects that 
happen to be used for calibration. Second, the measurement of objects must be independent 
of the instrument that happens to be used for measuring. 

Wright's use of the term will be referred to as "specific objectivity." Two general ques- 
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tions must be asked to guide the test developer in determining the value of the specific 
objectivity offered by fitting the Rasch model: 1) Is specific objectivity essential to mea-
suring psychological characteristics, so that other goals of measurement become secon-
dary? and 2) Does the achievement of specific objectivity influence other goals in test 
construction (i.e., validity in particular)? 

Specific objectivity and essential qualities of tests. Specific objectivity describes the 
kind of information that is represented in test scores. To evaluate how essential specific 
objectivity is, it is necessary to consider more generally the kind of information that 
may be represented by measurements. Torgerson (1958, pp. 21-37) presents one of the 
more extensive discussions available. Basing his discussion on the work of the philoso-
pher N. R. Campbell, Torgerson defines three kinds of measurement: 1) fundamental 
measurement, in which numbers represent the calibration of the property according to 
natural (empirical) laws and do not necessitate the measurement of any other variable, 
2) derived measurement, in which the numbers representing the property obtain mean-
ing from a precise relationship to other properties, and 3) measurement by fiat, in which 
the presentation of the property depends on presumed relationships between the obser-
vations and the concept of interest. Torgerson dismisses derived measurement from 
consideration in the social sciences, since the laws and theories are not precisely formu-
lated. Fundamental measurement, on the other hand, was seen as having applicability 
in some areas of psychology, particularly psychophysics, since the numerical values for 
the various quantities can be assigned by an experiment, such as a judgmental task. 
Torgerson classifies mental tests as measurement by fiat, since the numbers are not as-
signed by an experimental process, nor is the quality to be calibrated (level on the trait) 
directly measured. 

Since mental tests must be classified as measurement by fiat, the quality of a test must 
be evaluated by appealing to criteria outside the measuring process. These criteria have 
been specifically elaborated in terms of validity, especially construct validity, for traits, 
and are considered an essential aspect of a mental test. If we apply Torgerson's distinc-
tions about the kinds of information in a measure, specific objectivity can be seen as 
essential for a fundamentally-measured variable, since meaning here depends on the 
calibration process itself. 

That the attainment of specific objectivity bears no necessary relationship to validity 
can be shown by extreme examples. The calibration of a test may come from a very 
arbitrary process of assigning weights to response patterns, and, although it may be 
inefficient to work this way, the scale will be valid to the extent that it enters into a 
number of important relationships with other variables, in accordance with a nomo-
thetic network (Cronbach & Meehl, 1955). In contrast, the calibration of a measuring 
instrument may rigorously meet the criteria of specific objectivity, but bear no rela-
tionship to the trait purportedly measured. Therefore, although specific objectivity 
may be a desirable property, it is neither an essential component nor a substitute for 
validity. 

The interaction of validity and specific objectivity. The influence of developing a test 
to fit the Rasch model on test validity has not yet been carefully studied. However, 
some expectations can be stated. In general, fitting the model can be expected to nar-
row the scope of a test. First, rigorously meeting the requirement of unidimensional-
ity should imply the development of tests which provide less general inductive sum-
maries of behavior. Traits such as introversion-extroversion and general intelligence 
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are measured from somewhat heterogeneous tests, but correlate with many aspects of 
behavior. Second, and more speculatively, selecting items with uniform item charac-
teristic function slopes may alter what is measured by a test if unidimensionality does 
not strictly hold in the full item domain. Third, the requirement of local indepen-
dence may redefine what qualities can or cannot be measured. For instance, tests for 
which there are practice effects or learning from prior items will not fit the require-
ments of the model. Since many traits are supposedly related to learning, it may not 
be reasonable to exclude locally dependent item domains. In fact, successful measure-
ment of a trait may depend on having such items, and, if so, test models should be 
built to meet the demands of substantive theory. 

Conclusion. The properties achieved by the Rasch model are essential for funda-
mentally-measured variables, as are found in psychophysics. However, these proper-
ties are not essential in mental test measurements, which must rely on relationships 
outside the measuring process to obtain meaning. Although the advantage of having 
tests which satisfy a precise model should not be discounted, developing items to fit 
the Rasch model may result in tests which are objective only in a narrow sense, and 
at the possible expense of essential classical standards for trait measurement. Simply 
stated, data on the internal structure of a test may not be substituted for other kinds 
of validity data. Furthermore, selecting items to fit a very restrictive model may lead 
to narrow tests with few significant relationships to other variables. 

INTERPRETABILITY OF RASCH ABILITY PARAMETERS 

Differing perspectives on specific objectivity are also involved in the discrepancy 
between Wright's and Whitely and Dawis' account of the importance of anchoring 
Rasch parameters. 4  Wright (1977, p. 221) views anchoring as "a trivial matter of 
establishing a reference point" in estimation of the parameters. Whitely and Dawis 
(1974, p. 169) view anchoring as the "key to the sample-invariant interpretability of 
ability scores." The difference between these accounts is that Wright equates score 
interpretability with parameter estimation in this context. If the interpretability of 
scores derives solely from specific objectivity in the calibration process, as in funda-
mental measurement, then anchoring is a trivial event in the estimation process. 
However, if score interpretability depends on having scores which test users can 
interpret for examinees by referring to qualities outside the measuring process, 
anchoring is not a trivial problem. Traditionally, a meaningful score anchor may be 
either norm-referenced or domain-referenced. For a norm-referenced interpretation, 
the Rasch ability scores must be anchored to a relevant population. For a domain-
referenced interpretation, the ability parameters must be anchored to a set of items 
which are intrinsically important to the attribute being measured. Achieving either 
of these qualities requires explicit concern during test development. Paradoxically, 
even if the Rasch parameters are meaningfully anchored in test development, they 
are inferior to classical standard scores for norm-referenced interpretations (the per- 

4Whitely and Dawis (1974, p. 169) inadvertently omitted the word "geometric" from their descrip-
tion of the item anchoring procedure, using simple likelihoods. The geometric mean of the simple likeli-
hoods, when set equal to 1.0, is identical to the continued product of simple likelihoods described by 
Wright (1976). 
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centile equivalents are not inherent in the score) and they have dubious meaning in a 
domain referenced interpretation (which may not be appropriate to trait measure-
ment). But having an ability metric which adequately reproduces item responses 
would seem to be an advantage in score interpretation. Test users would benefit from 
further clarification of this issue. 

PSEUDO-ISSUES 

Wright (1977) questions Whitely and Dawis' (1974) description of statistically-
equivalent item subsets from Rasch calibrations as providing a more limited equiva-
lence than do classical parallel forms. In the discussion, Whitely and Dawis defined 
"limited" as not necessarily meeting some qualities of parallel forms, such as high 
precision and equal error variances, which are important to a test user who wants 
comparable information from different test forms. Wright, however, sees calibrated 
item subsets as being less limited, since any subset gives scores which can be con-
verted into measures on the latent trait. These viewpoints are not really contra-
dictory. When item subsets are not carefully selected for precision, then classical 
parallel forms will provide more equivalent information. However, when item subsets 
are carefully balanced to provide equivalent information for given score levels (equal 
information functions), then the information provided by the subsets is as com-
parable as that achieved from parallel forms, with the additional advantage that 
precision may be concentrated at specified score levels. 

Another issue concerns technological sophistication. Wright (1977, p. 224) notes 
that computer-administered tests are not required to utilize the Rasch model, since 
paper and pencil tests "can be used for estimating measurements by means of simple 
tables of score-measure equivalents, without recourse to computers." Calibrating the 
Rasch-score equivalents or raw scores is not at issue on page 177 of the Whitely and 
Dawis (1974) article, for it was previously (pp. 164-165) stated that scoring tables 
are used after parameter calibrations have been obtained. Although the model has 
some interesting applications even for fixed content tests, the possibility of individ-
ualized testing, so that the "desired degree of precision for any person can be ob-
tained from the fewest possible items" (Whitely & Dawis, 1974, p. 177) was seen as a 
major advantage of the model which is best implemented by computer. Testing may 
be individualized to a degree through a sequence of paper and pencil tests. How-
ever the immediacy and number of ability calibrations available greatly favor the 
interactive computer strategy. 

GENERAL CONCLUSION 

Whitely and Dawis (1974) were not particularly enthusiastic about the potential 
of the Rasch model to revolutionize test development. The reconsideration of the 
issues given here reaffirms that conclusion. Classical testing procedures have served 
test development admirably for several decades, and if a new model is to have im-
pact it should offer alternatives to contemporary issues in applied testing, while still 
providing the major advantages of the classical model. Although the Rasch model 
has real potential for test efficiency, especially with individualized testing through 
computers, overemphasis of the model may inadvertently result in failure to achieve 
some important features of classical trait measurement. 
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